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We classify discrete modular symmetries in the effective action of Type IIB string on toroidal orientifolds
with three-form fluxes, emphasizing on T6=Z2 and T6=ðZ2 × Z0

2Þ orientifold backgrounds. In the three-
form flux background, the modular group is spontaneously broken down to its congruence subgroup whose
pattern is severely constrained by a quantization of fluxes and tadpole cancellation conditions. We
explicitly demonstrate that the congruence subgroups appearing in the effective action arise on magnetized
D-branes wrapping certain cycles of tori.
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I. INTRODUCTION

In the low-energy effective action of higher-dimensional
theory, moduli are ubiquitous fields and they have certain
symmetries, originating from the higher-dimensional gauge
and/or Lorentz symmetries. As an example, axionlike fields
have the so-called shift symmetries associated with the
gauge symmetries of higher-form fields, which play an
important role in solving the strong CP [1] and hierarchy
problems [2], the candidates of dark matter [3–5], and
inflaton [6–8]. Such shift symmetries are useful to control
the action against the higher-order corrections.
Torus and orbifold compactifications have the modular

symmetry. For example, the two-dimensional tori and orbi-
folds have the modular symmetry, SLð2;ZÞ. Modular
symmetries in effective supergravity theory have been
studied, e.g., for moduli stabilization, supersymmetry
breaking [9,10], and inflation models [11]. Moreover,
Yukawa couplings and higher-order couplings depend on
moduli. (See for moduli-dependent couplings in heterotic
orbifold models [12], intersecting D-brane models [13],
and magnetized D-brane models [14].) They transform
nontrivially under the modular symmetry. Then, Yukawa
matrices transform nontrivially, and the modular group
transforms flavors nontrivially, that is, the flavor symmetry.
Indeed, matter fields on these compactifications transform
each other under the modular group. For example, a finite

number of zero modes appear on torus and orbifold
compactifications with magnetic fluxes. These zero modes
transform under the modular group. That is, these zero
modes become finite representations of the modular group
or its subgroups, which are finite discrete groups [15,16].1

Recently, discrete subgroups arising from the SLð2;ZÞ
modular group as well as its congruence subgroups have
been utilized for the flavor symmetry of quarks/leptons,
including CP violation and applications for leptogenesis
and dark matter candidates [22–58]. The reason to attract
attention of researchers is that the quotients ΓN ¼
SLð2;ZÞ=ΓðNÞ by congruence subgroups ΓðNÞ corre-
spond to the well-known discrete finite groups such as
Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4, Γ5 ≃ A5, which provide inter-
esting flavor structures of quarks and/or leptons [59].
The three-form fluxes can stabilize some or all of the

complex structure moduli [60]. Then, the geometrical
symmetries of T6 ¼ T2

1 × T2
2 × T2

3 with nonvanishing
three-form fluxes can be different from ⊗3

i¼1 SLð2;ZÞi.
They would provide us with new possibilities for starting
points toward the above studies of particle physics and
cosmologies.
In this paper, we study a simple type IIB flux compacti-

fication on toroidal orientifolds with and without D-branes,
where the modular symmetries associated with tori are
partially broken into subgroups by the three-form fluxes.
Subgroups of the modular group⊗3

i¼1 SLð2;ZÞi emerge in
the flat directions of moduli fields such that the modular
transformation is viable in the low-energy effective action.
Our aim is to classify the modular groups and its subgroups
in the effective action if it exists, meaning that we do not
consider the stabilization of the remaining massless moduli
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1See also for recent relevant works in magnetized D-brane
models [17–19] and heterotic orbifold models [20,21].
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in this work. Such an approach is similar to the recent
swampland program [61–63] where the allowable moduli
space of massless modes is taken into account.
This paper is organized as follows. In Sec. II, we first

show the realization of the modular symmetry and its
breaking in the low-energy effective action of type IIB
string theory on a factorizable six-torus subject to Z2

identification, i.e., T6=Z2. The idea to obtain the congru-
ence subgroups of the modular group is basically given in
[64]. They focus on the flat axionic direction which can be
enlarged to the Planckian field region by an existence of
fluxes. In this paper, we extend their analysis and classify
the remaining modular symmetry in the low-energy effec-
tive action. Next, we move on to T6=ðZ2 × Z0

2Þ orientifold
background where several semirealistic models are pro-
posed in [65–68]. In Sec. III, we classify the breaking
pattern of the modular group on T6=ðZ2 × Z0

2Þ orientifold
with magnetized D-branes wrapping certain cycles of tori.
Similar to the analysis in Sec. II, we enumerate the possible
congruence subgroups in a concrete three-generation
model. It turns out that the remaining modular symmetry
in the effective action is severely constrained by the
quantization of fluxes and tadpole cancellation conditions.
Section IV is devoted to the conclusions and discussions. In
the Appendix, we show our conventions of congruence
subgroups.

II. MODULAR SYMMETRY ON T6=Z2
TOROIDAL ORIENTIFOLD

In this section, we briefly review the modular symmetry
in four-dimensional (4D) effective action of type IIB string
on T6=Z2 toroidal orientifold with three-form fluxes. After
demonstrating the breaking mechanism of the modular
symmetry discussed in [64], we extend their analysis and
classify patterns of congruence subgroups in the low-
energy effective action.

A. Effective action

The setup is the 4D effective action of type IIB string on
toroidal orientifold, in particular the factorizable six-torus
T6=Z2 ¼ ðT2

1 × T2
2 × T2

3Þ=Z2. The effective action of the

closed string moduli on this background is described in the
4D N ¼ 1 language, namely, the Kähler potential K and
the superpotential W,2

K ¼ − lnð−iðτ − τ̄ÞÞ − 2 lnV

− lnðiðτ1 − τ̄1Þðτ2 − τ̄2Þðτ3 − τ̄3ÞÞ; ð1Þ

where τ ¼ C0 þ ie−ϕ is the axiodilaton, τi with i ¼ 1, 2, 3
are three complex structure moduli on T2

i , and V denotes
the volume of torus. The superpotential is generated by
background three-form fluxes G3 ¼ F3 − τH3 [70],

W ¼ 1

l2s

Z
Ω ∧ G3; ð2Þ

where ls ¼ 2π
ffiffiffiffi
α0

p
and a holomorphic three-form Ω is

specified by the six real coordinates on T6 ðxi; yiÞ with
i ¼ 1, 2, 3 and the complex structure moduli τi,

Ω ¼ dz1 ∧ dz2 ∧ dz3; ð3Þ

with dzi ¼ dxi þ τidyi. In a similar way, G3 can be
expanded on the basis of H3ðT6; 2ZÞ, (αI, βJ), satisfyingR
T6 αI ∧ βJ ¼ δJI ,

1

l2s
F3 ¼ a0α0 þ aiαi þ biβi þ b0β0;

1

l2s
H3 ¼ c0α0 þ cjαi þ diβi þ d0β0; ð4Þ

where a0;1;2;3; b0;1;2;3 and c0;1;2;3; d0;1;2;3 are quantized to be
even integers according to

1

l2s

Z
F3 ∈ 2Z;

1

l2s

Z
H3 ∈ 2Z: ð5Þ

In this paper, we restrict ourselves to consider even
integers; otherwise, exotic O3-plane contributions are
necessary in the system [71,72]. The basis of three form
is explicitly given by

α0 ¼ dx1 ∧ dx2 ∧ dx3; αi ¼
1

2
ϵilmdxl ∧ dxm ∧ dyi ð1 ≤ i ≤ 3Þ;

β0 ¼ dy1 ∧ dy2 ∧ dy3; βi ¼ −
1

2
ϵilmdyl ∧ dym ∧ dxið1 ≤ i ≤ 3Þ: ð6Þ

Then, we can explicitly write down the superpotential,

W ¼ ða0 − τc0Þτ1τ2τ3 − ða1 − τc1Þτ2τ3 − ða2 − τc2Þτ1τ3 − ða3 − τc3Þτ1τ2 −
X3
i¼1

ðbi − τdiÞτi − ðb0 − τd0Þ: ð7Þ

2We follow the notation of [69] and adopt the reduced Planck mass unit MPl ¼ 1.
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Note that three-form fluxes induce the D3-brane charge
Nflux ¼

R
T6 H3 ∧ F3 which appears in the cancellation

condition of D3-brane charge,

ND3 þ
1

2
Nflux ¼

1

4
NO3 ¼ 16: ð8Þ

Here we employ the fact that there exist 64 O3 planes
associated with 64 fixed points on T6=Z2 orientifold
background. Thus, the above tadpole cancellation condi-
tion is simplified as

c0b0 − d0a0 þ
X
i

ðcibi − diaiÞ ¼ 2ð16 − ND3Þ ≤ 32;

ð9Þ

where we do not consider the presence of anti-D3 branes to
preserve the supersymmetry.

B. Modular symmetry of the effective action

Before we explain the mechanism to derive the discrete
modular groups, we briefly review the modular symmetry
of the effective action, following [64]. The effective Kähler
potential (1) and superpotential (2) are invariant under
SLð2;ZÞτ, where SLð2;ZÞτ denotes the modular group
associated with axiodilaton. The explicit modular trans-
formations for the axiodilaton τ and the pair of three-form
fluxes ðF3; H3Þ are given by

τ0 ¼ RðτÞ ¼ pτ þ q
sτ þ t

;

�
F0
3

H0
3

�
¼

�
q p

t s

��
F3

H3

�
; ð10Þ

where p, q, s, t are integers constrained by pt − qs ¼ 1
and R ∈ SLð2;ZÞτ.
Similarly, each torus T2

i has the modular symmetry
SLð2;ZÞi for vanishing three-form fluxes. Each torus T2

i ¼
R2
i =Λi is defined by the two-dimensional Euclidean space

R2
i modded out by the lattice Λi, and the lattice Λi is

spanned by the basis vectors ðexi ; eyiÞ. The same lattice is
spanned by other basis vectors ðe0xi ; e0yiÞ satisfying

� e0yi

e0xi

�
¼ Ri

�
eyi

exi

�
; ð11Þ

with

Ri ¼
�
pi qi
si ti

�
∈ SLð2;ZÞi; ð12Þ

with piti − qisi ¼ 1. This is the modular transformation,
SLð2;ZÞi. Then, the shape of each torus T2

i , i.e., the
modulus parameter τi transforms,

τi ≡ eyi

exi
→ τ0i ≡

e0yi
e0xi

¼ piτi þ qi
siτi þ ti

¼ RiðτiÞ; ð13Þ

under the modular transformation. It is noted that the
generators of the modular symmetry are given by

S∶ τi → −
1

τi
; T∶τi → τi þ 1; ð14Þ

which satisfy S2 ¼ ðSTÞ3 ¼ 1.
When we introduce the coordinates of each torus by

choosing eyi ¼ τi and exi ¼ 1,

zi ¼ xi þ τiyi ¼ ðyi; xiÞ ·
�
τi

1

�
; ð15Þ

it is equivalent to

z0i ¼ x0i þ τ0iy
0
i ¼ ðyi; xiÞR−1

i Ri

�
τi

1

�
; ð16Þ

under the modular transformation Ri ∈ SLð2;ZÞi. Hence,
the coordinates of each torus ðyi; xiÞ are related to ðy0i; x0iÞ,

�
y0i
x0i

�
¼ ðR−1

i ÞT
�
yi
xi

�
: ð17Þ

It indicates that under the modular transformations of⊗3
i¼1

SLð2;ZÞi associated with three 2-tori, not only the complex
structure moduli τi are related to τ0i, but also the three-form
fluxes ðF3; H3Þ in Eq. (4) nontrivially transform to
ðF0

3; H
0
3Þ because of the coordinate transformations of

ðyi; xiÞ. Recalling that the Kähler potential of the moduli
τi transforms

− lnðiðτ1 − τ̄1Þðτ2 − τ̄2Þðτ3 − τ̄3ÞÞ
→ − lnðiðτ1 − τ̄1Þðτ2 − τ̄2Þðτ3 − τ̄3ÞÞ þ ln½Π3

i¼1jsiτi þ tij2�;
ð18Þ

the effective action has a modular invariance only when the
transformation of the superpotential (2) is provided by

W →
W

Π3
i¼1ðsiτi þ tiÞ

: ð19Þ

Note that it is enforced by the fact that the Kähler potential
and the superpotential appear in the combination K þ
ln jWj2 in the 4DN ¼ 1 supergravity action. Hence, taking
into account the modular transformation of the holomor-
phic three form,

Ω →
Ω

Π3
i¼1ðsiτi þ tiÞ

; ð20Þ
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⊗3
i¼1 SLð2;ZÞi modular symmetries remain in the effective

action, only when G3 itself is invariant under the modular
transformations.

C. Congruence subgroups of the modular group

In this section, we discuss the congruence subgroups of
the modular group, which can arise by the spontaneous
breaking of the modular group on the three-form flux
background.
To demonstrate the realization of the congruence sub-

groups of the modular groups, we consider the following
simplified superpotential:

W ¼ τ3½a0τ1τ2 − a1τ2 − a2τ1 − b3�
þ τ½c3τ1τ2 þ d1τ1 þ d2τ2 þ d0�

¼ ðτ3 − fτÞ½a0τ1τ2 − a1τ2 − a2τ1 − b3�; ð21Þ

where we chose the nonvanishing fluxes as

c3 ¼ −fa0; d1 ¼ fa2; d2 ¼ fa1; d0 ¼ fb3;

ð22Þ

and the other fluxes vanish. The supersymmetric minimum
is given by

τ3 ¼ fτ; τ1 ¼
a1τ2 þ b3
a0τ2 − a2

; ð23Þ

on which there exist flat directions on the moduli spaces. In
the following subsections, we explicitly show the possible
congruence subgroups on such flat directions. Note that the
above fluxes induce the D3-brane charge,

Nflux ¼ −d0a0 þ c3b3 − d1a1 − d2a2 ¼ −2d0a0 − 2d1a1;

ð24Þ

which is quantized in multiples of 8 on T6=Z2 background
due to Eq. (5).

1. Model 1

We first discuss the simplest case where the super-
potential (21) reduces to be

W ¼ −ðτ3 − fτÞða2τ1 þ a1τ2Þ; ð25Þ

by further setting a0 ¼ b3 ¼ 0 in (21). Note that the flux
quanta a1;2 are even integers; otherwise, we have to
introduce exotic O3-plane contributions. The above form
of the superpotential has already been discussed in [64].
Such a superpotential is induced by the following set of
three-form fluxes:

F3 ¼ ða2dx1 ∧ dy2 − a1dy1 ∧ dx2Þ ∧ dx3

≡ Aijdξi1 ∧ dξj2 ∧ dx3;

H3 ¼ −fða2dx1 ∧ dy2 þ a1dy1 ∧ dx2Þ ∧ dy3;

≡ −fAijdξi1 ∧ dξj2 ∧ dy3; ð26Þ

with

Aij ≡
�

0 a1

a2 0

�
; ξi ≡

�
yi
xi

�
: ð27Þ

The supersymmetric minimum ∂τW ¼ ∂τiW ¼ W ¼ 0

with i ¼ 1, 2, 3 has two flat directions,

τ3 ¼ fτ; a2τ1 ¼ −a1τ2; ð28Þ

from which we require signðfÞ ¼ −signða1a2Þ ¼ 1 to
realize ImðτÞ; Imðτ1;2;3Þ > 0 in our conventions. Then,
the tadpole cancellation condition (9) reads

0 ≤ −fa1a2 ≤ 16; ð29Þ

from which f ≠ 1 gives the severe condition to the choice
of a1 and a2. As discussed later, only the ratio a1=a2 is
important to classify the modular subgroups in the flat
direction a2τ1 ¼ −a1τ2. Thus, the tadpole cancellation
condition (29) with f ≠ 1 restricts the choice of a1 and
a2 in comparison with the f ¼ 1 case, which has the least
constraint on a1 and a2. For that reason, we restrict
ourselves to the f ¼ 1 case in the following discussion.
We first focus on the SLð2;ZÞ3 modular transformations

of the ðF3; H3Þ pair provided by

�
F0
3

H0
3

�
¼ R3

�
F3

H3

�
; ð30Þ

from which the total action is not invariant under SLð2;ZÞ3.
This is because G3 itself transforms under the modular
transformation which does not lead to the transformation of
the superpotential as in (19). However, if we identify R3 ¼
R and take f ¼ 1, a diagonal part of SLð2;ZÞτ × SLð2;ZÞ3
remains in the effective action. Indeed, in such a case, we
can verify that the vacuum condition τ3 ¼ τ still holds after
the modular transformation,

τ03 ¼ R3ðτ3Þ ¼ Rðτ3Þ ¼ RðτÞ ¼ τ0; ð31Þ

where we employ R3 ¼ R and τ3 ¼ τ.
Next, let us discuss the modular transformations on

T2
1 × T2

2, namely, τ01 ¼ R1ðτ1Þ and τ02 ¼ R2ðτ2Þ, under
which three-form fluxes transform
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F3 → ðR−1
1 AðR−1

2 ÞTÞijdξi1 ∧ dξj2 ∧ dx3;

H3 → −fðR−1
1 AðR−1

2 ÞTÞijdξi1 ∧ dξj2 ∧ dy3: ð32Þ

To be invariant under the modular transformations, we
require that

R−1
1 AðR−1

2 ÞT ¼ A; ð33Þ

which is possible under

R2 ¼ ATðR−1
1 ÞTðA−1ÞT ¼

�
p1 −q1a2=a1

−s1a1=a2 t1

�
:

ð34Þ

It turns out that q1 and s1 are multiples of a1 and a2,
respectively. Similar to τ3 ¼ τ, we can check that a2τ1 ¼
−a1τ2 also holds after the modular transformations,

a2τ01 ¼ a2R1ðτ1Þ ¼ a2
p1τ1 þ q1
s1τ1 þ t1

¼ −a1
p1τ2 − q1a2=a1

−ðs1a1=a2Þτ2 þ t1
¼ −a1R2ðτ2Þ ¼ −a1τ02; ð35Þ

where we employ a2τ1 ¼ −a1τ2.
Interestingly, the fundamental region of the moduli

spaces reduces to the region characterized by the matrices
R1 and R2, enumerated as follows:

(i) ja2=a1j ¼ nð∈ Z>0Þ

R1 ¼
�

1 1

0ðmodnÞ 1

�
∈ Γ0ðnÞ;

R2 ¼
�
1 0ðmodnÞ
1 1

�
∈ Γ0ðnÞ; ð36Þ

(ii) ja1=a2j ¼ nð∈ Z>0Þ

R1 ¼
�
1 0ðmodnÞ
1 1

�
∈ Γ0ðnÞ;

R2 ¼
�

1 1

0ðmodnÞ 1

�
∈ Γ0ðnÞ; ð37Þ

(iii) gcdða1; a2Þ ¼ 1

R1 ¼
�

1 0ðmoda1Þ
0ðmoda2Þ 1

�
∈ Γðja1a2jÞ;

R2 ¼
�

1 0ðmoda2Þ
0ðmoda1Þ 1

�
∈ Γðja1a2jÞ:

ð38Þ

Several congruence subgroups are defined in the Appendix.
Note that Γ0ð1Þ ¼ Γ0ð1Þ ¼ Γð1Þ ¼ SLð2;ZÞ. It indicates
that the SLð2;ZÞ1;2 groups are spontaneously broken to

their congruence subgroups Γð1Þ and Γð2Þ. Given that a1 and
a2 are quantized to be even on T6=Z2 background, we
obtain the subgroups of SLð2;ZÞ1;2 as shown in Table I.
In this way, the low-energy effective action has discrete

modular symmetries below the mass scale of heavy
modulus. The remaining modular group in the low-energy
effective action is severely constrained by the quantization
of fluxes and tadpole cancellation condition. We have
focused on the specific moduli stabilization, but we expect
that allowed congruence subgroups are restricted in a
general choice of flux quanta on T6=Z2 due to the
quantization of three-form fluxes (5). In the following,
we show other examples as the generalization of our setup.

2. Model 2

So far, our approach has been restricted to the super-
potential (39) leading to the flat directions in the moduli
spaces of the axiodilaton and complex structure moduli.3

Here the flat direction leading to the discrete modular
groups can be achieved in the linear combination of two
complex structure moduli fields, but it is possible to obtain
more complicated flat directions of the moduli space in
general. In this section, we show next nontrivial examples
leading to the flat direction of the moduli space.
We consider the following superpotential [64]:

W ¼ ðτ3 − fτÞ½a0τ1τ2 − b3�; ð39Þ

by further imposing a1 ¼ a2 ¼ 0 in Eq. (21). We find the
supersymmetric minimum

τ1τ2 ¼
b3
a0

; τ3 ¼ fτ; ð40Þ

and the flux-induced D3-brane charge is given by

Nflux ¼ −d0a0 þ c3b3 ¼ −2fa0b3: ð41Þ

In this case, the three-form fluxes are introduced on the
following basis:

TABLE I. Possible congruence subgroups of fSLð2;ZÞ1;
SLð2;ZÞ2g except for the trivial pattern a1 ¼ a2. Those are
constrained by the tadpole cancellation condition (29) and
quantization condition of flux quanta a1; a2 ∈ 2Z. Here, we
restrict ourselves to the case with a2=a1 > 1, but it is also
possible to consider the case with the replacement Γð2Þ of Γð1Þ.

f fΓð1Þ;Γð2Þg
1 fΓ0ð2Þ;Γ0ð2Þg, fΓ0ð3Þ;Γ0ð3Þg, fΓ0ð4Þ;Γ0ð4Þg

3For the stabilization of all the complex structure moduli and
axiodilaton at supersymmetric and supersymmetry-breaking
minima, we refer [73].
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F3 ¼ ða0dx1 ∧ dx2 − b3dy1 ∧ dy2Þ ∧ dx3

≡ Aijdξi1 ∧ dξj2 ∧ dx3;

H3 ¼ ðc3dx1 ∧ dx2 þ d0dy1 ∧ dy2Þ ∧ dy3;

≡ −fAijdξi1 ∧ dξj2 ∧ dy3; ð42Þ

with

Aij ≡
�−b3 0

0 a0

�
; ξi ≡

�
yi
xi

�
: ð43Þ

From the modular transformation of the three-form fluxes,

F3 → ðR−1
1 AðR−1

2 ÞTÞijdξi1 ∧ dξj2 ∧ dx3;

H3 → −fðR−1
1 AðR−1

2 ÞTÞijdξi1 ∧ dξj2 ∧ dy3; ð44Þ
we require R−1

1 AðR−1
2 ÞT ¼ A in a way similar to the model

1. It can be satisfied under

R2 ¼ ATðR−1
1 ÞTðA−1ÞT ¼

�
t1 s1b3=a0

q1a0=b3 p1

�
: ð45Þ

It turns out that q1 and s1 are multiples of b3 and a0,
respectively.
We checked that the vacuum condition τ3 ¼ τ holds after

the modular transformation in model 1, where we choose
f ¼ 1. It is straightforward to check that τ1τ2 ¼ b3=a0 also
holds after the modular transformations,

τ01τ
0
2 ¼ R1ðτ1ÞR2ðτ2Þ ¼

�
p1τ1 þ q1
s1τ1 þ t1

�
t1τ2 þ s1b3=a0

ðq1a0=b3Þτ2 þ p1

¼ b3
a0

�
p1τ1 þ q1
s1τ1 þ t1

�
t1=τ1 þ s1
q1=τ1 þ p1

¼ b3
a0

; ð46Þ

where we employ τ1τ2 ¼ b3=a0.
As a result, the remaining congruence subgroups are the

same as in model 1, as shown in Table I, when we replace
the flux pair ða1; a2Þ in model 1 by the flux pair ða0; b3Þ.
This is because the tadpole cancellation condition as well as
the matrix R2 has the same structure.

3. Model 3

Here, we discuss other nontrivial examples leading to the
congruence subgroups in the flat direction of the moduli
space. Let us consider the following superpotential:

W ¼ ðτ3 − fτÞ½a0τ1τ2 − a2τ1 − b3�; ð47Þ
by setting a1 ¼ 0 in Eq. (21),4 indicating that the flux-
induced D3-brane charge is given by

Nflux ¼ −d0a0 þ c3b3 ¼ −2fa0b3: ð48Þ

The supersymmetric minimum ∂τW ¼ ∂τiW ¼ W ¼ 0

with i ¼ 1, 2, 3 is realized at

τ3 ¼ fτ; a0τ1τ2 − a2τ1 − b3 ¼ 0: ð49Þ
In a way similar to the analyses in the previous subsections,
we discuss the congruence subgroups on the above flat
directions of the moduli space. Since the τ3 ¼ fτ direction
is the same with models 1 and 2, we focus on the other flat
direction. The three-form fluxes are introduced as follows:

F3 ¼ ða0dx1 ∧ dx2 þ a2dx1 ∧ dy2 − b3dy1 ∧ dy2Þ
∧ dx3 ≡ Aijdξi1 ∧ dξj2 ∧ dx3;

H3 ¼ ðc3dx1 ∧ dx2 − d1dx1 ∧ dy2 þ d0dy1 ∧ dy2Þ
∧ dy3;≡ − fAijdξi1 ∧ dξj2 ∧ dy3; ð50Þ

with

Aij ≡
�−b3 0

a2 a0

�
; ξi ≡

�
yi
xi

�
: ð51Þ

We require R−1
1 AðR−1

2 ÞT ¼ A to keep the invariance of the
three-form fluxes under the modular transformations on
SLð2;ZÞ1 × SLð2;ZÞ2. We find that it can be achieved
when

R2 ¼ ATðR−1
1 ÞTðA−1ÞT

¼
�
1 a2

b3
b3
a0

0 1

��
t1 s1b3=a0

q1a0=b3 p1

��
1 − a2

b3
b3
a0

0 1

�
:

ð52Þ
In this way, it is the generalization of (45). When a2=b3 ∈
Z and b3=a0 ∈ Z, Eq. (52) is the element of Γ0ðb3=a0Þ;
otherwise, it is difficult to obtain the congruence sub-
groups. Then, q1 and s1 are required to be multiples of b3
and a0, respectively. Since the tadpole cancellation con-
dition as well as the structure of the matrix R2 is the same
with models 1 and 2, the remaining modular group in the
effective action is described by Table I. Note that it is
straightforward to check the modular invariance of the
vacuum condition (49) by employing Eqs. (52) and (49).
So far, we have discussed the congruence subgroups as a

special case of Eq. (21) by setting certain fluxes to be 0. As
a result, flat direction in Eq. (23) has the congruence
subgroups enumerated in Eqs. (36)–(38). The important
point to realize the (discrete) modular groups in the
effective action is that the three-form fluxes are expanded
on the basis ξwhich manifests the modular invariance of F3

and H3. If the basis of F3 and H3 explicitly depends on
the coordinates x and y [x3, y3 in the previous setup (44)],
the modular transformations change the G3 itself and
SLð2;ZÞτ transformation is required to compensate the
transformation of G3 as demonstrated in τ3 ¼ τ direction
(31). Hence, we expect that the flat directions possessing

4The following discussion is also applicable in the case with
a2 ¼ 0 and a1 ≠ 0.
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the modular symmetries in the superpotential (7) are
typically characterized by the two moduli fields among
ðτ1; τ2; τ3; SÞ, and our discussed superpotential is a repre-
sentative one. This argument will hold not only T6=Z2, but
also more general toroidal orientifolds as well.
Let us briefly comment on other toroidal orientifolds.

Compared with the T6=Z2 and T6=ðZ2 × Z0
2Þ orientifolds,

the untwisted complex structure moduli are fixed at dis-
crete values or described by the single modulus on other
toroidal orbifolds preserving the supersymmetry such
as T6=ðZ2 × Z3Þ ¼ T6=Z6−II , T6=ðZ2 × Z6Þ, T6=Z4,
T6=Z8−II , and T6=Z12−II [74–77]. The presence of modular
symmetry on other toroidal orientifolds is a restricted class
of T6=Z2 orientifold, taking into account the tadpole
cancellation conditions as well as the quantization con-
dition of fluxes.

III. MODULAR SYMMETRY ON
T6=ðZ2 × Z0

2Þ ORIENTIFOLDS
WITH MAGNETIZED D-BRANES

So far, we have not considered the matter sector. In
this section, we introduce the magnetized D-branes on
T6=ðZ2 × Z0

2Þ orientifolds rather than T6=Z2. Similar to
the factorizable six-torus T6=Z2 discussed in the previous
section, the three forms can be expanded on the same basis
in (6) which are invariant under the Z2 × Z0

2 orbifoldings.
In this way, we can apply the moduli stabilization scheme
of Sec. II, in particular model 1 in Sec. II C 1, to T6=ðZ2 ×
Z0

2Þ background. It indicates that the congruence subgroups
also appear in the 4D effective action, although the tadpole
cancellation condition and the quantization condition of
fluxes are modified due to the orientifold contributions and
inclusion of the D-branes with magnetic fluxes.

A. T6=ðZ2 × Z0
2Þ orientifold models

In this section, we review the T6=ðZ2 × Z0
2Þ orientifold

models with or without discrete torsion, where the semi-
realistic phenomenological models are previously found in
D-branes with magnetic fluxes [65–68].
On this background, two Z2 symmetries act on the T6

coordinates as

θ∶ ðz1; z2; z3Þ → ð−z1;−z2; z3Þ;
θ0∶ ðz1; z2; z3Þ → ðz1;−z2;−z3Þ; ð53Þ

and the orientifold projection is characterized by the world-
sheet parity projection Ω and

R∶ ðz1; z2; z3Þ → ð−z1;−z2;−z3Þ: ð54Þ
Under those actions, there exist 64 O3 planes located
at a fixed point of R and 4O71− , 4O72− , 4O73− planes,
located at the fixed locus of Rθ0, Rθθ0, and Rθ,
respectively.

In addition, it is possible to consider Na stacks of
magnetized Dð3þ 2nÞ branes wrapping 2n cycles on
T6=ðZ2 × Z0

2Þ, where Uð1Þa magnetic fluxes Fa are
quantized on T2

i ,

mi
a

2π

Z
T2
i

Fi
a ¼ nia: ð55Þ

Here the integer mi
a denotes the wrapping number of Na

Dð3þ 2nÞ branes around T2
i and nia are quantized fluxes.

Note that D3, D5, D7, D9 branes can consider 0, 1, 2,
and 3 nonvanishing mi

a fluxes, respectively. Under the
orientifold projection, the wrapping number mi

a transforms
as ΩR∶ mi

a → −mi
a. Such gauge fluxes not only break the

original gauge symmetry of Dð3þ 2nÞ branes, but also
induce the chiral zero modes at the intersection of two
stacks of D-branes, counted by

Iab ¼ Π3
i¼1ðniami

b − nibm
i
aÞ; ð56Þ

where the labels a and b represent two stacks of D-branes.
Recall that the above magnetic fluxes also carry the

Ramond-Ramond (RR) charges of lower-dimensional
D-branes through the Chern-Simons coupling. Thanks
to the orientifold projection, RR tadpoles of D5 and D9
branes are canceled by their orientifold images. It is thus
required to take into account only the D3- and D7-brane
charges [67],

D3∶
X
a

Nan1an2an3a þ
1

2
Nflux ¼ 16;

D71∶
X
a

Nan1am2
am3

a ¼ −16;

D72∶
X
a

Nan2am1
am3

a ¼ −16;

D73∶
X
a

Nan3am1
am2

a ¼ −16; ð57Þ

where O3 and O7i planes have −1=2 units of D3-brane
charge and −8 units of D7i-brane charge, respectively.
Our interest is to reveal the allowable values of flux

quanta Nflux, determining the breaking of the modular
symmetry as discussed in the previous section. On
T6=ðZ2 × Z0

2Þ background, one can introduce the dis-
crete torsion in Z2 twisted sector [78–80], which changes
a part of the orientifold charges and the quantization
condition of fluxes. The quantization of the three-form
fluxes on Z2 × Z0

2 with discrete torsion,5 the three-form
fluxes F3 andH3 are quantized in multiples of 8, due to the

5We use the conventions that the hodge numbers of T6=ðZ2 ×
Z0

2Þ are ðh1;1; h2;1Þ ¼ ð3; 51Þ with discrete torsion and
ðh1;1; h2;1Þ ¼ ð51; 3Þ without discrete torsion, respectively. Fur-
thermore, we focus on the untwisted sector on T6=ðZ2 × Z0

2Þ
with discrete torsion.
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Z2 × Z2 orbifold and orientifold projections. The reason is
that the volume of a three cycle on T6 is divided by the
corresponding cycle on T6=ðZ2 × Z0

2Þ [65] and the orienti-
foldZ2 projection further act on T6 [81]. On the other hand,
in the case without discrete torsion, F3 and H3 are
quantized in multiples of 4. (For more details, see [65],
in which the convention of discrete torsion is opposite
to ours.)

B. Congruence subgroups

Asmentionedbefore, the three-formbasisonT6=ðZ2×Z0
2Þ

can be expanded in terms of Eq. (6). It indicates that we
can apply the moduli stabilization mechanism of Sec. II into
this T6=ðZ2 × Z0

2Þ orientifold background, taking into
account the tadpole cancellation conditions (57).As classified
later, the three-form fluxes lead to the congruence subgroups
on T2

1 and/or T
2
2. After integrating out the heavymodulus, the

low-energy effective action is invariant under the remaining
discrete subgroups of SLð2;ZÞ. In the following, we enu-
merate the possible congruence subgroups on T6=ðZ2 × Z0

2Þ
with or without discrete torsion:

(i) We first discuss T6=ðZ2 × Z0
2Þ with discrete torsion.

Given that F3 andH3 are quantized in multiples of 8,
namely a1; a2 ∈ 8Z, we obtain the class of con-
gruence subgroups of SLð2;ZÞ1 × SLð2;ZÞ2 modu-
lar group on T2

1 × T2
2, displayed in Table II. Here,

we employ the model 1 in Sec. II C 1. When both
the quark and lepton sectors arise in D-branes
wrapping T2

1 (T2
2), their flavor symmetries are

governed by the same Γð1Þ (Γð2Þ). On the other
hand, when their flavor symmetries are originated
from different tori, for instance, the quark sector on
T2
1 and the lepton sector on T2

2, quarks and leptons
have the different flavor symmetries Γð1Þ and Γð2Þ as
shown in Table II, respectively. Thus, our results

would be interesting for bottom-up model building
studied in Refs. [31,37].

(ii) Next, we focus on the case without discrete torsion,
in which flux quanta a1 and a2 are quantized in
multiples of 4, namely, a1; a2 ∈ 4Z. In a similar
way, the flavor symmetries on D-branes wrapping
T2
1 and/or T2

2 are governed by the congruence
subgroups displayed in Table III. We have more
varieties than congruence groups in Tables I and II.
We can consider the same or different flavor
symmetries of quark and lepton sectors, depending
on the D-brane configurations.

As a result, on T6=ðZ2 × Z0
2Þ orientifold background, the

congruence subgroups of the modular group in the low-
energy effective action is severely constrained by the flux
quantization and tadpole cancellation conditions.

C. Concrete models

1. Model with discrete torsion

In this section, we search for a concrete three-generation
model including the discrete modular symmetry in a
specific D-brane configuration on the T6=ðZ2 × Z0

2Þ ori-
entifold background with discrete torsion, following [67].
Massless spectrum on the stack a of magnetized

D-branes has the representation of UðNa=2Þ not UðNaÞ
due to the orbifold projection, meaning that Na must be
even. There exist N ¼ 1 UðNa=2Þ vector multiplet and
three chiral multiplets (open string moduli), which we refer
as a ðaaÞ sector. By taking into account the chiral spectrum
between two stacks a and b of D-branes, the massless
spectrum for magnetized D-branes is summarized as
follows:

ð58Þ

where a0 denotes the ΩR image of the stack a of D-brane
and Ia;O represents for the intersection product between
the homology class of D-branes and orientifold plane.

TABLE II. Possible congruence subgroups of fSLð2;ZÞ1;
SLð2;ZÞ2g except for the trivial a1 ¼ a2 case, up to
Nflux ¼ −2fa1a2 ¼ 64 × 4. Since Nflux is multiples of 64 due
to the flux quantization of F3 and H3, only Nflux ¼ 64 × 4 gives
rise to the nontrivial congruence subgroup Γ0ð2Þ and Γ0ð2Þ.

ðf; a1; a2Þ fΓð1Þ;Γð2Þg
ð1;∓ 8;�16Þ fΓ0ð2Þ;Γ0ð2Þg
ð1;∓ 16;�8Þ fΓ0ð2Þ;Γ0ð2Þg

TABLE III. Possible congruence subgroups of fSLð2;ZÞ1; SLð2;ZÞ2g except for the trivial a1 ¼ a2 case, up to
Nflux ¼ −2fa1a2 ¼ 16 × 12, where Nflux is multiples of 16 due to the flux quantization of F3 and H3. Here, we
restrict ourselves to the ja2j > ja1j case, but it is also possible to consider the ja1j > ja2j case.

fΓð1Þ;Γð2Þg
fΓ0ð2Þ;Γ0ð2Þg, fΓ0ð3Þ;Γ0ð3Þg, fΓ0ð4Þ;Γ0ð4Þg, fΓ0ð5Þ;Γ0ð5Þg, fΓ0ð6Þ;Γ0ð6Þg, fΓð6Þ;Γð6Þg
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In addition, it is also possible to consider D-branes whose
homology class is invariant under the orientifold projection
for the configuration of D3 and D7i branes without
magnetic fluxes. In contrast to the case without fixed by
the orientifold action, the Chan-Paton gauge group for a
stack of 2Na D-branes is described by USpðNaÞ gauge
group. The massless spectrum is summarized as follows:

ð59Þ

Let us engineer the brane configurations leading to the
semirealistic model accommodating the Standard Model.
The visible sector we consider consists of stacks of
magnetized D7a with gauge group Uð4Þa and two stacks
of unmagnetized D7b and D7c branes with SUð2ÞL ×
SUð2ÞR as shown in Table IV. To cancel RR tadpoles,
we also introduce two stacks of magnetized D9 branes with
Uð1Þh1 ×Uð1Þh2 and the 8Nf D3 branes with USpð8NfÞ
which are located at the top of an orientifold singularity.
By taking into account the Green-Schwarz mechanism,

cancelling the gauge and gravitational anomalies, twoUð1Þ
gauge bosons become massive at a compactification scale.
Hence, remaining gauge symmetry consists of the Pati-
Salam and hidden sectors,

SUð4Þ × SUð2ÞL × SUð2ÞR ×Uð1Þ0 × USpð8NfÞ; ð60Þ

with Uð1Þ0 ¼ Uð1Þa − 2gðUð1Þh1 −Uð1Þh2Þ. The latter
two are the hidden sector. After all, cancellation condition
of D3-brane charge (57) requires that

g2 þ Nf þ
Nflux

16
¼ 14: ð61Þ

When we focus on the three-generation model, i.e.,
g ¼ 3, we have two options to satisfy the above, namely,
fNflux ¼ 0; Nf ¼ 5g or fNflux ¼ 64; Nf ¼ 1g. Vanishing
three-form fluxes Nflux ¼ 0 correspond to the T-dual type
IIA intersecting D-brane model [82].
As demonstrated in the previous subsection, it is possible

to break the modular group to its subgroup on the nontrivial
three-form background. However, in the Nflux ¼ 64 case,
we cannot apply our moduli stabilization scheme to this
case due toNflux ¼ −2fa1a2 ∈ 128Zwith a1; a2 ∈ 8Z and
f ∈ Z. In the next section, we explore the possibility to
realize the congruence subgroup in the toroidal orientifold
model without discrete torsion.

2. Model without discrete torsion

The purpose of this section is to explore the existence of
the congruence subgroups on T6=ðZ2 × Z0

2Þ orientifold
modelswithout discrete torsion. For our purpose,we consider
the specific semirealistic models, developed in Ref. [83].
Along the line of Ref. [83], we choose exotic 64O3ðþ;þÞ

planes with positive charge and tension located at the fixed
points of orbifold and orientifold actions. The 4O7i planes
are located at the fixed locus of Rθ0, Rθθ0, and Rθ, in the
same way as the model with discrete torsion. Such exotic
O3-plane contributions change the tadpole cancellation
condition of D3-brane charge,

X
a

Nan1an2an3a þ
1

2
Nflux ¼ −16; ð62Þ

whereas the cancellation condition of D7i-brane charges
is the same with Eq. (57), taking into account the extra
K-theory constraints. To demonstrate the semirealistic
models, we consider the magnetic fluxes and wrapping
numbers of Dð3þ 2nÞ branes in Table V, where the
visible sector is constructed on fractional D7 branes and
D9-D̄9 pairs. In particular, the visible sector consists of

TABLE IV. D-brane configurations leading to Pati-Salam
model where the magnitude of magnetic fluxes g corresponds
to the generations chiral multiplets in the visible sector. Here, we
use the identification USpð2Þ ≃ SUð2Þ.
Nα Gauge group (n1α; m1

α) (n2α; m2
α) (n3α; m3

α)

Na ¼ 8 Uð4Þa (1,0) ðg; 1Þ ðg;−1Þ
Nb ¼ 2 SUð2ÞL (0,1) (1,0) ð0;−1Þ
Nc ¼ 2 SUð2ÞR (0,1) ð0;−1Þ (1,0)
Nh1 ¼ 2 Uð1Þh1 ð−2;−1Þ (3, 1) (4,1)
Nh2 ¼ 2 Uð1Þh2 ð−2;−1Þ (4, 1) (3,1)
8Nf USpð8NfÞ (1,0) (1,0) (1,0)

TABLE V. D-brane configurations leading to Pati-Salam model.

Nα Gauge group ðn1α; m1
αÞ ðn2α; m2

αÞ ðn3α; m3
αÞ

Fractional D-branes (visible sector) Na1 ¼ 4 Uð4ÞC (1,0) (0,1) ð0;−1Þ
Na2 ¼ 2 Uð2ÞL (1,0) (2,1) ð4;−1Þ
Na3 ¼ 2 Uð2ÞR ð−3; 2Þ ð−2; 1Þ ð−4; 1Þ

Bulk D-branes Nb ¼ 4 Uð2Þ2 (1,0) (0,1) ð0;−1Þ
Nc ¼ 8 Uð4Þ2 (0,1) (1,0) ð0;−1Þ

Nd ¼ 8Nf USpð4NfÞ4 (1,0) (1,0) (1,0)
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four-generation N ¼ 1 supersymmetric Pati-Salam-like
model with SUð4ÞC × SUð2ÞL × SUð2ÞR gauge groups,
where some of the Uð1Þ gauge bosons become massive
through the Green-Schwarz mechanism. For more details
on the model, see Ref. [83].
Let us classify the congruence subgroups on this setup

by introducing the three-form fluxes as in Sec. III C 1.
From the wrapping numbers in Table V, the tadpole can-
cellation condition of D3-brane charges reads

Nf þ
Nflux

16
¼ 2: ð63Þ

Here, Nflux is quantized in multiples of 16, due to the
quantization condition of F3 and H3. We have three
options to satisfy the above, namely, fNflux ¼ 0;
Nf ¼ 2g, fNflux¼16;Nf¼1g and fNflux ¼ 32; Nf ¼ 0g.
The stabilization mechanism in Sec. II C 1 leads to Nflux ¼
−2fa1a2 with a1; a2 ∈ 4Z, indicating that only Nflux ¼ 32
is consistent with the tadpole cancellation condition. In that
case, we have the unique possibility ja1j ¼ ja2j ¼ 4 and
f ¼ 1. Thus, the diagonal parts of SLð2;ZÞ1 × SLð2;ZÞ2
and SLð2;ZÞ3 × SLð2;ZÞτ remain in the effective action.
In this specific Pati-Salam model having a quark-lepton

unification, flavor structures of quarks and leptons are
determined by the magnetic fluxes inserted on T2

2 × T2
3,

indicating that both quarks and leptons transform under the
same modular symmetry of T2

2 × T2
3. As a result, their

flavor symmetries on T2
2 could be determined by SLð2;ZÞ.

Although we have focused on the specific D-brane
configurations yielding the modular group in the effective
action, it is interesting to explore D-brane models accom-
modating not only the three-generation models, but also the
finite modular symmetry shown in Table III.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have classified possible congruence
subgroups of the modular group in the effective action of
type IIB string theory on toroidal orientifolds with three-
form fluxes. The discrete modular symmetry arises in the
flat direction of complex structure moduli whose moduli
space has a congruence subgroup rather than SLð2;ZÞ. The
realization of discrete modular group in the effective action
has been achieved by an existence of three-form fluxes
inserted on three cycles of T6. We argued that such a
discrete modular group plays an important role of not only
enlarging the axionic field range discussed in the context of
swampland conjecture [64], but also the flavor symmetry of
quarks and leptons.
Indeed, when magnetized D-branes wrap a certain cycle

of tori, we could identify the remaining discrete modular
symmetry with the flavor symmetry of quarks and/or
leptons. We discussed the possible congruence subgroups
on T6=ðZ2 × Z0

2Þ orientifold with and without discrete
torsion, incorporating the standard model sector. It turned

out that the possible class of congruence subgroups are
sensitive to the quantization of fluxes and the tadpole
cancellation conditions. We expect that our analysis would
be applicable to more broad class of D-brane model
building on toroidal orientifolds. It is interesting to clarify
the congruence subgroups of modular symmetry on other
toroidal orientifolds (discussed in, e.g., Ref. [84]) as well as
nonfactorizable tori incorporating SLð4;ZÞ or SLð6;ZÞ
using the method in this paper.6 In this paper, we focused
on type IIB flux compactifications, but our discussion is
also applicable to the type IIA and heterotic string flux
compactifications, taking into account the similar flux
superpotential (21) and corresponding tadpole cancellation
conditions. Furthermore, it would be also connected with
the supergravity models having the no-scale property [87],
where the moduli spaces are described by coset spaces such
as SUðp; qÞ=ðUð1Þ × SUðpÞ × SUðqÞÞ and SOð2; 2þ pÞ=
ðSOð2Þ × SOð2þ pÞÞ. Note that the no-scale property
holds for not only the complex structure moduli in the
large complex-structure limit, but also the Kähler moduli in
the large-volume limit.
We have studied the geometrical symmetry, which is the

full symmetry in 4D low-energy effective supergravity
including closed string modes. On the other hand, matter
zero modes corresponding to quarks and leptons are origi-
nated from open string modes. The number of matter zero
modes is finite, and they transform under the congruence
subgroups of the modular symmetry, which we have studied.
Such a finite number of zero modes represent the remaining
modular symmetries, which can be finite subgroups. For
example, in Ref. [16], it was shown that modular symmetries
of matter zero modes are discrete and finite among SLð2;ZÞ
in compactification with magnetic flux. They depend on the
magnitude of magnetic fluxes. It is very important to study
such modular symmetries of zero modes starting with our
models, where the full modular symmetry is congruence
subgroups. Depending on the magnitude of magnetic fluxes,
we may obtain various finite modular subgroups different
from those in Ref. [16]. That would provide new insights
into phenomenological models with discrete flavor sym-
metry. We will study these issues elsewhere.
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APPENDIX: CONGRUENCE SUBGROUPS

In this appendix, we show the conventions of the
modular groups we employed. The principal congruence
subgroup of level N ∈ Zþ is

6Nonfactorizable magnetic fluxes [85,86] would also be
interesting.
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ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ

����
�
a b

c d

�
≡

�
1ðmodNÞ 0ðmodNÞ
0ðmodNÞ 1ðmodNÞ

�	
: ðA1Þ

Definition: A subgroup Γ of SLð2;ZÞ is a congruence subgroup if ΓðNÞ ⊂ Γ for some N ∈ Zþ, in which case Γ is a
congruence subgroup of level N.
The congruence subgroups of Hecke type are

Γ0ðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ

����
�
a b

c d

�
≡

� � 0ðmodNÞ
� �

�	
;

Γ0ðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ

����
�
a b

c d

�
≡

� � �
0ðmodNÞ �

�	
;

Γ1ðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ

����
�
a b

c d

�
≡

�
1ðmodNÞ �
0ðmodNÞ 1ðmodNÞ

�	
: ðA2Þ

Note that

Γð1Þ ¼ Γ1ð1Þ ¼ Γ0ð1Þ ¼ Γ0ð1Þ ¼ SLð2;ZÞ: ðA3Þ
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