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Wecompute the quantumcircuit complexity of the evolution of scalar curvature perturbations on expanding
backgrounds, using the language of squeezed vacuumstates. In particular, we construct a simple cosmological
model consisting of an early-time period of de Sitter expansion followed by a radiation-dominated era and
track the evolution of complexity throughout this history. During early-time de Sitter expansion the
complexity grows linearly with the number of e-folds for modes outside the horizon. The evolution of
complexity also suggests that theUniverse behaves like a chaotic systemduring this era, forwhichwe propose
a scrambling time and Lyapunov exponent. During the radiation-dominated era, however, the complexity
decreases until it “freezes in” after horizon reentry, leading to a “decomplexification” of the Universe.
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I. INTRODUCTION

In recent years, quantum information theory has played the
role of a melting pot for various branches of physics. In the
context of high energy theory, a motivation to understand
the application of complexity to quantum field theory arises
from attempts to apply the AdS=CFT duality in certain black
hole settings. In particular, it is notoriously difficult to probe
physics behind the horizon of a black hole. It has been
observed that although the entanglement entropy of an
eternal AdS black hole saturates as it thermalizes [1], the
size of the Einstein-Rosen bridge continues to increase with
time. Motivated by this observation, Susskind et al. [2–8]
have proposed new probes on the gravity side for the inner

region beyond the black hole horizon. One probe is given by
the volume of a maximal codimension-one bulk surface
extending to the boundary ofAdS spacetime [2–6]. There is a
second proposal, where the probe is the action defined on
the Wheeler-DeWitt (WDW) patch [7,8]. Both of these
quantities have the potential to probe physics behind the
horizon. It is conjectured that these two objects are dual
to the so-called “complexity” of the dual field theory state.
For this reason these proposals are known as the CV
(complexity ¼ volume) [5] and CA (complexity ¼ action)
[7] conjectures, respectively. These conjectures have opened
up a completely new line of research that relates high energy
theory and condensed matter physics with quantum infor-
mation theory at the center, e.g., [9–13].1
The holographic proposals mentioned above connect a

probe on the gravity side with a concept in quantum
information theory called quantum complexity [14].
More specifically we will be focusing on circuit complex-
ity. Circuit complexity is the minimum number of unitary
operators (also known as quantum gates) that are required
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to construct the desired target state from a suitable reference
state. For Gaussian states, this can either be computed by
working directly with the wave functions in the position
basis [15–17] or using a covariance matrix [18–23]. In both
these cases, the quantum complexity is typically computed
using a geometric technique pioneered by Nielsen [24–26].
Alternatively, it has also been proposed that the quantum
complexity might be computed using Fubini-Study dis-
tance [27]. It has been shown in [28] (especially in the
context of certain time evolution) that out of all these
methods, the quantum complexity computed using wave
function might be the most sensitive one to the underlying
physics.
Over the past few years, circuit complexity has enjoyed a

wide range of applications. For instance, quantum com-
plexity may be a possible diagnostic for quantum chaos,
and is now considered as an integral part of the web of
diagnostics for quantum chaos [29–35]. It was highlighted
in [32] that circuit complexity can provide essential
information (such as the scrambling time, Lyapunov
exponent, etc.) about a quantum chaotic system. In [32],
an inverted harmonic oscillator model was used to establish
the chaotic features of complexity and compared them with
the information one can obtain from the out-of-time-order
correlators. The time scale when the complexity starts to
grow was identified as the scrambling time and the slope of
the linear portion behaves as the Lyapunov exponent.
In this paper we use this in the field of cosmology.

More explicitly, we apply the notion of circuit complex-
ity to scalar cosmological perturbations on an expanding
Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground. Scalar perturbations on an expanding background
can naturally be described with the formalism of squeezed
quantum states: when a mode exits the horizon it becomes
highly squeezed, while a mode inside the horizon has its
squeezing “frozen in” [36,37]. We will choose the ground
state while the mode is inside the horizon as our reference
state, and study complexity for a target state consisting of
the time-evolved cosmological perturbation on the expand-
ing background. For simplicity we consider a simple model
consisting of a period of de Sitter (dS) expansion followed
by radiation-dominated expansion, as a proxy for inflation
followed by reheating.
This approach gives us interesting behaviors for the

complexity of cosmology at different epochs. We find that
during dS expansion, the complexity is proportional to the
number of e-folds for a superhorizon mode. The exponen-
tial growth as in [32], suggests that during the de Sitter
regime the complexity grows as in an unstable (chaotic)
system. Moreover, one can also identify the scrambling
time scale for this chaotic regime and the Lyapunov
exponent. During the subsequent radiation phase the
Universe decomplexifies, even though the squeezing of
the perturbation continues, and eventually the complexity
“freezes in” once the mode reenters the horizon.

The organization of the paper is as follows. In Sec. II we
will use the inverted harmonic oscillator model to get
insights about our approach and to establish our tools and
techniques. In Sec. III we review the cosmological scalar
perturbations and the origin of the squeezed states and the
various solutions. In Sec. IV we discuss the complexity for
this squeezed states and discuss the evolution of complexity
and its implications. We conclude with a discussion and
future directions.

II. INVERTED HARMONIC OSCILLATOR

To begin, we will introduce the main techniques and
concepts used throughout the paper through the example of
the inverted harmonic oscillator. Since a superhorizon
scalar cosmological perturbation behaves like an inverted
harmonic oscillator at large scales, the intuition we develop
here will be useful for our later analysis.
The inverted harmonic oscillator is defined by a

Hamiltonian with a “wrong sign” of the restoring force
(with unit mass) [38]:

Ĥ ¼ 1

2
p̂2 −

1

2
k2x̂2: ð1Þ

Using the raising and lowering operators based on the
noninverted harmonic oscillator

x̂ ¼ 1ffiffiffiffiffi
2k

p ðâ† þ âÞ; p̂ ¼ i

ffiffiffi
k
2

r
ðâ† − âÞ; ð2Þ

the inverted Hamiltonian (1) becomes

Ĥ ¼ −
k
2
ðâ2 þ â†2Þ: ð3Þ

If the system starts in the “vacuum state” annihilated by
the lowering operator

âj0i ¼ 0; ð4Þ

then it will naturally evolve into a squeezed state at later
times. In particular, the unitary evolution Û of a state can be
parametrized as [36,37]

Û ¼ Ŝðr;ϕÞR̂ðθÞ: ð5Þ

where R̂ is the “rotation operator,” defined as

R̂ðθÞ≡ exp ½−iθðtÞðâ†âþ ââ†Þ� ð6Þ

in terms of the rotation parameter θðtÞ, and Ŝðr;ϕÞ is the
“squeezing operator,” defined as
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Ŝðr;ϕÞ≡ exp

�
rðtÞ
2

ðe−2iϕâ2 − e2iϕâ†2Þ
�

ð7Þ

in terms of the squeezing parameter rðtÞ and squeezing
angle ϕðtÞ. In what follows, the rotation operator and
rotation parameter will not play an important role, so we
will drop them from our subsequent analysis.
The action of the rotation operator produces an irrelevant

phase; however, the action of the squeezing operator results
in a single mode squeezed vacuum state [39]:

jΨðtÞi ¼ Ŝðr;ϕÞj0i

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
cosh r

p
X∞
n¼0

ð−1Þne−2inϕtanhnr
ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
2nn!

j2ni: ð8Þ

To understand the importance of the squeezing angle and
squeezing parameter, consider the combinations

q̂þ ≡ p̂ sinϕþ kx̂ cosϕ; ð9Þ

q̂− ≡ p̂ cosϕ − kx̂ sinϕ: ð10Þ

The uncertainty for these new variables is [37]

Δq2þ ¼ hΨðtÞjq̂2þjΨðtÞi ¼
1

2
e−2r; ð11Þ

Δq2− ¼hΨðtÞjq̂2−jΨðtÞi ¼
1

2
e2r: ð12Þ

This clearly shows the origin of the term “squeezed states”:
the wave function jΨðtÞi is squeezed with a small uncer-
tainty in the q̂þ direction, with a correspondingly large
uncertainty in the q̂− direction, so that the uncertainty
relation is still saturated ΔqþΔq− ¼ 1=2. The squeezing
angle ϕ determines the angle in phase space at which the
squeezing occurs.
It is straightforward to insert (8) into the Schrödinger

equation

i
d
dt

jΨðtÞi ¼ ĤjΨðtÞi ð13Þ

to obtain the squeezing equations of motion

_r ¼ k sinð2ϕÞ;
_ϕ ¼ k cothð2rÞ cosð2ϕÞ: ð14Þ

It is easy to see that these equations have a solution in
which the squeezing grows with time along a constant
squeeze angle

rðtÞ ¼ kt; ϕðtÞ ¼ π=4: ð15Þ
Thus, as expected the vacuum j0i evolves into the highly
squeezed state along a direction that is an equal mixture of
the q̂ and p̂ directions.

An interesting concept in quantum mechanics that has
enjoyed a fair amount of recent interest is the circuit
complexity of a pair of states. Defined in an analogous way
to classical complexity, the circuit complexity is roughly
the minimum number of fundamental quantum gates
required to transform a reference state to some target state.
As discussed in the introduction, there are several

different methods of computing the circuit complexity
between a reference and a target state, including the
geometric approaches by Nielsen’s [24–26]. Moreover,
based on the choice of cost functional for each of these
approaches there are different measures [15,17,24]. In the
main part of the paper we will focus on the circuit
complexity using directly the wave function [15].
To begin our calculation of complexity of the inverted

harmonic oscillator we first need to obtain the position-
space wave function for the squeezed state jΨðtÞi

hxjΨðtÞi ¼ N e−
1
2
ΩðtÞx2 ; ð16Þ

where N is a normalization factor and ΩðtÞ is the complex
frequency

ΩðtÞ ¼ k
e2r sin2 ϕþ e−2r cos2 ϕ

ð1 − i sinð2ϕÞ sinhð2rÞÞ:

ð17Þ

In the unsqueezed limit r → 0 we obtain the unsqueezed
ground state wave function with ΩðtÞ ≈ k. In the highly
squeezed limit, however, where ϕ ≈ π=4 and r ≫ 1 we
obtain a purely complex frequency ΩðtÞ ≈ i.
Taking the unsqueezed vacuum hxj0i as our reference

state and the squeezed state hxjΨðtÞi (16) as our target state,
the geometric circuit complexity evaluates to be [28]:

C1 ¼
1

2

�
ln

����ΩðtÞk

����þ tan−1
�
ImΩðtÞ
ReΩ

��
; ð18Þ

C2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ln

����ΩðtÞk

����
�

2

þ
�
tan−1

�
ImΩ
ReΩ

��
2

s
: ð19Þ

where C1, C2 refer to the complexity calculated with
different cost functionals, as we explain in more detail
in Sec. IV. For small amounts of squeezing r ≪ 1 we have

C1 ∼ C2 ≈ 0; ð20Þ

as expected, since then the reference and target states are
approximately the same. For large amounts of squeezing
r ≫ 1, ϕ ≈ π=4 (corresponding to late times for the
inverted harmonic oscillator), these expressions for the
complexity (18), (19) become
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C1 ∼ C2 ≈
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtan−1 e2rÞ2

q
≈
π

4
; ð21Þ

so that the complexity of a single mode vacuum squeezed
state saturates at late times. This is consistent with the
expectation that the complexity for a quantum chaotic
system saturates at some maximum complexity.
More generally, squeezed vacuum states are frequently

used in quantum optics applications outside of the context
of the inverted harmonic oscillator, so the results found
here are of more general interest and applicability. In this
sense, we can take the general squeezed state (8)—and its
Gaussian form (16), (17)—as representing a generic
squeezed vacuum state. We can then easily determine
the complexity of such a squeezed vacuum state from
the expressions (18), (19). In particular, note that if the
squeezing angle is fixed to be ϕ → n π

2
for some integer n

then the complexity of the squeezed state (8) [equivalently
(16)] does not saturate, but instead scales with the squeez-
ing C1 ∼ r for large squeezing r ≫ 1.

III. SQUEEZED COSMOLOGICAL
PERTURBATIONS

Having explored the concepts of squeezing and com-
plexity in a simple model of an inverted harmonic oscil-
lator, we are now ready to apply these concepts to that of
scalar cosmological perturbations.
We will consider a spatially flat Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ aðtÞ2dx⃗2 ¼ aðηÞ2ð−dη2 þ dx⃗2Þ: ð22Þ

On this background we will consider fluctuations of a
scalar field φðxÞ ¼ φ0ðtÞ þ δφðxÞ and the metric

ds2 ¼ aðηÞ2ð−ð1þ 2ψðx; ηÞÞdη2 þ ð1 − 2ψðx; ηÞÞdx⃗2Þ:
ð23Þ

The perturbed action can be written in terms of the
curvature perturbationR ¼ ψ þ H

_φ0
δφ, where a dot denotes

a derivative with respect to cosmic time t, and H ¼ _a=a.
The action then takes the simple form [40]

S ¼ 1

2

Z
dtd3xa3

_ϕ2

H2

�
_R2 −

1

a2
ð∂iRÞ2

�
: ð24Þ

The action can be transformed into a form of that for a
canonically normalized scalar field by use of the Mukhanov
variable v≡ zR where z≡ a

ffiffiffiffiffi
2ϵ

p
, with ϵ ¼ − _H=H2 ¼

1 −H0=H2,

S ¼ 1

2

Z
dηd3x

�
v02 − ð∂ivÞ2 þ

�
z0

z

�
2

v2 − 2
z0

z
v0v

�
: ð25Þ

Here a prime denotes a derivative with respect to conformal
time andH ¼ a0=a. This action represents perturbations of
a free scalar field coupled to an external time-varying
source. A virtually identical-looking expression can also be
derived for tensor perturbations with the replacement
z0=z → a0=a, and our results will hold for these types of
perturbations as well. Usually the last term in (25) is
removed by integration by parts,2 giving rise to the action

S ¼ 1

2

Z
dηd3x

�
v02 − ð∂ivÞ2 þ

z00

z
v2
�
: ð26Þ

In this form, the time-varying source clearly leads to a time-
dependent frequency, and this can cause the long-wave-
length modes to appear as an inverted harmonic oscillator.
While we will be working instead with the action (25), the
physics will nonetheless follow this intuition.
Promoting the perturbation to a quantum field and

expanding into Fourier modes

v̂ðη; x⃗Þ ¼
Z

d3k

ð2πÞ3=2 v̂k⃗ðηÞe
ik⃗·x⃗; ð27Þ

and defining the usual creation and annihilation operators

v̂k⃗ ¼
1ffiffiffiffiffi
2k

p ðĉk⃗ þ ĉ†
−k⃗
Þ; v̂0⃗k ¼ −i

k
2
ðĉk⃗ − ĉ†

−k⃗
Þ; ð28Þ

the Hamiltonian can be written as

Ĥ ¼
Z

d3kĤk⃗

¼
Z

d3k

�
kðĉk⃗ĉ†k⃗ þ ĉ†

−k⃗
ĉ−k⃗Þ − i

z0

z
ðĉk⃗ĉ−k⃗ − ĉ†

k⃗
ĉ†
−k⃗
Þ
�
:

ð29Þ
The first term in (29) represents the usual free-particle
Hamiltonian, while the second term describes the inter-
action between the quantum perturbation and the expand-
ing background. Notice that this last term is similar in form
to the Hamiltonian (3) for the inverted harmonic oscillator
from the last section, and indeed we will see that when the
last term in the Hamiltonian dominates z0=z ≫ k the
squeezing for the curvature perturbation will also grow.
The momentum structure of the Hamiltonian indicates that
the interaction with the background leads to particle
creation in pairs with opposite momenta. Because of this,
we are naturally led to consider our states as appearing in
two-mode pairs ðk⃗;−k⃗Þ.
As with the inverted harmonic oscillator, the unitary

evolution U k⃗ of a state can be factorized into a para-
metrization of the form [36,37]

2The last term in (25) can also be removed by an appropriate
canonical transformation as discussed in [41].
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Û k⃗ ¼ Ŝk⃗ðrk;ϕkÞR̂k⃗ðθkÞ; ð30Þ

where R̂k⃗ is the two-mode rotation operator

R̂k⃗ðθkÞ≡ exp ½−iθkðηÞðĉk⃗ĉ†k⃗ þ ĉ†
−k⃗
ĉ−k⃗Þ� ð31Þ

written in terms of the rotation angle parameter θkðηÞ and
Ŝk⃗ is the two-mode squeeze operator

Ŝk⃗ðrk;ϕkÞ≡ exp

�
rkðηÞ
2

ðe−2iϕkðηÞĉk⃗ĉ−k⃗ − e2iϕkðηÞĉ†
−k⃗
ĉ†
k⃗
Þ
�
ð32Þ

written in terms of the squeezing parameter rkðηÞ and
squeezing angle ϕkðηÞ. As with the inverted harmonic
oscillator, the rotation operator and rotation angle θk will
not be important, so we will not include them in our
subsequent analysis. Also, since the squeezing equations of
motion will only depend on the magnitude k of the wave
number k⃗, we have suppressed the vector notation on the
subscripts of these parameters.
By recognizing that the interaction of the cosmological

perturbation with the time-dependent scale factor leads to a
time-dependent frequency for the canonically normalized
harmonic oscillator (26), the appearance of a squeezed state
for cosmological perturbations is quite natural in the
context of the previous section on the inverted harmonic
oscillator. The quantization of this parametric oscillator is
then naturally described in the language of two-mode
squeezed states [36,37,41,42].
We will assume that at the initial time all of the modes of

interest are well inside the horizon k ≫ jηj so that the
system can be described by the free part of the Hamiltonian
(29). We then define the initial state (two-mode) vacuum
with respect to the annihilation operator

ĉk⃗j0ik⃗;−k⃗ ¼ 0; ∀ k⃗: ð33Þ

The two-mode squeeze operator results in a two-mode
squeezed vacuum state

jΨsqik⃗;−k⃗¼ Ŝðrk;ϕkÞk⃗j0ik⃗
¼ 1

coshrk

X∞
n¼0

ð−1Þne−2inϕk tanhnrkjnk⃗;n−k⃗i; ð34Þ

where the two-mode excited state is

jnk⃗; n−k⃗i ¼
X∞
n¼0

1

n!
ðĉ†

k⃗
Þnðĉ†

−k⃗
Þnj0ik⃗;−k⃗: ð35Þ

The full wavefunction then consists of the product of the
wave functions for each k⃗

jΨi ¼⊗k⃗ jΨik⃗;−k⃗; ð36Þ

though we will mostly just work with jΨik⃗;−k⃗. The time
evolution of the squeezing parameters rkðηÞ;ϕkðηÞ is
determined by the Schrödinger equation

i
d
dη

jΨsqik⃗;−k⃗ ¼ Ĥk⃗;−k⃗jΨsqik⃗;−k⃗; ð37Þ

and leads to the differential equations

drk
dη

¼ −
z0

z
cosð2ϕkÞ;

dϕk

dη
¼ kþ z0

z
cothð2rkÞ sinð2ϕkÞ: ð38Þ

Note that for a stationary background spacetime z is
constant, so there is no squeezing r ¼ 0.

A. Squeezing solutions

For a given background expansion aðηÞ, the squeezing
equations (38) can be solved for the squeezing parameters
rkðηÞ;ϕkðηÞ (recall z≡ a

ffiffiffiffiffi
2ϵ

p
). Before we proceed to

compute the circuit complexity for the states (34), let us
explore the behavior of squeezing solutions for cosmo-
logical backgrounds. This will give us some insight into the
behavior of squeezing due to the expansion of the Universe.
The squeezing of cosmological perturbations has been
studied previously [36,37].
In general the equations (38) must be solved numerically

for a given cosmological background. However, we can
make progress with a qualitative understanding of the
solutions by noting that in general the scale factor depends
on some power of the conformal time

aðηÞ ∼
�
η

η0

�
β

¼

8>><
>>:

− 1
Hη β ¼ −1; de Sitter

η
η0

β ¼ 1; Radiation

ð ηη0Þ2 β ¼ 2; Matter

; ð39Þ

where β ¼ 2=ð1þ 3wÞ in terms of the equation of state
p=ρ ¼ w of the cosmological fluid of the background
expansion. These different equations of state can arise, for
example, as the behavior of the scalar field φ on different
potentials VðφÞ ¼ V0φ

γ . Accordingly, this implies that the
term z0=z appearing in the squeezing equations of motion
scales inversely proportional to η: z0=z ¼ β=η. The equa-
tions of motion (38) then become

drk
dη

¼ −
β

η
cosð2ϕkÞ;

dϕk

dη
¼ kþ β

η
cothð2rkÞ sinð2ϕkÞ: ð40Þ
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Solutions to (40) depend whether the mode is superhorizon
kjηj ≪ 1 or subhorizon kjηj ≫ 1 and whether the squeez-
ing is small rk ≪ 1 or large rk ≫ 1.
Let us begin by considering the small squeezing, sub-

horizon limit. The equations of motion in this limit take the
form

drk
dη

¼ −
β

η
cosð2ϕkÞ;

dϕk

dη
¼ kþ β

η

1

2rk
sinð2ϕkÞ; ð41Þ

where we took the small rk limit of cothð2rkÞ. These
equations of motion have the solution rk ∼ β=ð2kηÞ ≪ 1
and ϕk ∼ −π=4, indicating that in the small squeezing,
subhorizon limit the squeezing stays small with fixed
squeezing angle. A similar analysis of the small squeezing,
superhorizon limit has an approximate solution rk∼
jβ lnðkηÞj, ϕk ∼ −π=2. However since kjηj ≪ 1 for super-
horizon modes, this indicates there is tension with having a
superhorizon mode with small squeezing, so we should
instead consider superhorizon modes with large squeezing,
for which the squeezing equations of motion take the
form

drk
dη

¼ −
β

η
cosð2ϕkÞ;

dϕk

dη
≈
β

η
sinð2ϕkÞ: ð42Þ

Here, we indeed see that solutions self-consistently take the
form rk ∼ jβ lnðkηÞj, ϕk ∼ −π=2 for kjηj ≪ 1. Thus, we
have learned that an initially small squeezing inside the
horizon remains small until it exits the horizon, after which
it begins to grow and becomes much larger than one. Note
that since the squeezing scales as the log of the conformal
time on superhorizon scales then it also is proportional to
the number of e-folds for the mode k since horizon

exit rk ∼ ln aðηÞ=aexit ≡ NðkÞ
e .

Finally, we consider a mode which is highly squeezed
but reenters the horizon at some later time. This is what
would happen, for example, for modes that exit the horizon
during inflation, becoming highly squeezed then reenter the
horizon after the end of inflation during a radiation- or
matter-dominated stage of expansion. In this case the
squeeze equation of motion for ϕk becomes

dϕk

dη
≈ k; ð43Þ

so that the squeezing angle is no longer fixed but is instead

running ϕk ∼ ϕð0Þ
k þ kη. Examining the corresponding

equation for the squeezing parameter

drk
dη

≈
β

η
cos ð2ϕð0Þ

k þ 2kηÞ; ð44Þ

we see that the running ϕk will cause cosð2ϕkÞ to oscillate
between positive and negative values, shutting off growth
of rk. Indeed, an approximate solution to (44) is a damped
oscillation

rk ∼ rð0Þk þ β

2kη
sin ð2ϕð0Þ

k þ 2kηÞ: ð45Þ

Thus, when highly squeezed mode reenters the horizon it
“freezes in” to the value of the squeezing at horizon-
crossing, with a decaying oscillation about that value.
A plot illustrating these qualitative features—no squeezing
growth on subhorizon scales, squeezing growth on super-
horizon scales, and freeze-out of squeezing upon horizon
reentry—is shown in Fig. 1. Below we will consider some
exact and numerical solutions to the full squeezing equa-
tions of motion (38), and we will see precisely these
features.
With a general qualitative understanding of the be-

havior of squeezing solutions in hand, now let us explore
some exact and numerical solutions to (38) for some
specific cosmological backgrounds. The simplest solution
is that of an exponentially expanding de Sitter background,
for which aðηÞ ¼ −1=ðHηÞ for −∞ < η < 0, so that
z0=z ¼ −1=η. An exact solution for a de Sitter background
is known3 [37]

FIG. 1. In this qualitative plot, we follow the growth of the
squeezing parameter rk as a function of the scale factor a for fixed
k as it starts small inside the horizon, then grows larger than one
after horizon exit, then “freezes out” upon horizon reentry with a
decaying oscillation, as described in the text. Notice that while
outside of the horizon the squeezing parameter grows as the

number of e-folds spent superhorizon rk ∼ log a ∼ NðkÞ
e .

3Note that there is a typo involving a factor of 1=2 in the
solution for ϕk in the solution of [37].
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rk ¼ − sinh−1
�

1

2kη

�
;

ϕk ¼ −
π

4
þ 1

2
tanh−1

�
1

2kη

�
: ð46Þ

At early times kjηj ≫ 1, the modes are inside the horizon,
and we have vanishing squeezing rk ≈ − 1

2kη ≪ 1, and an
approximately constant squeezing angle ϕk ≈ −π=4, as
already discussed in our qualitative analysis. At late times
kjηj ≪ 1 the modes are outside the horizon; from the action
(26) in which the modes appear as a harmonic oscillator
with a time-dependent frequency, the external frequency
due to the expansion of the Universe dominates and the

action takes the form of an inverted harmonic oscillator.
Thus, we expect in this regime that the squeezing will grow
with time, as did the inverted harmonic oscillator from the
previous section. Indeed, in this limit the solution (46) gives
a growing squeezing parameter rk ≈ j lnð−kηÞj ∼ lnðaÞ ≫
1 as kjηj ≫ 1 and constant squeezing angle ϕk ≈ −π=2,
again in excellent agreement with our qualitative analysis.
Since the squeezing parameter grows with the log of the
scale factor it is proportional to the number of e-folds

of de Sitter expansion since horizon exit rk ∼ NðkÞ
e , a feature

we saw was true more generally for other expanding
backgrounds.
Based on this analysis, we see that the vacuum state will

remain unsqueezed while modes are inside the horizon,

FIG. 2. (Left) The squeezing parameter rk as a function of the scale factor a for de Sitter space for the exact solution (46) and
numerical solutions to the squeezing equations (38) for k ¼ 0.001 in units of η0, defined by aðη0Þ ¼ 1. The squeezing parameter grows
appreciably—and logarithmically—only on superhorizon scales k < 1=jηj. (Right) The same graph shown with a linear scale for rk
demonstrates that the growth on superhorizon scales is proportional to the number of e-folds of expansion since mode k exited the

horizon rk ∼ NðkÞ
e .

FIG. 3. (Left) The squeezing angle ϕk for a dS background (for the same k as Fig. 2) oscillates around ϕk ¼ −π=4 when the mode is
inside the horizon, and then transitions to ϕ ¼ −π=2 after the mode exits the horizon, in accordance with our qualitative results from the
text and the exact solution (46). (Right) The squeezing angle for a radiation-dominated background with k ¼ 0.1 (again in units of η0),
plotted as cosð2ϕkÞ. Notice that at early times while the mode is superhorizon we have ϕk ≈ −π=2, while after the mode reenters the
horizon we have ϕk ∼ kη increasing with time leading to oscillations in cosð2ϕkÞ which cuts off further growth in rk, in agreement with
our qualitative analysis in the text.
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while squeezing will begin to grow appreciably once modes
exit the horizon. Since in dS space modes that begin inside
the horizon eventually exit the horizon due to the expansion
of the Universe, we expect that an initially unsqueezed
vacuum state for a mode k⃗ will become increasingly
squeezed as time evolves in a de Sitter Universe. Indeed,
we see precisely this behavior in the analytic solution (46)
as well as numerical solutions to the squeezing equa-
tions (38), as shown in Figs. 2 and 3.
For a cosmological background dominated by radiation

we have aðηÞ ¼ η=η0, so that z0=z ¼ 1=η, where now
η > 0. This background could arise in the presence of a
scalar field due to the oscillation of the homogeneous scalar
field condensate about a minimum, such as for example
during reheating after the end of inflation. Interestingly, a
slight modification to the signs of the exact de Sitter
solution (46) leads to an exact solution for radiation as well:

rk ¼ sinh−1
�

1

2kη

�
;

ϕk ¼ −
π

4
þ 1

2
tanh−1

�
1

2kη

�
: ð47Þ

Unlike the de Sitter case, however, at sufficiently early
times η → 0 a mode will start outside the horizon kη ≪ 1,
then reenter the horizon later. This exact solution (47), then,
represents the decaying solution; we also expect there to be
a growing mode solution as well. Indeed, from the
qualitative discussion above, we expect that the squeezing
of the mode will continue to grow while outside of the
horizon, then “freeze in” when the mode reenters the
horizon. In Fig. 4 we see precisely this behavior, where
the squeezing parameter is plotted for several different
magnitudes of the wave number k. In Fig. 3 we see that the
behavior of the squeezing angle before and after horizon
reentry matches our qualitative analysis from above, where

ϕk ≈ −π=2 outside the horizon, and ϕ ∼ kη after horizon
reentry.
Finally, let us consider a slightly more realistic back-

ground expansion that transitions from de Sitter at early
times to radiation at late times. This can be viewed as a
simple model of early Universe inflation followed by a
period of scalar field reheating. For this expansion history
we expect modes starting inside the horizon to eventually
exit the horizon, with corresponding growth in squeezing.
At the transition to radiation we do not expect to see any
change in the growth of the squeezing parameter rk;
however, at some point following this transition the mode
will reenter the horizon and the squeezing will “freeze in.”
Figure 5 illustrates precisely this behavior. The squeezing
angle also illustrates similar behavior as we saw with the dS
and radiation backgrounds separately, seen in Fig. 6.

FIG. 4. (Left) The squeezing parameter rk for a radiation background with k ¼ 0.1 in units of η0 is plotted against the scale factor a.
Since modes start outside the horizon in a radiation background, the squeezing is large and growing at early times. Once the mode
reenters the horizon, however, the squeezing “freezes in”with a damped oscillation about the value at horizon crossing. (Right) Different
wave numbers (again in units of η0) lead to different times of horizon reentry, and thus different “freeze in” values of the squeezing.

FIG. 5. The squeezing parameter rk for a cosmological back-
ground consisting of de Sitter followed by radiation shows the
features already seen in the de Sitter and radiation plots separately
(k ¼ 0.01 in units of η0). The squeezing, initially small, grows
upon horizon exit and continues growing through the transition to
radiation. Eventually the mode reenters the horizon during the
radiation era and “freezes out” at its value at horizon crossing.
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Interestingly, if we zoom in on the transition between dS
and radiation for the squeezing angle we see that the
squeezing angle reaches a minimum after some time
after the actual transition; this feature will be important
for our understanding of complexity for these combined
backgrounds.

IV. COMPLEXITY FOR COSMOLOGICAL
SQUEEZED STATES

In the previous section, we saw that it is natural to
describe the evolution of scalar cosmological perturbations
as a two-mode squeezed vacuum state. We developed a
qualitative understanding of the behavior of the squeezed
solutions both inside and outside of the horizon, finding
that in general, the corresponding quantized harmonic
oscillator becomes inverted when modes become super-
horizon, leading to squeezing in a similar way as we saw in
Sec. II. We verified this qualitative reasoning with an exact
solution in the case of a de Sitter expanding background, as
well as numerical solutions for several other expanding
backgrounds.
We are now ready to consider the complexity of the

squeezed cosmological perturbations. As discussed in
Appendix A, we will compute the circuit complexity of
a target state relative to a chosen reference state. A natural
reference state for our cosmological perturbations is that of
the two-mode vacuum state j0ik⃗;−k⃗, while our target state
will be the squeezed two-mode vacuum state jΨsqik⃗;−k⃗ in
(34). In order to utilize the formalism of [15], we will need
to express the reference and target states as Gaussian wave
functions. We will first define a set of auxiliary “position”
and “momentum” variables

q̂k⃗ ≡
1ffiffiffiffiffi
2k

p ðĉ†
k⃗
þ ĉk⃗Þ; p̂k⃗ ≡ i

ffiffiffi
k
2

r
ðĉ†

k⃗
− ĉk⃗Þ; ð48Þ

which are conjugate variables ½q̂k⃗; p̂k⃗0 � ¼ iδ3ðk⃗ − k⃗0Þ.
Notice that the main difference between the “position”
q̂k⃗ and the Fourier mode v̂k⃗ given in (28) is that the former

is defined with respect to a raising operator of k⃗ instead
of −k⃗.
The two-mode vacuum state’s wave function, defined as

ĉk⃗j0ik⃗;−k⃗ ¼ 0, has the usual Gaussian form

ψRðqk⃗; q−k⃗Þ ¼ hqk⃗; q−k⃗j0ik⃗;−k⃗ ¼
�
k
π

�
1=4

e−
k
2
ðq2

k⃗
þq2

−k⃗
Þ: ð49Þ

To calculate the wave function corresponding to the
squeezed state (34) we note that the following combination
annihilates jΨsqik⃗;−k⃗

ðcosh rkĉk⃗ þ e−2iϕk sinh rkĉ
†
−k⃗
ÞjΨsqik⃗;−k⃗ ¼ 0: ð50Þ

Using this we can calculate the “position-space” form of
the wave function [42]

Ψsqðqk⃗; q−k⃗Þ ¼ hqk⃗; q−k⃗jΨsqik⃗

¼ eAðq
2

k⃗
þq2

−k⃗
Þ−Bqk⃗q−k⃗

cosh rk
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−4iϕk tanh2 rk

p ; ð51Þ

where the coefficients A and B are functions of the
squeezing parameter rk and squeezing angle ϕk

A ¼ k
2

�
e−4iϕk tanh2rk þ 1

e−4iϕk tanh2rk − 1

�
;

B ¼ 2k

�
e−2iϕk tanh rk

e−4iϕk tanh2rk − 1

�
: ð52Þ

As discussed in Appendix A, we will focus our study of
complexity by directly working with the wave function

FIG. 6. (Left) The squeezing angle cosð2ϕkÞ for the solution shown in Fig. 5 shown as a function of the scale factor a for a dS
expansion followed by a transition to radiation shows how the squeezing angle freezes out to ϕk ≈ −π=2 when outside the horizon, and
grows when it reenters the horizon. (Right) The inset shows a zoomed in region of the transition between dS and radiation. Notice that
the squeezing angle reaches a minimum some time after the transition, then begins to slowly grow again. This feature will be important
in our understanding of the complexity in the next section.
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using the approach of Nielsen [24–26], which we will
call circuit complexity, though we do briefly investigate
circuit complexity using covariance matrix method
in Appendix B. Even selecting this general approach,
however, does not eliminate all possible ambiguity in the
computation of complexity, since there are different

measures of complexity depending on different choices
for the “cost function.” In particular, the complexity for two
simple choices of cost functions—“linear” weighting C1
and “geodesic” weighting C2—can easily be computed
from the vacuum reference state (49) and squeezed target
state (51) (see Appendix A for details)

C1ðkÞ ¼
1

2

�
ln

����Ωk⃗

ωk⃗

����þ ln

����Ω−k⃗
ω−k⃗

����þ tan−1
ImΩk⃗

ReΩk⃗

þ tan−1
ImΩ−k⃗
ReΩ−k⃗

�
; ð53Þ

C2ðkÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ln

����Ωk⃗

ωk⃗

����
�

2

þ
�
ln

����Ω−k⃗
ω−k⃗

����
�

2

þ
�
tan−1

ImΩk⃗

ReΩk⃗

�
2

þ
�
tan−1

ImΩ−k⃗
ReΩ−k⃗

�
2

s
; ð54Þ

where Ωk⃗ ¼ −2Aþ B, Ω−k⃗ ¼ −2A − B, and ωk⃗ ¼ ω−k⃗ ¼ k=2. The inverse tangent term in the above expression is
necessary when the frequency is complex, see [28]. We will see that the qualitative results for our squeezed states are
essentially identical for these two measures (they only differ by a multiplicative factor) so we will have confidence in the
genericity of our results.4

Using (52) in (53), (54) we can obtain simple expressions for the two measures of complexity for the general two-mode
squeezed vacuum state relative to the unsqueezed vacuum

C1ðkÞ ¼
���� ln

���� 1þ e−2iϕk tanh rk
1 − e−2iϕk tanh rk

����
����þ jtan−1ð2 sin 2ϕk sinh rk cosh rkÞj; ð55Þ

C2ðkÞ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ln

���� 1þ e−2iϕk tanh rk
1 − e−2iϕk tanh rk

����
�

2

þ ðtan−1 ð2 sin 2ϕk sinh rk cosh rkÞÞ2
s

: ð56Þ

For large amounts of complexity rk ≫ 1 the last term is bounded by π=2, so the two measures of complexity are
approximately equal to each other up to a multiplicative factor C1 ≈

ffiffiffi
2

p
C2; further, on superhorizon scales we expect the

squeezing angle to take the value ϕk → −π=2, so the complexities (55), (56) simplify to be simply proportional to the
squeezing parameter

C1ðkÞ ≈
ffiffiffi
2

p
C2ðkÞ ≈

���� ln
�
1 − tanh rk
1þ tanh rk

����� ≈ rk ≈ ln a=aexit ¼ NðkÞ
e ; ð57Þ

and therefore also proportional to the number of e-folds
the mode k has been superhorizon, as discussed below
(42). Since the expressions (55), (56) are functionally
similar, we will focus our analysis on C2 without loss of
generality. It is interesting to note that, in contrast to the
inverted harmonic oscillator, we have found that the
complexity grows with time, rather than saturating. This
appears to be due to the fact that while Hamiltonian for the
inverted harmonic oscillator was time-independent, the
term z0=z in the Hamiltonian (29) for cosmological
perturbations is time-dependent, thus leading to growing
complexity with time. Note that (57) implies that the rate

of change of the complexity (with respect to cosmic
time t) when the mode is superhorizon is given by the
Hubble expansion rate

dComplexity
dt

≈H: ð58Þ

A. Complexity in expanding backgrounds

It is now a simple matter to insert the time-dependent
solutions for the squeezing parameter and angle rk;ϕk due
to the expansion of the Universe from the previous
section into (56) to see the time dependence of complexity
for scalar cosmological perturbations. Before we insert
the numerical solutions, however, we can use our exact
solutions for a dS expanding background (46) to obtain
analytic expressions for the complexity (56)

4There will be some differences when compared against the
circuit complexity computed using the covariance matrix; see
Appendix B. However, as previously noted, we expect the latter
to be less sensitive to detailed features of the wave function.
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C2ðkÞ ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
log

� ð−2kηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð2kηÞ2

p ��
2

þ
�
tan−1

�
1

−kη

��
2

s
ð59Þ

¼

8>>><
>>>:

1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð2kηÞ2 þ

�
tan−1 1

−kη

	
2

r
≈

ffiffi
5
2

q
1

−2kη for kη ≫ 1 ðsubhorizonÞ

1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlogð−kηÞÞ2 þ ðπ

2
Þ2

q
≈ 1ffiffi

2
p j logð−kηÞj ∼ 1ffiffi

2
p NðkÞ

e for kη ≪ 1 ðsuperhorizonÞ
ð60Þ

where we note in the last line that the complexity scales like
the number of e-folds for mode k [as could be expected
from (57)]. More generally, we can insert the numerical
solutions for a dS background for the squeezing parameter
and angle from the previous section into (56). Figure 7
shows that, as expected from our qualitative and exact
analysis, when the mode is inside the horizon the complex-
ity C2 is small, while when the mode exits the horizon the
complexity quickly grows linearly with the log of the scale
factor, and thus is proportional to the number of e-folds.
The linear growth of the complexity on superhorizon

scales resembles the growth of complexity for other chaotic
quantum systems [32], reflecting the fact that on super-
horizon scales the Hamiltonian (29) acts like an inverted
harmonic oscillator. As discussed in [32], we can extract
information about quantum chaos5 such as the scrambling
time and Lyapunov exponent from the complexity. Based
on the analysis of [32], the scrambling timescale should be

set by the time of horizon exit, and the Lyapunov exponent
is set by the slope of the linear part of the complexity, which
from (60) is Oð1Þ.
Also in Fig. 7 we show the evolution of the complexity

for a radiation background. Contrary to the dS case, the
complexity does not grow on superhorizon scales for a
radiation background. At first glance this seems puzzling,
since the squeezing rk continues to grow on superhorizon
scales, as seen in Fig. 4. However, as seen in Fig. 3 (and in
the detailed zoom of Fig. 6) the squeezing angle ϕk
increases during the radiation era ϕk ∼ −π=2þ kη, driving
the complexity to lower values until horizon crossing. After
horizon crossing the squeezing angle is now dominated by
the subhorizon contribution ϕk ∼ kη, leading to oscillations
in the complexity through e−2iϕk . Thus, we see that unlike
entropy, the circuit complexity of a mode can decrease.
Naturally, the evolution of the complexity for the simple

model of the Universe consisting of a period of dS
expansion followed by radiation is the concatenation of
these two behaviors, as seen in Fig. 8. As noted earlier,
during the de Sitter era the complexity starts at close to zero
since the mode is approximately that of the unsqueezed

FIG. 7. (Left) The complexity C2 for a cosmological perturbation in a dS cosmological background relative to the ground state
reference demonstrates that the complexity remains small while the mode is within the horizon, then grows linearly with the log of the
scale factor after exiting the horizon. (k ¼ 0.001 as in Fig. 2) (Right) The complexity for radiation illustrates a different pattern in which
the complexity decreases from its starting value even while outside the horizon, due to the increasing squeezing angle ϕk for a radiation
background as seen previously. This increasing squeezing angle leads to a decreasing complexity. After the mode reenters the horizon
for a radiation background it begins to oscillate, freezing in the complexity about which it subsequently oscillates. (k ¼ 0.1 as in Fig. 4).

5A concrete proof of chaos will require further tests by using
other diagnostics of chaos. For example interested readers are
referred to [43] and the references there in.
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vacuum, and is nearly constant until the mode exits the
horizon. After horizon exit the complexity continues to
grow as long as the Universe is accelerating. During this
period the linear growth of the complexity for superhorizon
modes during the de sitter era resembles quantum chaos.
This scenario changes quite dramatically almost immedi-
ately after entering into the radiation regime. During this
period the Universe decomplexifies and eventually after the
mode reenters the horizon the complexity “freezes in” at a
value higher than the initial complexity before horizon exit.
Finally, we note that one can easily extend our analysis

of complexity for all modes

CðtotÞ ¼
X
k

C2ðkÞ: ð61Þ

As we have seen, a vacuum state that starts inside the
horizon remains unsqueezed until it exits the horizon, with
correspondingly small complexity. This means that ultra-
high energy modes kη ≫ 1 that do not exit the horizon
before the transition to radiation will essentially not
contribute at all to the total complexity of the Universe
in this model, providing an effective UV cutoff to the
complexity sum (61). The complexity is instead dominated
by the first modes that exit the horizon, since they
accumulate the largest amount of e-folds while super-
horizon. It would be interesting to carefully calculate the
total complexity of the Universe for a more realistic
background evolution for a future work.

V. DISCUSSION

Quantum information theory is helping to shape our
understanding about fundamental properties of nature, and
quantum complexity plays a major role. In this paper we
have applied Nielsen’s geometric approach to compute the
complexity of the Universe; specifically, we computed the
complexity of scalar cosmological perturbations by taking
our reference state as the unsqueezed ground state and our
target state as the squeezed vacuum state representing the
evolution of cosmological perturbations.
This approach gives us a new perspective in which to

examine the history of the Universe. We found that the
complexity during dS expansion grows linearly with the
number of e-folds for superhorizon modes, with the rate of
change of complexity given by the dS Hubble expansion
rate. This linear growth suggests that the Universe is
described by quantum chaos during the dS era, with a
corresponding scrambling timescale and Lyapunov expo-
nent. Interestingly, the complexity during this era appears
to be unbounded, and will continue to grow linearly with
the number of e-folds for as long as dS expansion
continues. When the dS expansion is followed by a period
of radiation domination the complexity decreases until
“freezing in” once the mode reenters the horizon.
We believe this new approach will open up the pos-

sibility of many future research directions. One obvious
extension is to apply our analysis for other cosmological
scenarios and models; for example, it would be interesting
to study the complexity for accelerating solutions different
from dS, or the complexity for hydrodynamical perturba-
tions with sound speeds different than one. We also found
that the complexity for a mode that exits the horizon during
dS then re-enters the horizon during radiation initially
increases, then decreases and “freezes-in” after horizon
reentry. Since complexity represents the number of unitary
quantum gates necessary to build the target state from the
reference state, this suggests that there may be some sort of
“short cut” in the space of quantum operators that can
encode the spectrum of cosmological perturbations upon
horizon reentry. As another potential application, we found
that the complexity during the dS era grows linearly with
the number of e-folds without bound, at a rate proportional
to the dS Hubble expansion. However, it has been sug-
gested that the complexity for a system with a fixed number
of q-bits should be bounded from above, and that the rate of
growth of complexity should be bounded as well. While
these expectations appear to apply primarily to systems
with time-independent Hamiltonians, it would be interest-
ing to find connections between these ideas and cosmology,
potentially placing limits on either the number of e-folds
of dS expansion or the dS Hubble rate from quantum
information theoretic grounds.
Finally, these results may be useful for understanding

complexity in simple quantum optics setups, where the

FIG. 8. The complexity C2 for the squeezing solution of Figs. 5
and 6, namely a background that transitions from dS to radiation,
initially grows on superhorizon scales during the dS phase, but
decreases on superhorizon scales during the radiation phase,
similar to that seen for pure radiation in Fig. 7. After horizon
reentry, the complexity “freezes in” and oscillates due to the rapid
evolution of the squeezing angle ϕk ∼ kη on subhorizon scales.
The slight mismatch between the transition between dS and
radiation and the peak of the complexity is due to the offset
minimum in the squeezing angle ϕk after the transition, as seen in
Fig. 6.
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squeezed vacuum state arises quite naturally. We would like
to explore these potential directions in the near future.
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APPENDIX A: CIRCUIT COMPLEXITY USING
WAVE FUNCTION

We briefly review circuit complexity. First we will
directly use the wave function and compute the circuit
complexity using Nielsen’s method [24–26]. In this section
we will only provide a brief outline. The details can be
found in [15].
The problem is the following: given a set of elementary

gates and a reference state, what is the most efficient
quantum circuit that starts at that reference state (at s ¼ 0)
and terminates at a target state (s ¼ 1).

jΨs¼1i ¼ Uðs ¼ 1ÞjΨs¼0i; ðA1Þ

whereU is the unitary operator that takes the reference state
to the target state. We construct it from a continuous
sequence of parametrized path ordered exponential of the
Hamiltonian operator

UðsÞ ¼ P⃖e−i
R

s

0
dsHðsÞ: ðA2Þ

Here s parametrizes a path in the space of the unitaries and
given a set of elementary gatesMI, the Hamiltonian can be
written as

HðsÞ ¼ YðsÞIMI: ðA3Þ

The coefficients YI are the control functions that dictates
which gate will act at a given value of the parameter. The
control function is basically a tangent vector in the space of
unitaries and satisfy the Schrodinger equation

dUðsÞ
ds

¼ −iYðsÞIMIUðsÞ: ðA4Þ

Then we define a cost functional F ðU; _UÞ as follows:

CðUÞ ¼
Z

1

0

F ðU; _UÞds: ðA5Þ

Minimizing this cost functional gives us the optimal circuit.
There are different choices for the cost functional [17,24];
in this paper we will consider linear and quadratic cost
functionals

F 1ðU; YÞ ¼
X
I

jYIj; ðA6Þ

F 2ðU; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

ðYIÞ2
r

: ðA7Þ

In order to compute the complexity we need to clearly
specify the target and reference states. In the context of
cosmological perturbations, we will choose our target state
to be the two-mode squeezed vacuum state

jΨsqik⃗ ¼ Ŝðrk;ϕkÞk⃗j0ik⃗
¼ 1

cosh rk

X∞
n¼0

ð−1Þne−2inϕk tanhn rkjnk⃗; n−k⃗i: ðA8Þ

The wave function for this state can be written as a
Gaussian [39,42]

Ψsq ¼ N eAðq
2

k⃗
þq2

−k⃗
Þ−Bqk⃗q−k⃗ : ðA9Þ

By a suitable rotation it is possible to diagonalize the
exponent,

Ψsq ¼ N e−
1
2
M̃abqaqb ; ðA10Þ

where

M̃ ¼
�−2Aþ B 0

0 −2A − B

�
≡

�Ωk⃗ 0

0 Ω−k⃗

�
: ðA11Þ

Our reference state is the unsqueezed vacuum, which
also has a Gaussian wave function

ψR ¼ N e−
k
2
ðq2

k⃗
þq2

−k⃗
Þ ¼ N e−

1
2

P
k;−k

ωk⃗q
2

k⃗ ; ðA12Þ

where ωk⃗ ¼ k. Using (A10) and (A12), we can compute
expressions for the complexity using the two different cost
functions (A6), (A7) [15,17,24]

C1ðkÞ¼
1

2

�
ln

����Ωk⃗

ωk⃗

����þ ln

����Ω−k⃗
ω−k⃗

����þ tan−1
ImΩk⃗

ReΩk⃗

þ tan−1
ImΩ−k⃗
ReΩ−k⃗

�
;

ðA13Þ

COSMOLOGICAL COMPLEXITY PHYS. REV. D 101, 106020 (2020)

106020-13



C2ðkÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ln

����Ωk⃗

ωk⃗

����
�

2

þ
�
ln

����Ω−k⃗
ω−k⃗

����
�

2

þ
�
tan−1

ImΩk⃗

ReΩk⃗

�
2

þ
�
tan−1

ImΩ−k⃗
ReΩ−k⃗

�
2

s
; ðA14Þ

where Ωk;Ω−k are defined as in (A11). The inverse tangent
term in the above expression is necessary when the
frequency is complex [28]. This is the primary result of
this section; the expressions (A13), (A14) will be used in
Sec. IV to compute the complexity for the two-mode
squeezed vacuum for cosmological perturbations.

APPENDIX B: CIRCUIT COMPLEXITY USING
COVARIANCE MATRIX

The two-mode squeezed vacuum state (51) in Sec. IV is a
Gaussian state and can equivalently be described by a
covariance matrix. The covariance matrix takes the follow-
ing form,

Gs¼1
k ¼

0
BBBBBBBB@

1
ReðΩk⃗Þ − ImðΩk⃗Þ

ReðΩk⃗Þ 0 0

− ImðΩk⃗Þ
ReðΩk⃗Þ

jΩk⃗j2
ReðΩk⃗Þ 0 0

0 0 1
ReðΩ−k⃗Þ − ImðΩ−k⃗Þ

ReðΩ−k⃗Þ

0 0 − ImðΩ−k⃗Þ
ReðΩ−k⃗Þ

jΩ−k⃗j2
ReðΩ−k⃗Þ

1
CCCCCCCCA
; ðB1Þ

where Ωk⃗ ¼ −2Aþ B, Ω−k⃗ ¼ −2A − B are defined below
(54). For the reference state this matrix will take the
following form,

Gs¼0
k ¼

0
BBBBB@

1
k 0 0 0

0 k 0 0

0 0 1
k 0

0 0 0 k

1
CCCCCA: ðB2Þ

The complexity can then easily be computed to be [28]

C2ðkÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cosh−1

�
k2 þ jΩk⃗j2
2kRe ðΩk⃗Þ

��
2

þ
�
cosh−1

�
k2 þ jΩ−k⃗j2
2kRe ðΩ−k⃗Þ

��
2

s
: ðB3Þ

Using the explicit forms for Ωk⃗;Ω−k⃗ from (54), this
simplifies to be

C2ðkÞ ¼ 2
ffiffiffi
2

p
rkðtÞ: ðB4Þ

Interestingly, this result for the complexity from the covari-
ance matrix method is independent of the squeezing angle
ϕk, while the circuit complexity computed for both the
inverted harmonic oscillator in Sec. II and cosmological
perturbations in Sec. IV both depend on the squeezing angle.

In particular, the covariance matrix complexity would
indicate that the complexity of the cosmological perturbations
relative to the ground state from Sec. IV would continue to
grow (as the number of e-folds) as long as the squeezing
parameter rk grows, even in the radiation era wherewe found
that complexity decreased for the circuit complexity. As
already noted in [28], however, the covariancematrix method
of computing complexity appears to be less sensitive to fine
details of thewave function (such as the squeezing angle), and
the circuit complexity is a more precise measure of the
complexity using wave function of a target state.
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