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We study the zero-temperature criticality of the Ising model on two-dimensional dynamical triangu-
lations to contemplate its physics. As it turns out, an inhomogeneous nature of the system yields an
interesting phase diagram and the physics at the zero temperature is quite sensitive about how we cool
down the system. We show the existence of a continuous parameter that characterizes the way we approach
the zero-temperature critical point and it may enter in a critical exponent.
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I. INTRODUCTION

The Ising model on two-dimensional (2D) dynamical
triangulations (DT) is a statistical system including quan-
tum effects of gravity, which was studied first by Boulatov
and Kazakov [1,2].1 We call this model the Boulatov-
Kazakov Ising model. Through the use of matrix models,
the Boulatov-Kazakov Ising model was solved exactly and
all the critical exponents were obtained analytically [2].
Those are different from Onsager’s critical exponents of
the Ising model on a flat 2D regular lattice [10]. Due to
quantum gravitational effects, the phase transition is
changed from a second-order transition to a third-order
transition at a finite critical temperature, and the continuum
theory defined at the critical temperature turns out to be
Liouville gravity coupled to a conformal field theory with
central charge c ¼ 1=2. The scaling dimensions of primary
operators in the c ¼ 1=2 conformal field theory change to
the Knizhnik-Polyakov-Zamolodchikov values [11], which
are caused by gravitational dressing. At the same time, the
long range fluctuations of spins interacting with geometry
changes the critical properties of 2D quantum gravity itself
at the critical temperature.

Causal dynamical triangulations (CDT) were introduced
as a different class of triangulations [12–14], mainly in an
attempt to cure some of the problems encountered in the
DT formalism in more than two dimensions (see [15,16]
for reviews). However, one can also study 2D CDT, and in
particular one can couple the Ising spins to the model, in the
same spirit as described above. This spin model has not
been solved analytically, but it can be studied by high-
temperature expansions and Monte Carlo simulations and
the results are clear: the critical exponents of the Ising
model coupled to CDT are identical to the Onsager
exponents [17,18]. The 2D CDT model allows much less
geometrical fluctuations than the 2D DT model, and the
allowed fluctuations are not strong enough to change the
Onsager exponents of the spin system.2 In particular, it has
been shown that the ability to create baby universes are
important for the change of the Onsager exponents, and this
is explicitly forbidden in 2D CDT [20].
A generalized 2D CDT model (GCDT), which allowed

the creation of a finite number of baby universes, was
introduced first as a continuum theory [21,22] and later
defined at the discrete level [23,24]. As clarified in [24], the
difference between the lattice structures of GCDT and DT
is the presence of a weight θ in GCDT that controls the
number of baby universes, i.e., the number of local maxima
of the distance labeling from a vertex picked up by hand for
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1DT was first introduced as a regularization of 2D quantum
gravity [3–8]. For a review, see [9].

2While the critical spin exponents remain the ones of the flat
space, the backreaction of spins on the geometry in the case of
more than two Ising models coupled the triangulations is quite
strong. Thus, we have a kind of c ¼ 1 barrier even for CDT.
This is confirmed by studying massless scalar fields coupled to
CDT [19].
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the sake of convenience. In GCDT, at the discrete level, one
can take the continuum limit of DT for a fixed θ > 0 where
the number of baby universes diverges, while tuning θ → 0
one can reach the continuum limit of GCDT characterized
by a finite number of baby universes, which includes the
continuum CDT if there exits a unique local maximum, i.e.,
a global maximum, of the distance labeling.
While the graphs used to define GCDT at a discretized

level can be considered as a relative small extension of the
graphs used to define CDT, there exists a bijection between
the ensemble of graphs defining GCDT and a set of graphs
characterized by having a finite number of faces. The
bijection is such that the number of baby universes in
GCDT is precisely the number of faces in this other set of
graphs [24]. These latter graphs thus consist of (infinitely)
many tree subgraphs and a finite number of faces in a specific
continuum limit corresponding to the continuum limit of
GCDT. Note here that when it comes to aspects of pure 2D
quantum gravity (i.e., gravity without matter fields), even
though the lattice structures of these latter graphs and those of
GCDTare quite different, since one just basically counts the
entropy of the graphs, these two classes of graphs lead to the
same theory due to the bijection. However, these two classes
of graphs will not necessarily lead to the same theories when
matter is coupled to the graphs. This is illustrated in the case
of CDT. If one couples Ising spin to the (rather regular)
graphs originally used to define CDT, the Ising model will
behavemore or less like Ising spins on a regular lattice and in
particular there is a phase transition with Onsager critical
exponents, as mentioned above. However, via bijection,
these CDT graphs are mapped to graphs with just one face,
i.e., they are basically tree graphs. It is known that Ising spins
on tree graphs cannot be critical.
One advantage of studying GCDT through the graphs

consisting of tree subgraphs and a finite number of faces is
that there exists a one-matrix model with a cubic interaction
and a tadpole term which allows us to introduce the
parameter θ mentioned above and which can interpolate
between DT and GCDT (realized on the set of graphs with
a finite number of faces) [23,25]. It also allowed for an
intuitive understanding of this interpolation in terms of an
inhomogeneous lattice structure, as well as the possibility
of new scaling limits using this inhomogeneous lattice
structure [26].
It is possible to couple Ising spins to GCDT (realized via

the set of graphs with a finite number of faces) in the spirit
of Kazakov and Boulatov, using a two-matrix model. It was
first done in [27].3 The corresponding two-matrix model
was explicitly solved and shown to be related to the
Boulatov-Kazakov model in [28]. In the one-matrix

model [26], it was shown, as mentioned above, how a
scaling parameter θ allowed one to reach the GCDT regime
from the DT regime in the limit θ → 0. These considerations
were extended to the Ising model in the two-matrix model
of [28]. For a fixed scaling parameter θ > 0, the model can
be mapped onto the Boulatov-Kazakov Ising model. The
critical temperature of the Ising spins of the model is a
function of θ and for θ → 0 this critical temperature also
goes to zero (but for any θ > 0, it is mapped to the critical
temperature of the Boulatov-Kazakov Ising model, which is
of course independent of θ). Thus, the limit θ → 0 is
interesting, since the geometry of the triangulations might
change from DT to GCDT. According to [26], there are even
several ways to take the θ → 0 limits, leading to different
ensembles of triangulations with different fractal properties,
and consequently these different limits might also lead to
different critical behavior of the Ising spins. This is the topic
we want to study in this paper.
This paper is organized as follows. In Sec. II, we review

the Boulatov-Kazakov Ising model in a self-contained
manner. Section III is devoted to an introduction of the
model [28] and in particular to explain useful tools we use
in due course. We then study the critical behaviors of the
system in Sec. IV, focusing especially on the zero temper-
ature. Section V contains summary and discussion.

II. BOULATOV-KAZAKOV ISING MODEL

The Ising model on 2D DT was first introduced in the
seminal paper by Kazakov [1], and with an external
magnetic field added to the system, all the critical expo-
nents of the model could be calculated analytically [2]. In
this section, we give a short review of this model (the
Boulatov-Kazakov Ising model) without an external mag-
netic field, using triangulations with the Ising spins placed
in the center of the triangles, or equivalently ϕ3 graphs with
the Ising spins placed at the vertices.
Let us first consider a closed, connected, planar graph G

consisting of vertices of degree 3, and define the Ising
model on the graph G,

ZGðβÞ ¼
X
fσg

Y
hi;ji

eβσiσj ; ð2:1Þ

where β is the inverse temperature, σi being �1 a spin
located at a vertex i,

P
fσg a sum over all spin configu-

rations, and
Q

hi;ji a product with respect to all nearest-
neighbor pairs of vertices. The Boulatov-Kazakov Ising
model is given by a sum of (2.1) over all possible closed,
connected, planar graphs,

FBKðg; cÞ ¼
X
G

1

jAutðGÞj
�� ffiffiffi

c
p

1 − c2

�
3=2

g

�
nðGÞ

ZGðβÞ;

ð2:2Þ

3This model is inequivalent to the Ising model on the original
GCDT including a finite number of baby universes, since the
information on Ising-spin configurations is not preserved through
the bijection.
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where jAutðGÞj is the order of automorphism group of G,
nðGÞ the total number of vertices in G, g essentially
a weight for each vertex, and an additional weight
ð ffiffiffi

c
p

=ð1 − c2ÞÞ3=2 enters to make a connection with a
matrix model introduced in due course. Here c and g are
related to the inverse temperature and the dimensionless
cosmological constant λ such that c ¼ e−2β and g ¼ e−λ,
respectively. The ϕ3 graphs (or the dual triangulations) are
all assumed to have spherical topology, and the sum over
these graphs is the lattice version of the integration over 2D
(spherical) geometries, in this way coupling quantum
gravity to the Ising model.
The sum (2.2) can be rewritten as a sum over the number

of vertices,

FBKðg; cÞ ¼
X
n

�� ffiffiffi
c

p
1 − c2

�
3=2

g

�
n

ZnðβÞ: ð2:3Þ

We can view n as proportional to the volume (the area A)
of 2D spacetime, since in the dual graph n is the number of
triangles, which we all consider having the same area
proportional to ε2, where ε is the length of a link in the
triangulations. Thus, AðnÞ ∝ n · ε2, and ZnðβÞ can be
understood as the partition function of the Ising model
of a fixed (spacetime) volume, but dressed by quantum
gravity since it contains effects coming from the sum over
all possible spherical triangulations with a given n. The
power series (2.3) is convergent since for n ≫ 1,

ZnðβÞ ∝ ð1=gkðβÞÞnnγs−3ð1þOð1=nÞÞ; ð2:4Þ

where γs is a universal constant known as the string
susceptibility exponent. A finite radius of convergence
gkðβÞ, sometimes also called a critical coupling constant,
essentially defines the free energy per vertex in the
thermodynamic limit,

fðβÞ ¼ −
1

β
lim
n→∞

1

n
logZnðβÞ ¼

1

β
log

�� ffiffiffi
c

p
1 − c2

�
3=2

gkðβÞ
�
;

ð2:5Þ

and the critical coupling constant has been computed [1,2],

g2kðβÞ ¼ ðρ2 − c2Þ ð1þ ρÞð−1þ 2cþ ρÞ
8ρ

þ 2c

�ð1þ ρÞð−1þ 2cþ ρÞ
8ρ

�
2

; ð2:6Þ

where c ¼ e−2β. In the low-temperature regime,

ρ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c

3

r
; ð2:7Þ

while in the high-temperature regime,

ρ ¼ −
ð2cð1 − cÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2c
p þ cð2þ cðc − 4ÞÞÞ1=3

2

−
c
2

�
1þ c

ð2cð1 − cÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c

p þ cð2þ cðc − 4ÞÞÞ1=3
�
:

ð2:8Þ

At the critical temperature β−1k or equivalently

ck ≔ e−2βk ¼ 2
ffiffiffi
7

p
− 1

27
; ð2:9Þ

the free energy and its first derivative are differentiable
functions, but the specific heat, a second derivative of the
free energy,

C ¼ −β2
∂2

∂β2 ðβfðβÞÞ; ð2:10Þ

has a cusp (see Fig. 1). This is a signal of a third-order
phase transition. As mentioned, introducing a magnetic
field into the system, all critical exponents have been
calculated: α ¼ −1; β ¼ 1=2; γ ¼ 2; δ ¼ 5; dν ¼ 3 [2], and
they are different from the flat-space Onsager exponents.

A. Continuum limit

The power series (2.3) become singular at g ¼ gk, and its
singular behavior is characterized by the appearance of a
fractional power in the expansion around gk,

Zðg; cÞ ¼ c0 þ c1ðgk − gÞ þ c2ðgk − gÞ2
þ c2−γsðgk − gÞ2−γs þ � � � ; ð2:11Þ

where c0, c1, c2, and c2−γs are numerical constants and γs,
string susceptibility exponent, quantifies the singularity.
We have γs ¼ −1=2 at β ≠ βk while it changes at βk to
−1=3. As mentioned, this change is a result of the back-
reaction of spins on the geometries.

0.86 0.88 0.90 0.94 0.96 0.98 1.00

0.55

0.60

0.65

FIG. 1. A plot of the specific heat as a function of β. The curve
has a cusp at βk.
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The fractional power in the expansion implies that if one
differentiates Zðg; cÞ suitable times with respect to g, it
diverges at g ¼ gk. As a result, the average number of
vertices blows up when tuning g to gk,

hni ¼ g
∂
∂g logZðg; cÞ

����
sing

∼
1

gk − g
; ð2:12Þ

where “sing” means to pick up the singular part.
Using this singular behavior, one can define the con-

tinuum limit. The large-n asymptotic behavior of the
partition function (2.4) implies, for n ≫ 1,

gnZnðβÞ ∝ ðg=gkÞnnγs−3 ¼ e−ðλ−λkÞnnγs−3; ð2:13Þ

where gk ≕ e−λk . As can be understood from (2.12), this
large-n behavior becomes important if tuning g to gk.
Therefore, introducing the lattice spacing ε of triangula-
tions one can, as mentioned above, define the physical area
A and the renormalized cosmological constant Λ by

A ¼ ε2n; Λ ¼ λ − λk
ε2

; ð2:14Þ

and the continuum limit is obtained by tuning g → gk (and
correspondingly ε → 0) such that Λ is kept fixed and A
finite. Taking this continuum limit, one obtains

gnZnðβÞ ∝ e−ΛAAγs−3: ð2:15Þ

This quantity can be compared with the path integral of
the Liouville theory coupled to conformal field theories
with fixed area A. At β ≠ βk, it coincides with that of the
Liouville theory for pure gravity, i.e., Liouville theory
coupled to matter fields with c ¼ 0. At the critical temper-
ature, the spin fluctuations diverge, and as a result one
obtains instead the behavior of the Liouville theory coupled
to a c ¼ 1=2 conformal field theory.

B. The matrix model representation

The so-called matrix models allow us to implement the
sum over graphs via simple Gaussian integrals. In the case
of the Boulatov-Kazakov Ising model, the following two-
matrix model plays that role [1,2]:

ZNðg; cÞ ¼
Z

DψþDψ−e−NtrVðψþ;ψ−Þ; ð2:16Þ

where ψ� are Hermitian N × N matrices, Dψ� the Haar
measures on UðNÞ, and the potential

Vðψþ;ψ−Þ ¼
1

2
ψ2þ þ 1

2
ψ2
− − cψþψ− −

g
3
ðψ3þ þ ψ3

−Þ:
ð2:17Þ

The integral (2.16) is defined formally as a power series
with respect to g, and the coefficient to gn generates
Feynman graphs with n vertices of degree 3. The vertices
associated with ψ3þ can be thought of as having Ising spin
σ ¼ 1 and the vertices associated with ψ3

− as having Ising
spin σ ¼ −1. By Wick’s theorem, the integral (2.16)
implements the sum over all possible graphs with the
nearest-neighbor spin interactions taken into account prop-
erly if c ¼ e−2β. If one takes the matrix size N to be large,
one can suppress nonplanar graphs in the sum. With this
understanding, the Boulatov-Kazakov model can be
defined by the matrix model as follows:

FBKðg; cÞ ≔ lim
N→∞

1

N2
log

�
ZNðg; cÞ
ZNð0; cÞ

�
; ð2:18Þ

where the logarithm is needed to single out connected
graphs.

III. A SETUP FOR COOLING

To reduce the critical temperature of the Ising model on
2D DT down to the zero temperature and examine its
critical behavior, the following matrix model has been
proposed [27,28]:

INðg; c; θÞ ¼
Z

DφþDφ−e−NtrUðφþ;φ−Þ; ð3:1Þ

where φ� are Hermitian N × N matrices,Dφ� are the Haar
measures on UðNÞ, and the potential is given by

Uðφþ;φ−Þ ¼
1

θ

�
1

2
φ2þ þ 1

2
φ2
− − cφþφ− − gðφþ þ φ−Þ

−
g
3
ðφ3þ þ φ3

−Þ
�
: ð3:2Þ

Perturbative expansions with respect to g give Feynman
graphs consisting of vertices of degree 1 and 3. A typical
planar graph is a skeleton graph with tree graphs attached
(see the lhs of Fig. 2). Here the skeleton graph means a
planar graph consisting only of vertices of degree 3. The
parameter θ is a loop-counting parameter meaning that if
θ ≪ 1, loops in Feynman graphs are suppressed and tree
structures become dominant. This kind of modification was
first introduced in the context of a one-matrix model in
order to obtain GCDT from DT and it defines a new
continuum limit of one-matrix models [23,25]. The detailed
disentanglement of the model in tree and skeleton graphs
and possible scaling limits associated with this was studied
in [26].
The two-matrix model (3.1) defines a slightly “modi-

fied” Ising model on 2D DT,
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FSTðg; c; θÞ ≔ lim
N→∞

1

N2
log

�
INðg; c; θÞ
INð0; c; θÞ

�

¼
X
G

1

jAutðGÞj
�� ffiffiffi

c
p

1 − c2

�
1=2 gffiffiffi

θ
p

�
n1ðGÞ

×

�� ffiffiffi
c

p
1 − c2

�
3=2

g
ffiffiffi
θ

p �
n3ðGÞ

ZGðβÞ; ð3:3Þ

where G denotes a closed, connected, planar graph gen-
erated by the matrix model with the potential (3.2), and n1
and n3 the total number of vertices of degree 1 and 3,
respectively. The critical temperature of this system
becomes a function of θ, and as shown in [28], when
θ ≠ 0, the critical behavior is nothing but that of the
Boulatov-Kazakov Ising model, but when tuning θ → 0
the critical temperature reaches zero temperature at which
the tree structures become dominant, resulting in a con-
tinuum theory different from the Liouville theory coupled
to a conformal matter with c ¼ 1=2.
It is useful to classify vertices in a graph G into two

kinds: skeleton vertices and others. Let us pick up a vertex
of degree 3 and label the three links emanating from the
vertex, say 1, 2, and 3 in a clockwise manner. When
moving from that vertex to other vertices via links, if one
can find a path coming back to the first vertex whichever
link 1, 2, or 3, one starts with, the vertex picked up is called
a skeleton vertex. Since θ is a loop-counting parameter, the
number of skeleton vertices is supposed to be controlled by
θ. Concerning (3.3), if we implement the redefinition

ntðGÞ ≔ n1ðGÞ þ n3ðGÞ; nsðGÞ ≔ n3ðGÞ − n1ðGÞ;
ð3:4Þ

where ntðGÞ and nsðGÞ are the total number of vertices and
the number of skeleton vertices in a given graph G, we
obtain

FSTðg; c; θÞ ¼
X
G

1

jAutðGÞj g
ntðGÞ
t gnsðGÞs ZGðβÞ; ð3:5Þ

where

gt ¼
ffiffiffi
c

p
1 − c2

g; gs ¼
� ffiffiffi

c
p

1 − c2

�
1=2 ffiffiffi

θ
p

: ð3:6Þ

From (3.5) and (3.6), it is indeed θ that controls the number
of skeleton vertices, while the total number of vertices is
controlled by g.

A. Relation to the Boulatov-Kazakov Ising model

As shown in [28],4 one can map our matrix model
defined by (3.3) to the matrix model for the Boulatov-
Kazakov Ising model (2.16). This relation turns out to be
useful for understanding the physics of our Ising model.
Starting from the matrix model (3.3) and changing

variables

φ� ¼ φ̃� þ Ztreeðg; cÞ; with

Ztreeðg; cÞ ¼
1 − c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
2g

; ð3:7Þ

the integral (3.3) becomes

INðg;c;θÞ¼eN
2Fconsðg;c;θÞ

Z
Dφ̃þDφ̃−e−NtrŨðφ̃þ;φ̃−Þ; ð3:8Þ

where

Ũðφ̃þ; φ̃−Þ ¼
1

θ

�
1 − 2gZtreeðg; cÞ

2
ðφ̃2þ þ φ̃2

−Þ

− cφ̃þφ̃− −
g
3
ðφ̃3þ þ φ̃3

−Þ
�
; ð3:9Þ

FIG. 2. The left figure: a typical planar graph generated by the potential (3.2) in which tree graphs attached to a skeleton graph. Each of
the solid and dotted edges corresponds to the propagators hφþφþi0 and hφ−φ−i0, respectively; each of the half-solid and half-dotted
edges corresponds to the propagator, hφþφ−i0 or hφ−φþi0. The right figure: a typical planar graph generated by the potential (3.9) in
which all tree graphs are integrated out. Each of the solid double and dotted double lines corresponds to the propagators hφ̃þφ̃þi0 and
hφ̃−φ̃−i0 respectively; each half-solid and half-dotted double line corresponds to the propagator, hφ̃þφ̃−i0 or hφ̃−φ̃þi0.

4In the one-matrix model case, a similar transformation has
been considered in [26].
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Fconsðg; c; θÞ ¼
1

6θg2

�
1 − c3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

q

− g2
�
6 − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

q 	
− c

�
3 − 6g2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

q 	
þ c2

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

q 	�
: ð3:10Þ

Here Ztree is the sum of all connected planar, rooted tree
graphs with a spin placed at each vertex of degree 1 and 3,
as well as the sum over all spin configurations [28].
Through this transformation, the linear terms in (3.2) are

integrated out and a typical Feynman graph is depicted in
the rhs of Fig. 2, which is a skeleton graph with dressed
edges. The noncanonical quadratic terms in (3.9) contribute
to the dressed edges through the dressed propagators

hφ̃�φ̃�i0 ¼
1 − 2gZtree

ð1 − 2gZtreeÞ2 − c2
hφ�φ�i0; with

hφ�φ�i0 ¼
θ

N
; ð3:11Þ

hφ̃�φ̃∓i0 ¼
1

ð1 − 2gZtreeÞ2 − c2
hφ�φ∓i0; with

hφ�φ∓i0 ¼
θc
N

; ð3:12Þ

where the indices of the matrices have been omitted. The
dressed propagators (3.11) and (3.12) can be obtained by
summing all possible tree outgrowths from the canonical
propagators, hφ�φ�i0 and hφ�φ∓i0 [28].
Rescaling the new variables,

φ̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ

1 − 2gZtreeðg; cÞ

s
ψ�; ð3:13Þ

the integral (3.8) becomes

INðg; c; θÞ ¼
�

θ

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p �
N2

× eN
2Fconsðg;c;θÞ ZNðcBK; gBKÞ; ð3:14Þ

where ZN is nothing but the matrix model for the Boulatov-
Kazakov Ising model, with the coupling constants ðg; cÞ
substituted by the “Boulatov-Kazakov” coupling constants
ðcBK; gBKÞ defined by

cBK ¼ c
1 − 2gZtreeðg; cÞ

¼ c

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p ; ð3:15Þ

gBK ¼ θ1=2g

ð1 − 2gZtreeðg; cÞÞ3=2
¼ θ1=2g

ðcþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
Þ3=2 :

ð3:16Þ

As a result, we obtain

FSTðg; c; θÞ ¼ FBKðgBK; cBKÞ þ Ftreeðg; cÞ þ Fconsðg; c; θÞ;
ð3:17Þ

where

Ftreeðg; cÞ ¼ − log

�
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

q �
: ð3:18Þ

Through the change of matrix variables, the inverse
temperature in our original system, β ¼ − log½c�=2,
changes to

βBK ¼ −
1

2
log ½cBKðg; cÞ�

¼ β

�
1 −

log ½cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
�

log½c�
�
: ð3:19Þ

We can think of this change of temperature as a change of
spins, i.e., the nearest-neighbor spin interaction changes if
integrating trees out,

−β
X

hi;ji∈vðGÞ
σiσj ⇒ −βBK

X
hi;ji∈vðGsÞ

σiσj; ð3:20Þ

where hi; ji ∈ vðGÞ (hi; ji ∈ vðGsÞ) denotes a pair of
nearest-neighbor vertices i and j in a set of vertices in a
graph G (Gs, a skeleton graph), and then we can define
effective spins σ̃iðg; cÞ’s by the following equation:

−βBK
X

hi;ji∈vðGsÞ
σiσj≕−β

X
hi;ji∈vðGsÞ

σ̃iðg;cÞσ̃jðg;cÞ; ð3:21Þ

where

σ̃iðg; cÞ ¼
�
1 −

log ½cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
�

log½c�
�1=2

σi≕
ffiffiffi
z

p
σi:

ð3:22Þ

One can show that 0 ≤
ffiffiffi
z

p
≤ 1 if g ≤ ð1 − cÞ=2 for a

given c. A qualitative behavior of the “spin renormalization”ffiffiffi
z

p
can be seen in Fig. 3.

At zero temperature c ¼ 0, we have
ffiffiffi
z

p ¼ 1 for g ≤ 1=2.
On the other hand, at high temperature c ¼ 1, we have
g ¼ 0 and

ffiffiffi
z

p ¼ 0. As one can see from Fig. 3, the effective
spins behave like ordinary spins in the low-temperature
regime since the spin renormalization is not that sen-
sitive to g and its value is almost 1. However, in the
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high-temperature regime, the spin renormalization is very
sensitive to g and rapidly goes down when increasing g up
to its critical value ð1 − cÞ=2. This means that at high
temperature, the effective spins strongly “feel” the exist-
ence of tree structures (already integrated out) which
weaken the effective spins.

IV. CRITICALITY

In this section, we study the critical behavior of our Ising
model defined in terms of the matrix model (3.1), focusing
especially on the zero-temperature regime.
The critical curve on which spin fluctuations diverge is

determined by the set of equations [28],

1 − 4g2k ¼
22=3

51=3
ðθg2kÞ1=3

�
1þ 27

2 × 101=3
ðθg2kÞ1=3

�
; ð4:1Þ

ck ¼
1

101=3
ðθg2kÞ1=3: ð4:2Þ

Removing θ from (4.1) and (4.2), we find the critical curve

ck ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 27g2k

q
− 1

27
: ð4:3Þ

Inserting (4.3) into (3.15), we recover the critical point
obtained by [2]

ðcBKÞk ¼
2

ffiffiffi
7

p
− 1

27
; ðgBKÞk ¼

ffiffiffiffiffi
10

p

ð1þ 2
ffiffiffi
7

p Þ3=2 : ð4:4Þ

Therefore, on the critical curve (4.3) except at the end point
θ ¼ 0, we should observe the same criticality as that of the
Boulatov-Kakakov Ising model (4.4). In this sense, let us
call the curve (4.3) the Boulatov-Kazakov critical curve.
The reason the critical point of the Boulatov-Kazakov Ising
model has been replaced by a curve is that our model has

the additional parameter θ, and we can use this parameter in
a parametric representation of the Boulatov-Kazakov criti-
cal curve. From (4.1) and (4.2), we can determine ck and gk
as functions of θ [28],

ckðθÞ ¼
θ1=3

101=3

�
−

9θ2=3

4× 102=3
þ 31=3θ1=3ð243θ− 80Þ þH2

4× 302=3H

�
;

ð4:5Þ

gkðθÞ ¼
�
−

9θ2=3

4 × 102=3
þ 31=3θ1=3ð243θ − 80Þ þH2

4 × 302=3H

�
3=2

;

ð4:6Þ
where

H ¼
h
81ð40 − 81θÞθ

þ 80
�
90þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8100þ 3ð2510 − 5103θÞθ

p 	i
1=3

:

ð4:7Þ

In addition, we have another critical curve for dominant
trees determined by the condition that the average number
of vertices in the dressed propagators (3.11) and (3.12),

g
∂
∂g loghφ̃�φ̃�i0; g

∂
∂g loghφ̃�φ̃∓i0; ð4:8Þ

diverge, which yields

c ¼ 1 − 2g: ð4:9Þ
Inserting (4.9) into (3.15) and (3.16), we have

cBK ¼ 1; gBK ¼ g
ffiffiffi
θ

p

ð1 − 2gÞ3=2 : ð4:10Þ

From (2.6),

ðgBKÞkðcBK ¼ 1Þ ¼ 0: ð4:11Þ
Therefore, we conclude that θ ¼ 0 on the critical curve for
dominant trees.
We can compute the free energy per vertex on the critical

curve for dominant trees. Let us rewrite (3.5) as

FSTðg; c; θÞ ¼
X
nt;ns

gntt g
ns
s Znt;nsðβÞ ¼

X
ns

gnss
X
nt

gntt Znt;nsðβÞ:

ð4:12Þ

For a given finite ns, the radius of convergence for the
power series of gt yields

ðgtÞkðβÞ ¼
g�

ffiffiffi
c

p
1 − c2

¼
ffiffiffi
c

p
2ð1þ cÞ ; ð4:13Þ

0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

FIG. 3. Plots of
ffiffiffi
z

p
as a function of g2 for a given value of c.

Blue, purple, orange, and red curves are those for c ¼ 0.1, 0.3,
0.5, 0.8, respectively.
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where we have used (3.6) and g� is a solution to (4.9). The
free energy per vertex on the critical curve for dominant
trees is

ftreeðβÞ ¼ −
1

β
lim
nt→∞

1

nt
logZnt;nsðβÞ ¼

1

β
log ½ðgtÞkðβÞ�

¼ −
1

β
log ð4 cosh½β�Þ:

This is essentially the free energy per vertex of the
classical 1D spin chain, or that of the Ising model on
branched polymers [29]. Thus, along the critical curve for
dominant trees, the system is magnetized only at zero
temperature.
Figure 4 is the phase diagram. For a fixed θ > 0, we have

a well-defined map given by Eqs. (3.15) and (3.16) between
ðg; cÞ and ðgBK; cBKÞ. In the Boulatov-Kazakov model, we
have a critical curve: for a given temperature β−1BK, i.e., a
given cBK ¼ e−2βBK , there is a corresponding critical gBK
where the continuum limit is that of Liouville gravity.
This defines the critical curve in the ðgBK; cBKÞ plane. One
point on this curve is special, namely, the point given by
Eq. (4.4), where the Liouville gravity theory changes from
pure 2D gravity to 2D gravity coupled to a c ¼ 1=2
conformal theory. For a fixed value of θ > 0, one can
draw the corresponding curve in the ðg; cÞ plane. This is the
purple curve in Fig. 4. For a fixed θ, this is where one can
take the continuum limit in our modified model. It crosses
the Boulatov-Kazakov critical curve where the Ising spins
become critical. For each θ, one has a different curve. The
vertical axis in the phase diagram corresponds to the case
with θ being∞, and with decreasing θ the curves gradually
move to the right in such a way that they share the point
ðg2; cÞ ¼ ð0; 1Þ and asymptotically approach the critical
curve for dominant trees on which θ ¼ 0. To reach the

zero-temperature critical point at which two kinds of
critical lines meet, one has to tune θ to 0.

A. Zero-temperature criticality

The physics around the zero-temperature critical point is
very sensitive to the way we approach the point. In the
following, we show several examples.
One way to approach the zero-temperature critical point,

proposed in [28], is

gðθÞ ¼ gkðθÞð1 − ε2ΛÞ; cðθÞ ¼ ckðθÞ; θ ¼ ε3Θ;

ð4:14Þ

where Λ and Θ are dimension-full coupling constants. gðθÞ
is chosen to be slightly away from the Boulatov-Kazakov
critical curve in the spirit of (2.14), allowing us to interpret
Λ as a cosmological constant, while the temperature is
chosen such that tuning gðθÞ → gkðθÞ for fixed θ we would
obtain Liouville gravity coupled to conformal matter with
c ¼ 1=2. However, here we now take the limit where
ε → 0, i.e., θ is scaled to 0 at the same time as
gðθÞ → gkðθÞ. This limit defines a continuum theory
around the zero-temperature critical point that is described
by a continuum two-matrix model [28]. To analyze this
limit (4.14), let us introduce

cBK
ðcBKÞk

¼ c
ck

0
B@ck þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ckÞ2 − 4g2k

q
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
1
CA; ð4:15Þ

gBK
ðgBKÞk

¼ g
gk

0
B@ck þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ckÞ2 − 4g2k

q
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
1
CA

3=2

; ð4:16Þ

which have been obtained from (3.15) and (3.16). Plugging
(4.14) into (4.15) and (4.16), one obtains at the small-ε
limit

cBK
ðcBKÞk

¼ 1þ 2
ffiffiffi
7

p

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 52=3 Λ

Θ2=3

q ; ð4:17Þ

gBK
ðgBKÞk

¼

0
B@ 1þ 2

ffiffiffi
7

p

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 52=3 Λ

Θ2=3

q
1
CA

3=2

: ð4:18Þ

Therefore, with the continuum limit (4.14), spins on
skeleton graphs cannot be critical and the criticality is
governed by that of trees.
Next, we introduce a continuum limit such that spins,

tree graphs, and skeleton graphs are all critical, which can
be realized by the following choice:

0.05 0.10 0.15 0.20 0.25

0.2

0.4

0.6

0.8

1.0

FIG. 4. The phase diagram: The vertical axis is c and the
horizontal one is g2. The green curve is the Boulatov-Kazakov
critical curve that separates the high- and low-temperature phases,
and the orange curve is the critical curve for dominant trees. The
purple curve is a schematic critical curve for the Liouville gravity
for a fixed θ.
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gðθÞ ¼ gkðθÞð1 − ε2ΛÞ; cðθÞ ¼ ckðθÞ;
θ ¼ εaΘa; with 0 < a < 3; ð4:19Þ

where Θa is a dimension-full coupling constant. This
a-dependent continuum limit has been first introduced in
the context of one-matrix model [26]. Inserting (4.19) into
(4.15) and (4.16), one obtains

cBK
ðcBKÞk

¼ 1 −
52=3

14þ ffiffiffi
7

p Λ
Θ2=3

a

ε2−
2
3
a þ � � � ; ð4:20Þ

gBK
ðgBKÞk

¼ 1 −
3 × 52=3

2ð14þ ffiffiffi
7

p Þ
Λ

Θ2=3
a

ε2−
2
3
a þ � � � : ð4:21Þ

This means that if 0 < a < 3, spins, tree graphs and
skeleton graphs are all critical. Based on the parametriza-
tion (4.19), we can show

nt ∼
1

ε2
; np ∼

1

ε2a=3
; ns ∼

1

ε2−2a=3
; ð4:22Þ

where nt, np, and ns are the total number of vertices, the
number of vertices in the dressed propagators, and the
number of skeleton vertices.

B. New critical exponents

Let us first consider the approach to zero temperature
given by Eq. (4.14). Recall that the whole critical line of
Fig. 4 is mapped to the single critical point ððgBKÞk; ðcBKÞkÞ
for the Boulatov-Kazakov Ising model on skeleton graphs.
Similarly, the line defined by (4.14) is (for small ε) mapped
to a single point ðgBK; cBKÞ given by Eqs. (4.17) and (4.18).
This point has a finite distance (not necessarily small) to
ððgBKÞk; ðcBKÞkÞ, and the Ising spins on the (finite number
of) skeleton vertices are uncorrelated. On the other hand,
for the tree graph related to a given link (the dressed
propagators), the number of vertices is of the order 1=ε2

while the temperature β−1 is determined by c ¼ e−2β and
c ∝ θ1=3 ∝ ε. Since the tree graph has Hausdorff dimension
two and thus linear extension of order 1=ε, and since spin
correlations in the tree behave essentially like on a linear
chain, the correlation length is ξðβÞ ¼ 1=c. Thus, we see
that a given tree is essentially magnetized.5 A given spin
configuration thus looks amazingly like a real, unmagne-
tized ferromagnetic material: it consists of a number of
essentially magnetized regions (the dressed propagators),
but the orientation of these is quite random, and the total
magnetization of the piece of material is close to zero.

However, we should stress that while there is this resem-
blance with a ferromagnet for a single configuration, the
statistical properties are quite different, since a tree never is
magnetized for nonzero temperature. The magnetic proper-
ties are like those of a one-dimensional Ising chain as we
have shown explicitly.
Let us now turn to the more nontrivial scaling given by

Eq. (4.19) and characterized by the parameter a between
0 and 3. For a given dressed propagator the situation is
as before: the size of a typical tree associated with a
dressed propagator is according to (4.22) np ∼ 1=ε2a=3 and
cðεÞ ∼ εa=3, i.e., the correlation length ξðεÞ ∼ 1=εa=3. Thus,
a tree in a given configuration is essentially magnetized.
However, according to (4.22), we have now a divergent
number of skeleton vertices for ε → 0 and the correspond-
ing Boulatov-Kazakov coupling constants ðgBKðεÞ; cBKðεÞÞ
now approach ððgBKÞk; ðcBKÞkÞ for ε → 0. The critical spin
properties in such an approach is governed by two factors.
The first one is that cBKðεÞ ≠ ðcBKÞk. Thus, even if we had
an infinite number of skeleton vertices, we would only have
a finite spin correlation length

ξðΔcÞ ∼ 1

jΔcjν ; Δc ¼ ðcBKÞk − cBK; ð4:23Þ

and approaching the critical point from the low-temperature
phase as we are doing, we would have a magnetization per
skeleton vertex,

mðΔcÞ ∼ jΔcjβ; ð4:24Þ

where the critical exponent β should not be confused with
the inverse temperature also called β. This magnetization
per skeleton vertex would be present if we had an infinite
volume, i.e., if we for the given cBKðεÞ, instead of gBKðεÞ,
had chosen the critical ðgBKÞk corresponding to cBKðεÞ.
However, we have a gBKðεÞ ≠ ðgBKÞk, and thus we have a
finite number of skeleton vertices ns ∼ 1=ε2−2α=3, i.e., a
finite volume Vs. In a finite volume, we cannot determine
the critical point ðcBKÞk but we can determine the cBK
where the correlation length ξ becomes of the order of the
size of the system, or expressed in terms of the volume Vs:
ξd ¼ Vs, where d is the dimension of the system.6

According to (4.23), this corresponds to a Δc of the order

Δc ¼ 1

V1=dν
s

;

dν ¼ 3 for the Boulatov-Kazakov model: ð4:25Þ

5By magnetized, we mean that the spins for a given configu-
ration will essentially be aligned. However, since the volume is
finite (1=ε2 for the tree), the ensemble average will have zero
magnetization, as is well known for the linear spin chain at
nonzero temperature.

6For a regular lattice, the meaning of d is clear, but for DT
lattices the meaning is less clear. However, we will not need a
precise definition since only the combination νd enters in the
discussion, and if hyperscaling is valid, then νd is related to the
critical exponent for the specific heat α ¼ 2=νd.
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We now have two Δc, which are functions of ε,

Δ1c ¼ ðcBKÞk − cBKðεÞ ∼ ε2−2a=3 ∼
1

VsðεÞ
; and

Δ2c ¼
�

1

VsðεÞ
�

1=dν
¼

�
1

VsðεÞ
�

1=3
: ð4:26Þ

Clearly, Δ1c is irrelevant for the way we have chosen to
approach zero temperature. Inserting into (4.24), we obtain

mðεÞ ∼ V−β=dν
s ¼ V−1=6

s ; ð4:27Þ

which is just the standard result for the Boulatov-Kazakov
model. However, viewed from outside where we do not
insist in resolving the graphs in dressed propagators and
skeleton graphs, the dressed propagators do not in average
contribute to the total spin, since this is already included in
the mapping to the Boulatov-Kazakov model as empha-
sized in Eq. (3.20). If we denote the number of vertices in
the complete graph by V, we can write magnetization per
vertex in the complete graph,

m0ðεÞ ∼mðεÞVs

V
∼

1

Vð1þ5a=3Þ=6 : ð4:28Þ

This is a new kind of critical behavior which interpolates
between the Boulatov-Kazakov model, a ¼ 0, and the
GCDT model a ¼ 3. However, in order to be able to
identify the scaling behavior with a critical exponent β̃, like
in Eq. (4.24), we have to write it in the form V−β̃=ν̃ d̃, and it
is unclear how to think about exponents ν̃ and d̃ in our
model. Hyperscaling usually links νd to the exponent α for
the specific heat by α ¼ 2 − νd. However, in our model,
there is no natural definition of the dimension d valid at all
scales: the trees have a fractal dimension that is different
from fractal dimension of the skeleton graph, so it seems
unlikely that such a hyperscaling relation exists.

V. DISCUSSION

The DT graphs used to regularize 2D quantum gravity
have generic fractal properties, among those that the fractal
dimension of the graphs is four [30]. The generalized causal
triangulations is another wide set of graphs, characterized
by the property that the (graph)-distance from a vertex only
has a finite number of local maxima, even for infinite
graphs. The GCDT graphs have fractal dimension two. The
coupling of matter to the ensembles of graphs is reasonably
well understood in the DT case. If the matter system
becomes critical for a certain choice of coupling constants,
it defines a conformal field theory coupled to 2D gravity
and both the critical properties of that matter system and the
fractal properties of the ensemble of graphs change.
Coupling of matter theories to GCDT graphs are much

less studied, but the interaction between graphs and matter

does not seem to change the critical properties of graphs or
of the matter systems (if they have critical couplings). This
is in agreement with the general expectation that changes of
the critical properties are caused by infinitely many baby
universes. When coupling the Ising model to GCDT for
instance, Onsager’s critical exponents are expected to be
recovered and the fractal dimension is expected to be two in
the continuum limit characterized by a finite number of
baby universes. However, so far one has not been able to
solve the model analytically and one only has numerical
results to support the picture outlined above.
As explained in Sec. I, there exists the bijection between

ensembles of GCDT and a set of graphs with a finite
number of faces such that the number of local maxima of
the distance labeling in GCDT coincides with the number
of faces in the set of graphs. Coupling matter to GCDT has
been studied so far in the sense that the GCDT graphs
considered are the graphs with a finite number of faces
(including tree subgraphs), e.g., a multicritical one-matrix
model for GCDT coupling to hard dimers [31] and the two-
matrix model for coupling to Ising spins [27,28]. The
present work is a continuation of the latter, the Ising case.
Apart from the study on coupling of matter to GCDT in

the way originally defined, it is interesting to work on the
matter coupling to the GCDT graphs which are the graphs
with a finite number of faces, as we have studied in this
paper. This is because we may have a chance to observe
critical behaviors different from the known: in the case of
the Ising model coupled to GCDT based on the two-matrix
model, on the Boulatov-Kazakov critical curve (parame-
trized by θ) that is characterized by infinitely many skeleton
vertices and divergent fluctuations of Ising spins, one can
recover the critical behavior of the c ¼ 1=2 conformal
matter minimally coupled to 2D gravity while going down
to the zero critical temperature with tuning θ → 0, one can
reach the critical end point where the two kinds of critical
curves, i.e., the Boulatov-Kazakov critical curve and the
critical curve for dominant trees, meet, at which we have
had a possibility to obtain a new critical behavior. In the
previous paper [28], it has been shown that the continuum
limit around the zero critical temperature can be taken if
one scales θ to be of order ε3. In this paper, we have tried to
elucidate the physics around this zero-temperature critical
point quantitatively to compute divergent behaviors of the
number of vertices and a critical exponent.
We have shown that the continuum limit with the scaling

θ ∼ ε3 proposed by [28] leads to the fact that the number of
skeleton vertices remains finite even in the continuum limit,
meaning that it is the tree structure that determines the
critical behavior, i.e., what we have found is the critical
behavior identical to that of the Ising model on a 1D lattice
chain or branched polymers, which is not satisfactory
because this criticality is already known.
One of interesting findings in the present work is the

existence of the scaling θ ∼ εa where 0 < a < 3 even when
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coupling to Ising spins. With this a-dependent scaling, the
number of skeleton vertices as well as the number of
vertices in the dressed propagators diverges as shown by
Eq. (4.22); we then have found that one can obtain a
nontrivial scaling of the magnetization with the size of the
graph, namely, Eq. (4.28). This is indeed a new type
of critical behavior in between the Boulatov-Kazakov
criticality (a ¼ 0) and the criticality of the 1D spin chain
(a ¼ 3).
However, the result is not entirely satisfactory since it

essentially reflects the standard Ising spin behavior on
sublattices consisting of planar ϕ3 skeleton graphs. The
main problem seems to be the character of the ensembles of
interpolating graphs. They are simply too inhomogeneous,
since the Ising spins are noncritical on the tree subgraphs,
except at strictly zero temperature, where they are trivially
critical, like the 1D spin chain.
It would be interesting to find better homogeneous

ensembles of graphs, i.e., ensembles which have only
one well-defined fractal dimension, and which interpolate

between the DT and the GCDT ensembles. On these
ensembles, one might very well find new scaling behavior
of the Ising model.
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