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We investigate critical phenomena of the Yang-Mills (YM) type one-dimensional matrix model that is a
large-N reduction (or dimensional reduction) of the Dþ 1 dimensional UðNÞ pure YM theory (bosonic
Banks-Fischler-Shenker-Susskind model). This model shows a large-N phase transition at finite temper-
ature, which is analogous to the confinement/deconfinement transition of the original YM theory. We study
the matrix model at a three-loop calculation via the “principle of minimum sensitivity” and find that there is
a critical dimension D ¼ 35.5: At D ≤ 35, the transition is of first order, while it is of second order at
D ≥ 36. Furthermore, we evaluate several observables in our method, and they nicely reproduce the
existing Monte Carlo results. Through the gauge/gravity correspondence, the transition is expected to be
related to a Gregory-Laflamme transition in gravity, and we argue that the existence of the critical
dimension is qualitatively consistent with it. Besides, in the first order transition case, a stable phase having
negative specific heat appears in the microcanonical ensemble, which is similar to Schwarzschild black
holes. We study some properties of this phase.
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I. INTRODUCTION

Critical phenomena in physics sometimes show interest-
ing dependences on the numbers of the spatial dimensions.
One remarkable example is the Gregory-Laflamme (GL)
transition in the Dþ 1 dimensional gravity with a compact
S1 circle [1]. (See a review [2].) By changing the size of the
S1 from small to large, the stable configuration for a given
energy changes from a uniform black string (UBS) to a
localized black hole (LBH), and this transition is called
the GL transition. A nonuniform black string (NUBS)
may appear as an intermediate state in this transition.
Surprisingly, the order of this phase transition does depend
on D, and it is of first order at D ≤ 12, while is of second
order at D ≥ 13 [3]. Hence, D ¼ 12.5 can be regarded as a
critical dimension of this transition. Curiously, if we fix the
temperature instead of the energy, the critical dimension
changes to D ¼ 11.5 [4]. See Table I.
A similar critical dimension appears in the Rayleigh-

Plateau (RP) instabilities in liquid too. If we consider a

space time RD−1;1 × S1 and set a liquid winding the S1 with
the same configuration as the UBS. Suppose that the
volume of the liquid is fixed and the radius of the S1 is
increased. (Thus, the liquid is stretched along the S1.) Then,
above a critical radius, this configuration becomes unstable
due to the RP instability, and it tends to be nonuniform. The
order of this transition depends on D similar to the GL
transition, and it turned out that the critical dimension is
D ¼ 11.5 [5,6]. The connection between the GL and RP
instabilities was also argued in [5].
According to the gauge/gravity correspondence [7,8], the

GL transition is expected to be qualitatively related to the
confinement/deconfinement (CD) transition in the Dþ 1
dimensional Yang-Mills (YM) type matrix quantum
mechanics, whose action at finite temperature is given
by [9–15]

S ¼
Z

β

0

dtTr

�XD
I¼1

1

2
ðDtXIÞ2 −

XD
I;J¼1

g2

4
½XI; XJ�2

�
: ð1Þ

This model is a large-N reduction (or dimensional reduc-
tion) of the Dþ 1 dimensional U(N) pure Yang-Mills
(YM) theory to one dimension [16]. Here XI (I ¼ 1;…; D)
are the N × N Hermitian matrices that are the dimensional
reductions of the spatial components of the original Dþ 1
dimensional gauge fields. Dt ≔ ∂t − i½At; � is the covariant
derivative and At is the gauge field. g is the coupling
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constant, and we take the ’t Hooft limit N → ∞ and g → 0

with a fixed ’t Hooft coupling λ ≔ g2N. Note that this
model appears as low energy effective theories of D-branes
and membranes in string theories in various situations, and
is important in its own right [9,17–22].
This model shows a large-N phase transition [23,24],

which is an analog of the CD transition of the original YM
theory [9,20,25–35]. The order parameter of this transition
is the Polyakov loop operators,

un ≔
1

N
Tr exp

�
in

Z
β

0

dtAt

�
; ðn ¼ 1; 2;…Þ: ð2Þ

If huni ¼ 0, (∀n), it indicates a confinement, and,
huni ≠ 0, ( ∃n) shows a deconfinement.
The relation between the CD transition and the GL

transition can be intuitively understood as follows. The
diagonal components of XI can be regarded as the positions
of N particles (or D-branes). If we take the static diagonal
gauge ðAtÞij ¼ αiδij (i; j ¼ 1;…; N), αi also describe the
positions of the particles. (Here the configuration space
of the gauge field is regarded as a real space.) Particularly,
the Polyakov loop (2) is invariant under the shift
αi ¼ αi þ 2π=β, and this space is actually an S1 with the
period 2π=β. At large-N, these particles may behave as a
static fluid in the Dþ 1 dimension [36], and their dis-
tribution would be uniform, nonuniform or localized
along the S1 as schematically shown in Fig. 1. Now the
connection to the GL transition in the gravity is clear.
These configurations would correspond to a UBS, NUBS

and LBH, respectively. Note that the temporal component
αi of the gauge theory corresponds to the spatial S1

direction in the gravity [38]. As we have mentioned,
the UBS is stable when the size of the S1 is small.
Correspondingly, the uniform distribution in Fig. 1 is stable
at a small 2π=β, which means a low temperature. We can
easily see that huni ¼ 0 in the uniform distribution, and this
is consistent with the confinement at low temperatures.
(The localized distribution is characterized by un ≠ 0 for
all n and the nonuniform distribution is characterized by
un ≠ 0 for a finite number of n’s. Thus, they are both
deconfined.)
Since the critical dimensions appear in the GL and RP

transitions, the existence of a critical dimension in the CD
transition of the matrix model is expected. Indeed, several
evidences for this conjecture have been found [31]. For
smallD, Monte Carlo (MC) simulations show that the order
of the CD transition up to D ¼ 25 would be of first order
[31,34]. On the other hand, at large-D, we can analyze the
model analytically through the 1=D expansion, and find the
second order CD transition [30]. Hence, a critical dimen-
sion would exist in the matrix model too. In this article, we
analyze the matrix model by using so-called “principle of
minimum sensitivity” [39], and we will see that the critical
dimension is D ¼ 35.5 at a three-loop calculation.
In addition, in the first order transition case, a phase

having negative specific heat arises in the microcanonical
ensemble [24,40]. Since some black holes such as
Schwarzschild black holes and small black holes in AdS
space-time [44] have negative specific heat too, the phases
in the matrix model would be important to understand why
these black holes have negative specific heat from the
viewpoint of gauge theories [24]. Although, it is hard to
explore such phases in MC calculations, we can easily
access this phase in our method. We will derive several
quantities in this phase near the critical temperature.

II. ANALYSIS VIA THE PRINCIPLE OF
MINIMUM SENSITIVITY

To investigate the phase structure of the model (1), we
employ the principle of minimum sensitivity [45]. Such a
study was first done by Kabat and Lifschytz [25], but we
use a different analysis in order to explore the details of the
phase transition.
We deform the model (1) as

S ¼ S0 þ κSint;

S0 ¼
Z

β

0

dtTr

�XD
I¼1

1

2
ðDtXIÞ2 þM2

2
ðXIÞ2

�
;

Sint ¼
Z

β

0

dtTr

�XD
I¼1

−
M2

2
ðXIÞ2 −

XD
I;J¼1

g2

4
½XI; XJ�2

�
:

ð3Þ

FIG. 1. Schematic plots of the “fluids” of the YMmatrix model.
Their distribution would be uniform, nonuniform or localized
along the temporal circle direction. These are similar to the black
string/black hole systems in gravity.

TABLE I. The critical dimensions of various models. The
systems show the first order phase transitions below the critical
dimensions and they become of second order above them. The
critical dimension of the YM type matrix model is one of the
main results of this article.

Critical dimension

GL (fixed mass) 12.5
GL (fixed temperature) 11.5
RP 11.5
YM type matrix model (three-loop) 35.5
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Here we have introduced the deformation parameter κ and
M. If we take κ ¼ 1, the M dependent terms are canceled,
and this model goes back to the original model (1).
We integrate out XI through the perturbative calculations

with respect to κ, and derive the effective action of the
Polyakov loop fung. The relevant terms at low temper-
atures, where all un are small [20,24], are given by

Seffðfung;MÞ ¼ N2ðβf0 þ f1ju1j2 þ f2ju1j4
þ f3ju2j2 þ f4ðu2u2−1 þ u−2u21Þ þ � � �Þ:

ð4Þ

Here f0 is a function of M while fi (i ¼ 1, 2, 3, 4) are
functions of M and T ≔ 1=β [51]. The derivations and
explicit expressions of f0 and fi at three-loop order are
shown in (A14)–(A18) in Appendix A. (If we are interested
in the two-loop results [53], we simply remove the terms
proportional to κ2 in these equations.)
At this stage, we take κ ¼ 1. Although the initial model

(3) at κ ¼ 1 is independent of the deformation parameter
M, the obtained effective action does depend on M. Here,
we fix M so that the M dependence of the effective action
becomes a minimum. This prescription is so-called the
principle of minimum sensitivity [39]. Although the val-
idity of such a prescription is generally not ensured, it
works very well for many examples. We will compare our
results with the existing studies in order to test our analysis.

A. Low temperature and confinement

To explore the phase structure, we start from considering
the low temperature regime. At low temperatures, we observe
f1; f2; f3 > 0 from (A15)–(A17). Then, the stable configu-
ration in the effective action (4) is given by u1 ¼ u2 ¼ 0, and
it is in the confinement phase. Thus, we can approximate
Seff ¼ N2βf0, andM at low temperatures is fixed so that the
M dependence of f0 is minimized, hence,

j∂Mf0ðM ¼ M0Þj ¼ min j∂Mf0ðMÞj; ð5Þ

whereM0 denotes the value ofM that minimizes j∂Mf0j. In
the two-loop effective action, f0 has a single extremum
∂Mf0 ¼ 0 via (A14), and it gives M0 as

M0 ¼ λ1=3ðD − 1Þ1=3; ðtwo-loopÞ: ð6Þ

In the three-loop effective action, f0 does not have any
extremum. However, it has an inflection point ∂2

Mf0 ¼ 0,
which minimizes (5), and we obtain

M0 ¼
151=3λ1=3

2
ðD − 3=4Þ1=3; ðthree-loopÞ: ð7Þ

In order to test whether these results are reliable, we
evaluate the free energy F ≔ Seff=β ¼ N2f0ðM0Þ and

compare them with the MC results at low temperatures
[54]. By using (A14), we obtain F in the confinement
phase as

F=N2 ¼
8<
:

3
8
Dλ1=3ðD − 1Þ1=3; ðtwo-loopÞ;

Dλ1=3 ð1412D−1187Þ
160ð30ð4D−3ÞÞ2=3 ; ðthree-loopÞ: ð8Þ

These results are shown in Fig. 2 and Table II, and both the
two- and three-loop analyses show good agreement [55].
Furthermore, in Appendix D, we also compare our

results (8) at large-D with the 1=D expansion [30], which
would provide reliable results there, and again find good
agreement. Thus, we expect that our analysis via the
principle of minimum sensitivity appropriately works in
our model (1).

B. Confinement/deconfinement transition

As temperature increases, f1ðM0; TÞ becomes negative,
and u1 and u2 may obtain nonzero vevs, indicating a
deconfinement. This is the CD transition in our model.
Near the critical temperature, u1 and u2 would be small and
we can perturbatively treat them in the effective action (4).
Correspondingly, M can be expanded as

2 4 6 8 10 12 14

2

4

6

8

10

12

5 10 15 20 25

1.0

1.2

1.4

1.6

FIG. 2. Free energy F=N2 in the confinement phase (the left
panel) and critical temperature Tc (the right panel). We have used
the unit λ ¼ 1. The MC results are from [31,34]. The 1=D
expansion results are from (4.27) and (4.30) in [30]. In the MC
results, we plot the transition temperature T0 defined in Fig. 3,
which should be slightly below Tc. We see good agreement in
both of the plots.

TABLE II. Free energy F=N2 in the confinement phase. We
have used the unit λ ¼ 1. The two-loop and three-loop results are
from (8). The 1=D expansion results are from (D1). The MC
results are from the unpublished data in [31].

D Two-loop Three-loop 1=D expansion MC ðT ¼ 0.50Þ
2 0.75 0.72 0.76 0.70 ðN ¼ 60Þ
3 1.42 1.37 1.41 1.42 ðN ¼ 32Þ
4 2.16 2.09 2.15 2.11 ðN ¼ 32Þ
5 2.98 2.88 2.95 2.93 ðN ¼ 24Þ
6 3.85 3.71 3.82 3.81 ðN ¼ 32Þ
9 6.75 6.52 6.71 6.66 ðN ¼ 32Þ
13 11.2 10.8 11.1 11.0 ðN ¼ 32Þ
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M ¼ M0 þM1ju1j2 þM2ju1j4
þM3ju2j2 þM4ðu2u2−1 þ u−2u21Þ þ � � � : ð9Þ

Here, in the two-loop theory, M0 is given by (6) and Mi
(i ¼ 1;…; 4) are fixed through the condition ∂MSeff ¼ 0 in
(4). In the three-loop theory, M0 is given by (7) and the
condition ∂2

MSeff ¼ 0 determines Mi. (See the details in
Appendix B.)
Then, by substituting (9) into the effective action (4) and

using the small fung expansion, we obtain

SeffðfungÞ ¼ N2ðβf0 þ f̄1ju1j2 þ f̄2ju1j4
þ f̄3ju2j2 þ f̄4ðu2u2−1 þ u−2u21Þ þ � � �Þ:

ð10Þ

Here

f̄i ¼ fi þ βð∂Mf0ÞMi; ði ¼ 1; 3; 4Þ;

f̄2 ¼ f2 þ βð∂Mf0ÞM2 þ
1

2
βð∂2

Mf0ÞM2
1 þ ð∂Mf1ÞM1;

ð11Þ

where fi are evaluated at M ¼ M0. Finally, by integrating
out u2, we reach a Landau-Ginzburg type effective action
for u1,

Seffðu1Þ ¼ N2ðβf0 þ aðTÞju1j2 þ bðTÞju1j4 þ � � �Þ;

aðTÞ ≔ f̄1; bðTÞ ≔ f̄2 −
f̄24
f̄3

: ð12Þ

Although the explicit formulas for aðTÞ and bðTÞ are
complicated and we omit to show them, it is straightforward
to obtain them from (A14)–(A18) by using Mathematica.
Now we can easily see the phase structure [20,24,26].

If a > 0, u1 ¼ 0 is (meta)stable and the system may be
confined. If a < 0, u1 ¼ 0 is unstable and u1 has to develop
a nonzero vev, and it is deconfinement. Thus, we can
derive the critical temperature Tc by solving aðTcÞ ¼ 0.
Numerical solutions of this equation are shown in Fig. 2
and Table III.
In order to determine the order of the transition, we

expand aðTÞ ¼ −cðT − TcÞ þ � � � (c ≔ ∂a=∂T > 0) near
T ¼ Tc, and obtain the classical solution of u1 in (12) as

u1 ¼
ffiffiffiffiffiffiffiffiffiffi
−

a
2b

r
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðT − TcÞ

2b

r
: ð13Þ

Therefore, if bðTcÞ is positive, it indicates a nontrivial
solution in T ≥ Tc, which implies a continuous second
order phase transition. If bðTcÞ is negative, an unstable
solution exists in T ≤ Tc, and a first order phase transition

occurs at a temperature, which is slightly below Tc. We
define this transition temperature as T0. See Fig. 3.

C. Critical dimension

We plot bðTcÞ with respect to D in Fig. 4. At two-loop
order, b is always negative and it predicts the first order
phase transition. At three-loop order, b becomes positive at
D ¼ 36, and the transition changes to second order. Thus,
the critical dimension of the model (1) is D ¼ 35.5 at
three-loop.

D. Phase with negative specific heat

In the first order transition case, the unstable branch with
u1 ≠ 0 exists between T1 and Tc as shown in Fig. 3.
Remarkably, it becomes stable in the microcanonical

TABLE III. Critical temperature Tc. We have used the unit
λ ¼ 1. The 1=D expansion results are from (D3). The MC results
are from [31] (D ≤ 20) and [34] (D ¼ 25). In the MC results, we
show the transition temperature T0, which should be slightly
below Tc.

D Two-loop Three-loop 1=D expansion MC

2 1.65 1.61 1.34 1.32
3 1.26 1.20 1.08 1.10
9 0.938 0.889 0.892 0.901
15 0.906 0.867 0.879 0.884
20 0.903 0.869 0.882 0.884
25 0.906 0.877 0.889 0.89

FIG. 3. Schematic plots of free energy vs temperature. The rigid
lines depict stable and metastable phases, while the dashed lines
depict unstable phases. The u1 ¼ 0 phase lines are horizontal and
do not depend on T due to the large-N volume independence. In
the first order phase transition case (the left panel), the unstable
phase with u1 ≠ 0 merges to the u1 ¼ 0 branch at T ¼ Tc. Thus,
the u1 ≠ 0 solution (13) near Tc exists in T ≤ Tc. The phase
transition occurs not at Tc but at T0 shown in the figure. In the
second order phase transition case (the right panel), the stable
u1 ≠ 0 solution (13) appears in T ≥ Tc. Therefore, through (13),
the signature of b at T ¼ Tc determines the order of the phase
transition. Note that there is another transition point TGWW, at
which a third order transition between the nonuniform distribu-
tion and the localized one in Fig. 1 occurs [9,20,26,30]. This
transition is so-called the Gross-Witten-Wadia (GWW) transition
[56,57], and is important in the context of the resolution of the
naked singularities in the gravity [26,58].
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ensemble [24], and has negative specific heat akin to a
Schwarzschild black hole. See the schematic plot in Fig. 5,
where ∂2S=∂E2 > 0 indicates the negative specific heat.
(Here S and E are entropy and energy in the microcanonical
ensemble.) We can read off the specific heat C ≔ ∂TE near
T ¼ Tc (T ≤ Tc) in this phase via (12) and (13) through the
ordinary thermodynamical relations,

F ¼ N2f0 −
N2c2Tc

4b
ðT − TcÞ2 þ � � � ;

S ¼ E − N2f0
Tc

−
b

c2T4
0

ðE − N2f0Þ2 þ � � � ;

C ¼ ∂TE ¼ N2T2
cc2

2b
þ � � � : ð14Þ

Here C is negative because b < 0. We plot C in Fig. 5
(right). See also Table IV. At three-loop, asD approaches to
the critical dimension D ¼ 35.5, C diverges, since b → 0.

III. DISCUSSIONS

We have shown that the critical dimension of the matrix
model (1) is D ¼ 35.5 at three-loop. The existence of a
critical dimension has been predicted through the MC [31]
and the 1=D expansion [30], and our result is consistent
with them. Besides, the strong similarity between the GL,
RP and the CD in the matrix model (1) are sharpened. This
similarity may arise because the matrix model may describe
a kind of fluid as depicted in Fig. 1. (The obtained critical
dimension is different from the gravity, but it would not be
a problem because we cannot expect any quantitative
agreement in this correspondence [9,12].)
However, our analysis relies on the perturbative calcu-

lation and the principle of the minimum sensitivity, and
D ¼ 35.5 is not conclusive. We need the higher order loop
calculations to ensure it. At large-D, these corrections may
make our results closer to those of the 1=D expansion [30].
(See Appendix D for the results at large-D in our analysis.)
Also, there are several varieties of the principle of the

minimum sensitivity [46], and we need to check whether
our results depend on these schemes.
Another remaining problem is understanding the proper-

ties of the first order phase transition at T0 in D ≤ 35.
Above T0, the stable configuration would be a nonuniform
distribution or a localized one depending on D [59]. If the
stable configuration is a nonuniform distribution, another
phase transition to a localized distribution must occur at a
higher temperature. Indeed, these transitions have been
found in the GL and RP transitions [2,6,60,61]. Besides,
they would be important for a deeper understanding of
the negative specific heat phase in the microcanonical
ensemble.
In order to investigate them, we need to evaluate the

effective action at finite fung, and thus we cannot use the
expansion (9). Besides, we need to calculate higher order
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32 34 36 38 40

- 0.003
- 0.002
- 0.001

0.001
0.002
0.003

0

FIG. 4. The value of b at the critical temperature. The negative
and positive b indicate the first and second order phase tran-
sitions, respectively. At three-loop, b becomes positive at
D ¼ 36, and hence the critical dimension is 35.5. (See the right
panel.) The 1=D result [30] is from (D4). The MC simulations
show first order transitions at least up toD ¼ 25 [31,34], and they
are consistent with our result.

10 20 30 40

-100

-80

-60

-40

-20

FIG. 5. (Left panel) A schematic plot of entropy vs energy in
the microcanonical ensemble corresponding to the first order
transition case in Fig. 3. The phase having negative specific heat
characterized by ∂2S=∂E2 > 0 appears between E ¼ N2f0 and
E1, where E1 is energy at T ¼ T1 in Fig. 3. The location of the
GWW point would depend on D and it may appear even above
E1. (Right panel) Negative specific heat C at Tc in the u1 ≠ 0
phase. In the three-loop case, it diverges at the critical dimension,
and the negative specific heat phase disappears in D ≥ 36.

TABLE IV. Specific heatC=DN2 of the u1 ≠ 0 phase at T ¼ Tc.
It is positive in the second order phase transition case, while it is
negative in the first order transition case. Also, it tends to diverge at
the critical dimension D ¼ 35.5 in the three-loop case. The 1=D
expansion result is from (D5). The negative specific heat at D ¼ 2
in the 1=D expansion is an error due to the failure of the expansion.
At D ¼ 2, the subleading term in b (D4) becomes larger than the
leading term and it makes 1=b negative after the expansion
although b is positive. Note that no one has succeeded in the
computation of the specific heat at T ¼ Tc via MC.

D Two-loop Three-loop 1=D expansion

2 −0.4 −0.25 −0.45
3 −0.7 −0.52 0.13
9 −2.6 −4.2 2.4
25 −6.1 −35.1 4.4
35 −7.4 −930 5.0
36 −7.5 1069 5.1
40 −7.9 122 5.2
100 −11.7 16.2 6.7
500 −17.9 6.42 9.3
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couplings of the Polyakov loops such as ju1j6 in the
effective action (4). We leave this problem for future work.
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APPENDIX A: THE EFFECTIVE ACTION (4)
AT THREE-LOOP

In this Appendix, we derive the effective action (4) at
three-loop order. Starting from the deformed action (3), we
compute the effective action of the Polyakov loop fung by
integrating out XI through the standard perturbative cal-
culation with respect to κ. It will lead to the expansion,

Seffðfung;MÞ ¼
X3
m¼1

κm−1Sm-loop: ðA1Þ

The analysis mainly follows that of the massive Banks-
Fischler-Shenker-Susskind model [20]. In order to compute
this expansion, we use the propagator of XI in the static
diagonal gauge ðAtÞij ¼ αiδij [30],

hXI
ijðtÞXJ

klð0Þi

¼ δilδjkδ
IJ 1

2M
eiðαi−αjÞktk

×
�
e−Mktk X∞

n¼0

xnuinu
j
−n þ eMktkX∞

n¼1

xnui−nu
j
n

�
: ðA2Þ

Here x≔e−βM and ktk denotes ktþ nβk ¼ t for 0 ≤ t < β.
uin ≔ eiβnαi , which satisfies

P
N
i¼1 u

i
n ¼ Nun, where un is

the nth Polyakov loop defined in (2).
Through the one-loop integral, we obtain

S1-loop=N2 ¼ DβM
2

þ
X∞
n¼1

1 −Dxn

n
junj2: ðA3Þ

At two-loop, we obtain

S2-loop ¼
	Z

β

0

dtTr

�
−
g2

4
½XI; XJ�2 −M2

2
ðXIÞ2

�

; ðA4Þ

where

	Z
β

0

dtTr

�
−
g2

4
½XI;XJ�2

�


¼ βN2λ

8M2
DðD− 1Þ þ βN2λ

4M2
DðD− 1Þ

X∞
n¼1

ðx2n þ 2xnÞjunj2

þ βN2λ

8M2
DðD− 1Þðx2 þ 2x3Þðu21u−2 þ u2−1u2Þ þ � � � ;

ðA5Þ
	Z

β

0

dtTr

�
−
M2

2
ðXIÞ2

�


¼ −M2
∂

∂ðM2Þ S1-loop

¼ −
DN2βM

4
−
DN2βM

2

X∞
n¼1

xnjunj2: ðA6Þ

Here (A5) has been computed via the planar diagram
depicted in Fig. 6, and … denotes the irrelevant terms at
low temperatures. On the other hand, (A6) can be generated
from the one-loop result (A3).
In order to compute the three-loop corrections, we need

to evaluate

−
1

2

	Z
β

0

dtTr

�
−
g2

4
½XI; XJ�2

�Z
β

0

dt0Tr
�
−
g2

4
½XI; XJ�2

�

connected

¼ SA3-loop þ SB3-loop þ SC3-loop: ðA7Þ

Here the last three terms are from the three diagrams depicted in Fig. 6, and we obtain

FIG. 6. Planar diagrams to compute the effective action. At
three-loop order, the diagrams A, B and C correspond to SA3-loop,
SB3-loop and SC3-loop in (A7), respectively.
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SA3-loop=N
2 ¼ −β

3λ2

128M5
DðD − 1Þ − 3βλ2

32M5
DðD − 1Þð2βMx2 − x3 þ x2 þ 3xÞju1j2

−
3βλ2

64M5
DðD − 1Þð2βMx2 − 2x4 þ 5x2Þju1j4 −

3βλ2

32M5
DðD − 1Þð4βMx4 − x6 þ x4 þ 3x2Þju2j2

−
3βλ2

32M5
DðD − 1Þð4βMx3 − x5 − x4 þ 3x3 þ 2x2Þðu2u2−1 þ u−2u21Þ þ � � � ; ðA8Þ

SB3-loop=N
2 ¼ −β

λ2

32M5
DðD − 1Þ2 − βλ2

16M5
DðD − 1Þ2ðβMð2x2 þ xÞ þ 3x2 þ 3xÞju1j2

−
3βλ2

16M5
DðD − 1Þ2ðβMx3 þ x3Þju1j4 −

βλ2

16M5
DðD − 1Þ2ð2βMð2x4 þ x2Þ þ 3x4 þ 3x2Þju2j2

−
βλ2

32M5
DðD − 1Þ2ð2βMð2x4 þ 3x3 þ x2Þ þ 3x4 þ 6x3 þ 3x2Þðu2u2−1 þ u−2u21Þ þ � � � ; ðA9Þ

SC3-loop=N
2 ¼ −β

λ2

16M5
DðD − 1Þ2 − βλ2

8M5
DðD − 1Þ2ðβMxðxþ 1Þ2 þ x3 þ 2x2 þ 3xÞju1j2

−
βλ2

8M5
DðD − 1Þ2ð2βMx4 þ x4 þ 2x2Þju1j4 −

βλ2

8M5
DðD − 1Þ2ð2βMðx6 þ 2x4 þ x2Þ þ x6 þ 2x4 þ 3x2Þju2j2

−
βλ2

8M5
DðD − 1Þ2ðβMð2x5 þ x4 þ 4x3 þ x2Þ þ x5 þ x4 þ 3x3 þ x2Þðu2u2−1 þ u−2u21Þ þ � � � : ðA10Þ

In addition, we need to compute

−
	Z

β

0

dtTr

�
−
M2

2
ðXIÞ2

�Z
β

0

dt0Tr
�
−
g2

4
½XI; XJ�2

�

connected

¼ −M2
∂

∂M2

	Z
β

0

dtTr

�
−
g2

4
½XI; XJ�2

�


¼ βN2λ

8M2
DðD − 1Þ þ βN2λ

4M2
DðD − 1Þ

X∞
n¼1

ððnβM þ 1Þx2n þ ð2þ nβMÞxnÞjunj2

þ βN2λ

8M2
DðD − 1ÞððβM þ 1Þx2 þ ð3βM þ 2Þx3Þðu21u−2 þ u2−1u2Þ þ � � � ; ðA11Þ

and

−
1

2

	Z
β

0

dtTr

�
−
M2

2
ðXIÞ2

�Z
β

0

dt0Tr
�
−
M2

2
ðXIÞ2

�

connected

¼ 1

2
M4

∂2

∂ðM2Þ2 S1-loop ¼ −β
DN2M
16

−
DN2

8

X∞
n¼1

ðnðβMÞ2 þ βMÞxnjunj2: ðA12Þ

The three-loop correction S3-loop in (A1) is given as the sum of (A7), (A11) and (A12).
By substituting these results to (A1), we can read off the effective action at three-loop order,

Seffðfung;MÞ ¼ N2ðβf0 þ f1ju1j2 þ f2ju1j4 þ f3ju2j2 þ f4ðu2u2−1 þ u−2u21Þ þ � � �Þ: ðA13Þ

Here

f0 ¼
DM
2

þ κ

�
λ

8M2
DðD − 1Þ −DM

4

�
þ κ2

�
−

3λ2

128M5
DðD − 1Þ − 3λ2

32M5
DðD − 1Þ2 þ λ

8M2
DðD − 1Þ −DM

16

�
; ðA14Þ
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f1 ¼ 1 −Dxþ κ

�
βλ

4M2
DðD − 1Þðx2 þ 2xÞ − 1

2
βDMx

�
þ κ2

�
−

3βλ2

32M5
DðD − 1Þð2βMx2 − x3 þ x2 þ 3xÞ

−
βλ2

16M5
DðD − 1Þ2ðβMð2x2 þ xÞ þ 3x2 þ 3xÞ − βλ2

8M5
DðD − 1Þ2ðβMxðxþ 1Þ2 þ x3 þ 2x2 þ 3xÞ

þ βλ

4M2
DðD − 1Þðx2ðβM þ 1Þ þ xðβM þ 2ÞÞ − 1

8
DxððβMÞ2 þ βMÞ

�
; ðA15Þ

f2 ¼ κ2
�
−

3βλ2

64M5
DðD− 1Þð2βMx2 − 2x4 þ 5x2Þ− 3βλ2

16M5
DðD− 1Þ2ðβMx3 þ x3Þ− βλ2

8M5
DðD− 1Þ2ð2βMx4 þ x4 þ 2x2Þ

�
;

ðA16Þ

f3 ¼
1

2
ð1 −Dx2Þ þ κ

�
βλ

4M2
DðD − 1Þðx4 þ 2x2Þ − 1

2
βDMx2

�
þ κ2

�
−
D
8
ð2ðβMÞ2 þ βMÞx2

þ βλ

4M2
DðD − 1Þðð2βM þ 1Þx4 þ ð2þ 2βMÞx2Þ − βλ2

8M5
DðD − 1Þ2ð2βMðx6 þ 2x4 þ x2Þ þ x6 þ 2x4 þ 3x2Þ

−
βλ2

16M5
DðD − 1Þ2ð2βMð2x4 þ x2Þ þ 3x4 þ 3x2Þ − 3βλ2

32M5
DðD − 1Þð4βMx4 − x6 þ x4 þ 3x2Þ

�
; ðA17Þ

f4 ¼ κ
βλ

8M2
DðD − 1Þðx2 þ 2x3Þ þ κ2

�
βλ

8M2
DðD − 1ÞððβM þ 1Þx2 þ ð3βM þ 2Þx3Þ

−
3βλ2

32M5
DðD − 1Þð4βMx3 − x5 − x4 þ 3x3 þ 2x2Þ − βλ2

32M5
DðD − 1Þ2ð2βMð2x4 þ 3x3 þ x2Þ þ 3x4 þ 6x3 þ 3x2Þ

−
βλ2

8M5
DðD − 1Þ2ðβMð2x5 þ x4 þ 4x3 þ x2Þ þ x5 þ x4 þ 3x3 þ x2Þ

�
: ðA18Þ

We have used x ¼ e−βM. If we are interested in the two-
loop effective action, we should simply ignore Oðκ2Þ terms
in this result.

APPENDIX B: THE DETAILS OF THE
DERIVATION OF THE CRITICAL DIMENSION

To show the details of the derivations of the critical
dimension in Sec. II C, we analyze the effective action
(A13) and discuss how we determine the phase structure.
We will mainly show the analysis at two-loop, since the
three-loop analysis is almost parallel. [Recall that we
remove Oðκ2Þ terms in (A13) when we consider the
two-loop effective theory.] We set κ ¼ 1 in (A13) hereafter
to use the principle of the minimum sensitivity.
First, we consider a low temperature regime. There,

x ¼ e−βM would be small, and f1 and f3 would be positive.
Then, to make the effective action (A13) small, hu1i ¼
hu2i ¼ 0 would be favored. Thus, the effective action
(A13) would become Seff ¼ βN2f0ðMÞ.
Here, we need to determine M. As we have discussed

in (5), we fixM such that theM dependence of the effective
action is minimized. From (A14), we find that at

M0 ¼ λ1=3ðD − 1Þ1=3; ðB1Þ

∂Mf0 at two-loop becomes 0 and is minimized. Then we
obtain the free energy at low temperatures as

F ¼ Seff=β ¼ N2f0ðM0Þ ¼
3

8
N2Dλ1=3ðD − 1Þ1=3: ðB2Þ

This result is shown in Fig. 2 and Table II. We find good
agreement with the MC results even at two-loop order.
Next, in order to investigate the phase transition, we

computeMi and f̄i defined in (9) and (11). However, since
∂Mf0 ¼ 0 atM ¼ M0, we obtain f̄i ¼ fi for i ¼ 1, 3, 4 and
we need to evaluate only M1 and f̄2. By substituting the
expansion (9) into the equation ∂MSeff ¼ 0, we find

M1 ¼ −
∂Mf1
β∂2

Mf0
; f̄2 ¼ −

1

2

ð∂Mf1Þ2
β∂2

Mf0
: ðB3Þ

The explicit formulas for these equations are rather messy,
and we omit showing them, but one can obtain them easily
by using Mathematica.
Now, we are ready to discuss the critical phenomena.

As we have argued below (12), the critical temperature can
be found through
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0 ¼ aðTÞ ¼ 1 −De−βM0 þD
4
βM0e−2βM0 : ðB4Þ

This equation can be solved numerically and the result is
summarized in Fig. 2 and Table III. Again our results seem
to be consistent with the MC results.
Finally, we determine the order of the phase transition.

Through the discussions around (13), it is determined by
the signature of b defined in (12) at the critical temperature.
We numerically see that it is always negative as shown in
Fig. 4 and indicates the first order phase transition for any
D at two-loop order. [As we will shown in (D9), we can
confirm it analytically, if D is large.]
So far, we have shown the two-loop results. Now we will

move on to the three-loop case. The three-loop calculation
is almost parallel to the two-loop analysis. One significant
difference is that the minimum of j∂Mf0j in (5) is not zero.
Hence we need to find the minimum via ∂2

Mf0 ¼ 0, and
obtain

M0 ¼
151=3λ1=3

2
ðD − 3=4Þ1=3: ðB5Þ

The rest of the calculations are straightforward. We obtain
the free energy in the confinement phase as

F ¼ N2f0ðM0Þ ¼ N2λ1=3
Dð1412D − 1187Þ
160ð30ð4D − 3ÞÞ2=3 : ðB6Þ

This result is shown in Fig. 2 and Table II.
Next, we fix Mi via ∂2

MSeff ¼ 0 near the critical temper-
ature, and obtain

Mi ¼ −
∂2
Mfi

β∂3
Mf0

; ði ¼ 1; 3; 4Þ;

M2 ¼ −
1

β∂3
Mf0

�
∂2
Mf2 − ∂3

Mf1
∂2
Mf1

β∂3
Mf0

þ ∂4
Mf0
2β

�∂2
Mf1

∂3
Mf0

�
2
�
; ðB7Þ

where fi are evaluated at M ¼ M0. Then f̄i, a and b
are derived through (11) and (12). Finally, by solving
aðTcÞ ¼ 0 and evaluating bðTcÞ numerically, we obtain the
critical temperatures and the orders of the phase transitions
as shown in Fig. 2 and 4.

APPENDIX C: OTHER OBSERVABLES AND
SPECIFIC HEAT

We can also compute other observables via our analysis.
For example, the vevs of the square of the adjoint scalars
XI , which have been investigated in the MC studies
[28,31], can be derived as

R2 ≔
g2

N
hTrXIXIi

¼ 2λ

βM2
ð−κ∂κSeff þ λ∂λSeffÞjκ→1; ðC1Þ

where Seff is the effective action (A1). In the confinement
phase, it can be calculated as

R2 ¼ λ2=3D

2ðD − 1Þ1=3 ; ðtwo-loopÞ; ðC2Þ

R2 ¼ λ2=3Dð148D − 103Þ
15 × 301=3ð4D − 3Þ4=3 ; ðthree-loopÞ: ðC3Þ

These quantities agree with the MC studies [31] as shown
in Table V.
We can also compute specific heat C from the free

energy through the ordinary thermodynamical relation, and
we obtain

C=N2 ¼ ∂TE ¼ Oð1=N2Þ; ðT < Tc; u1 ¼ 0Þ;

¼ T2
cc2

2b
ðT ¼ Tc; u1 ≠ 0Þ; ðC4Þ

where we have used (14) and

b ¼ f̄2 −
f̄24
f̄3

; c ¼ ∂aðTÞ
∂T : ðC5Þ

[a, b, and f̄i are defined in (11) and (12).] The specific heat
is very small in the confinement phase due to the large-N
volume independence, which strongly suppresses temper-
ature dependence of physical quantities [16,52]. It becomes
positive in the second order phase transition case, since
b > 0, while it becomes negative in the first order transi-
tion case (b < 0). Phases with negative specific heat are
unphysical in usual thermodynamical systems. However,
in our case, it becomes physical in the microcanonical
ensemble [24]. (See [41–43] for some discussions on
phases with negative specific heat.) Also, the specific

TABLE V. R2 defined in (C1) in the confinement phase. We
have used the unit λ ¼ 1. The two-loop and three-loop results are
from (C2) and (C3), respectively. The 1=D expansion results are
from (D2). The MC results are from the unpublished data in [31].

D Two-loop Three-loop 1=D expansion MC ðT ¼ 0.50Þ
2 1.0 0.969 0.996 1.15 ðN ¼ 60Þ
3 1.19 1.17 1.41 1.31 ðN ¼ 32Þ
4 1.39 1.37 1.42 1.45 ðN ¼ 32Þ
5 1.57 1.56 1.61 1.62 ðN ¼ 24Þ
6 1.75 1.74 1.79 1.81 ðN ¼ 32Þ
9 2.25 2.24 2.28 2.29 ðN ¼ 32Þ
13 2.84 2.83 2.87 2.87 ðN ¼ 32Þ
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heat (C4) at the critical temperature tends to diverge as D
approaches to the critical dimension D ¼ 35.5, where b
crosses 0. (Of course, D is digit, and b cannot be 0.) The
result is summarized in Fig. 5 and Table IV.

APPENDIX D: LARGE-D LIMIT

At large-D, the 1=D expansion [30] would be reliable.
Hence, it would be valuable to evaluate our results at large-
D and compare them with the 1=D expansion [30].
In the large-D expansion, we obtain the following

quantities:

F=N2jβ→∞ ¼ DðλDÞ1=3

×
�
3

8
þ 1

D

�
−
81

64
þ

ffiffiffi
5

p

2

�
þOð1=D2Þ

�
;

ðD1Þ

R2jβ→∞ ¼ðλDÞ2=3
�
1

2
þ 1

D

�
7

ffiffiffi
5

p

30
−

9

32

�
þOð1=D2Þ

�
;

ðD2Þ

βc ¼
logD

ðλDÞ1=3
�
1þ 1

D

�
203

160
−

ffiffiffi
5

p

3

�
þOð1=D2Þ

�
:

ðD3Þ

These are from (4.27), (4.33) with (4.25) and (4.30) in [30],
respectively. Besides, we evaluate bðTcÞ in the effective
action (12), which fixes the order of the transition, as

bjT¼Tc
¼ logD

D

�
1

3
þ 1

D

�
1049

600
−
197

ffiffiffi
5

p

600
−

33

400
logD

�

þOð1=D2Þ
�
; ðD4Þ

where we have used (4.29) and (4.30) in [30]. This is
always positive and the 1=D expansion predicts the second
order phase transition at large-D. Through (C4), we obtain
the specific heat at T ¼ Tc as

C=N2jT¼Tc
¼ 3

2
D logD −

3 logD
800

ð2098 − 394
ffiffiffi
5

p

− 99 logDÞ þOð1=DÞ: ðD5Þ

We will compare these quantities with our results at
large-D.

First, we evaluate our two-loop results at large-D.
At two-loop, we can solve (B4) at large-D and obtain
the critical temperature analytically. Then, we obtain

F=N2jβ→∞ ¼ DðλDÞ1=3
�
3

8
−

1

8D
þOð1=D2Þ

�
; ðD6Þ

R2jβ→∞ ¼ ðλDÞ2=3
�
1

2
þ 1

6D
þOð1=D2Þ

�
; ðD7Þ

βc ¼
logD

ðλDÞ1=3
�
1þ 1

12D
þOð1=D2Þ

�
; ðD8Þ

bjT¼Tc
¼ −

1

6D
logDð1þOð1=DÞÞ; ðD9Þ

C=N2jT¼Tc
¼ −3D logD

�
1þO

�
1=D

��
. ðD10Þ

Thus, b is negative, and it does not agree with the 1=D
expansion (D4). On the other hand, the leading order terms
of F, R2 and βc in our results are precisely coincident with
those of the 1=D expansion, although the 1=D corrections
differ. Since the results of the 1=D expansion [30] would be
reliable at large-D, these quantities at two-loop order are
accidentally very good at large-D.
Next, we consider the three-loop results. Different from

the two-loop case, we cannot solve Tc in the three-loop
case analytically even at large-D. From (B6) and (C3), we
obtain

F=N2jβ→∞¼DðλDÞ1=3
�

1412

160ð120Þ2=3þOð1=DÞ
�
; ðD11Þ

R2jβ→∞ ¼ðλDÞ2=3
�

148

60ð120Þ1=3 þOð1=DÞ
�
: ðD12Þ

Thus, they do not agree with (D1) and (D2) in the
1=D expansion. However, these are numerically not
bad. For F, if we compare the coefficients of the leading
terms of (D1) and (D11), we obtain 3=8 ¼ 0.375 and
1412=160ð120Þ2=3 ¼ 0.363… and the error is 3%
only. Similarly, for R2, we have 1=2 ¼ 0.5 and
148=60ð120Þ1=3 ¼ 0.500092…, and they are very close.
Hence, we presume that the convergence of the principle
of the minimum sensitivity at large-D would be good in
our model.
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