
 

Nonperturbative Jackiw-Teitelboim gravity

Clifford V. Johnson*

Department of Physics and Astronomy, University of Southern California,
Los Angeles, California 90089-0484, USA

(Received 12 March 2020; accepted 5 May 2020; published 26 May 2020)

Recently, Saad et al. showed how to define the genus expansion of Jackiw-Teitelboim (JT) quantum
gravity in terms of a double-scaled Hermitian matrix model. However, the model’s nonperturbative sector
has fatal instabilities at low energy that they be cured by procedures that render the physics nonunique. This
might not be a desirable property for a system that is supposed to capture key features of quantum black
holes. Presented here is a model with identical zperturbative physics at high energy that instead has a stable
and unambiguous nonperturbative completion of the physics at low energy. An explicit examination of the
full spectral density function shows how this is achieved. The new model, which is based on complex
matrix models, also allows for the straightforward inclusion of spacetime features analogous to Ramond-
Ramond fluxes. Intriguingly, there is a deformation parameter that connects this nonperturbative
formulation of JT gravity to one which, at low energy, has features of a super JT gravity.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1–3] has
emerged as an important model of key dynamical phenom-
ena in black hole physics. Of considerable interest is the
thermal partition function ZðβÞ ¼ expð−βHSYKÞ and cor-
relation functions thereof, which allow for the study of
thermalization, quantum chaos, and other phenomena. The
low energy sector of the physics has a dual description
[4–7] in terms of Jackiw-Teitelboim (JT) gravity [8,9], a
two-dimensional (2D) gravity theory whose partition func-
tion ZðβÞ can be written (in a Euclidean presentation) as a
topological expansion summing contributions from con-
stant negative curvature surfaces of genus g (the number of
handles) with a boundary of fixed length β.
There is a Schwarzian action for the integral over the

boundary. The g ¼ 0 (disc) contribution gives a result
Z0ðβÞ which can be interpreted [10], given the SYK
connection, as

Z0ðβÞ ¼ eS0
Z

dEρ0ðEÞe−βE; ð1Þ

where ρ0ðEÞ is a spectral density function. Here, S0 is a
constant proportional to 1=G, where G is the Newton
constant of the 2D gravity. Correlation functions of powers

of ZðβÞ can all be determined in terms of this spectral
density function. The quantum chaotic dynamics of SYK
have many features recognized [10–12] as suggestive of
simpler models of large N random matrix models, and
indeed, in a recent beautiful paper by Saad et al. [13], the
entire topological expansion for JT gravity was shown to be
captured by a special type of model of random matrices—a
Hermitian matrix model in a “double-scaling” limit in the
sense defined in Refs. [14–17] in the context of defining a
path integral over string world sheets. The double-scaled
1=N expansion of the model, itself a genus expansion
[18,19], has its contributions at higher genus fully deter-
mined by a family of recursion relations [20–23] seeded by
the spectral density ρ0ðEÞ, and this was shown [13] to be
true for JT gravity also, with matching results, showing that
the gravity theory is equivalent to a matrix model.
However, the matrix model has nonperturbative insta-

bilities that show up at low energy. Their cure (outlined in
Ref. [13]) renders the nonperturbative physics rather
ambiguous. The purpose of this paper is to show how to
construct a different matrix model definition that has the
same perturbative physics as JT gravity at higher energy, but
which possesses a well-defined nonperturbative sector,
curing the physics at low energy. There are many attractive
features of this new definition, and chief among them is the
fact that the improvednonperturbative sector arises naturally
in the matrix model, and furthermore that an underlying
integrable structure (that also implicitly governs various
topological recursion relations used in Ref. [13]’s perturba-
tive work) suggests the nonperturbative completion.
It is worth borrowing a saying from a different context:

while theoretical physics might not quite repeat itself, it
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often rhymes. The original double-scaled Hermitian matrix
models of 1990 [14–17] yielded the first nonperturbative
definitions of string theories. They were 2D gravity coupled
to the ð2; 2k − 1Þ conformal minimal models (k ¼ 1; 2;…).
It was swiftly recognized by the models’ discoverers that
the models with even k had nonperturbative instabilities—
including the unitary “pure gravity” case of k ¼ 2. On the
other hand, while not widely noticed, Refs. [24–28]
showed that double-scaled complex matrix models can
be defined that contain the same perturbation theory but
better nonperturbative physics. The models (also indexed
by k) also had a second perturbative regime with a distinct
topological expansion that played a role in providing the
good nonperturbative behavior, but was otherwise mys-
terious at the time. Much later, those models were inter-
preted in Ref. [29] as type 0A string theories: 2D gravity
coupled to the ð2; 4kÞ superconformal minimal models.
As will be reviewed in the next section, there is a way of

defining the JT gravity matrix model in terms of minimal
models [13,30], and so the lessons learned about how to
define new minimal models with better nonperturbative
physics can be used in the JT gravity context too. The JT
gravity thus defined will have, in one regime, identical
perturbation theory to the Saad et al. model, but far richer
physics nonperturbatively. That nonperturbative physics
will contain an interpolating pathway to the low energy
physics of what can be recognized as a super JT gravity
discussed recently in terms of matrix models by Stanford
and Witten [31]. In some ways, the better nonperturbative
behavior found here for the JT gravity definition can be
attributed to the super JT gravity’s (asymptotic) presence,
repairing the low energy sector.
The paper is organized as follows: some key elements of

the existing literature are briefly unpacked in Sec. II. In
Sec. III, the focus is on the main workhorse of the matrix
model, the (fully nonperturbative) spectral density. Clarity
is maintained by first studying the simplest prototype case
since it is enough to capture all the key features—the
neighborhood of the tail end of the spectrum. After some
review of this well-known “Airy” case in Sec. III A, a less
familiar but relevant “Bessel” case is reviewed in Sec. III B.
Next, the proposed spectral density with all the well-
behaved features it enjoys is explicitly constructed in
Sec. III C. (For those who do not mind plot spoilers, it
is displayed in Fig. 4 on page 10.) Additional aspects of the
features of the spectral densities are studied in Sec. III D,
where a differential equation that defines all the spectral
densities discussed (and more besides) nonperturbatively is
presented. Section III E uncovers some special features of
the well-behaved spectral densities at E ¼ 0. There is an
infinite family of distinct models possessing the good
behavior revealed in Sec. III C, again indexed by integer
k. In Sec. IV, it is shown how to combine them all in order
to define a JT gravity matrix model with the desired stable,
unambiguous nonperturbative behavior.

A closing discussion is presented in Sec. V, mostly
outlining further steps for exploration of the many avenues
this work seems to open up.

II. THE SCHWARZIAN SPECTRAL DENSITY
AND MINIMAL STRING MODELS

Genus g contributions in the gravity theory come with a
weight factor eS0ð1−2gÞ, and so the matrix model topological
expansion parameter is ℏ ¼ e−S0 . (This is the renormalized
1=N after double-scaling and is thought of as a closed
string coupling gs in the older 1990s context. The notation
ℏ will be used here in order to avoid confusion: the 2D
gravity here is “spacetime,” as opposed to world sheets for a
string moving in some target spacetime derived from the
“minimal matter” living on it.)
The particular disk partition function computed by the

Schwarzian theory defines a spectral density [3],

ρ0ðEÞ ¼
1

4π2ℏ
sinhð2π

ffiffiffiffi
E

p
Þ; ð2Þ

and so this implicitly defines (perturbatively) the double-
scaled matrix model to which the JT gravity is dual, since
recursion relations yield the higher genus contributions to
ρðEÞ in terms of it. Oneway to think about this definition is in
terms of the infinite family of double-scaled matrix models
describing gravity coupled to minimal models, labeled by an
integer k, already mentioned in the Introduction. The kth
model has a spectral density at this order of the form [32]
ρ0ðEÞ ∼ sinh½ð2k − 1Þ cosh−1ð1þ EÞ�. As was noted in
Ref. [13], in the limit of large k, if E is scaled as 1=k2, this
gives the Schwarzian spectral density in Eq. (2). So the JT
gravity matrix model would appear to be a large k limit of
those minimal models. Alternatively, another connection was
proposed in Ref. [30], and it will be returned to in Sec. IV.
(However, the nonperturbative proposal presented here
applies equally well to Ref. [13]’s way of connecting to
the minimal models.) The partition function involves a trace
of an effective one-dimensional Hamiltonian that arises
naturally from the double-scaled matrix model [33]
H ¼ −ℏ2∂2=∂x2 þ uðxÞ, and so at leading order in ℏ,

Z0ðβ; μÞ ¼
Z

μ

−∞
dxhxje−βHðp̂;x̂Þjxi

¼
Z

μ

−∞
dx

Z þ∞

−∞

dp
2πℏ

e−β½p2þu0ðxÞ�

¼ 1

2ℏ
ffiffiffiffiffiffi
πβ

p
Z

μ

−∞
dxe−βu0ðxÞ

¼ 1

2πℏ

ffiffiffi
π

β

r Z
∞

u0ðμÞ
du0fðu0Þe−βu0 ; ð3Þ

where u0ðxÞ ¼ limℏ→0 uðxÞ and fðu0Þ ¼ −∂x=∂u0. (The
normalization hxjpi ¼ eipx=

ffiffiffiffiffiffiffiffi
2πℏ

p
was used.) This can be

written as
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Z0ðβ; μÞ ¼
Z

∞

u0ðμÞ
dE

Z
E

u0ðμÞ

fðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p du0
2πℏ

e−βE;

¼
Z

∞

u0ðμÞ
dEρ0ðE; μÞe−βE; ð4Þ

where

ρ0ðE; μÞ ¼
1

2πℏ

Z
E

u0ðμÞ

fðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p du0: ð5Þ

So μ defines the end point of the classical distribution of
energies. Taking μ → 0 (note that u0ð0Þ ¼ 0) yields Eq. (1),
where (and henceforth) ℏ−1 has been absorbed into the
definition of ρ0ðEÞ. So ρ0ðEÞ is determined if the leading
piece of the potential of H is known. In fact, the general
minimal model has this defining equation for u0,

X∞
k¼1

tkuk0 ¼ −x; ð6Þ

where tk is the coupling that turns on the kth model. (Such an
equation is the leading piece of what was called a “string
equation” in the older matrix model literature.) If tk are
specifically given by

tk ¼
π2k−2

2k!ðk − 1Þ! ; ð7Þ

then fðu0Þ ¼ I0ð2π ffiffiffiffiffi
u0

p Þ=2, where I0ðxÞ is the zeroth
modified Bessel function.1 Putting this into Eq. (5) yields
the Schwarzian spectral density given in Eq. (2). In this sense,
thematrixmodel of JT gravity proposed inRef. [13] is seen as
being built by incorporating an infinite number of minimal
models, each turned on just the right amount. Moreover, the
construction above shows [13,30] that the JT partition
function is actually a “macroscopic loop” operator in the
older minimal model language [33,34].
The next step is to consider the nonperturbative physics.

The key elements are captured in the nonperturbative
spectral density, discussed next.

III. SPECTRAL CURVES AND
NONPERTURBATIVE EFFECTS

Potential problems with the nonperturbative physics
emerge in the exact spectral density function, ρðE; μÞ,
the focus of this section. The simplest case (the leading
behavior in small E) can be thought of as the k ¼ 1 model
of the previous section (i.e., set t1 ¼ 1 and set all other
tk ¼ 0). Performing the integral (5) in this case yields the
disc contribution ρ0ðE; μÞ ¼ ðπℏÞ−1ðEþ μÞ12. Higher

orders are yielded by recursion relations (see, e.g.,
Ref. [13]), but nonperturbative information must be sought
elsewhere, in general cases. However, this prototype case
can be solved exactly in terms of Airy functions, and it is
reviewed in the next subsection. After that, an apparent
digression will be presented in the subsection after detailing
an analogous exact model involving Bessel functions. The
next subsection describes the model of interest, which
naturally combines features of both of these special cases.
The two subsequent subsections present (respectively) a
special differential equation that all the spectral densities
solve (once the appropriate potential uðxÞ is input) and a
special analysis of the spectral density at E ¼ 0.

A. The Airy case

The prototype of the behavior of the Saad-Shenker-
Stanford [13] Hermitian matrix model of JT gravity can be
seen in a special exact case that is built out of Airy
functions. In fact, in the old language of the 1990s, it is the
gravitating (2,1) minimal model, k ¼ 1. It can be thought of
as present in the very tip of the tail of all double-scaled
Hermitian matrix models, and so in some sense is universal,
as emphasized in this context in Ref. [13]. A most efficient
way of discussing the matrix model is through the afore-
mentioned effective HamiltonianH that arises after double-
scaling. It is

H ¼ −ℏ2
∂2

∂x2 þ uðxÞ; ð8Þ

while uðxÞ satisfies

uðxÞ ¼ −x: ð9Þ

This is simply the k ¼ 1 specialization of Eq. (6). For this
potential, the one-dimensional Schrödinger equation
HψðE; xÞ ¼ EψðE; xÞ is the defining equation for the
Airy function Ai (up to rescalings to arrive at the conven-
tional form), and the solution is

ψðE; xÞ ¼ ℏ−2=3Aið−ℏ−2=3ðEþ xÞÞ: ð10Þ

It is useful for later (although trivial here) to keep in mind
the physics represented by these wave functions. The
potential is a straight line of unit negative slope, passing
through zero at x ¼ 0. At a given E, far enough to the right
there is oscillatory behavior. Moving to the left these
oscillations eventually terminate at a peak which decays
with an exponential tail as the wave function penetrates
beyond the turning point E ¼ u ¼ −x. The translation
invariance of the problem means that we have solutions
with energies over the whole real E line.

1Note that there is a normalization difference with Ref. [30],
merely a matter of choice of conventions.
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The spectral density is defined in Ref. [13] to be

ρðE; μÞ ¼
Z

μ

−∞
jψðE; xÞj2dx; ð11Þ

although they have set μ ¼ 0. Nonzero μ will be discussed
here as well. The result can be deduced exactly, and one
useful method for this [35] is to use the Airy kernel
KAiðv; wÞ which is

Z
0

−∞
Aiðvþ xÞAiðwþ xÞdx¼AiðvÞAi0ðwÞ−AiðwÞAi0ðvÞ

v−w
;

ð12Þ

where a prime denotes a derivative with respect to the
argument. Here, v and w play the roles of energies and
taking the limit where they are equal gives a finite result
from the right-hand side (use L ’Hopital’s rule). Using the
defining equation for Airy to replace the second derivative
gives the μ ¼ 0 form in Ref. [13],

ρðEÞ ¼ ℏ−2
3½Ai0ðζÞ2 − ζAiðζÞ2�; ð13Þ

where ζ ≡ −ℏ−2
3E. The perturbative limit is at large E (with

wave functions that run to large negative x) and there
ρðEÞ → ρ0ðEÞ ¼ ðπℏÞ−1 ffiffiffiffi

E
p

, the end point of the famous
Wigner semicircle distribution. The nonperturbative cor-
rections to this behavior are visible in two characteristic
features: the first is that there are oscillations modulating
the

ffiffiffiffi
E

p
, becoming more pronounced at smaller E. These

are earmarks of the underlying discreteness of the eigen-
values of the original matrix model, and the fact that they
have a characteristic minimum spacing coming from their
tendency to repel—an appealing feature of chaotic systems
that also seem to be present in black hole physics, a
motivating feature of this whole line of investigation
[2,3,10–12,36].
The second feature is the exponential tail of the dis-

tribution. In fact, it leaks into the E < 0 region, referred to
as the “forbidden region” in Ref. [13]. This feature is less
desirable and in fact dangerous, since if the effective
potential for an eigenvalue is negative in that regime, the
system is unstable, with eigenvalues tunneling out of the
distribution at E ≥ 0 toward negative E. This is in fact what
is observed in Ref. [13] for their matrix model of JT gravity.
This is also consistent with the fact that for the k even
minimal models, the effective potential goes negative,
making them nonperturbatively unstable. Since the JT
gravity was shown in Sec. II to be built from an infinite
number of such models, it inherits their affliction.
Reference [13] offers options for curing this nonperturba-
tive instability, but those are essentially user-defined
choices—the physics is no longer unique. Below, a model
will be presented which resembles the Airy case for large E,

has the same kind of oscillatory modulations, but which
avoids these problematic nonperturbative features.
In preparation for what is to come, it is worth treating this

numerically, even though the exact answer is known. The
Schrödinger problem was solved using a matrix version of
the Numerov method [37], with −100 ≤ x ≤ þ100 and a
grid of 4000 × 4000 (it is easy to do larger grids but this
turns out to be unnecessary). The 4000 eigensolutions thus
found were suitably normalized2 and then the integral in
Eq. (11) was performed (for μ ¼ 0) using a simple
trapezoidal routine. The result is displayed in Fig. 1, with
cross marks representing the numerical points, and a
continuous curve showing the analytical result of Eq. (13).
There is one final remark for this section, which will be

important later. There is an additional parameter in the
problem. The eigenvalue distribution end point can be
placed somewhere other than E ¼ 0. It can be placed at
E ¼ −μ by integrating x from −∞ to μ in the defining
integral for ρðEÞ in Eq. (11). Because of the translation
invariance of the problem, it is a trivial shifting in the Airy
kernel KAiðv; wÞ and simply replaces E by Eþ μ in the
result, giving

ρAiðE; μÞ ¼ ℏ−2
3½Ai0ðζÞ2 − ζAiðζÞ2�; ð14Þ

with ζ≡−ℏ−2
3ðEþμÞ, and the leading behavior

ρAiðE; μÞ ¼ ðπℏÞ−1E1=2 þ � � � emerges for E ≫ μ. Note

-1 0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

E

ρ E(  )

FIG. 1. The spectral density ρðEÞ, both exactly (solid line) and
numerically (crosses). The perturbative asymptote ρ0ðEÞ ¼
ðπℏÞ−1 ffiffiffiffi

E
p

is shown as a dashed line for comparison.

2There is a subtlety. Since the wave functions obtained, being
free, are not square integrable, there is a normalization ambiguity
that must be fixed. This can be done using the exact wave
function solution in the Airy case of this section, and by judicious
use of the analytically solvable behavior in certain asymptotic
regimes in more nontrivial examples to come in later sections.
These latter have been treated more carefully than in the first
version of this paper, improving results for the small E regime.
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that this shift does not help with the nonperturbative
problems, ultimately, since the exponential leakage will
always intrude into E < 0. This is all trivial in this case, but
will be useful for full appreciation of the results in
subsequent subsections.

B. The Bessel case

Another illustrative exactly solvable case involves Bessel
functions instead of Airy functions, and arises from having
the potential

uðxÞ ¼ ℏ2ðΓ2 − 1
4
Þ

x2
ð15Þ

in the Schrödinger problem above. Here Γ is a constant. Its
full significance will emerge later. The wave function
ψðE; xÞ can again be solved exactly in terms of known
functions, because [38] writing ϕðxÞ ¼ x−1=2ψðxÞ and re-
scaling y¼E1=2x=ℏ, the resulting equation is y2ϕ00þyϕ0þ
ðy2−Γ2Þϕ¼0, which means that ϕðyÞ ¼ ð ffiffiffi

2
p

ℏÞ−1JΓðyÞ, a
Bessel function of order Γ, where the prefactor is a
convenient normalization. A spectral density for this
problem can be solved for, using an analog of Eq. (11).
This time, instead of a translation relation between x and E,
there is scaling one: rescaling x to a value μ̃ is equivalent to
replacing E

1
2 by E

1
2μ̃. So, defining t ¼ y2, the density can be

written as

ρJðE; μ̃Þ ¼
Z

μ̃

0

jψðE; xÞj2dx ¼ 1

4E

Z Eμ̃2

ℏ2

0

J2Γð
ffiffi
t

p Þdt

¼ μ̃2

4ℏ2

�
J2ΓðξÞ þ J2Γþ1ðξÞ −

2Γ
ξ
JΓðξÞJΓþ1ðξÞ�;

where ξ≡ μ̃
ffiffiffiffi
E

p
=ℏ: ð16Þ

Interestingly, in analogy with the Airy case, there is a kernel
from which this can alternatively be derived [39,40], the
Bessel kernel KJðu; wÞ,

1

4

Z
1

0

JΓð
ffiffiffiffiffi
vt

p ÞJΓð
ffiffiffiffiffi
wt

p Þdt

¼ JΓð
ffiffiffi
v

p Þ ffiffiffiffi
w

p
J0Γð

ffiffiffiffi
w

p Þ − JΓð
ffiffiffiffi
w

p Þ ffiffiffi
v

p
J0Γð

ffiffiffi
v

p Þffiffiffi
v

p
−

ffiffiffiffi
w

p : ð17Þ

This Bessel case has leading large E behavior,

ρJðE; μ̃Þ ¼
μ̃

2ℏπ
ffiffiffiffi
E

p −
1

4

�
Γ2 −

1

4

�
ℏ

μ̃πE3=2 þ � � � ; ð18Þ

with oscillatory correction terms arising nonperturbatively,
in analogy to the Airy case. A plot of the case ðΓ ¼ 0; μ̃ ¼ffiffiffi
2

p Þ is given in Fig. 2. The classical singularity at E ¼ 0 is
removed in the full behavior, and (for Γ ¼ 0) the density is
a nonzero constant, μ̃2=4, at E ¼ 0, the interpretation of
which will be discussed further in the next subsection.

Note that in the JT gravity context, Stanford and Witten
[31] mentioned this case as part of a wider discussion
generalizing the work of Ref. [13] to matrix ensembles
other than the Hermitian case. In the same way that the pure
Airy case serves as a prototype for the Saad-Shenker-
Stanford matrix model of JT gravity, this Bessel case
should form the basis for a kind of super JT gravity.
Indeed, they rightly point out that this Bessel behavior
should arise as the tail of the spectral density in complex
matrix models, since they fall into the ðα; βÞ ¼ ð1; 2Þ
Altland-Zirnbauer classification [41]. However, as will
be made clear in the next subsection, it is only a special
subsector of the physics that can be captured by complex
matrix models, and it will be connected to much richer
physics.

C. Beyond Airy and Bessel

Consider the following equation, which originally arose
from double-scaling limits of complex matrix models
[24,26,27]:

uR2 −
ℏ2

2
RR00 þ ℏ2

4
ðR0Þ2 ¼ 0; ð19Þ

where R≡ uðzÞ þ x and u ¼ uðxÞ. A prime denotes an x
derivative. The Airy case of Sec. III A can also be thought
of as a solution to this equation (i.e., R ¼ 0). It turns out
that the Γ ¼ 0 Bessel case of Sec. III B is also a special
solution3 to this equation, the case of R ¼ x. This is the

E

ρ E(  )

FIG. 2. The spectral density ρðEÞ for the Bessel case, with
Γ ¼ 0 and μ̃ ¼ ffiffiffi

2
p

.

3This curious exact solution was noticed in Ref. [42] and
referred to as the k ¼ 0 solution. It was generalized to an
interesting infinite family of rational solutions in Ref. [43] that
were interpreted as string theories without D branes.
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realization of statements in Ref. [31] (see also Ref. [39])
that double-scaled complex matrix models can yield the
Bessel-class tails for spectral densities. This behavior was
already noticed in Refs. [24,26,27].
In this subsection however, a different solution to

Eq. (19) will be used. For large negative x, the solution
will behave as uðxÞ ¼ −xþOðℏÞ, while for large positive
x it has uðxÞ ¼ 0 − ℏ2=4x2 þOðℏ3Þ. In fact, there is a
unique solution and it is plotted (using MATLAB to construct
it) in Fig. 3.
(For readers averse to numerics, uniqueness can in fact

be proven analytically in this case [24]. Amusingly, the
change of variables uðxÞ ¼ −xþ 2y2ðxÞ reveals that yðxÞ
must solve the Painlevé II equation. For the asymptotics
considered here, it has been shown [44] that there is a
unique solution for yðxÞ.)
Crucially, the potential interpolates between those stud-

ied above for the Airy case and the Bessel case. There is a
shallow well that connects them in the interior. In particular,
for the one-dimensional Schrödinger problem, at high
energies E, the physics will be similar to the Airy case.
The low energy sector is different, however. Since the
potential asymptotes to zero there is a state of energy
E ¼ 0, the lowest, since the well turns out to support no
bound states with E < 0 [38,45].
The spectral density for this kind of model has not been

studied nonperturbatively in the literature, but it is clearly
important to examine it in the present context. Using the
numerical techniques discussed in Sec. III A, the spectrum
can be directly solved numerically and the spectral density
function (11) explicitly constructed. The result for μ ¼ 0 is
given in Fig. 4, with the μ ¼ 0 Airy case superimposed for
comparison.
Several comments are worth making here. The first is

that at large E the spectral densities coincide. Furthermore,

the oscillations that modulate the leading perturbative
ffiffiffiffi
E

p
behavior also match extremely well at high and intermedi-
ate energies, right down to deep into the low energy regime.
There, the spectral density deviates from the Airy case,
resulting in a slightly higher first peak, and approaches a
nonzero constant at E ¼ 0, as will be confirmed in
Sec. III E.4

Most crucially, there is no nonperturbative incursion into
the forbidden region at all, for this model. In summary, this
system, which is derived from a complex matrix model,
has identical perturbation theory (large E physics) to that
presented in Ref. [13], shares many of the key nonperturba-
tive features that are also desirable, but does not have the
nonperturbative instability afflicting them at low E. More-
over, string equation (19)was shown inRefs. [26,27] to be the
unique equation that follows from assuming only that the
underlying Korteweg-de Vries (KdV) integrable structure of
the minimal models be present nonperturbatively and a
scaling symmetry. So, this lack of ambiguity in the non-
perturbative completion should be inherited by the non-
perturbative completion of JT gravity proposed here.
There is more, however. Turning on the parameter μ here

is less trivial than before, because the potential uðxÞ is not
translationally invariant. For either sign of μ, at large E the
density function asymptotes to ðπℏÞ−1 ffiffiffiffi

E
p

, as before. For
increasingly negative μ, the E ¼ 0 value of the density
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FIG. 3. A potential uðxÞ that interpolates between the Airy case
and the Bessel case. It is the unique (k ¼ 1) solution to a special
Eq. (19) derived from a matrix model.
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FIG. 4. The spectral density ρðEÞ extracted numerically
(crosses) for the potential of Fig. 3, which is a solution of
Eq. (19). For comparison, the exact Airy result is included (solid
line). They differ significantly at low energies, with the new
density terminating at a finite value at E ¼ 0. The perturbative
asymptote ρ0ðEÞ ¼ ðπℏÞ−1 ffiffiffiffi

E
p

is shown as a dashed line.

4Determining precisely whether the density drops sharply to
zero precisely at E ¼ 0, or reaches a constant there, is hard to
confirm using this approach, since there is no direct control over
which eigenstates are sampled. A different method for E ¼ 0 will
be employed in Sec. III E, confirming that ρ ≠ 0 and E ¼ 0.
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approaches zero (see Sec. III E), and now the bulk of the
distribution is pushed to the right, as shown in Fig. 5. In
fact, for negative enough μ, the density looks increasingly
like the (translated) Airy case (except that the tail termi-
nates at E ¼ 0). For positive μ however, the behavior is
strikingly different, as shown in Fig. 6.
The distribution moves to the left, increasing its value in

the neighborhood of E ¼ 0, looking increasingly there like
the Bessel case studied in the previous section: for
increasingly large positive μ, the density ρðEÞ dips sharply
from an increasingly high value, before eventually merging
into the undulations of the Airy-like sector.
At finite μ, it cannot ever resemble the Bessel case

exactly, since there are hybrid Airy-Bessel–like wave
functions present. Tuning to larger μ probes more of the
regime with the Bessel-relevant potential (15), with more
participation of the spectral density ρJðE; μ̃Þ of Eq. (16)
with a μ̃ that grows with μ. So the limit μ → ∞ combined
with an infinite rescaling down of the vertical axis would
yield the pure Bessel case, giving the finite (after rescaling)
ρJ at E ¼ 0 seen for Bessel. Meanwhile, the rescaling also
flattens away the features due to Airy into the horizontal
axis, resulting in Fig. 2.
This special limit (once it is built into a complete model

in Sec. IV) makes contact with the aforementioned super JT
gravity model recently discussed by Stanford and Witten
[31] in this context. The finite μ physics retains access to
the perturbative regime that matches what is needed for
ordinary JT gravity at high energy, but connects it to better
nonperturbative physics that does not include incursions to
E < 0, a desirable feature for the goal of this paper.
The interpretation of all this behaviorwith μ is that there is

a natural infinite “wall” at E ¼ 0 in this matrix model, past

which eigenvalues cannot flow.5 This is in sharp contrast to
the standard Hermitian case used for the definition of
Ref. [13]. The position of the eigenvalue distribution’s
end point is controlled by μ. In the present construction,
negative values of μ move it away from the wall, while
positive values push it into the wall. There, the eigenvalues
pile up against the wall since they cannot go to E < 0. (The
Bessel system of the previous section is an exact model of
this latter phenomenon.)While it can be set to zero, since μ is
clearly a meaningful nonperturbative parameter in this
model, it will be kept and interpreted in later sections.
Of course, the Airy case of Sec. III A is just a model of the

full JT gravity matrix integral’s features,6 but it did indeed
capture key essences. Similarly, the model presented in this
section exhibits key aspects of a matrix definition that has
rather attractive nonperturbative features while retaining all
the perturbation theory of theAiry case. The job of Sec. IV is
to show how this is incorporated into a fully operational new
nonperturbatively improved model of JT gravity. Before
doing that, it is worth making an observation about an exact
differential equation (in fact a whole family of them) obeyed
by the spectral densities discussed so far.

D. A differential equation for spectral densities

It is possible to derive a special differential equation for
each of the spectral densities discussed, which has a
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FIG. 5. The spectral density ρðEÞ extracted numerically
(crosses) for the potential of Fig. 3, which is a solution of
Eq. (19). For comparison, the exact Airy result is included (solid
line). Parameter μ ¼ −2 has been turned on, pushing the
distribution to the right.
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FIG. 6. The spectral density ρðEÞ extracted numerically
(crosses) for the potential of Fig. 3, which is a solution of
Eq. (19). For comparison, the exact Airy result is included (solid
line). Parameter μ ¼ 2 has been turned on, pushing the distri-
bution to the left, where the eigenvalues “pile up” at E ¼ 0.

5In the original complex matrix model context in which some
of these features were discovered, the wall [24,26] can be traced
to the fact that integrating out the angular variables left the
eigenvalues defined on the real positive line.

6In the language of Steve Shenker’s Strings 2019 talk, it is a
model of a model of a model...of a model.
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universal form that may make it useful for further studies of
models of JT gravity. In a sense, it may be thought of as a
complementary tool to the loop equation or recursion
approach of Refs. [13,31]. The effective Hamiltonian, H,
that emerges in the double-scaling limit [see Eq. (8)] has a
resolvent associated to it: R̂ðx; EÞ≡ hxjðH − EÞ−1jxi. It
actually satisfies the Gel’fand-Dikii equation [46],

4ðu − EÞR̂2 − 2ℏ2R̂R̂00 þ ℏ2ðR̂0Þ2 ¼ 1; ð20Þ

where u ¼ uðxÞ, and a prime denotes a differentiation with
respect to x. Crucially, this is not the matrix model
resolvent that is discussed in Refs. [13,31], although they
are related. The latter is obtained from the former, R̂ðx; EÞ,
by integrating once with respect to x, and then evaluating it
at μ ¼ 0. (As stated before, more physics can be seen by
retaining the x dependence, as is done here.) The object
obtained by integrating once is, in the old matrix model
language, the Laplace transform of the (double-scaled) loop
operator expectation value, denoted wðE; xÞ here [and not
Rðx; EÞ] to avoid notational confusion. Its imaginary part
(divided by π) yields the double-scaled spectral density.7

Given this connection, a differential equation for ρðE; μÞ
can be derived directly by writing ρ0 ∼ ImðR̂Þ, substituting
into Eq. (20), yielding a third order equation,

4ðu − EÞðρ0Þ2 − 2ℏ2ρ0ρ000 þ ℏ2ðρ00Þ2 ¼ 1: ð21Þ

This is highly nonlinear, but a simpler equation can be
derived by taking an extra derivative. A derivative of
Gel’fand-Dikii results in an overall factor of R̂ that can
be divided out, and so after substituting

ℏ2ρ0000 ¼ 2u0ρ0 þ 4ðu − EÞρ00; ð22Þ

which, for a given potential uðxÞ, defines ρðE; xÞ to
all orders in perturbation theory and beyond, after speci-
fication of the appropriate choice of boundary condi-
tions. Setting x ¼ μ yields the desired ρðE; μÞ. Again,
the facility of having the variable x (and hence μ) manifest
is apparent here.
This differential equation [in either form (21) or (22)] is a

remarkably compact and universal form as a nonperturba-
tive definition of the spectral densities. The main input is
the form of uðxÞ, which is determined by which of a
number of types of matrix model is being discussed. It is
instructive to check that the exact Airy and Bessel spectral
densities ρAiðE; μÞ and ρJðE; μÞ [given in Eqs. (14) and
(16)] derived in the previous sections for the potentials

uðxÞ ¼ −x and uðxÞ ¼ ℏ2ðΓ2 − 1
4
Þ=x2, respectively, do

indeed satisfy the equation (in either form).
This also gives an alternative way of solving numerically

for the nonperturbatively desirable spectral density of the
previous section, with that interpolating uðxÞ (which solves
Eq. (19), derived from complex matrix models) as input. In
fact, solving it at or near E ¼ 0 could give an alternative
way of getting better numerical resolution in that regime.
Unfortunately, the differential equation (in either form) is
extremely sensitive to numerical instabilities in precisely
this regime, and so no insights into E ¼ 0were gained here.
The equation certainly deserves further study however, and
moreover it will be helpful in precisely phrasing a non-
perturbative formulation of JT gravity in Sec. IV. As for
better understanding of E ¼ 0, a different approach was
taken and is described next.

E. The spectral density at E= 0
and the Miura transformation

Section III C uncovered the properties of the spectral
density with the desirable nonperturbative properties, but
the methods used were not well adapted to deliberate and
precise exploration of the neighborhood of E ¼ 0. Going to
higher and higher resolution in the discretized scheme
yields eigenvalues of successively lower energies, but this
only allows an approach to E ¼ 0 asymptotically. This
made it hard to cleanly determine whether the density
ρðE; μÞ approached a finite value there, or whether it drops
precipitously to zero. The differential equation for the
density of the previous section contains the answers, in
principle, but is hard to control numerically at low energies.
There is another approach, however.
As pointed out in Ref. [38] for just this kind of system,

E ¼ 0 is rather special in that the wave function can be
succinctly characterized in terms of a differential equation:
factorizing according to H≡ ð−ℏ∂ þ vÞðℏ∂ þ vÞ, where
u ¼ v2 − ℏv0, the wave function ψðE ¼ 0; xÞ is annihilated
by ðℏ∂ þ vÞ, and hence

ψðE ¼ 0; xÞ ¼ A exp
�
−ℏ−1

Z
x
vðx0Þdx0

�
; ð23Þ

where A is a normalization constant. (Factoring in the other
order simply changes the sign on v.) In fact, the relation
u ¼ v2 − ℏv0 defines the well-known (in the classic inte-
grable systems literature) “Miura transformation” or
“Riccati relation” between the KdV and mKdV integrable
systems. More specifically though, it was shown in
Ref. [42] that when uðxÞ satisfies the defining Eq. (19),
with the desired boundary conditions u ¼ −xþ � � �
(x → −∞Þ and u ¼ 0þ � � � (x → þ∞), the function vðxÞ
actually satisfies the following differential equation:

7So the Laplace transform is wðl; xÞ, the expectation value of
loops of length l. In the present context, l ¼ β, the inverse
temperature of the SYK model, and the loop expectation value is
essentially the SYK/JT partition function.
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ℏ2

2
v00 − v3 − xvþ ℏ

2
¼ 0; ð24Þ

with v ¼ ð−xÞ12 − ℏ=4xþ � � � (x → −∞) and v ¼ 0þ � � �
(x → þ∞). In fact, Eq. (24) is a celebrity, the Painlevé II
equation, with a specific value for its constant.8 It is a rather
simple and well-behaved differential equation to tackle
numerically, and vðxÞ can readily be found, along with its
first integral (MATLAB was used). Hence, the spectral
density at zero energy was computed,

ρðE ¼ 0; μÞ ¼ A2

Z
μ

−∞
dxjψðE ¼ 0; xÞj2; ð25Þ

where A is yet to be determined. A plot of this density (for
A ¼ 1) is shown in Fig. 7, and it is in accord with
expectations: for very negative μ, the integration over x
from −∞ to μ to make the density ρðE; μÞ picks up mostly
contributions from high energy wave functions. There is
very little contribution from low energy states, since those
are mostly localized to the right (recall the form of the
potential uðxÞ in Fig. 3), with only small exponential tails
penetrating to the left. For positive μ, the zero energy sector
can contribute strongly, since the integral now covers the
region where it is most supported. From this perspective, it
is not surprising, therefore, that ρðE ¼ 0Þ ≠ 0 at μ ¼ 0,
receiving a contribution from the tail of the E ¼ 0 wave

function, as can be seen in the figure. This confirms the
numerical suggestions about this regime, done in Sec. III C
by sampling the spectrum.
In fact, this result can be used as further independent

confirmation of the methods of Sec. III C since the value
that the density approaches as E ¼ 0 is approached should
have the same μ dependence as seen in the curve of Fig. 7,
up to an overall scale since A (above) was unfixed. A
successful check was done, using a sample of five points at
μ ¼ 0, 2, 10, 20, 40, as shown in Fig. 8, where comparing
two points fixed A2 ≃ 39.68.
In the figure, the circles are the values of ρðE ¼ 0; μÞ as

computed in Eq. (25) using the methods of this subsection
(in this range of μ values the increase with μ is actually
quadratic, to good accuracy) while the “experimental” data
marked by the crosses are the nonzero values read off for
ρðE ¼ 0; μÞ at the closest approach to E ¼ 0 available for
the discrete spectrum-sampling system used in Sec. III C.
(That lowest value was E ≃ 5.8 × 10−4.)

IV. NONPERTURBATIVE JT GRAVITY DEFINED

There is an infinite family of models with the same
character as the one discussed in Sec. III C, originally
defined using complex matrix models and studied exten-
sively in Refs. [24–28,49]. They are indexed by an integer k
(Sec. III C example is k ¼ 1) and were later identified [29]
in the string theory context as nonperturbative definitions of
the ð2; 4kÞ superconformal minimal string models. The
function uðzÞ that the matrix model defines in the double-
scaling limit is a solution of the string equation (19) with

R≡ R̃k½u� þ x; ð26Þ
where R̃k½u� is the kth polynomial in uðxÞ and its x
derivatives defined by Gel’fand and Dikii [46], but
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FIG. 7. The spectral density at zero energy, ρð0; μÞ. The inset
enlarges the behavior near μ ¼ 0.
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FIG. 8. Comparison of choice values of the spectral density at/
near zero energy, ρð0; μÞ computed by two separate methods. See
text for details.

8This is a different appearance of Painlevé II than was
mentioned in passing two paragraphs below Eq. (19). Fans of
Painlevé transcendents should note that Painlevé I appeared as the
string equation for the original (nonperturbatively unstable)
double-scaled Hermitian matrix model [14–17], and more re-
cently Painlevé IV made an appearance as a string equation
arising from a reduction of the “dispersive water wave hierarchy”
[47,48].
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normalized so that the coefficient of uk is unity. The
original ð2; 2k − 1Þ bosonic minimal models are equivalent
to taking theR ¼ 0 solution. Instead, the models of interest
have uðxÞ ¼ ð−xÞ1=k þ � � � for negative x and uðxÞ ¼
−ℏ2=4x2 þ � � � for positive x. (Note that the leading
positive x behavior is k independent, showing a kind of
universality.) They have the same perturbative expansion in
negative x as the gravitating ð2; 2k − 1Þ minimal models,
but better nonperturbative behavior due to their distinct
positive x behavior. Aspects of the physics of these models
have been studied a great deal. (While the leading pertur-
bative behavior of the spectral density was studied in
both the positive and negative x regimes long ago in
Refs. [26,27], characterizing the effects of the wall, the
detailed computation and analysis of the nonperturbative
form of the spectral density presented here is new, however,
as is their definition via a differential equation, given in
Sec. III D.)
For the Schrödinger problem of Eq. (8), with the

potential uðxÞ possessing the asymptotics described, there
is again a well in the intermediate region, and studies
suggest9 that it is too shallow to support bound states. This
means that all of these models have well-behaved stable
nonperturbative physics, and their low energy behaviors—
the very tail of the spectral density—are all controlled by
the features exhibited in the previous subsections. (For the
E ¼ 0 analysis of the subsection immediately preceding,
the generalization for higher k involves writing a wave
function again of the form of Eq. (23), with vðxÞ solving a
higher k generalization of Painlevè II. See Refs. [38,42].)

As an additional example, the k ¼ 2 case was solved
numerically and displayed in Fig. 9. The spectral density
was computed using the same numerical techniques
described in Sec. III C, and is displayed in Fig. 10, for
μ ¼ 0. This density asymptotes to ρ0 ∼ E3=2 (the known
perturbative result shared also by Hermitian matrix models:
ρ0 ∼ Ek−1

2 for the kth model) and again approaches a small
nonzero value at E ¼ 0, as shown in the inset.
It is clear how to define the full nonperturbatively

well-defined matrix model for JT gravity that was prom-
ised. The general interpolating model defines a potential
uðxÞ as a solution to the string equation (19) with R≡P

k tkR̃k½u� þ x. Turning on the same combination of an
infinite number of tks as defined in Eq. (7) will ensure that
the disc partition function will define the same leading
spectral density at large E displayed in Eq. (2). (As
mentioned previously, this is because the large −x regime
for Eq. (19) is perturbatively the same as solving R ¼ 0,
the Hermitian matrix model string equation.) As seen, at
any order in perturbation theory (E ≫ μ), the physics will
be the same, but as E ∼ μ or lower, the physics will be
different, and of the character shown in Figs. 4, 5, 6, and 10.
The full spectral density is supplied by the differential
equation in the form (21) or (22). As an alternative, the
large k limit suggested in Ref. [13] (see also Ref. [31])
could also work and should be explored further.

V. DISCUSSION

The core result of this work is a construction of a matrix
model of JT gravity that exhibits the same physics at high E

x

x(  )u

FIG. 9. The potential uðxÞ that is supplied by Eq. (19) for the
case k ¼ 2, where asymptotically uðxÞ ¼ ð−xÞ1=2 þ � � � to the left
and uðxÞ ¼ −ℏ2=4x2 þ � � � to the right.
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FIG. 10. The spectral density ρðEÞ extracted numerically
(crosses) for the k ¼ 2 potential of Fig. 9, which is a solution
of Eq. (19). It approaches a constant value at E ¼ 0 (see inset: it is
not clear if the upward displacement of the leftmost point is a
numerical artifact or not, but it does not change the conclusion).
The perturbative asymptote ρ0ðEÞ ¼ 2πE3=2=3ℏ is shown as a
dashed line.

9It has not been proven, but numerical and analytical work
[38,45], along with the ability to diagonalize the parent complex
matrix model into positive eigenvalues, suggest that it is true.
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as the matrix model of Saad, Shenker, and Stanford (SSS)
[13], matching on to perturbative JT gravity, but that has a
better nonperturbative sector in that it is stable and
unambiguous. How the low E physics differs from the
SSS model depends upon a parameter μ. [It is normally set
to zero (in the approach of SSS), but it is natural to explore
different values of it to better understand the physics.] This
construction was achieved by building it out of an infinite
family of special minimal models, in the same way that the
SSS definition can be built [13,30] out of an infinite family
of minimal models derived from double-scaled Hermitian
matrix models. The special minimal models used for the
new construction were derived long ago using double-
scaled complex matrix models, with the key physics being
output in the form of the string equation (19) studied
extensively by Dalley, Johnson, and Morris (DJM) [26–28].
For any of the individual models, the equation’s solution
defines a fully nonperturbative potential uðxÞ for the
Hamiltonian H ¼ −ℏ2∂2=∂x2 þ uðxÞ from which a non-
perturbative spectral density ρðEÞ can be extracted, as was
done explicitly here for the first time. It enjoys (as
demonstrated explicitly in Sec. III C for the prototype
k ¼ 1 case and in Sec. IV for the case of k ¼ 2) the
advertised nonperturbative features, having no incursion
into the forbidden region E < 0, in contrast to the Airy-like
behavior that is the foundation of the SSS model. Matrix
eigenvalues do not tunnel to oblivion in this class of
models. (See Figs. 1 and 4 for the comparison.)
The construction yielded some fascinating bonus fea-

tures. The nontrivial parameter, μ, deforms the theory
continuously toward the physics of a type of super JT
gravity discussed recently by Stanford and Witten [31].
This intriguing connection deserves to be better understood
in its own right. It could also give insights into SYK-type
models, and ultimately into phases of black hole physics,
given the interconnectedness of all these systems. There is a
constant, Γ, that can naturally be present in the model. It
was switched off for most of this paper, but can easily be
incorporated into the string equation (19),

uR2 −
ℏ2

2
RR00 þ ℏ2

4
ðR0Þ2 ¼ ℏ2Γ2; ð27Þ

where Γ was recognized [42] as introducing open string
world sheets into the topological expansion.
In fact, Γ counts background D branes and R-R fluxes in

the type 0A minimal model interpretation of Ref. [29]. Its
role in that context was further elucidated and explored in
Refs. [38,45,50]. Here in this JT gravity context it should
be expected to be associated with additional spacetime
boundaries and Ramond insertions.
This generalization to include Γ is what introduces the Γ2

term in Eq. (15), resulting in Bessel functions of order Γ. In
fact, Γ would seem to be identified with the parameter ν in

Sec. 5.5 of the paper of Stanford and Witten [31]. So the
system with Γ turned on is in an ensemble of the ðα; βÞ ¼
ð1þ 2Γ; 2Þ type in the Altland-Zirnbauer classification
[41]. Moreover, the observations in Ref. [38] that Γ counts
the number of threshold bound states in a supersymmetric
quantum mechanics problem is connected to similar
observations made in Ref. [31] about super JT gravity.
The cases Γ ¼ � 1

2
, which give the special ðα; βÞ ¼

ðf0; 2g; 2Þ cases discussed there, correspond nicely to
the vanishing of the entire topological expansion in the
positive x regime of the string equation. This will be
explored further [51].
In fact, it was discovered a while ago in Ref. [43] that for

half-integer Γ there are special solutions of the string equa-
tion (27) that are rational functions for any k, generalizing the
simple Bessel case. They were studied there as peculiar
examples of string theories that had no D-brane sectors.
Various quantities such as the resolvent and the spectral
densities have simple exact expansions. It is natural to suppose
that these solutions might be useful for understanding further
features of (possibly new types of) super JT gravity.
It is worth noting that the DJM string equation (27) can

actually be derivedwithout appealing to any particular matrix
model, but instead assuming that the underlying integrable
structure—the KdV hierarchy in this case—persists at the
nonperturbative level. A scaling argument combined with the
recursion relation for theGel’fand-Dikii polynomials yields a
total derivative of the equation. Integrating once and setting
the constant to ℏ2Γ2 yield the result [27,42].
In the mathematical literature, an ordinary differential

equation obtained in this way is described as arising from a
similarity reduction of an integrable partial differential
equation (PDE). In fact, the type 0B minimal models
obtained from double-scaling unitary matrix models (or
multicut Hermitian ones) have string equations in this class,
the integrable system being the Zakharov-Shabat hierarchy
[29,52–55]. This suggests that the structures found so far
are a tip of a large iceberg. In fact, it was conjectured [47]
that for the right classes of integrable families of PDEs,
such similarity reductions might always yield string the-
ories, without the need to derive them from double-scaling
limits of matrix models. Explorations along those lines
produced several interesting results and uncovered new
stringlike theories [47,48] by starting from the dispersive
water wave hierarchy. Perhaps in the spirit of what was
done in this paper, some of these classes of models (or other
models to be defined using that scheme) could be combined
to yield new types of 2D gravity of the JT type.
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