
 

Towards Gaussian states for loop quantum gravity

Hanno Sahlmann * and Robert Seeger†

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Quantum Gravity,
Staudtstraße 7/B2, 91058 Erlangen, Germany

(Received 5 August 2019; accepted 28 April 2020; published 18 May 2020)

An important challenge in loop quantum gravity is to find semiclassical states—states that are as close to
classical as quantum theory allows. This is difficult because the states in the Hilbert space used in loop
quantum gravity are excitations over a vacuum in which geometry is highly degenerate. Additionally,
fluctuations are distributed very unevenly between configuration and momentum variables. Coherent states
that have been proposed to balance the uncertainties more evenly can, up to now, only do this for finitely
many degrees of freedom. Our work is motivated by the desire to obtain Gaussian states that encompass all
degrees of freedom. We reformulate the U(1) holonomy-flux algebra in any dimension as a Weyl algebra.
We then define and investigate a new class of states on this algebra which behave as quasifree states on the
momentum variables. Using a general result on representations of the holonomy-flux algebra, we define
analogous representations also in the case of non-Abelian compact structure groups. For the case of SU(2),
we study an explicit example of such a representation and the consequences for quantum geometry. This
kind of state, with Gaussian fluctuations in the spatial geometry, seems well suited to investigate problems
related to structure formation in cosmology.
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I. INTRODUCTION

In quantum field theory (QFT), the states can often be
regarded as excitations over a special state, such as a
ground state or thermal state. This state encodes the
physical circumstances such as the strength of the fluctua-
tions or the temperature, and the excitations over it inherit
many of its basic properties. In the following, we will
loosely refer to such a special state as a vacuum.
Loop quantum gravity (LQG) is a QFTwithout classical

background geometry. The basic fields are a SU(2) con-
nection one-form A and a tensor density E [1,2]:

½Ai
aðxÞ; Eb

j ðyÞ� ¼ iℏkδbaδijδðx; yÞ: ð1Þ

Here k ¼ 8πG, with Newton’s constant G, and we have set
the Barbero-Immirzi parameter to 1. The field algebra
consists of parallel transporters and fluxlike variables

he ¼ P exp

�
−
Z
e
A

�
;

ESðfÞ ¼
1

2

Z
S
fjðxÞEa

j ðxÞϵabcdxb ∧ dxc; ð2Þ

where e is a path and S a surface in space. The commutation
relations between these operators are purely topological in

nature. The resulting algebra (along with its generalization
to arbitrary dimension and structure group) is called
holonomy-flux (HF) algebra. Due to the nature of the
commutation relations, the spatial diffeomorphisms act
on the HF algebra as algebra automorphisms. The natural
vacuum state, i. e., the one that is invariant under the action
of the spatial diffeomorphisms, has very different properties
from those in QFT on Minkowski space. Physically, this
Ashtekar-Lewandowski (AL) state [3] corresponds to a
degenerate spatial metric qab ¼ 0 and a canonically con-
jugate extrinsic geometry with infinite fluctuations. This
state is a natural ground state when general covariance is
at the forefront. In fact, it is the unique diffeomorphism
invariant state [4,5] (see, however, [6,7]). The AL state is a
special case in a whole family of states, all peaked on
spatial geometry [8,9]. Apart from the AL state, these states
are not invariant under spatial diffeomorphisms.
At the other end of the spectrum, there is a construction

of a vacuum state due to Dittrich and Geiller (albeit on a
modified algebra) which is dual to the AL state in the sense
that it is peaked on flat extrinsic geometry, while fluctua-
tions in the spatial metric are maximal [10,11]. See also
[12] for an elegant formulation of this idea in the
Abelian case.
When it comes to the description of classical spacetime,

neither excitations above the AL vacuum nor above the
Dittrich-Geiller vaccum are particularly suitable, due to the
uneven distribution of fluctuations. AL excitations have
been used to construct coherent states [13–15], but these
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states have semiclassical properties only for finitely many
degrees of freedom. Going over to infinitely many degrees
of freedom leads to new measures on the space of
connection fields [16,17]. It is also possible to transfer
Gaussian measures from background dependent QFT to the
space of connections used in LQG [18,19], but the resulting
Hilbert spaces so far do not support the holonomy flux
algebra of LQG [20]. Coming from a different angle, a
series of works by Bianchi and collaborators explores states
with high entanglement between neighboring regions of
geometry [21–23]. Such states are also highly excited
compared to the vacuum. As initially defined, they only
comprise finitely many degrees of freedom. It is, however,
possible to apply these ideas to Gaussian states on systems
with infinitely many degrees of freedom [24].
The present work is also concerned with finding new

states for LQG. For this it is necessary to first define
the algebras carefully. We do this for the HF algebra in
Sec. II A. We should point out that we use a definition that
is less strict than that of [5,25], in that it does not contain all
relations among iterated commutators that are present in
the AL representation. We also consider the case of the
structure group U(1) [26]. This is interesting, because the
relations of the HF algebra can be brought into the form of a
Weyl algebra, by going over to the algebra elements [27]

Wðe; SÞ ¼ e
i
2
Iðe;SÞheeiES : ð3Þ

This formulation makes contact with free quantum fields on
a fixed geometric background.
As others before us, we are unable to find states for the

HF algebra that are Gaussian with uncertainties split
between the canonical variables. But we will describe a
new type of state in which the flux operators have Gaussian
fluctuations, whereas the properties of the holonomies are
those of the AL representation. To be precise, the product of
a holonomy and a flux has a vacuum expectation value

h0jheeiESðfÞj0i ¼ δe;0e−
1
2
αSðf;fÞeiβSðfÞ; ð4Þ

where αS is an S-dependent bilinear form and βS a linear
one. This kind of state gives a new representation of the HF
algebra, in which the spatial geometry fluctuates around an
average value given by βS. If one chooses the covariance α
to be vanishing, one obtains states of the type considered
in [8,9,28–30].
One motivation for the consideration of these states is the

quantum origin of the primordial perturbations. The current
observations of the cosmic microwave background (CMB)
can be described by saying that primordial perturbations of
the density and the spatial metric seem to be described by a
Gaussian random field with a certain covariance. A state of
the form (4) describes a quantized spatial geometry that
fluctuates around a background given by β, with Gaussian
correlations given by α. Thus the states that we describe

might be well suited to describe the quantum geometry of
the early universe.
Wewill start the discussion by reviewing some aspects of

LQG and the definition and properties of Weyl algebras, in
Secs. I A and I B, respectively. We continue with a precise
definition of the HF algebra for arbitrary dimension and
compact gauge group in Sec. II A, and we state and prove a
result on modifications of its representations in Sec. II B. In
Sec. III we will discuss the U(1) model in detail and show
that its HF algebra derives from a Weyl algebra. New states
for this algebra are then defined in Sec. IV. Analogous
states in the case of a non-Abelian gauge group are
discussed in Sec. V, with the definition of the new states
in Sec. VA, and a discussion of the changes of the area
spectrum due to the fluctuations in Sec. V B. We end with a
short summary and outlook, Sec. VI.

A. Quantization of diffeomorphism invariant
theories of connections

We consider the canonical formulation of a gauge theory
on a globally hyperbolic (Dþ 1)-dimensional spacetime
with a Cauchy surface σ. We assume the structure group G
to be a compact Lie group. We chose the canonical position
variable to be a G connection A on σ. The canonical
momentum is then a densitized vector field E taking values
in g. Ashtekar-Barbero variables in LQG [31,32] are a
special case of this, with G ¼ SUð2Þ and D ¼ 3.
In a setting without a fixed spacetime metric, natural

variables beyond the point fields A and E are holonomies of
A along one-dimensional paths and integrals of E over
(D − 1)-dimensional surfaces, an electrical flux. We write

he ¼ P exp

�
−
Z
e
A

�
ð5Þ

for the G valued holonomy along e. For the fluxes of E we
smear against g-valued functions f with support on a
(D − 1)-dimensional, orientable hypersurface S, given by

ESðfÞ¼
1

ðD−1Þ!
Z
S
fjðxÞEa

j ðxÞϵab1���bD−1
dxb1 ∧ � ��∧dxbD−1 :

ð6Þ

The canonical commutation relation of holonomies and
fluxes is only sensitive to intersection points of the
corresponding edge and surface. For a pair of edge and
surface intersecting in only one of the end points of e it is
given by

½he; ESðfÞ�

¼ ℏk
4i

κðe; SÞ
�
hefðpÞ for p ¼ e ∩ S source of e

−fðpÞhe for p ¼ e ∩ S target of e
:

ð7Þ
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Here, κðe; SÞ encodes partly the relative orientation of edge
and surface. It is�1 for an edge above or below the surface.
Sums and products of holonomy functionals span the so-

called cylindrical functions. The definition is as follows.
Consider a graph embedded in σ, i.e., a finite collection of
edges that are allowed to build out vertices by intersections
of their beginning and final points, i. e. γ ¼ fe1; e2;…; eng.
One further speaks of the set of edges EðγÞ and the set of
vertices VðγÞ of a given graph γ. Now we call A the space
of smooth connections and look at functions on this space,

F∶ A → C: ð8Þ

Such a function is said to be smooth cylindrical with respect
to a given graph γ if there is a smooth function

Fγ∶ GjEðγÞj → C; ð9Þ

such that the function on A can be expressed by this
function of powers of G, i. e. by setting for A ∈ A

FðAÞ ¼ FγðfheðAÞge∈EðγÞÞ: ð10Þ

The smooth cylindrical functions form an algebra which
we will call Cyl.1 The fluxes ESðfÞ can be used to define
the Hamiltonian vector fields

XS;f ¼ ½ESðfÞ; ·�; ð11Þ

which act on Cyl.
The �-Lie algebra on which the quantum theory may

be based is the algebra generated by smooth cylindrical
functions and the flux vector fields by commutators as
multiplication, subject to complex conjugation as involu-
tion. The resulting quantum �-algebra is known as the HF
algebra. For the precise definition that we will use, see
Sec. II A.
There is a unique diffeomorphism invariant representa-

tion of the HF algebra [4,5].
Theorem I.1. For D ≥ 2 the Ashtekar-Isham-

Lewandowski state

φALðFXS1;f1XS2;f2 � ��XSn;fnÞ¼
�
0 n>0

μ0ðFÞ n¼0
ð12Þ

is the only diffeomorphism invariant state on the HF
algebra. Here, the state acts on elements of Cyl∞ as

μ0ðFÞ ¼
Z
GjEðγÞj

Y
e∈EðγÞ

dμHðgeÞFγðfgege∈EðγÞÞ: ð13Þ

A sequence of holonomies and flux vector fields can
always be brought into a normal ordered form—flux vector
fields to the right and holonomies to the left—by using the
commutation relations. The resulting expression is by
linearity of the states a sum of terms of the form used in
the theorem. Furthermore, the measure that is used in the
integration over the powers of G is just the product of the
Haar measures for the individual copies of G.
The representation that arises from this state via the

Gelfand-Naimark-Segal (GNS) construction is called AL
representation [3,33]. The Hilbert space is the space of
square integrable functions over the space of generalized—
specifically distributional—connections:

H ¼ L2ðĀ; dμALÞ: ð14Þ

The representation of holonomies and cylindrical func-
tions and fluxes is similar to the ordinary Schrödinger
representation, i. e. as a multiplication operator and a
derivative. For the cylindrical functions one sets

ðπALðFÞΨÞðAÞ ¼ FðAÞΨðAÞ: ð15Þ

The AL representation of the fluxes that act on cylin-
drical functions is the following:

ðπALðESðfÞÞΨÞðAÞ

¼ XS;f½Ψ� ¼
ℏk
2

X
v∈VðγÞ

fjðvÞ
X

e∈EðvÞ
κðe; SÞJðv;eÞj ΨðAÞ:

ð16Þ

The first sum runs over all vertices of the graph γ under-
lying the cylindrical function Ψ. Here it is assumed that
every intersection point between edges and the surface
is a—possibly trivial—vertex considered in VðγÞ. At these
vertices one evaluates the smearing function of the flux
vector fields. The second sum now runs over all edges e

that begin or end at the vertex v. The object Jðv;eÞj encodes
the left- and right-invariant vector fields acting on copies of
G assigned to the specific edges of a vertex, for out- and
ingoing edges, respectively [5].
This algebra arose from the consideration of the special

case G ¼ SUð2Þ in LQG. It has the advantage that diffeo-
morphisms of σ act on the algebra in a very simple way.

B. Review of Weyl algebras

In the following we want to give a short introduction
to the topic of Weyl algebras of canonical commutation
relations and quasifree states. We base our discussion
on [34,35].
AWeyl algebra is a C�-algebra, solely constructed from

a canonical commutation relation (CCR). It is sensible to
present the construction in several steps.

1Note that the smooth cylindrical functions are sometimes
referred to as Cyl∞, in contrast to our present notation which is in
keeping with [5].
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Definition I.2. The CCR �-algebra over the presym-
plectic space ðH; σÞ, denoted by CCRðH; σÞ, is the algebra
generated by the Weyl elements WðXÞ, X ∈ H that satisfy
the Weyl relations

WðXÞWðYÞ ¼ e−
i
2
σðX;YÞWðX þ YÞ ð17Þ

and are subject to the involution �, such that

WðXÞ� ¼ Wð−XÞ ¼ WðXÞ−1: ð18Þ

The Weyl elements are unitary with respect to the
involution, and hence a representation of this algebra has
to be a unitary representation.
Definition I.3. Let H be a Hilbert space and let

π∶ H → UðHÞ ⊂ BðHÞ, X ↦ πðWðXÞÞ be a map from
the real vector space H into the unitary operators on H.
Then ðπ;HÞ is a representation of a canonical commutation
relation in terms of a presymplectic form or equivalently a
CCR representation over the presymplectic space ðH; σÞ, if
the so-called Weyl operators satisfy the Weyl relations

πðWðXÞÞπðWðYÞÞ ¼ e−
i
2
σðX;YÞπðWðX þ YÞÞ ð19Þ

and π is a �-homomorphism, i. e. πðWðXÞ�Þ ¼ πðWðXÞÞ†.
In principle, CCRðH; σÞ is homomorphic to a C�-algebra

of bounded operators on a given representation Hilbert
space, because of the unitarity of the Weyl elements.
In order to promote the �-algebra to a C�-algebra one
exploits the fact that with ðπl2 ;l2ðHÞÞ there is always a
�-representation, which allows for the definition of a norm
that is highly dependent on CCR �-representations. It is
known as the minimal regular norm [34].
Definition I.4. We equip the �-algebra CCRðH; σÞ with

the minimal regular norm

kAk ≔ supfkπðAÞkHjðπ;HÞ is a CCR � -representationg:
ð20Þ

The C�-algebra, obtained by the completion of CCRðH; σÞ
with respect to the minimal regular norm, is referred to as
Weyl algebra or Weyl CCR algebra over the presymplectic
space ðH; σÞ:

CCRWeylðH; σÞ ≔ CCRðH; σÞ: ð21Þ

Equation (20) is meaningful since there is always a
representation of CCRðH; σÞ by explicit construction on
the Hilbert space of square summable sequences indexed
by H. In the case of a nondegenerate σ, the corresponding
Weyl algebra is also unique in the sense that anyC�-algebra
generated by elements WðXÞ as in definition I.3 is
isomorphic to CCRWeylðH; σÞ [36]. On CCRðH; σÞ there
exists a tracial state τ with the property [34,36]

τ

�X
X∈H

fðXÞWðXÞ
�

¼ fð0Þ; ð22Þ

where it is understood that the function f∶ H → C is
nonzero only in finitely many places.
It is useful to note for later that there cannot be linear

relations among the Wðe; SÞ.
Lemma I.5. The WðXÞ; X ∈ H form a basis of

CCRWeylðH; σÞ.
Proof. Consider any linear combination a¼P

ciWðXiÞ
of mutually distinct elements WðXiÞ, where we assume
ci ≠ 0 ∀ i. Using the state τ we can estimate

kak2 ≥ τða�aÞ ¼
X
i

jcij2; ð23Þ

and so a can never be 0.
The notion of quasifree states has been introduced by

Araki in the 1960s [37–39]. This is the most general class
of Gaussian states, i. e. expectation values of Weyl elements
are Gaussian functions, or n-point correlation functions
of field operators separate into partitions of two-point
correlation functions.
Definition I.6. Let φ be a state on CCRWeylðH; σÞ. It is

called quasifree if it is of the form

φðWðXÞÞ ¼ e−
1
2
αðX;XÞ ∀X ∈ H; ð24Þ

where α∶ H ×H → R is a positive symmetric bilinear
form on H, called covariance of the quasifree state.
The existence of such quasifree states is tied to a

condition on the covariance and the symplectic form,
namely

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðX;XÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðY; YÞ

p
≥
1

2
jσðX; YÞj ∀X; Y ∈ H: ð25Þ

With this, the existence is reduced to finding a covariance
that satisfies the determining inequality.
We want to list some important features of quasifree

states and refer to [34,35] for details. Let ðπ;H;ΩÞ be
the GNS representation of the quasifree state. First of all,
quasifree states are regular. Considering this, Stone’s
theorem applies and from the representation of the Weyl
elements one obtains self-adjoint field operators:

BπðXÞ ¼
1

i
d
dt
πðWðtXÞÞ

����
t¼0

¼ 1

i
d
dt
eiBπðXÞt

����
t¼0

: ð26Þ

These field operators are linear in their arguments
and satisfy the following commutation relations on
D ¼ spanfWðXÞΩjX ∈ Hg:

½BπðXÞ; BπðYÞ� ¼ iσðX; YÞ;
½πðWðXÞÞ; BπðYÞ� ¼ −σðX; YÞπðWðXÞÞ: ð27Þ
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The two-point correlation functions only depend on the covariance and the symplectic form:

hBπðXÞBπðYÞiΩ ¼ αðX; YÞ þ i
2
σðX; YÞ: ð28Þ

The separation of correlation functions into two-point functions follows from Stone’s theorem since

hBπðX1ÞBπðX2Þ���BπðXnÞiΩ¼
1

in
∂n

∂t1∂t2 ���∂tnφðWðt1X1ÞWðt2X2Þ���WðtnXnÞÞ
����
t¼0

¼ 1

in
∂n

∂t1∂t2 ���∂tnexp
�
−
1

2

Xn
j¼1

ðtjÞ2αðXj;XjÞ−
X
j<k

tjtk

�
αðXj;XkÞþ

i
2
σðXj;XkÞ

������
t¼0

: ð29Þ

Clearly this vanishes for odd n. For n even in contrast, there
is still only one nonvanishing term, which carries a linear
contribution for every single tk. This is exactly the term that
is separated into a two-point function. Summarizing, we
have

hBπðX1ÞBπðX2Þ � � �BπðXnÞiΩ

¼
8<
:

0 n oddPQ
partitions

hBπðXiÞBπðXjÞiΩ n even : ð30Þ

II. A GENERAL CLASS OF REPRESENTATIONS
OF THE HOLONOMY-FLUX ALGEBRA

To properly talk about different representations, we have
to precisely define the algebra that we have informally
described in Sec. I A. After giving this definition, we will
state and prove a general result about its representations
that will underlie the construction of the new states in later
parts of this work.

A. The holonomy-flux algebra

A precise definition of the HF algebra for general D and
G as a quotient of a free algebra can be found in [5], and a
similar one for D ¼ 3 in [25]. Both definitions take into
account most of the relations that are present in the AL
representation of holonomies and fluxes. In particular, the
fluxes generate an infinite dimensional Lie algebra with
additional relations among its elements. For example, it
was pointed out in [25] that in the case D ¼ 3 the
remarkable identity

½ESðfÞ; ½ESðf0Þ; ESðf00Þ�� ¼
1

4
ESð½f; ½f0; f00��Þ ð31Þ

holds on certain states in the AL representation, and by
extension in the Lie algebra generated by the fluxes.
On the other hand, it was noted in [5] that only a few of

the relations are really necessary to show uniqueness of
diffeomorphism-invariant representations. More generally,

only a small subset of relations of a given classical
(Poisson) algebra can be respected by the commutation
relations in a quantum theory of the given system, as was
first pointed out by Groenewold and Van Hove. Thus one
can argue (see for example [9]) that only the relations that
are absolutely characteristic for the LQG approach should
be taken over to the quantum algebra. This would mean
requiring the basic commutator

½ESðfÞ; F� ¼ XS;f½F� ð32Þ

as a relation in the quantum algebra, but not a more
complicated relation such as (31). Here, we will follow [9]
in taking fewer relations into account. Besides linear and
adjointness relations, we require only the multiplicative
structure among cylindrical functions and (32). These
relations imply further relations via the Jacobi identities.
We will comment on this below.
We will mathematically define the algebra by starting

with a free algebra over a certain set of symbols and then
dividing by the two-sided ideal generated by the relations
listed above. This has the advantage that we automatically
impose all the relations that are implied by those that we
list explicitly.
Let us first define the label set for the quantum algebra

AHF. On the one hand, we use the cylindrical functions
Cyl as labels. On the other hand, consider elementary flux
variables on phase space, i.e., functionals of the form ESðfÞ
for a surface S and a smearing field f. In particular, these
variables satisfy

ESðf þ f0Þ ¼ ESðfÞ þ ESðf0Þ; E−SðfÞ ¼ ESð−fÞ;
ð33Þ

where −S is the surface S as a manifold, but with the
opposite orientation. Let F be the vector space of phase
space functions that are finite linear combinations of
elementary flux variables ESðfÞ. In particular, this vector
space incorporates the relations (33).
Now we are in a position to define the free algebra we

will be starting from. Take algebra Afree of formal linear
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combinations of sequences of elements of Cyl ∪ F, with
multiplication and � defined by

ða1; a2;…; amÞ · ðb1; b2;…; bnÞ
≔ ða1; a2;…; am; b1; b2;…; bnÞ; ð34Þ

ða1; a2;…; amÞ� ≔ ðam; am−1;…; a1Þ; ð35Þ

and linear extension. Here all entries a1; b1;… are from
Cyl ∪ F and ā is complex conjugation of functions on
phase space. The algebraAHF that we will be working with
is the algebra of equivalence classes under the relations
defined by a certain ideal in Afree. Let

AHF ¼ Afree=I; ð36Þ

where I is the two-sided ideal generated by the following
classes of elements:

αðaÞ − ðαaÞ; ð37Þ

ðaÞ þ ðbÞ − ðaþ bÞ; ð38Þ

ðF1; F2Þ − ðF1F2Þ; ð39Þ

ðESðfÞ; FÞ − ðF;ESðfÞÞ − ðXS;f½F�Þ: ð40Þ

Here α ∈ C, a; b ∈ Cyl ∪ F, and F1; F2; F ∈ Cyl. This
means that elements of AHF are equivalence classes of
elements in Afree, with the product

½x�½y� ¼ ½xy�; x; y ∈ Afree; ð41Þ

which is well-defined because I is a two-sided ideal. I is
closed under the �-operation in Afree, so the �-operation
defined by

½x�� ≔ ½x��; x ∈ Afree ð42Þ

is well defined on AHF.
How can we define representations of AHF? A practical

way to do this is to first specify a representation π̃ of Afree,
by specifying π̃ on a basis of Cyl and one of F. Then we
have the following result.
Lemma II.1. A representation π̃ of Afree defines a

representation of AHF by

πð½x�Þ ≔ π̃ðxÞ ð43Þ

if the generators (37)–(40) of the ideal I are in the kernel
of π.
This is an immediate consequence of the fundamental

theorem on algebra homomorphisms, and we omit the
proof.

In [25] some doubts regarding the consistency of the
results of [9] were expressed. These doubts also have
relevance for the contents of the current work, so we would
like to explicitly address them. The doubts have to do with
the relations implied by those generating the ideal I.
Indeed, it is not easy to enumerate the relations contained
in I, and there are many. In particular, there are all the
relations following from Jacobi identities for commutators,
since the Jacobi identities are implied by the definition

½½a�; ½b�� ≔ ½a�½b� − ½b�½a�; a; b ∈ Afree: ð44Þ

One can for example check that, as was pointed out in [25],
for any F ∈ Cyl

½½ESðfÞ; ½ESðf0Þ;ESðf00Þ��;F�¼
1

4
½ESð½f; ½f0;f00��Þ;F� ð45Þ

in AHF, where here and in the following we drop the
brackets ½·� denoting equivalence classes for better read-
ability. Note that in contrast the relation (31) does not hold
in AHF as defined above.
We also note that there cannot be any inconsistency in

the relations. The worst that can happen is that (i) I ¼ Afree,
and hence AHF becomes trivial, or (ii) there does not
exist nontrivial representations π̃ that have the generators
(37)–(40) of I in the kernel. The existence of the AL
representation (15) and (16) shows, however, that (i) does
not happen, as the operators in that representation fulfill
the relations (37)–(40) and are not trivial. Indeed,
because of this the AL representation is a representation
of AHF in the literal sense, and hence also (ii) is not a
problem.
The representations of [9] fulfill the assumptions of

Lemma II.1. Therefore they are representations of AHF as
defined above. The same holds for the class of representa-
tions that we will propose below. One problem with [9]
is that the construction of the quotient algebra (36) is
invoked without giving much detail and hence inviting
misunderstandings.

B. Representations shifting the fluxes

In this section, we will make an observation regarding
the representations of the holonomy-flux algebra AHF as
defined above: Since we only fix the commutators between
holonomies and fluxes [via the ideal (40)], and not between
the fluxes themselves, there is more freedom for defining
representations. In particular, this allows for a shift in the
representatives of the fluxes. The detailed statement is as
follows.
Proposition II.2. Let π be a representation of AHF

on H. Let

Ξ∶ F → LðKÞ ð46Þ
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be a linear map from the set of linear combinations
of elementary flux variables to operators on a Hilbert
spaceK. Then there is a new representation π0 onH ⊗ K in
which

π0ðFÞ ¼ πðFÞ; π0ðESðfÞÞ ¼ πðESðfÞÞ þ ΞðESðfÞÞ:
ð47Þ

Proof. Assume π, Ξ given as in the proposition. Note
first that the converse of Lemma II.1 holds true as well, in
the sense that we can extend π to a representation π̃ ofAfree
by declaring

π̃ðFÞ ≔ πðFÞ; π̃ðESðfÞÞ ≔ πðESðfÞÞ; ð48Þ

and representing sequences by products of these elemen-
tary ones. Then we can set

π̃0ðFÞ ≔ πðFÞ;
π̃0ðESðfÞÞ ≔ πðESðfÞÞ ⊗ 1þ 1 ⊗ ΞðESðfÞÞ; ð49Þ

and extend to all of Afree by representing sequences by
products of the elementary representatives. This is a
representation of Afree, since there are no nontrivial
relations to fulfill. Now we have to check that the ideals
(37)–(40) are in the kernel of π̃0. Equations (37) and (38)
are in the kernel due to the linearity of Ξ. Equation (39) is
in the kernel by construction. Only the commutation
relations (40) require an explicit check:

π̃0ððESðfÞ; FÞ − ðF;ESðfÞÞ − ðXS;f½F�ÞÞ
¼ ðπ̃ðESðfÞÞ ⊗ 1þ 1 ⊗ ΞðESðfÞÞÞπ̃ðFÞ ⊗ 1 − π̃ðFÞ ⊗ 1ðπ̃ðESðfÞÞ ⊗ 1þ 1 ⊗ ΞðESðfÞÞÞ − π̃ðXS;f½F�Þ ⊗ 1

¼ ð½π̃ðESðfÞÞ; π̃ðFÞ� − π̃ðXS;f½F�Þ ⊗ 1þ π̃ðFÞ ⊗ ΞðESðfÞÞ − π̃ðFÞ ⊗ ΞðESðfÞÞ
¼ 0;

where we have used that π̃ comes from a representation of
AHF and hence annihilates the ideals. ▪
We will use this freedom to define representations that

mirror properties of quasifree representations in the follow-
ing sections.

III. RELATION BETWEEN WEYL ALGEBRAS
AND THE HOLONOMY-FLUX ALGEBRA FOR

THE STRUCTURE GROUP U(1)

The electromagnetic analog of loop quantum gravity is
the situation where one considers the kinematics of a U(1)
Yang-Mills theory and quantizes it in the spirit of diffeo-
morphism invariant quantum gravity [26,40]. We want to
discuss the U(1) case in general and look at a formulation

in Dþ 1 dimensions and hence a D-dimensional spatial
manifold.
We consider a pair consisting of a U(1) connection or

vector potential AaðxÞ and an electric field EaðxÞ, set
coupling constants, including ℏ, to 1 and stipulate the
following CCR:

½AaðxÞ; EbðyÞ� ¼ iδbaδðDÞðx; yÞ;
½AaðxÞ; AbðyÞ� ¼ 0 ¼ ½EaðxÞ; EbðyÞ�: ð50Þ

The smeared connection is defined completely analogous
to the SU(2) case. For the smeared flux, however, we go
without an additional smearing function and consider only
the integration over the surface.2 Smeared connection and
flux therefore are given by

AðeÞ ¼
Z
e
A ¼

Z
1

0

dtAaðeðtÞÞ _eaðtÞ;

EðSÞ ¼
Z
S
ð�EÞ ¼

Z
S

1

ðD − 1Þ!E
aϵaa1a2���aD−1

dxa1 ∧ dxa2 ∧ � � � ∧ dxaD−1 : ð51Þ

The commutation relation of these variables is characterized by the oriented intersection number Iðe; SÞ of a surface S and a
path e. This object has already been looked at in the context of LQG in [41,42] under the name Gauss linking number. For
the CCR, we find

2This is possible because the E field is gauge invariant and hence globally defined. Fluxes with smearing functions can be
approximated by suitable linear combinations of fluxes without, so this set of functions also seems big enough. We chose it to simplify
the formalism, but expect no difficulty in extending the results to the bigger space of fluxes.
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½AðeÞ; EðSÞ� ¼ iIðe; SÞ: ð52Þ

The actual commutation relation that is analogous to SU(2)
considers holonomies. For U(1) there is no need for path
ordering in the holonomies, and we can simply look at
the object

he ¼ eiAðeÞ: ð53Þ

As in the non-Abelian theory, the holonomies are elements
of the structure group and for that reason elements of U(1).
The commutation relation for holonomies and fluxes
becomes

½he; EðSÞ� ¼ −Iðe; SÞhe: ð54Þ

This relation fully characterizes the U(1) holonomy-flux
algebra. Fluxes and holonomies commute, respectively.
In the following sections, we will not consider a strict

specialization of the general result of Sec. II, as the Abelian
structure group U(1) allows for a richer structure. We will
show that it is possible to construct a Weyl algebra
CCRWeylðH; σÞ for U(1), which will give us representations
of the U(1) holonomy-flux algebra. The precise statement
that we will establish is as follows.
Proposition III.1. Every representation of

CCRWeylðH; σÞ that is regular in the fluxes gives a
representation of the U(1) holonomy-flux algebra.
Because of this relation to the HF algebra, we will refer

to CCRWeylðH; σÞ also as the HF Weyl algebra.

A. Distributional form factors for edges and surfaces

For the Weyl algebra, we need at least a presymplectic
space and hence an explicit vector space. This will not be an
ordinary vector space but a certain space of edges and
surfaces. The formulation that turns out to be the most
suitable for such a vector space is in terms of distributional
objects, which we want to call form factors, describing
edges and surfaces. A similar notion for edges has already
been used in [41,42], although the treatment of surfaces is
somewhat different, since they are described by their closed
boundary curves.
Definition III.2.
(1) Let e∶ ½0; 1� → σ be an embedding of an analytic,

oriented path into the spatial D-manifold σ. Then

Fe
aðxÞ ¼

Z
1

0

dt _eaðtÞδðDÞðx; eðtÞÞ ð55Þ

is a so-called distributional form factor for the edge
e. The dot indicates the derivative with respect to the
curve parameter t. This can be used to smear one-
forms along this specific edge.

(2) Let S∶ ½0; 1�D−1 → σ be an embedding of an ana-
lytic, oriented surface into σ. Then

FSaðxÞ ¼
Z

1

0

dt1

Z
1

0

dt2 � � �

×
Z

1

0

dtD−1ϵaa1a2���aD−1
Sa1;t1ðtÞSa2;t2ðtÞ � � �

× SaD−1
;tD−1

ðtÞδðDÞðx; SðtÞÞ ð56Þ

is called the distributional form factor for the surface
S. Here, t ¼ ðt1; t2;…; tD−1Þ is a right-handed para-
metrization of S and the comma indicates the
derivative with respect to the parametrization, i. e.
Sa;ti ¼ ∂Sa

∂ti . This can be used to smear vector densities
over this specific surface.

In terms of form factors for edges, the smeared con-
nection is

AðeÞ ¼
Z
σ
dDxAaðxÞFe

aðxÞ: ð57Þ

The same can be done with fluxes:

EðSÞ ¼
Z
σ
dDxEaðxÞFSaðxÞ: ð58Þ

The oriented intersection number can be deduced from
the commutator of holonomy and flux, expressed via form
factors. This yields

Iðe; SÞ ¼ 1

i
½AðeÞ; ES� ¼

Z
σ
dDxFe

aðxÞFSaðxÞ: ð59Þ

Having established the above notion of distributional
form factors, we want to construct a vector space. In
principle, each surface or edge is described by a D-tuple
of individual form factors, to which we will refer to by
omitting the index, i. e. Fe or FS. Since we can add
distributions and multiply them by scalars, it is trivial to see
that they possess a vector space structure. In this sense
we can look at finite linear combinations of form factors,
such as

F ≔ n1Fe1 þ n2Fe2 þ � � � þ nkFek ; nk ∈ Z; ð60Þ

for some edges. The index structure of the form factors now
tells us that it is not very reasonable to add form factors for
edges and surfaces. We can only add form factors of the
same kind if we want to integrate them against objects that
have an opposite index structure.
In principle, we would like to consider only linear

combinations with respect to integer scalars as indicated
above, since they could be interpreted as representation
labels of U(1). However, when doing so, we run into a
problem. The integer numbers Z are not a field since they
lack a multiplicative inverse. As a consequence it is not
possible to have a vector space over the integers. When we
want to work at the level of integers, the structure we have
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at hand is aZ-module. In order to be able to work with such
an object when considering Weyl algebras and quasifree
states we would have to generalize Weyl algebras to
symplectic Z-modules, which we do not want to do here.
Therefore, we generalize the linear combinations to coef-
ficients in R. The price to pay is that we actually cannot
work with U(1) anymore but rather have to deal with the
Bohr compactification of the real line, RBohr. However, the
integer linear combinations of form factors are part of
the symplectic vector space corresponding to RBohr, and
hence it is at this point convenient to work in this setup.
Furthermore, a possible Weyl algebra constructed sub-
sequently will be a RBohr HF Weyl algebra, and hence a
U(1) HF Weyl algebra will be embedded into this larger
algebra. Every representation of theRBohr algebra gives rise
to a representation of the U(1) algebra. We will consider a
U(1) HF algebra that is embedded into a RBohr HF algebra
and consider only representations of the U(1) algebra that
come from the RBohr representation.
We define different vector spaces of distributional form

factors as follows.
Definition III.3. Let Fe and FS be distributional form

factors for edges and surfaces.
(1) The vector space of distributional form factors of

paths is denoted by

Hedge ¼
�Xm

k¼1

λkFek jm < ∞; λk ∈ R

�
: ð61Þ

(2) The vector space of distributional form factors of
surfaces is denoted by

Hsurface ¼
�Xm

k¼1

λkFSk jm < ∞; λk ∈ R

�
: ð62Þ

(3) The vector space of distributional form factors of
paths and surfaces is then

H ¼ Hedge ⊕ Hsurface: ð63Þ

The elements in H are denoted by ðe; SÞ and stand
for the pair of linear combinations of form factors
Fe ∈ Hedge and FS ∈ Hsurface, which correspond to
collections of edges and surfaces, respectively.

By the addition of form factor tuples such as

ðe1; S1Þ þ ðe2; S2Þ ¼ ðe1 þ e2; S1 þ S2Þ ð64Þ

we actually mean the addition of the form factors for the
individual distributions for the edges and surfaces. The
neutral element of the addition, needed for the vector space
structure, is inherently given by the form factor that is
constantly zero everywhere, because there is no edge or
surface, denoted by (0,0). Scalar multiplication will be

interpreted as multiplying the individual form factors by a
scalar and is denoted as

λðe; SÞ ¼ ðλe; λSÞ: ð65Þ

What we also need for a vector space is the inverse of
addition. This can simply be set to

ð−e;−SÞ ¼ −ðe; SÞ: ð66Þ

The appearing minus sign has a slightly more convenient
interpretation, which can be seen when looking for the form
factor for the inverse of the generic edge e,

Fe−1
aðxÞ ¼ −Fe

aðxÞ; ð67Þ

and hence the additive inverse for edges only is given by the
form factor for the inverse edge.
The same holds true for surfaces. Multiplying the form

factor by a minus sign can be interpreted as a change of
orientation.
Given this vector space structure, we can look at the

oriented intersection number that becomes a map

I∶ Hedge ⊕ Hsurface → R; ðe; SÞ ↦ Iðe; SÞ: ð68Þ

As can easily be seen from the integral form of the
intersection number, it is linear in both edges and surfaces
in the following sense:

Iðeþ λe0; Sþ μS0Þ
¼ Iðe; SÞ þ μIðe; S0Þ þ λIðe0; SÞ þ λμIðe0; S0Þ; ð69Þ

with λ; μ ∈ R.
For concatenated edges of the form e ¼ e2 ∘ e1, the form

factors separate according to

Fe
aðxÞ ¼ Fe1

aðxÞ þ Fe2
aðxÞ: ð70Þ

Consequently, the smeared connections break up in parts
belonging to the segments, i.e.

AðeÞ ¼ Aðe1Þ þ Aðe2Þ: ð71Þ

This reproduces the decomposition property for holono-
mies as

he ¼ eiAðeÞ ¼ eiAðe2ÞþiAðe1Þ ¼ eiAðe2ÞeiAðe1Þ ¼ he2he1 : ð72Þ

For surfaces a similar behavior arises. A sum of form
factors, such that the surfaces consist of a set of faces fSkg,
decomposes, and for the electric fluxes we find

EðSÞ ¼
X
k

EðSkÞ: ð73Þ
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B. Construction of the Weyl algebra

We want to construct a Weyl algebra for the structure
group U(1). Some of the results we present here were first
obtained for the three-dimensional case in [27].
Proposition III.4. The presymplectic form

σððe; SÞ; ðe0; S0ÞÞ ¼ Iðe; S0Þ − Iðe0; SÞ ð74Þ

is nondegenerate, i. e.

σððe; SÞ; ðe0; S0ÞÞ ¼ 0 ∀ ðe0; S0Þ ∈ H ð75Þ

implies that ðe; SÞ ¼ ð0; 0Þ.
Proof. We want to argue by contradiction and thus

suppose that Eq. (75) holds true and ðe; SÞ ≠ ð0; 0Þ.
Since the presymplectic form is nondegenerate, it must
hold that

Iðe; S0Þ ¼ Iðe0; SÞ ð76Þ

for all pairs ðe0; S0Þ.
We have to distinguish two cases. Let us suppose that

Iðe; SÞ ≠ 0. The choice of the pair of edge and surface that
leads into a contradiction is

ðe0; SÞ ¼ ð−e; SÞ or ðe0; S0Þ ¼ ðe;−SÞ; ð77Þ

which is just the original element, but with e. g. inverse
orientation for the edge. Equation (76) hence turns into

Iðe; SÞ ¼ −Iðe; SÞ: ð78Þ

This is a contradiction, because we required the intersection
number to be nonvanishing.
Second, the situation in which the intersection number of

e and S is vanishing has to be considered: Iðe; SÞ ¼ 0.
Including the case that e ¼ 0, we take a look at the situation

ðe0; S0Þ ¼ ðe0; SÞ; ð79Þ

where we keep e0 generic but fix the surface part to
S0 ¼ S ≠ 0. This results in

0 ¼ Iðe; SÞ ¼ Iðe0; SÞ ∀ e0: ð80Þ

There is certainly an (infinitesimal) edge e0 that intersects
the nontrivial surface S. This contradicts our assumption.
If we want to include a vanishing surface S ¼ 0, we fix
e0 ¼ e ≠ 0 with generic S0:

ðe0; S0Þ ¼ ðe; S0Þ: ð81Þ

Then we chose an (infinitesimal) surface S0 intersected
by e, s. t.

0 ¼ Iðe; SÞ ¼ Iðe; S0Þ ∀ S0 ð82Þ

yields a contradiction.
After all, every assumption that ðe; SÞ is nontrivial

resulted in a contradiction, which implies that

ðe; SÞ ¼ 0: ð83Þ

▪
We showed that the presymplectic form σ is in fact a

symplectic form. Therefore, the corresponding Weyl alge-
bra will be uniquely defined; see Sec. I B. Now we can state
a definition of the Weyl algebra corresponding to the
canonical commutation relation (50).
Definition III.5. The CCR algebra over the presym-

plectic space ðH; σÞ, with H the vector space of pairs of
distributional form factors for edges and surfaces and
σððe1; S1Þ; ðe2; S2ÞÞ ¼ Iðe1; S2Þ − Iðe2; S1Þ, generated by
Weyl elements Wðe; SÞ that obey the Weyl relations

Wðe1;S1ÞWðe2;S2Þ¼e−
i
2
σððe1;S1Þ;ðe2;S2ÞÞWðe1þe2;S1þS2Þ;

Wðe;SÞ†¼Wð−e;−SÞ; ð84Þ

is called U(1) HF Weyl algebra. It is denoted as
CCRWeylðH; σÞ.
It should be pointed out that according to the discussion

preceding definition III.3 we consider only Weyl elements
that belong to the Z-module contained in H as physically
relevant.
Now we want to prove our statement from the beginning

of this section.
Proof of Proposition III.1. Let φ be a state on

CCRWeylðH; σÞ with GNS representation ðπ;H;ΩÞ and
let it be regular in the surfaces. That is, the field operator

πðEðSÞÞ ≔ 1

i
d
dt
πðWð0; tSÞÞjt¼0 ð85Þ

exists for all ð0; SÞ ∈ H. Furthermore, we set

πðheÞ ≔ πðWðe; 0ÞÞ: ð86Þ

In this way, π becomes a representation of the algebraAfree.
We compute the respective commutators:

½πðheÞ; πðhe0 Þ� ¼ ½πðWðe; 0ÞÞ; πðWðe0; 0ÞÞ� ¼ 0: ð87Þ

For two surface field operators we find

½πðEðSÞÞ; πðEðS0ÞÞ�

¼ 1

i2
d2

dtdt0
½πðWð0; tSÞÞ; πðWð0; t0S0ÞÞ�jt;t0¼0 ¼ 0: ð88Þ

The last commutator is
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½πðheÞ;πðEðSÞÞ�¼
1

i
d
dt
½πðWðe;0ÞÞ;πðWð0;tSÞÞ�jt¼0

¼1

i
d
dt

�
e−

i
2
Iðe;SÞt−e

i
2
Iðe;SÞt

�
πðWðe;tSÞÞjt¼0

¼−Iðe;SÞπðheÞ: ð89Þ

Equations (87) and (89), together with the linearity of π
establish that the ideals (37)–(40), are in the kernel of π,
and thus π is a representation of the HF algebra AHF for
G ¼ Uð1Þ. ▪
This result suggests to identify Weyl elements with

vanishing surface contribution with holonomies and the
field operators corresponding to the surfaces with fluxes.
We can decompose a general Weyl element as follows:

πðWðe; SÞÞ ¼ e
i
2
Iðe;SÞπðWðe; 0ÞÞπðWð0; SÞÞ

¼ e
i
2
Iðe;SÞπðheÞeiπðEðSÞÞ: ð90Þ

The Weyl elements combine holonomies with exponenti-
ated fluxes.
For full loop quantum gravity, we have to consider the

structure group SU(2). The main difference to the U(1) case
is the noncommutativity of fluxes and that holonomies are
elements of SU(2). For holonomies it is only possible to
combine two of them in a single exponential if they
represent parts of concatenated edges. Exponentiated fluxes
can in general not be combined in a single exponential
describing a sum of fluxes, since the commutator of fluxes
does not yield a flux again.
Another problem is the localization of the commutation

relation. In the U(1) case all information about the
intersection behavior of edge and surface, coming from
the commutation relation, is encoded in the exponential
of the oriented intersection number and can be separated
from the actual holonomy and flux. This is not possible for
SU(2). Here, the commutator inserts into the holonomy
suð2Þ-valued functions at the intersection point with the
surface. The exponentiated intersection number becomes a
complicated combination of segments of the holonomy and
SU(2) elements at the intersection points.
As a result, it is impossible to extract the symplectic form

from this kind of expressions. It is equally not manageable to
directly construct a general symplectic form from the com-
mutation relation. Therefore, it seems implausible that aWeyl
algebra formulation of LQG exists. These problems notwith-
standing, in Sec. V we will find a representation of the HF
algebra of LQG which resembles a representation of an
almost quasifree state, using the general result from Sec. II.

IV. ALMOST QUASIFREE STATES AND
REPRESENTATIONS

After having established this Weyl algebra, we want to
introduce a new state on it that gives rise to representations
of the holonomy-flux algebra in accordance with Sec. II.

What distinguishes the CCR of U(1) LQG from other
field theories is its purely topological nature. Holonomies
and fluxes do not commute if there is an intersection point
between the corresponding edge and surface. The inequal-
ity (25) turns into

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αððe; SÞ; ðe; SÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αððe0; S0Þ; ðe0; S0ÞÞ

p

≥
1

2
jσððe; SÞ; ðe0; S0ÞÞj ∀ ðe; SÞ; ðe0; S0Þ ∈ H: ð91Þ

It seems unlikely that it is possible to find a quasifree state
for the U(1) HF Weyl algebra, and LQG in general, for two
reasons: First of all, the right-hand side of (91) is diffeo-
morphism invariant while the left-hand side cannot be.3

This means that (91) implies many further inequalities and
is hence more restrictive than it might appear. Second, the
right-hand side contains intersection numbers between S
and e0, and vice versa, between S0 and e. In contrast, the
left-hand side depends on α evaluated on ðe; SÞ alone and
on ðe0; S0Þ alone, respectively. Thus one factor on the left-
hand side does not know about the argument of the other,
yet together they have to bound a quantity depending on the
relative position of the two arguments.
In the framework of projective loop quantum gravity

[43,44], there is a result about exactly the type of inequal-
ities needed for quasifree states. It states that there cannot
be a nonsingular covariance that satisfies an inequality
similar to (25), and hence there cannot exist such states.
This seems to be a feature that comes from the structure of
the underlying algebra itself.
Nevertheless, it is possible to construct a new type

of state for the U(1) HF Weyl algebra, which can be
interpreted as a hybrid of the Ashtekar-Lewandowki state
for the HF algebra and a quasifree state for Weyl algebras.

A. Almost quasifree states for the U(1)
holonomy-flux Weyl algebra

In addition to the Gaussian fluctuations of quasifree
states, we want to include a controllable peak position into
the new state. This leads, alongside the fluctuations given
by two-point correlation functions, to nonvanishing one-
point correlation functions, i. e. a condensate contribution.

3Indeed, assume a diffeomorphism invariant α and consider
S ¼ 0; e0 ¼ 0. Then

1

2
jIðφðeÞ; S0Þj ¼ 1

2
jσððφðeÞ; 0Þ; ð0; S0ÞÞj

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αððφðeÞ; 0Þ; ðφðeÞ; 0ÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðð0; S0Þ; ð0; S0ÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αððe; 0Þ; ðe; 0ÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðð0; S0Þ; ð0; S0ÞÞ

p
;

where φ is any diffeomorphism. One can construct φ that makes
the left-hand side arbitrarily large, leading to a contradiction.
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Proposition IV.1. For a symmetric, positive semidefin-
ite bilinear form (covariance)α∶ Hsurface ×Hsurface → R and
a linear function (condensate contribution) β∶ Hsurface →
R with βð0Þ ¼ 0, the linear functional

φðWðe; SÞÞ ¼ δe;0e−
1
2
αðS;SÞeiβðSÞ ð92Þ

is a state on CCRWeylðH; σÞ, which is called almost
quasifree.
Proof. As a first step, note that the Weyl elements form a

basis of CCRWeylðH; σÞ; see Lemma I.5. Thus (92) defines
φð·Þ as a linear form on all of CCRWeylðH; σÞ.
In order to show that φ is a state, we show that it is

normalized and positive. We have

φðWð0; 0ÞÞ ¼ δ0;0e−
1
2
αð0;0Þeiβð0Þ ¼ 1: ð93Þ

For algebra elements x ¼ P
n
k¼1 bkWðek; SkÞ, with n ∈ N

and bk ∈ C, we have that

φðxx�Þ

¼
Xn
j;k¼1

bjb̄kφðWðej; SjÞWðek; SkÞÞ

¼
Xn
j;k¼1

bjbkφðWðej − ek; Sj − SkÞÞe−i
2
σððej;SjÞ;ðek;SkÞÞ

¼
Xn
j;k¼1

bjb̄kδej;eke
−1
2
αðSj−Sk;Sj−SkÞeiβðSj−SkÞe−i

2
σððej;SjÞ;ðek;SkÞÞ

¼
Xn
j;k¼1

cj ¯ckδej;eke
−1
2
αðSj−Sk;Sj−SkÞe−i

2
σððej;SjÞ;ðek;SkÞÞ ð94Þ

and introduced in the last line the coefficients cj ¼ bjeiβðSÞ.
The resulting sum can be split into three different con-
tributions, depending on the configuration of edges.
The sum can run over pairs of nontrivial edges, so all

ej ≠ 0. With this

Xn
j;k¼1

cj ¯ckδej;eke
−1
2
αðSj−Sk;Sj−SkÞe−i

2
σððej;SjÞ;ðek;SkÞÞ

¼
Xn
j¼1

cjc̄je−
1
2
αðSj−Sj;Sj−SjÞe−i

2
σððej;SjÞ;ðej;SjÞÞ

¼
X
j

jcjj2 ≥ 0; ð95Þ

where we used the Kronecker delta to collapse the sum
over k, the symplectic form is antisymmetric, and hence its
diagonal elements vanish.
The second contributions are terms where nontrivial and

trivial edges meet in the Kronecker delta. These terms
vanish immediately.

For the third contribution, we have to consider terms
with only trivial edges. Hence, the Kronecker delta gives
one and the sums do not collapse. Realizing that the
symplectic form does also vanish, this yields

Xn
j;k¼1

cjc̄ke−
1
2
ðαðSj;SjÞþαðSk;SkÞ−2αðSj;SkÞÞ ¼

Xn
j;k¼1

djd̄keαðSj;SkÞ:

ð96Þ

Here, we introduced dj ¼ cje−
1
2
αðSj;SjÞ. The Hadamard

product, as well as the sum, of two positive semidefinite
n × n matrices is also positive semidefinite. Therefore
the matrix obtained by exponentiating the components
αðSj; SkÞ of the covariance is positive semidefinite as well.
Hence,

Xn
j;k¼1

djd̄keαðSj;SkÞ ≥ 0; ð97Þ

and the positivity of the state, i. e. φðxx�Þ ≥ 0, follows. ▪
The almost quasifree state φ behaves as the AL state for

holonomies, i. e. is only nonvanishing if there are none, but
shows a different behavior concerning the fluxes. The flux
part is a Gaussian function. Being differentiable only in the
surface variable, there are only field operators correspond-
ing to fluxes. Similar to the AL representation, there cannot
be field operators for the connection.
Given the GNS representation ðπ;H;ΩÞ of the almost

quasifree state φ, the representation of fluxes is determined
by Stone’s theorem:

πðEðSÞÞ ¼ 1

i
d
dt
πðWð0; tSÞÞ

���
t¼0

: ð98Þ

The holonomies can directly be represented by the Weyl
elements:

πðheÞ ¼ πðWðe; 0ÞÞ: ð99Þ

Similar to the situation for quasifree states, the commutator
of holonomies and fluxes is given by the symplectic form.
Hence, we find that [cf. (27)]

½πðheÞ; πðEðSÞÞ� ¼ −Iðe; SÞπðheÞ; ð100Þ

such that this is in fact a representation of CCRWeylðH; σÞ.
While the vacuum expectation values containing holon-

omies still vanish, the one- and two-point functions of
fluxes do not anymore. Using the representation (98) and
the state (92), the peak for fluxes lies at

hπðEðSÞÞiΩ ¼ 1

i
d
dt
φðWð0; tSÞÞ

���
t¼0

¼ βðSÞ; ð101Þ
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i.e. the condensate contribution β. The two-point
functions, describing the fluctuations include the surface
covariance,

hπðEðS1ÞÞπðEðS2ÞÞiΩ
¼ 1

i2
d2

dt1dt2
φSðWð0; t1S1 þ t2S2ÞÞ

���
t1;t2¼0

¼ αðS1; S2Þ þ βðS1ÞβðS2Þ: ð102Þ

Similarly, all higher n-point functions decompose into
products of covariances and condensate contributions.
For vanishing β, only the two-point functions contribute
and reproduce the behavior of quasifree states.
Because of the GNS construction, each choice of α and β

yields, up to isomorphisms, a different almost quasifree
representation of the holonomy-flux Weyl algebra. Since
there is no default object like the oriented intersection
number Hsurface that allows for the definition of an inner
product, one has to use additional structures.

B. Almost quasifree representation with respect
to a Fock space

In this and the following section we want to introduce
almost quasifree representations of CCRWeylðH; σÞ and the
U(1) HF algebra. Similar to the nature of the almost
quasifree state, which resembles in some aspects the AL
state, the representations will be constructed as an aug-
mented version of the AL representation.
We look at a bosonic Fock space

F ¼ ⊗
∞

k¼0
h⊗k: ð103Þ

Here, h is any Hilbert space. It plays the role of one-
particle Hilbert space. For f ∈ h, the creation and anni-
hilation operators of this field theory are subject to the
commutation relations

½aðfÞ; a†ðgÞ� ¼ hf; gih1F ;
½aðfÞ; aðgÞ� ¼ 0 ¼ ½a†ðfÞ; a†ðgÞ�: ð104Þ

With this, the self-adjoint field operators of the theory are
denoted by

ϕðfÞ ¼ a†ðfÞ þ aðfÞ: ð105Þ

The commutation relations for creation and annihilation
operators extend to ϕðfÞ, i. e.

½ϕðfÞ;ϕðgÞ� ¼ 2iImðhf; gihÞ: ð106Þ

For general one-particle Hilbert space elements f and g,
this is not forced to vanish. However, for well-defined field
operators that are smeared with real test functions the

commutator vanishes identically. The two-point functions
with respect to the Fock vacuum Ω0 are

hϕðfÞϕðgÞiΩ0
¼ hf; gih: ð107Þ

The total Hilbert space we want to consider for almost
quasifree states is now the tensor product space

HF ¼ HAL ⊗ F ð108Þ

with the cyclic vacuum state

ΩF ¼ ΩAL ⊗ Ω0: ð109Þ

Instead of giving a representation of the Weyl elements
right from the beginning, we present the representations of
holonomies and fluxes, and show that this gives rise to the
desired representation. Let us suppose we have a real and
linear map

Γ∶ Hsurface → h; ð110Þ

which allows one to relate a surface and hence its form
factor to an element of the one-particle Hilbert space.
The linearity is necessary in order to have ΓðSþ S0Þ ¼
ΓðSÞ þ ΓðS0Þ, such that the field operators are linear in the
surfaces and behave similar to the AL flux operators. We
want to consider the following representation of holono-
mies and fluxes on the tensor product Hilbert space:

πF ðheÞ ¼ he ⊗ 1F ;

πF ðEðSÞÞ ¼ XS ⊗ 1F þ 1AL ⊗ ðϕðΓðSÞÞ þ ESÞ: ð111Þ

The representation is characterized by the flux through a
classical background electric field Eð0Þ

ES ¼
Z
σ
dDxEð0ÞaðxÞFSaðxÞ; ð112Þ

which gives the peak position of the Gaussian part of the
almost quasifree state.
In order to check if this is a representation of the HF

algebra we consider the commutation relations of the object
defined above. For the fluxes we find

½πF ðEðSÞÞ; πF ðEðS0ÞÞ�
¼ ½XS; XS0 � ⊗ 1F þ 1AL ⊗ ½ϕðΓðSÞÞ;ϕðΓðS0ÞÞ� ¼ 0;

ð113Þ

since the flux operators still commute and for real Γ the
commutator of field operators vanishes, too. Also the
commutator of holonomies still vanishes:

½πF ðheÞ; πF ðhe0 Þ� ¼ ½he; he0 � ⊗ 1F ¼ 0: ð114Þ
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The commutator of holonomy and flux representations is
also recovered as

½πF ðheÞ; πF ðEðSÞÞ� ¼ ½he; XS� ⊗ 1F ¼ πF ð½he; EðSÞ�Þ:
ð115Þ

We indeed found a representation of the HF algebra
on HF ¼ HAL ⊗ F .
We find that

VF
S ≔ eiπF ðEðSÞÞ ¼ eiXS ⊗ eiϕðΓðSÞÞþiES ð116Þ

and set

hFe ¼ he ⊗ 1F : ð117Þ

With this, we can determine commutation relations for hFe
and VF

S and hence define Weyl elements

WF ðe; SÞ ¼ e
i
2
Iðe;SÞhFe VF

S ¼ e
i
2
Iðe;SÞheeiXS ⊗ eiϕðΓðSÞþiES ;

ð118Þ

which satisfy the Weyl relations

WF ðe1; S1ÞWF ðe2; S2Þ
¼ e−

i
2
ðIðe1;S2Þ−Iðe2;S1ÞÞWF ðe1 þ e2; S1 þ S2Þ;

WF ðe; SÞ† ¼ WF ð−e;−SÞ: ð119Þ

When considering the corresponding vacuum expect-
ation value, the inner product splits into two contributions
and hence the vacuum expectation value splits into

hWF ðe;SÞiΩF
¼heiIðe;SÞheeiXSiΩAL

heiϕðΓðSÞÞþiESiΩ0
: ð120Þ

The vacuum expectation value on HAL is given by

heiIðe;SÞheeiXSiΩAL
¼ eiIðe;SÞδe;0 ¼ δe;0: ð121Þ

Using the Baker-Campbell-Hausdorff decomposition of
the annihilation and creation parts of ϕðΓðSÞÞ, we find

heiϕðΓðSÞÞþiESiΩ0
¼ e−

1
2
hΓðSÞ;ΓðSÞiheiES : ð122Þ

Consequently, when combining the contributions, we again
end up with an expression that is singular in the fluxes but
Gaussian in the surfaces:

hWF ðe; SÞiΩF
¼ δe;0e−

1
2
hΓðSÞ;ΓðSÞiheiES : ð123Þ

This motivates the interpretation of the just presented
representation of the HF algebra as an almost quasifree
representation of the HF Weyl algebra determined by the
covariance

αðS; S0Þ ¼ hΓðSÞ;ΓðS0Þih ð124Þ

and the condensate contribution ES.

C. A specific example of almost quasifree states

We want to give a more detailed example of the
representation that was introduced in the previous section.
The Hilbert space for this representation is

HF ¼ HAL ⊗ l2ðCÞ; ð125Þ

i. e. the AL Hilbert space times the Hilbert space of square
summable, complex sequences, which is the Hilbert space
of the harmonic oscillator. The orthonormal basis of l2ðCÞ
is denoted by fΩng, such that hΩi;Ωji ¼ δij. The fluctua-
tions and hence the covariance of the representation are
determined by functions faðxÞ integrated against a surface
form factor, giving rise to the fluxlike object

fS ¼
Z
σ
dDxfaðxÞFSaðxÞ: ð126Þ

As the almost quasifree state behaves like the AL state
for holonomies, we define the representation of holonomies
accordingly:

πF ðheÞ ¼ he ⊗ 1l2ðCÞ: ð127Þ

Holonomies act only on the AL part of the Hilbert space.
The flux representation on this Hilbert space is given by

πF ðEðSÞÞ ¼ XS ⊗ 1l2ðCÞ þ 1AL ⊗ ðfSðaþ a†Þ þ ESÞ;
ð128Þ

with a≡ að1Þ; a† ≡ a†ð1Þ the usual annihilation and cre-
ation operators of the harmonic oscillator, i. e. ½a; a†� ¼ 1.
The vacuum of HF is the product of the vacua of the

individual Hilbert spaces, which is

ΩF ¼ ΩAL ⊗ Ω0; ð129Þ

where Ω0 is the cyclic vector of the harmonic oscillator
Hilbert space.
In order to determine the vacuum expectation value of

theWeyl operators we have to determine their action onΩE .
This is furthermore very instructive to see, since it tells us
how the states generated by WF ðe; SÞ actually look like.
Because of the tensor product structure we can look at the
individual factors separately. We begin with the AL part.
Every cylindrical function can be expressed in terms of
holonomies, so it is sufficient to look only at a single
holonomy that acts on the AL vacuum in order to under-
stand the structure of Weyl operator generated states.
It holds that

HANNO SAHLMANN and ROBERT SEEGER PHYS. REV. D 101, 106018 (2020)

106018-14



e
i
2
Iðe;SÞheeiXSΩAL ¼ e

i
2
Iðe;SÞhe: ð130Þ

This is the case because the AL-vacuum state is basically
the constant functionΩAL ¼ 1 and hence is killed by acting
on it with the derivative operator XS. There is an additional
phase factor, which is a remnant of the flux and knows
about the intersection structure of e and S. Therefore the
AL part of the Weyl operator creates cylindrical functions
from the vacuum that have additional information about
intersections with surfaces.
For the harmonic oscillator part we make use of the

notion of coherent states. We realize that

eifSða†þaÞ ¼ eifSa
†−ifSa; ð131Þ

which is the coherent state operator for the harmonic
oscillator for a purely imaginary coherent state parameter
ifS. Hence the action of this on the harmonic oscillator
vacuum generates a coherent state with respect to the
function fS, describing the fluctuations, i. e.

eifSða†þaÞΩ0 ¼ e−
1
2
f2S
X∞
n¼0

ðifSÞnffiffiffiffiffi
n!

p ða†ÞnΩn≕ΩifS : ð132Þ

Putting both tensor factors together and including the
condensate contribution yields the action of the Weyl
operators on the vacuum:

WF ðe; SÞΩE ¼ e
i
2
Iðe;SÞeiESðhe ⊗ ΩifSÞ: ð133Þ

This is in fact a product of a holonomy encoding the edge e
and coherent state of the harmonic oscillator that knows
about the classical flux through the surface S and the
corresponding fluctuations. Additionally the phase factor at
the beginning is aware of the intersection structure of e
and S.
Finally we can consider the vacuum expectation value.

The inner product on the Hilbert space HF ¼ HAL ⊗
l2ðCÞ is given by the product of the ones of the individual
Hilbert spaces, since there is no entanglement:

h·; ·iHF
¼ h·; ·iHAL

h·; ·il2ðCÞ: ð134Þ

Again, we look at the contributions separately. For holon-
omies and exponentiated fluxes we have

hΩAL; e
i
2
Iðe;SÞheeiXSΩALiHAL

¼ δe;0: ð135Þ

Although there is a remnant of the surface in the vacuum
expectation value, it does not contribute to it, since the
expectation value is only nontrivial if the edge is trivial. The
vacuum expectation value of harmonic oscillator coherent
state operator is

hΩ0; eifSða
†þaÞΩ0il2ðCÞ ¼ e−

1
2
f2S : ð136Þ

Putting things together yields the desired result. We find

hΩF ;WF ðe; SÞΩF iHF
¼ δe;0e−

1
2
f2SeiES : ð137Þ

The vacuum expectation value of the Weyl operators hence
is highly peaked at trivial holonomies and is a Gaussian for
fluxes, peaked on the classical flux through the surface.
Since the fluctuation function fS is linear in the form

factors [see (126)], we can set

αðS; S0Þ ¼ fSfS0 ; ð138Þ

which is bilinear and symmetric. Further, we can identify
the classical flux ES with a condensate contribution βðSÞ.
The almost quasifree state, corresponding to this covari-

ance and condensate, is given by

φðWðe; SÞÞ ¼ δe;0e−
1
2
αðS;SÞeiβðSÞ ¼ δe;0e−

1
2
f2SeiES ; ð139Þ

which matches the vacuum expectation value of the Weyl
operators in the above representation. Therefore, by means
of the GNS construction, ðπF ;HF ;ΩF Þ is unitarily equiv-
alent to the GNS representation of the almost quasifree
state (139). It can be interpreted as a representation of the
almost quasifree state (139).
There is in fact a certain similarity to the Koslowski-

Sahlmann (KS) representation and actually the consider-
ations in [8,9]. There, the extension of the AL representation
by a classical flux is considered. However, everything takes
place on HAL only. This allows for a shift of the flux peak,
not for fluctuations in the fluxes.
The representation we present here is an interesting

example for the results about the representation theory of
the HF algebra developed in [45]. There, the main result is
that a representation ðH; πÞ can be split up into a direct sum
of representations

H ≅ ⨁
ν
Hν;

π ≅ ⊗
ν
πν; ð140Þ

where the individual Hilbert spaces are Hν ≅ L2ðĀ; dμνÞ.
Denote the inclusion map Iν∶ Hν ↪ H. Under some rather
mild assumptions it is possible to extend the representation
such that—adopted for our U(1) considerations—one finds

πðEðSÞÞIνðFÞ ¼ IνðXSFÞ þ
X
ι

IιðFινðSÞÞ: ð141Þ

Here F is a cylindrical function whose representation
is πALðFÞ ¼ F and FινðSÞ are functions that inherit
certain properties from classical fluxes. It was always a
bit mysterious what the physical meaning of a general
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representation in this class is, as the examples studied in the
literature mostly have H ¼ L2ðĀ; dμÞ, i.e., no nontrivial
direct sum. However, the example described above has this
more complicated structure. Indeed,

HF ¼ HAL ⊗ l2ðCÞ ≃⨁
N0

HAL; ð142Þ

and under this identification πF ðEðSÞÞ takes the form (141)
with

Fmn¼ ESδm;nþfSðδm;nþ1þδm;n−1Þ; m;n∈N0: ð143Þ

This shows that such a nontrivial direct sum structure of a
representation can have interesting physical significance. It
seems to encode the fluctuations of the flux variables.

V. ALMOST QUASIFREE REPRESENTATIONS
FOR NON-ABELIAN STRUCTURE GROUPS

In this section we will consider representations of the HF
algebra for non-Abelian G that mimic the structure of the
almost quasifree representations for G ¼ Uð1Þ. In particu-
lar, we will consider an example for the case most relevant
for LQG, that of G ¼ SUð2Þ. It is straightforward to extend
this construction to other structure groups but we will
refrain from treating the general case. Rather, we will
explore the changes to the area operator that are induced by
the new representation.

A. An example for the structure group SU(2)

To obtain a representation of the HF algebra which
mimicks the properties of an almost quasifree state, we will
use proposition II.2, applied to the Hilbert space K ¼ F ,
whereF ≡ F ðhÞ is the bosonic Fock space of a scalar field
exactly as in Sec. IV B. The representation to be modified is
the AL representation; thus the resulting representation πF
will act on the Hilbert space

HF ¼ HAL ⊗ F ; ð144Þ

with the cyclic vector

ΩF ¼ ΩAL ⊗ Ω0: ð145Þ

The AL vacuum is still the constant identity function and
Ω0 is the Fock vacuum.
To construct the map Ξ from Proposition II.2 we define a

classical background flux

ESðfÞ ¼
Z
S

1

2
fjðxÞEð0Þa

j ðxÞϵabcdxb ∧ dxc; ð146Þ

which serves as the condensate contribution as in the U(1)
case. We define

ΞðESðfÞÞ ≔ ϕðΓðS; fÞÞ þ ESðfÞ; ð147Þ

where ϕ is a scalar field as in (105) and we require the map
ðS; fÞ ↦ ΓðS; fÞ again to be real and now linear in both S
and f. The representation of elementary algebra elements
thus reads

πF ðESðfÞÞ ¼ XS;f ⊗ 1F þ 1AL ⊗ ðϕðΓðS; fÞÞ þ ESðfÞÞ;
πF ðFÞ ¼ F ⊗ 1F ; ð148Þ

where F is a cylindrical function.
One of the characteristic features of the almost quasifree

representations was factorization of flux operator n-point
functions. This can also be directly recovered here. The
one-point correlation function of flux operators is given by

hπF ðESðfÞÞiΩF
¼ ESðfÞ; ð149Þ

since the field one-point functions vanish. Considering a
product of two flux representations, i.e.

πF ðESðfÞÞπF ðES0 ðf0ÞÞ ¼ ðXS;f ⊗ 1F þ 1AL ⊗ ðϕðΓðS; fÞÞ þ ESðfÞÞÞðXS0;f0 ⊗ 1F þ 1AL ⊗ ðϕðΓðS0; f0ÞÞ þ ES0 ðf0ÞÞÞ
¼ XS;fXS0;f0 ⊗ 1F þ XS;f ⊗ ðϕðΓðS0; f0ÞÞ þ ES0 ðf0ÞÞ þ XS0;f0 ⊗ ðϕðΓðS; fÞÞ þ ESðfÞÞ
þ 1AL ⊗ ðϕðΓðS; fÞÞ þ ESðfÞÞðϕðΓðS0; f0ÞÞ þ ES0 ðf0ÞÞ; ð150Þ

we realize that, upon taking the vacuum expectation value,
only the last term survives, since there is no operator that
annihilates the AL vacuum. This yields the two-point
correlation function

hπF ðESðfÞÞπF ðES0 ðf0ÞÞiΩF

¼ hΓðS; fÞ;ΓðS0; f0Þih þ ESðfÞES0 ðf0Þ: ð151Þ

For cylindrical functions only, there is no significant
change to the pure AL representation, exactly as in the
U(1) case.
Finally, to demonstrate that there are possible maps Γ, we

will be specific about the scalar field that we added to the
formalism. We consider the one-particle Hilbert space

h ¼ L2ðR3; d3xÞ: ð152Þ

HANNO SAHLMANN and ROBERT SEEGER PHYS. REV. D 101, 106018 (2020)

106018-16



The augmentations we added to the flux representation,
hence, can then be interpreted as a smeared scalar field
on R3. The smeared scalar field operator is of the form

ϕðgÞ ¼
Z
R3

d3xgðxÞϕðxÞ; ð153Þ

with ϕðxÞ being an operator valued distribution and gðxÞ a
test function that is used to cast ϕðxÞ into a well-defined
operator on the Fock space. Considering the pair ðS; fÞ, we
have to keep in mind that the Lie algebra valued smearing
function only has support on the surface. Therefore we can
work with f actually only when we integrate it over the
intrinsic parametrization of S. Furthermore we need an
embedding of the surface into R3 in order to be able to
integrate it against the scalar field. A possible definition is
thus

ϕðΓðS; fÞÞ ¼
Z
R3

d3xΓðS; fÞϕðxÞ

¼
Z
R3

d3x
Z
S
d2uKSiðx; uÞfiðuÞϕðxÞ: ð154Þ

In this, ðu1; u2Þ is an intrinsic parametrization of S, and
KSiðx; uÞ is an integral kernel that relates points on the
surface to points in R3. As an explicit example for ΓðS; fÞ
one might consider

ΓðS; fÞ ¼
�
eΔ

X
i

fiFS

�
ðxÞ; ð155Þ

where Δ ¼ ∂i∂i is the negative-definite Laplacian on R3.
At the end of the day we have a representation of

the holonomy flux algebra—underlying loop quantum
gravity—at disposal which is probably as close as possible
to an actual almost quasifree representation of a theoretical
Weyl algebra in the sense of definition I.4. The presumably
most important characteristic of this representation is the
fact that it is Gaussian for the fluxes in a nonextremal way.

B. Revisiting the area operator

In this section we consider the derivation of the area
operator of loop quantum gravity for the representation
introduced in the previous section.
In the context of the KS representation in [9], there is a

similar augmentation to the flux representation of a
classical flux. Also in [9], there is an analysis of the area
operator in terms of the extended representation. So it is
possible to compare the area operator for the almost
quasifree representation to both the AL and the KS
representations. It turns out that, in fact, the similarities
to the representation in [9] are sufficient to adopt their
procedure and especially some crucial details to our
situation. For reasons of simplicity, we do not consider

the full augmented flux representation in (148), but drop
the classical flux part. Since this contribution to the AL
representation is thoroughly dealt with in [9], we expect a
similar behavior here.
For the derivation we follow closely the steps in both

[9,46]. Regarding the details of the original derivation of
the area operator we refer to [46]. The area operator is a
quantization of the classical area functional

AS ¼
Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðuÞEiðuÞ

q
: ð156Þ

In accordance with [46] we want to use a two-dimensional
parametrization u of the surface. The single component of
the electric field we have to integrate over is Ei ≡ E3

i . The
main issue of the derivation of the area operator is now to
carefully regularize this integral and replace the classical
expressions by their quantum counterparts. For a regulari-
zation one considers a family of non-negative densities
fϵðu; vÞ, which, upon taking away the regularization
parameter ϵ, become Dirac deltas, i.e.

lim
ϵ→0

fϵðu; wÞ ¼ δð2Þðu; wÞ: ð157Þ

In the original derivation, this regularization allows for a
point splitting of the area operator into a sum of operators
that only acts at the intersection point of the graph with
respect to which we want to determine the area of the
surface. The same is considered here.
In every representation at hand we do not have direct

access to operator valued distributions for the electric field,
but only to operators for fluxes. These can nevertheless be
evaluated at certain points of the surface using a regulari-
zation as introduced above. One considers an SU(2)
smearing function of the form f ≡ fϵðu; wÞτi and deter-
mines the flux operators with respect to this. They can be
denoted by

XϵiðuÞ ≔ XS;fϵðu;·Þτi ; ð158Þ

where the second argument of fϵðu; wÞ is omitted because
it is subject to some internal integration.4 The surface is also
omitted since the considerations refer to only a single
surface. The AL area operator then turns out to be the object

AALðSÞ ¼ lim
ϵ→0

Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XϵiðuÞXϵ

iðuÞ
q

¼
X

v∈VðγÞ
AAL;γðSÞ;

ð159Þ

splitting into an expression of local area operators at the
individual vertices of γ. Following [46], we raise and lower

4For the detailed form of the operators we refer to [46] and the
notation therein.
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indices with − 1
2
times the Cartan-Killing metric of suð2Þ.

The graph γ is assumed to be adapted to the surface in the
sense that there is a vertex at every intersection point.
As shown in [46], the regularized fluxes act on a

cylindrical function Ψγ as

XϵiðuÞΨγ ¼ 4πl2
P

X
v∈VðγÞ

fϵðx; vÞ
X
Jv

κJvXJviΨγ: ð160Þ

Here Jv is a label for the edges beginning or ending at
vertex v of γ and lP ¼ ffiffiffiffiffiffiffi

ℏG
p

. The operators XJvi act for
ingoing / outgoing edges as right- / left-invariant derivatives
with respect to eJv and κJv ≡ κðeJv ; SÞ. A straightforward
calculation shows that at each vertex

½Xi
Iv
; Xj

Jv
� ¼ iδIvJvf

ij
kXk

Jv
; ð161Þ

where fijk are the structure constants of suð2Þ. This
implies that the left- / right-invariant vector fields Xi

Jv
individually satisfy—at a fixed vertex and for each
edge—the algebra relation of suð2Þ and hence can be
treated like spin operators. Operators for different edges
commute. The sum over the edges at a vertex splits, via the
sign of κJv , into a total contribution of type up and total
contribution of type down.
We now have to evaluate the scalar field operator at

exactly the same smearing function. Equation (154) there-
fore turns into

ϕϵiðuÞ ≔ ϕðΓðS; fϵðu; ·ÞτiÞÞ

¼
Z
R3

d3x
Z
S
d2wKSiðx; wÞfϵðu; wÞϕðxÞ: ð162Þ

The full augmented representation of fluxes hence is

EϵiðuÞ ≔ XϵiðuÞ ⊗ 1F þ 1AL ⊗ ϕϵiðuÞ: ð163Þ

These are the objects we want to rederive the area
operator for.
Analogously to [9,46] we consider the area operator as

the limit of the regularized object

AS;ϵ ¼
Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EϵiðuÞEϵ

iðuÞ
q

: ð164Þ

We analyze the object under the square root:

gS;ϵðuÞ ≔ EϵiðuÞEϵ
iðuÞ

¼ XϵiðuÞXϵ
iðuÞ ⊗ 1F ð165Þ

þ1AL ⊗ ϕϵiðuÞϕϵ
iðuÞ ð166Þ

þ2Xϵ
iðuÞ ⊗ ϕϵiðuÞ: ð167Þ

The first term (165) is exactly the term leading to the AL
area operator, while the second term (166) is of the same
form but depends only on the scalar field. Only in the third
contribution (167) is there an interaction between the AL
and the scalar field parts of the flux representation.
Following the ideas of [9], we realize that the individual

contributions (165), (166), and (167) mutually commute.
This is obvious for considering the first and for the second
contribution. For the second and for the third contribution it
follows from the fact that ½ϕðxÞ;ϕðyÞ� ¼ 0. Finally, for the
first and the third contributions the vanishing commutator
follows from (161). As a consequence, there is a complete
set of states that are eigenstates of all three terms. Having
established this, we can now analyze the contributions
individually.
AL contribution: We consider an arbitrary graph γ.

Without loss of generality, we can refine it such that all
transversal intersections of γ with S are vertices, and denote
the result again with γ. We chose the parameter ϵ small
enough such that for all v; v0 ∈ VðγÞ the smearing function
fϵðv; v0Þ is nonzero only for v ¼ v0. Then the result of the
analysis in [46] for the piece XϵiðuÞXϵ

iðuÞ when acting on
an eigenstate Ψγ with an underlying spin network γ is

XϵiðuÞXϵ
iðuÞΨγ ¼

X
v∈VðγÞ

ðfϵðu; vÞÞ2ðavÞ2Ψγ; ð168Þ

av ¼ 4πl2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2juvðjuv þ 1Þ þ 2jdvðjdv þ 1Þ − juþd

v ðjuþd
v þ 1Þ

q
:

ð169Þ

The form of the eigenvalue av comes from the fact that the
eigenstates couple all spins of edges of type up to a total
spin juv and all spins of edges of type down to a total spin jdv.
The third contribution arises from coupling the up and
down contributions.
Scalar field contribution: The treatment of this is a little

tricky. In the first place we are dealing with operator valued
distributions integrated against test functions and need to
consider eigenstates of such objects. As the operator valued
distribution ϕðxÞ is the quantum field theoretical analog of
the position operator in quantum mechanics it is clear that
there are no proper eigenstates of ϕðxÞ. One consequently
has to go over to a formulation in terms of generalized
eigenstates. For quantum mechanics this can even be
formulated mathematically precise when considering the
framework of rigged Hilbert spaces. Here one works with a
triple S ⊂ H ⊂ S0, which consists of the actual Hilbert
spaceH ¼ L2ðR3; d3xÞ, the space S of test functions onR3

and its dual S0, the space of tempered distributions. The
idea is now to transfer this procedure to the scalar field on a
Fock space in order to be able to work with states that
satisfy an eigenvalue equation of the form

ϕðfÞjFÞ ¼ FðfÞjFÞ; ð170Þ
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with the generalized eigenstate with respect to F ∈ S0
denoted by jFÞ and FðfÞ interpreted in a distributional
sense, i.e.

FðfÞ ¼
Z
R3

d3xFðxÞfðxÞ: ð171Þ

A technical argument, which we present in the Appendix,
shows that it is reasonable to assume that there is a
sufficiently large class of real valued functions F that give
rise to a tempered distribution and allow one to span the
Hilbert space H. In a distributional sense Eq. (170) can be
seen as

ϕðxÞjFÞ ¼ FðxÞjFÞ: ð172Þ

With this at hand we can start to analyze the piece
ϕϵiðuÞϕϵ

iðuÞ by acting with a single field on a generalized
eigenstate:

ϕϵiðuÞjFÞ ¼
Z
R3

d3x
Z
S
d2wKSiðx; wÞfϵðu; wÞϕðxÞjFÞ

¼
Z
R3

d3x
Z
S
d2wKSiðx; wÞfϵðu; wÞFðxÞjFÞ

≕FϵiðuÞjFÞ: ð173Þ

The whole contribution then is of course

ϕϵiðuÞϕϵ
iðuÞjFÞ ¼ FϵiðuÞFϵ

iðuÞjFÞ: ð174Þ

Mixed contribution: For the final piece, we have to
consider a state Ψγ ⊗ jFÞ where Ψγ is an eigenstate of area

at the vertex, and jFÞ is an eigenstate of ϕϵiðuÞ. Acting on
this yields

ð2Xϵ
iðuÞ ⊗ ϕϵiðuÞÞΨγ ⊗ jFÞ

¼
�
8πl2

P

X
v∈VðγÞ

fϵðu; vÞðXu i
v − Xd i

v Þ ⊗ FϵiðuÞ
�
Ψγ ⊗ jFÞ;

ð175Þ

where we already split up the contributions for edges of
type up and down. Note that in our choice of Ψγ we have
already specified the total spins ju; jd; juþd, but not the
eigenvalue of one of their components. Now we will
assume in addition that

Xu i
v FϵiðuÞΨγ ≡ Xu i

v F̂ϵiðuÞjFϵjðuÞΨγ ¼ mu
vjFϵjðuÞΨγ;

ð176Þ

where jFϵjðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
p

and F̂ϵiðuÞ ¼ FϵiðuÞ=
jFϵjðuÞ. mu

v is the eigenvalue of Xu
v · F̂ϵðuÞ, i.e., the

magnetic quantum number in the direction F̂ϵðuÞ. We
make the same assumption for Xd

v, with the eigenvalue
md

v. Then

ððXu i
v − Xd i

v Þ ⊗ FϵiðuÞÞΨγ ⊗ jFÞ
¼

�
mv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q 	

Ψγ ⊗ jFÞ ð177Þ

andmv ¼ mu
v −md

v denotes the difference of total magnetic
quantum numbers of up and down contributions. In total
we have

ð2Xϵ
iðuÞ ⊗ ϕϵiðuÞÞΨγ ⊗ jFÞ ¼

�
8πl2

P

X
v∈VðγÞ

fϵðu; vÞmv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q �

Ψγ ⊗ jFÞ: ð178Þ

Putting everything together, we find the following as the action of gS;ϵ on the common eigenvector:

gS;ϵðuÞΨγ ⊗ jFÞ ¼
� X

v∈VðγÞ
ðfϵðu; vÞÞ2ðavÞ2 þ FϵiðuÞFϵ

iðuÞ þ 8πl2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q X

v∈VðγÞ
fϵðu; vÞmv

�
Ψγ ⊗ jFÞ: ð179Þ

Following [9], we want to perform a completion of the square with respect to the first two terms in the bracket. That is, we
will write the first two terms as a square minus a correction.5 To this end we have to have a look at the first term. At first we
want to calculate the following:

� X
v∈VðγÞ

fϵðu; vÞav
�

2

¼
X

v;v0∈VðγÞ
fϵðu; vÞfϵðu; v0Þavav0 ¼

X
v∈VðγÞ

ðfϵðu; vÞÞ2ðavÞ2: ð180Þ

5Since we combine two quadratic terms a2, b2, we can choose whether we want to obtain ðaþ bÞ2 or ða − bÞ2 by adding or
subtracting a correction term, respectively. For the argument here we chose the first case. The second case yields the same result,
however, with an argument that is slightly more complicated.
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This is in fact possible since we can choose ϵ to be so small that fϵðu; vÞfϵðu; v0Þ ¼ 0 if the vertices do not coincide. Hence
we rewrite

gS;ϵðuÞΨγ ⊗ jFÞ ¼
�� X

v∈VðγÞ
fϵðu; vÞav þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q �

2

þ
X

v∈VðγÞ
fϵðu; vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q

ð8πl2
Pmv − 2avÞ

�
Ψγ ⊗ jFÞ

ð181Þ

and have found the eigenvalue of gS;ϵðuÞ.
However, the above eigenvalue is not the desired result. For this we have to take the square root and integrate over the

surface. Again, we follow the descriptions in [9]. We consider two real, positive variables a ≥ b. As a matter of fact the
variables satisfy the inequalities

ffiffiffi
a

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

p
≤

ffiffiffi
a

p þ
ffiffiffi
b

p
;ffiffiffi

a
p

−
ffiffiffi
b

p
≤

ffiffiffiffiffiffiffiffiffiffiffi
a − b

p
≤

ffiffiffi
a

p
: ð182Þ

The quadratic part of (181), which we identify with a, is manifestly positive, and the absolute value of the linear part, which
we identify with b, has to be smaller compared to the quadratic part in order to ensure positivity of the operator gS;ϵ. Hence,
the inequalities are employable: the first one in the case where the linear part of (181) is positive, and the second in the case
where it is negative. The advantage of this is that a and b depend on the regulator ϵ. If we can show that

lim
ϵ→0

Z ffiffiffi
b

p
¼ 0; and lim

ϵ→0

Z ffiffiffi
a

p
exists; ð183Þ

it holds furthermore, by means of the inequalities, that

lim
ϵ→0

Z ffiffiffiffiffiffiffiffiffiffiffiffi
a� b

p
¼ lim

ϵ→0

Z ffiffiffi
a

p
: ð184Þ

Before we consider the square root of the second term in (181) we take a closer look at

FϵiðuÞFϵ
iðuÞ ¼

Z
R3

d3x
Z
R3

d3y
Z
S
d2v

Z
S
d2wKSiðx; vÞKS

iðy; wÞfϵðu; vÞFðxÞfϵðu; wÞFðyÞ

!ϵ→0
Z
R3

d3x
Z
R3

d3y
Z
S
d2v

Z
S
d2wKSiðx; vÞKS

iðy; wÞδð2Þðu; vÞFðxÞδð2Þðu; wÞFðyÞ

¼
Z
R3

d3x
Z
R3

d3yKSiðx; uÞKS
iðy; uÞFðxÞFðyÞ≕FϕðuÞ ð185Þ

and realize that in the limit where we remove the regulator this and hence also its square root are bounded functions on the
surface, by means of the integral kernel and the generalized eigenvalue being test functions. Due to this we want to remove
the regulator for this object now.
The final thing to realize is that if fϵðuÞ is a density that converges to the delta function, its square root converges to zero.

Now we are able to encounter the considered square root. We already take along the limit and the integration:

lim
ϵ→0

Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����
X

v∈VðγÞ
fϵðu; vÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
FϕðuÞ

q
ð8πl2

Pmv − 2avÞ
����

vuut ¼ lim
ϵ→0

Z
S
d2u

X
v∈VðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fϵðu; vÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
FϕðuÞ4

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j8πl2

Pmv − 2avj
q

¼ 0

ð186Þ

since we can choose ϵ to be small enough to perform the summation outside of the square root and the absolute
value.
According to this result, we finally can consider taking the square root of gS;ϵ, perform the integration, and remove the

regulator:
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lim
ϵ→0

Z
S
d2u

ffiffiffiffiffiffiffi
gS;ϵ

p Ψγ ⊗ jFÞ ¼ lim
ϵ→0

Z
S
d2u

����
X

v∈VðγÞ
fϵðu; vÞav þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q ����Ψγ ⊗ jFÞ: ð187Þ

Both terms in the absolute value are manifestly positive. Hence,

lim
ϵ→0

Z
S
d2u

ffiffiffiffiffiffiffi
gS;ϵ

p Ψγ ⊗ jFÞ ¼
�
lim
ϵ→0

Z
S
d2u

X
v∈VðγÞ

fϵðu; vÞav þ lim
ϵ→0

Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FϵiðuÞFϵ

iðuÞ
q �

Ψγ ⊗ jFÞ

¼
� X

v∈VðγÞ
av þ

Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffi
FϕðuÞ

q �
Ψγ ⊗ jFÞ: ð188Þ

In the limit the integral takes away the Dirac delta and the
first term of the above equation is just the original area
operator. Replacing the eigenvalues again by the corre-
sponding operators, the area operator for this almost
quasifree representation reads

AðSÞ ¼ AALðSÞ ⊗ 1F þ 1AL

⊗
Z
S
d2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕiðKSðuÞÞϕiðKSðuÞÞ

q
: ð189Þ

Here we furthermore use some notation for the scalar fields
once the regulator is removed:

ϕiðKSðuÞÞ ¼
Z
R3

d3yKSiðy; uÞϕðyÞ: ð190Þ

This result is in fact somewhat similar to [9]. There, the
original area operator is extended by the classical area of
the surface. Another similarity is that there are only additive
changes that increase the quantum area. In any case, the
addition here is an operator which carries its own quantum
fluctuations.

VI. CONCLUSIONS AND OUTLOOK

In this work, we presented a new type of vacuum and the
corresponding representations of the HF algebra AHF. The
key feature is a Gaussian vacuum expectation value for
fluxes, encoding spatial geometry, which is characterized
by a condensate contribution, e. g. a background flux, and
fluctuations determined by a covariance of surfaces, here
determined by e. g. a scalar field.
In the case of G ¼ Uð1Þ we found a precise relation

between the representations of the HF algebra and those of
a particular Weyl algebra. On it, we introduced a new class
of almost quasifree states, which behaves as the AL state
for holonomies and cylindrical functions, while it is
Gaussian for fluxes. We worked out the representation in
two examples.
For the HF algebra AHF defined in Sec. II A, in the case

D ¼ 3 and G ¼ SUð2Þ, we introduced a new class of
representation, with the behavior described above. In
particular, there are nonvanishing contributions for the

n-point correlation functions. For a concrete example,
we demonstrated that this change of representation leads
to a significant change in the area spectrum of surfaces.
It might be tempting to interpret the presence of a scalar

field in the fluxes of the new representation as a toy model
for matter coupling, especially because the geometric
correlation functions are determined by the scalar field part.
However, including the scalar field into the flux operators
would lead to nonvanishing commutators between fluxes
and the momentum conjugate to the scalar field. As geo-
metric and matter variables have to have trivial commutation
relations, the scalar field we introduced cannot be interpreted
as a physical matter field. Rather, it only serves to introduce
the Gaussianity in the representation.
How can we extend and apply and extend the results

contained in this work?
(i) One area of application for the new states is the

quantum origin of the primordial perturbations.
The current observations of the CMB suggest that
primordial perturbations of the spatial metric (and
matter density) are described well by a Gaussian
random field with a certain covariance. Thus the
states that we describe might be well suited to
describe the quantum geometry of the early universe.
In the standard picture, the covariance of the
fluctuations is determined by following an initial
quantum state through inflation. The new states
allow one to think about a quantum gravitational
origin of the fluctuations.

(ii) What is the entanglement entropy between subsys-
tems in the new class of states, and how does it
compare to that of the class of states in [21–23]?
In the U(1) case one can try to apply the techniques
developed in [24] to answer this question. A
preliminary analysis indicates that the entanglement
entropy of simple subsystems (generated by a flux
and an intersecting holonomy) with the rest of the
degrees of freedom is infinite. But this question
should be studied further.

(iii) Are there states that are Gaussian in both variables?
This question still stands and should eventually be
resolved, either positively or negatively. There are
some indications that it is not possible to find such
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states. In a slightly different framework, there is
indeed a no-go result [43,44]. Also, for the U(1)
theory, there are some indications that no represen-
tations of that type can be found [27]. On the other
hand, if such states do exist, then the almost quasi-
free states of the present work might be a stepping
stone to reach them.
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APPENDIX: EIGENSTATES OF A
QUANTUM FIELD

In this appendix we will show that under reasonable
assumptions there is a sufficiently large class of real valued
functions F such that there are generalized eigenstates jFÞ
for a scalar field that fulfill

ϕðxÞjFÞ ¼ FðxÞjFÞ: ðA1Þ
A rigged Hilbert space is a Hilbert space H, together

with a dense, continuously embedded topological vector
space Φ ⊂ H. As a consequence, H is contained in the
topological dual ofΦ,H ⊂ Φ0. The improper eigenstates of
self-adjoint operators can find their home in such duals.
Theorem A.1 ([47,48]). LetΦ;H;Φ0 be as above, with

the additional assumption that H is separable. Any self-
adjoint operator A mapping Φ continuously (in the top-
ology of Φ) onto itself possesses a complete system of
generalized eigenfunctions ðFαÞ, i.e., elements Fα ∈ Φ0
such that for any ϕ ∈ Φ,

FαðAϕÞ ¼ λαFαðϕÞ; α ∈ A; ðA2Þ

where the set of values of the function α ↦ λα, α ∈ A, is
contained in the spectrum of A and has full measure with
respect to the spectral measure σfðλÞ, of any element
f ∈ H. The completeness of the system means that
FαðϕÞ ≠ 0 for any ϕ ∈ Φ, ϕ ≠ 0, for at least one α ∈ A.
We will now show how this could be applied to a

quantum field. For definiteness, we work with a scalar field
on Minkowski space. We write

ϕðx;tÞ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωp

p ðapeip·x−ωptþa†pe−ip·xþωptÞ ðA3Þ

≕
1ffiffiffi
2

p ðϕ−ðx; tÞ þ ϕþðx; tÞÞ: ðA4Þ

ωp are the eigenvalues

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ðA5Þ

of the operator

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δþm2

p
; ðA6Þ

and ap, a
†
p are standard momentum space annihilation/

creation operators with

½ap; a†q� ¼ ð2πÞ3δðp; qÞ: ðA7Þ

In the following, we will set t ¼ 0 and drop the time
argument from all the functions. To simplify notation, we
also define the operator

D ¼ E
1
4: ðA8Þ

Consequently,

aðxÞ ≔ ðD2ϕ−ÞðxÞ; a†ðxÞ ≔ ðD2ϕþÞðxÞ ðA9Þ

are standard momentum space annihilation/creation oper-
ators with

½aðf1Þ; a†ðf2Þ� ¼ hf1jf2ih1 ðA10Þ

over the Fock space

H ¼ F ðhÞ; h ¼ L2ðR3; d3xÞ: ðA11Þ

Thus, both H and h are separable. The operators ϕðfÞ ≔R
fðxÞϕðxÞd3x for smooth, real valued functions f of

compact support are mutually commuting and self-adjoint
on H. Therefore they must have a common set of
generalized eigenstates. In the following, we want to
investigate such states jFÞ with the property

ϕðfÞjFÞ ¼ FðfÞjFÞ ðA12Þ

for a suitable class of real valued functions F. It will be
useful to work with the dense domain D ⊂ H

D ¼ span

�Y
finite

a†ðfiÞj0ijf1; f2;… ∈ SðR3Þ
�
; ðA13Þ

where SðR3Þ denotes the Schwartz functions. D is con-
tained in the domain of the ϕðfÞ. Consider the following
operator:

OðFÞ ¼ π−
1
4e

1
2
hDFjDFihe−1

2
hDϕþ−

ffiffi
2

p
DFjDϕþ−

ffiffi
2

p
DFi ðA14Þ

¼ π−
1
4e−

1
2
hDFjDFihe−

1
2

R
ðD−1a†ðxÞÞ2d3xe

ffiffi
2

p
a†ðFÞ: ðA15Þ

HANNO SAHLMANN and ROBERT SEEGER PHYS. REV. D 101, 106018 (2020)

106018-22



This definition requires, at minimum that F is such that DF ∈ h. We have the following.
Lemma A.2. Formally, i.e., without consideration of domains,

ϕðfÞOðFÞ ¼ FðfÞOðFÞ þ 1ffiffiffi
2

p OðFÞaðD−2fÞ: ðA16Þ

Proof. One can do a direct calculation, but it is easier to realize that

½aðfÞ;Γ½a†ð·Þ�� ¼
Z

fðxÞ δΓ½a
†ð·Þ�

δa†ðxÞ d3x; ðA17Þ

where Γ½·� is a functional which we assume to be differentiable. Then, noting

δ

δa†ðxÞOðFÞ ¼ −ðD−2a†ðxÞ −
ffiffiffi
2

p
FðxÞÞOðFÞ; ðA18Þ

one finds

ϕðfÞOðFÞ ¼ 1ffiffiffi
2

p ðaðD−2fÞOðFÞ þ a†ðD−2fÞOðFÞÞ

¼ 1ffiffiffi
2

p ð½aðD−2fÞ; OðFÞ� þOðFÞaðD−2fÞ þOðFÞa†ðD−2fÞÞ

¼ 1ffiffiffi
2

p ð−a†ðD−2fÞOðFÞ þ
ffiffiffi
2

p
FðfÞOðFÞ þOðFÞaðD−2fÞ þOðFÞa†ðD−2fÞÞ

¼ FðfÞOðFÞ þ 1ffiffiffi
2

p OðFÞaðD−2fÞ ðA19Þ

as promised. For commuting a†ðD−2fÞ andOðFÞ past each
other we have appealed to the fact that OðFÞ itself is
defined entirely in terms of creation operators. ▪
This lemma shows thatOðFÞj0i are formally the sought-

for eigenstates (A12). But these are obviously not normal-
izable, so in what sense do they even exist?
Lemma A.3. For F ∈ S0ðR3Þ; DF ∈ h, the objects

jFÞ ¼ OðFÞj0i ðA20Þ
define linear forms over the domain D (A13).
Proof. We attempt to define the linear form

hXjFÞ ¼ hXjOðFÞj0i; X ∈ D ðA21Þ
by expanding the exponentials in a Taylor series and taking
the limit. Since we assumeDF ∈ h, the first exponential in
(A15) is no problem, and since D only contains elements
with finite particle number, the third exponential also
represents no problem. But we have to consider the
definition of the operator

a2 ¼
Z

ðD−1aðxÞÞ2d3x ðA22Þ

and its adjoint which is used in the definition of OðFÞ.
Using

a2a†ðfÞ ¼ 2aðD−2fÞ þ a†ðfÞa2 ðA23Þ

repeatedly to commute the annihilation operators to the
right, one shows


Y
k

a†ðfkÞΩja†2Ψ
�

≡


a2
Y
k

a†ðfkÞΩjΨ
�

¼
X

ðl;mÞ;l≠m
hfljD−2fmih


Y
k≠l;m

a†ðfkÞΩjΨ
�
: ðA24Þ

Here Ω ¼ j0i the vacuum. Since Schwartz functions are
also Schwartz after Fourier transform, it is easy to see that
arbitrary positive and negative powers of D leave SðR3Þ
invariant. Consequently the inner products involving D−2

are finite, and so are the products, and the sums. This shows
that a2 and its powers are well-defined on D and, since D
only contains elements with finite particle number, its
exponential also represents no problem. ▪
Now note that the operators ϕðfÞ, f ∈ SðR3ÞmapD into

itself, because D−1 maps SðR3Þ into itself. We strongly
suspect that D can be used to create a rigged Hilbert space,
suitable for application of theorem A.1.
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Conjecture A.4. There is a topology on D that
(1) is stronger than that induced from H.
(2) is strong enough such that jFÞ ∈ D0 ∀F∶ DF ∈ h.
(3) is weak enough such that jFÞ ∈ D0 F∶DF ∈ h

comprise all generalized eigenstates.
If this conjecture is true, then
Corollary A.5.
(1) The joint eigenstates of ϕðfÞ, f ∈ SðR3Þ are

jFÞ with F ∈ S0ðR3Þ; DF ∈ L2ðR3Þ: ðA25Þ

(2) Functions of ϕðfÞ have

AðϕðfÞÞjFÞ ¼ AðFðfÞÞjFÞ: ðA26Þ

(3) If for two operators A, B on Φ

AjFÞ¼BjFÞ ∀F∶F∈S0ðR3Þ; DF∈L2ðR3Þ;
ðA27Þ

then A ¼ B.
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[43] S. Lanéry and T. Thiemann, Projective loop quantum
gravity I. State space, J. Math. Phys. (N.Y.) 57, 122304
(2016).
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