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We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a
nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix
regularization. We construct the matrix regularization explicitly for the case of the sphere and torus based
on the Berezin-Toeplitz quantization, and also discuss a possible generalization to cases with higher genera.
We also discuss the matrix version of the Laplacian acting on the rectangular matrices.
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I. INTRODUCTION

The matrix regularization plays important roles in the
matrix-model formulations of M-theory or superstring
theory [1,2]. The first quantized theory of a membrane
or a string is mapped by the matrix regularization to the
matrix model [3], which is conjectured to give a non-
perturbative formulation of M-theory or superstring theory.
In the matrix regularization, functions on a closed

symplectic manifold ðM;ωÞ are linearly mapped to N ×
N matrices. In this paper, we consider the case that the
manifoldM is a closed Riemann surface, which is relevant
to the regularizations of closed membranes or strings. In
this case, the main property of the matrix regularization is
that, for any f; g ∈ C∞ðMÞ, their images TNðfÞ; TNðgÞ ∈
MNðCÞ of the matrix regularization satisfy [4]

lim
N→∞

jjTNðfÞTNðgÞ − TNðfgÞjj ¼ 0;

lim
N→∞

jjN½TNðfÞ; TNðgÞ� − iTNðff; ggÞjj ¼ 0;

lim
N→∞

1

N
TrTNðfÞ −

1

2πV

Z
M

ωf ¼ 0; ð1:1Þ

where jj · jj is a matrix norm, f; g is the Poisson bracket on
M defined by ω, and V ¼ RM ω=2π is the symplectic

volume. The first two properties show that the matrix
regularization approximately preserves two algebraic struc-
tures of functions associated with the ordinary pointwise
product and the Poisson bracket. For Riemann surfaces, the
matrix regularization satisfying (1.1) can be constructed by
using the Berezin-Toeplitz quantization [5–8], which we
will review later.
In this paper, we consider a generalization of the above

setup to Riemann surfaces with nonzero magnetic flux.
Suppose that there exists a Uð1Þ magnetic flux on M asR
M F=2π ¼ Q with Q a nonzero integer. Note that the
gauge field A of the field strength F cannot be globally
defined, since any globally defined connection would lead
to
R
M dA=2π ¼ R∂M A=2π ¼ 0 for a closed manifold. The

gauge field A should be defined on each local patch and, on
an overlap of any two patches, they are related to each other
by gauge transformations. A typical example is given by
the Wu-Yang monopole configuration on S2, which we will
review in later sections. Complex scalar fields coupling
to A through the gauge covariant derivative are also
defined locally and receive gauge transformations on the
overlaps. In the matrix regularization, only globally defined
functions are usually considered. We will consider the
matrix regularization of locally defined fields, which
couple to the gauge field of the nontrivial magnetic flux.
This setup will be relevant for describing D-branes in terms
of matrices, on which there can exist nontrivial gauge
fluxes.
The locally defined scalar fields are mathematically said

to be local sections of the complex line bundle on M with
the connection A, where the globally defined fields corre-
spond to the special case of the trivial bundle with A ¼ 0.
The local sections form a module of the algebra C∞ðMÞ.
Here, a left module ML of a unital algebra A is an Abelian
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group such that there exists an operation ·∶A ×ML → ML
which satisfies

f · ðaþ bÞ ¼ f · aþ f · b;

ðf þ gÞ · a ¼ f · aþ g · a;

ðfgÞ · a ¼ f · ðg · aÞ;
1A · a ¼ a; ð1:2Þ

for all f; g ∈ A and a; b ∈ ML, where 1A is the identity
element of A. Similarly, the right module can also be
defined with the right multiplication. For the case of the
local sections of the line bundle, A ¼ C∞ðMÞ and multi-
plying an element of C∞ðMÞ to local sections gives the
operation ·. In physical terminology, (1.2) is just the
property that Uð1Þ charged fields with the same charge
form a vector space and a product of a Uð1Þ charged field
and a neutral field gives another charged field with the same
charge. In this case, the left and right multiplication gives
the same operation, so the local sections give left and right
modules of the algebra C∞ðMÞ.
The Serre-Swan theorem [9] states that vector bundles on

M are dual to modules of the corresponding algebra of
functions on M. The fuzzy counterpart of this theorem
would suggest a correspondence between the fuzzy version
of vector bundles and modules of the matrix algebra
MNðCÞ. Any module of MNðCÞ can be written as a set
of rectangular matrices.1 Thus, it is expected that the matrix
regularization should be generalized such that the charged
scalar fields are mapped to rectangular matrices.
For the fuzzy sphere, there is indeed such a mapping

from local sections to rectangular matrices [10–12] (see
also [13,14] for the fuzzy CPn). In [15,16], it is shown that
the map can be formally constructed for Kähler manifolds.
The main property of this map is that the relation,

lim
N→∞

jjTNðfÞTNN0 ðaÞ − TNN0 ðf · aÞjj ¼ 0; ð1:3Þ

holds for any smooth function f and local section a of a
complex line bundle, where TNN0 is the linear map from
local sections to N × N0 rectangular matrices. The differ-
ence N0 − N corresponds to the monopole charge (the
Chern number) of the line bundle and this should be kept
fixed when one takes the large-N limit. The property (1.3)
guarantees that the structure of the module (1.2) is
approximated well in terms of the rectangular matrices.
Note that when N ¼ N0, the charge is vanishing and the
local sections are just ordinary functions. In this case, TNN0

reduces to TN and (1.3) just means the first property
of (1.1).

In this paper, after presenting a general construction of
the maps TN and TNN0 , we first show that this construction
can be embedded in the Berezin-Toeplitz quantization in a
Uð2Þ gauge theory. Then, we explicitly demonstrate the
construction for the sphere and the torus. In the case of the
fuzzy sphere, this construction gives the well-known fuzzy
spherical harmonics [10–12,14]. For the fuzzy torus, this
provides rectangular matrices written in terms of elliptic
functions. We will also construct fuzzy versions of the
Laplacians, which act on the rectangular matrices and
realize the continuum spectra in the commutative limit.
We also discuss the case of Riemann surfaces with

higher genera. In this case, we could not explicitly con-
struct the mappings due to some technical difficulties. In
particular, we will discuss that obtaining the orthonormal
basis of spinors, which is necessary for defining each
matrix element of TN and TNN0 , is technically difficult to
compute, though a nonorthonormal basis can be generally
written down. Nevertheless, we present a general form of
the Bergman kernel, which formally defines the map TNN0 .
This paper is organized as follows. In Sec. II, we review

the Berezin-Toeplitz quantization, which gives systematic
constructions of TN and TNN0 . We also discuss that these
constructions are unified in the Berezin-Toeplitz quantiza-
tion in a Uð2Þ gauge theory. In Secs. III and IV, we
explicitly construct this mapping for the case of the sphere
and the torus, respectively. In Sec. V, we discuss the
generalization to surfaces with higher genera. In Sec. VI,
we summarize our results and discuss possible applications.
In the appendixes, we show some details.

II. BEREZIN-TOEPLITZ QUANTIZATION

In this section, we review the Berezin-Toeplitz quanti-
zation and its generalization to rectangular matrices. We
also show that the quantizations with square and rectan-
gular matrices can be reformulated in terms of a Uð2Þ
gauge theory. In the following, we denote a closed Riemann
surface by M.

A. Quantization for functions

Let us first briefly outline the Berezin-Toeplitz quanti-
zation for C∞ðMÞ. In this quantization, one first needs to
construct zero modes of a certain Dirac operator.2 Let N be
the number of independent zero modes and fψ IjI ¼
1; 2;…; Ng be an orthonormal basis of the zero modes.
Then, the Berezin-Toeplitz quantization is given by a map

TNðfÞIJ ¼
Z
M

ωψ†
J · fψ I; ð2:1Þ

where · means the contraction of spinor indices. This map
satisfies (1.1), if appropriate geometric quantities are used

1The set of all N × N0 or N0 × N matrices gives a left or right
module of MNðCÞ, respectively.

2Instead of the Dirac zero modes, one can use holomorphic
sections of complex line bundles [5–7].
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in the construction of the zero modes or the Dirac operator,
as we will explain below.3

A more detailed setup is as follows. Let ðg;ω; JÞ be a
Kähler structure on M, which is a compatible triple of a
metric, a symplectic form, and a complex structure. The
surfaceM has a spin structure associated with J. Let S be a
spinor bundle onM. The fiber of S is C2 and sections of S
are spinors with two components. We define a Dirac
operator acting on sections of S by

D ¼ iσaθμaDμ ¼ iσaθμa

�
∂μ þ

1

4
Ωμbcσ

bσc − iNAμ

�
; ð2:2Þ

where σa (a ¼ 1, 2) are Pauli matrices, Ωμab and θμa are the
spin connection and the inverse of the zweibein for the
metric g, respectively, and N is a positive integer corre-
sponding to the charge of the spinor fields. We choose the
gauge field A to be the symplectic potential, namely, A is
given by ω ¼ VdA on each local patch, where
V ¼ RM ω=2π. The field strength F ¼ dA then satisfiesR
M F=2π ¼ 1. See Appendix A for a detailed definition of
the Dirac operator. With this setup, it follows from the
index theorem that the number of zero modes of (2.2) is
equal to N. Let fψ IjI ¼ 1; 2;…; Ng be an orthonormal
basis of the zero modes, with respect to the inner product

ðψ ;ψ 0Þ ¼
Z
M

ωψ† · ψ 0: ð2:3Þ

Then, the Toeplitz operator for f ∈ C∞ðMÞ is defined by
(2.1). It is shown that with this definition, (2.1) satisfies the
main properties (1.1) of the matrix regularization [7,8].

B. Quantization for local sections

The spinor fields of S transform as ψ → eiNαψ under a
gauge transformation, where α is a local gauge parameter.
We can consider complex scalar fields with charge Q,
which transform as φ → eiQαφ. In this subsection, we
consider a matrix regularization of such charged scalar
fields.
One cannot use (2.1) for the charged fields, since ψ†

J ·
φψ I is not gauge invariant. In order to make a gauge
invariant mapping, we introduce two copies of the spinor
bundles SðNÞ and SðN0Þ which have the same connection A

but different charges, N and N0, respectively. Let fψ ðNÞ
I jI ¼

1; 2;…; Ng and fψ ðN0Þ
I jI ¼ 1; 2;…; N0g be orthonormal

bases of the Dirac zero modes, which transform as ψ ðNÞ
I →

eiNαψ ðNÞ
I and ψ ðN0Þ

I → eiN
0αψ ðN0Þ

I . Then, for a given charged
scalar φ with charge Q, we define a rectangular matrix

TNN0 ðφÞIJ ¼
Z
M

ωψ ðN0Þ†
J · φψ ðNÞ

I : ð2:4Þ

In order for this to be gauge invariant, N and N0 have to be
related by N0 − N ¼ Q. Note that (2.4) reduces to (2.1) for
Q ¼ 0. The map (2.4) can also be formulated in terms of
the Bergman kernel, which is a projection operator onto the
Dirac zero modes. See Appendix B for this formulation.
The map (2.4) has the property (1.3) [16]. See

Appendix C for the proof. Thus, it indeed gives a natural
matrix regularization of the charged scalar fields.

C. Quantization in Uð2Þ gauge theory

Here, we show that the map (2.4) is naturally obtained as
Toeplitz operators in a Uð2Þ gauge theory.
Note that the definition of (2.1) can be generalized such

that the gauge group of A is non-Abelian [18,21,22].
Suppose that the gauge group is Uð2Þ and S is the spinor
bundle in the fundamental representation. We represent the
two-dimensional vector space of the fundamental repre-
sentation by using the two-component representation

�
ψ

ψ 0

�
; ð2:5Þ

where each upper and lower component is a spinor on M.
On these spinors, we can consider actions of adjoint scalar
fields of Uð2Þ, which can be represented as 2 × 2 matrices:

�
ψ

ψ 0

�
→

�
φ11 φ12

φ21 φ22

��
ψ

ψ 0

�
: ð2:6Þ

We then consider a quantization of the algebra of the
adjoint scalars using the Toeplitz operators.
In order to realize the mapping (2.4), let us consider a

special case4 where only the connection of a diagonal Uð1Þ
subgroup is nontrivial and the Dirac operator takes the form

D¼ iσaθμa

�
∂μ þ

1

4
Ωμbcσ

bσc − i

�
NAμ 0

0 N0Aμ

��
; ð2:7Þ

where Aμ is a Uð1Þ connection satisfying
R
M F=2π ¼ 1.

Namely, the upper and lower components of the funda-
mental representation transform as spinors with charge N
and N0, respectively, under the diagonal Uð1Þ gauge
transformation. The spinor bundle is thus decomposed to
a direct sum of SðNÞ and SðN0Þ introduced in the previous
subsection. From (2.6), we see that the (1,2) and (2,1)
elements of an adjoint scalar field behave as fields with

3The Berezin-Toeplitz quantization also naturally appears in
the Landau problem and the problem of tachyon condensation on
D-branes. For example, see [17,18] and [19,20] for these
contexts, respectively.

4It is worth pointing out that this configuration of the Uð2Þ
connection is also recovered as solutions of the equation of
motion of a matrix model which formulates pure Yang-Mills
theory on fuzzy spaces [23,24].
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charge N − N0 and N0 − N, respectively, while the diagonal
elements behave as neutral fields. A basis of zero modes of
the Dirac operator is given by fΨIjI ¼ 1; 2;…; N þ N0g
with

ΨI ¼
�
ψ ðNÞ
I

0

�
for I ¼ 1; 2;…; N;

ΨI ¼
�

0

ψ ðN0Þ
I−N

�
for I ¼ N þ 1; N þ 2;…; N þ N0;

ð2:8Þ

where ψ ðNÞ
I and ψ ðN0Þ

I are bases introduced in the previous
subsection. For an adjoint scalar field φ, the Toeplitz
operator is defined by

TNþN0 ðφÞIJ ¼
Z
M

ωΨ†
J · φΨI: ð2:9Þ

If we consider a complex adjoint scalar with only a (2,1)
element, the Toeplitz operator (2.9) is nonvanishing only
for I ¼ 1; 2;…; N and J ¼ N þ 1; N þ 2;…; N þ N0.
Thus, we obtain the rectangular map (2.4) as a special
case of the Berezin-Toeplitz quantization in theUð2Þ gauge
theory. Note that the quantization of the diagonal elements
of scalar fields gives the mapping between neutral fields
and square matrices. Hence, this formulation using the
Uð2Þ gauge theory gives a unified quantization for charged
and noncharged fields.

III. FUZZY SPHERE

In this section, we construct the quantization on a
sphere S2.

A. Geometry of S2 with a magnetic flux

We define two open subsets of S2 by U1 ¼ fðθ;ϕÞj0 ≤
θ < πg and U2 ¼ fðθ;ϕÞj0 < θ ≤ πg, where ðθ;ϕÞ are the
polar coordinates and 0 < ϕ ≤ 2π. We also define the
stereographic coordinates on U1 and U2 by z ¼
tanðθ=2Þeiϕ and w ¼ 1=z, respectively.
We define a Kähler metric on S2 by

g ¼ 2dzdz̄
ð1þ jzj2Þ2 : ð3:1Þ

The compatible symplectic form is then given by (A2) and
the volume is V ¼ RS2 ω=2π ¼ 1. With respect to this
metric, we can choose a Kähler potential, which is defined
by (A7), as

ρ ¼ logð1þ jzj2Þ: ð3:2Þ

From (A6) and (A8), we also choose a spin connection and
Uð1Þ gauge field defined on U1 as

Ω12 ¼ −i
z̄dz − zdz̄
1þ jzj2 ;

A ¼ −
i
2

z̄dz − zdz̄
1þ jzj2 ; ð3:3Þ

respectively. Note that we have Ωabσ
aσb=4 ¼ iAσ3 in this

gauge. This gauge field is known as the Wu-Yang gauge
configuration. On the overlap region U1 ∩ U2, the gauge
field A transforms as

AðwÞ ¼ AðzÞ − dϕ: ð3:4Þ

Let φðQÞ be a complex scalar field with charge Q
coupling to A. Corresponding to the gauge transformation
(3.4), φðQÞ transforms as

φðQÞðwÞ ¼ e−iQϕφðQÞðzÞ; ð3:5Þ

on U1 ∩ U2. In general, φðQÞ can be expanded in terms of

the monopole harmonics YðQÞ
lm [25,26]. See Appendix D for

the definition of YðQÞ
lm .

Let ψ ¼ ðψþ;ψ−Þ be a spinor field on S2, where �
stands for the chirality of each component. In our gauge,
ψ� transform as

ψ�ðwÞ ¼ e�iϕψ�ðzÞ; ð3:6Þ

on U1 ∩ U2. This means that ψ� are charged scalars with
charge ∓ 1.

B. Dirac zero modes on S2

We first construct a Dirac operator (2.2) on S2 and
compute its zero modes. The Dirac operator flips the
chirality, so that it has only off-diagonal elements in the
chiral representation. From (3.2) and (A9), the Dirac
operator is given by [20,27,28]

Dþ ¼
ffiffiffi
2

p
i

�
ð1þ jzj2Þ∂ z̄ þ

N − 1

2
z

�
;

D− ¼
ffiffiffi
2

p
i

�
ð1þ jzj2Þ∂z −

N þ 1

2
z̄

�
; ð3:7Þ

whereD� are the matrix elements ofD acting on the spaces
with chirality�1, respectively. In this section, we also write
N ¼ 2J þ 1 by using a half integer spin J. Note that spinor
fields ψ ðNÞ ¼ ðψ ðNÞþ;ψ ðNÞ−Þ on which D acts transform as

ψ ðNÞ�ðwÞ ¼ e−iðN∓1Þϕψ ðNÞ�ðzÞ ð3:8Þ

on U1 ∩ U2. As shown below, an orthonormal basis

fψ ðNÞ
r jr ¼ −J;−J þ 1;…; Jg of KerD with respect to

the inner product (2.3) can be expressed in terms of the
monopole harmonics as
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ψ ðNÞ
r ¼ ð−1ÞJ−r

�
YðN−1Þ
J−r

0

�
: ð3:9Þ

See Appendix D for the definition of the monopole
harmonics.
In the following, we will derive (3.9). For the decom-

position ψ ¼ ðψþ;ψ−Þ, the Dirac equationDψ ¼ 0 reduces
to two differential equationsD�ψ� ¼ 0.We can easily solve
these equations and find that ψ� ¼ ð1þ jzj2Þ∓ðN∓1Þ=2h�,
where hþ and h− are arbitrary holomorphic and antiholo-
morphic functions onU1, respectively.We focus on the norm
of ψ� given by

Z
S2
ωjψ�j2 ¼ i

Z
S2
dzdz̄ð1þ jzj2Þ∓N−1jh�j2: ð3:10Þ

We find that the norm of ψ− does not converge for N ≥ 1
unless h− ¼ 0, whereas the norm of ψþ converges when
the degree of hþ is less than N. Therefore, we find
KerD ¼ KerDþ ¼ N, which is consistent with the index
theorem. Since hþ can be expanded in terms of the basis

1; z; z2;…; zN−1, we can choose ψ ðNÞþ
r as

ψ ðNÞþ
r ¼

ffiffiffiffiffiffi
N
2π

r
1

ð1þ jzj2ÞJ
�

2J
J þ r

�
1=2

zJ−r;

¼
ffiffiffiffiffiffi
N
2π

r
hJrje−iθLðJÞ

2 jJJieiðJ−rÞϕ; ð3:11Þ

where we used z ¼ tanðθ=2Þeiθ in the second equality. By
comparing this with the definition of the monopole harmon-
ics (D4), we finally obtain (3.9).

C. Berezin-Toeplitz quantization on S2

Here, we construct the Berezin-Toeplitz map on S2 and
show that (2.4) relates the monopole harmonics and the so-
called fuzzy spherical harmonics.
By using these Dirac zero modes derived above, we can

construct (2.4) for a charged scalar φðQÞ as

TNN0 ðφðQÞÞrr0 ¼
Z
S2
ωψ ðN0Þ†

r0 · φðQÞψ ðNÞ
r ;

¼ ð−1ÞJþJ0−r−r0
Z
S2
ωðYðN0−1Þ

J0−r0 Þ�φðQÞYðN−1Þ
J−r ;

ð3:12Þ

where N0 − N ¼ Q. Since any charged scalars with charge
Q can be expanded in terms of the monopole harmonics

YðQÞ
lm , we focus only on the mapping of YðQÞ

lm . We introduce a

normalization as ỸðQÞ
lm ¼ ffiffiffiffiffiffi

2π
p

YðQÞ
lm for convenience. Then,

we have

TNN0 ðỸðQÞ
lm Þrr0 ¼ ð−1ÞJþJ0−r−r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞN

N0

r
CJ0−r0
lmJ−rC

J0J0
lQ=2JJ;

¼ ð−1Þ3J−2r−r0þl
ffiffiffiffi
N

p
Clm
JrJ0−r0C

J0J0
JJlQ=2: ð3:13Þ

Here, we used the formula (D5) in the first line and the
symmetric properties for the Clebsch-Gordan coefficients
in the second line. Furthermore, by taking into account the
parity5 for the pairs of J and r, J0 and r0, and l and Q=2 as
well as the relation 2J0 − 2J ¼ Q, we find that

ð−1Þ3J−2r−r0þl ¼ ð−1ÞJ−r0þl ¼ ð−1Þ−Jþr0−Qþl

¼ ð−1Þ−Jþr0−l: ð3:14Þ

Thus, we have

TNN0 ðỸðQÞ
lm Þ ¼ ð−1Þ−lCJ0J0

JJlQ=2ŶlmðJJ0Þ; ð3:15Þ

where ŶlmðJJ0Þ is the fuzzy spherical harmonics [10–12,
14,29–31]. See Appendix E for the definition of ŶlmðJJ0Þ.
Here, the Clebsch-Gordan coefficient in (3.15) is given by

CJ0J0
JJlQ=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1Þ!ðN þQÞ!

ðN þQ=2þ lÞ!ðN þQ=2 − l − 1Þ!

s
: ð3:16Þ

From (3.16), we find that CJ0J0
JJlQ=2 ¼ 1þOð1=NÞ, if l ¼

Oð1Þ as N → ∞. This means that TNN0 ðỸðQÞ
lm Þ coincides

with the fuzzy spherical harmonics in the large-N limit
except for the trivial overall factor ð−1Þ−l.
Note that (3.12) contains the ordinary matrix regulari-

zation for functions as a special case with N0 ¼ N. For
example, the Toeplitz operator for the standard embedding
function into R3,

x1ðθ;ϕÞ ¼ sin θ cosϕ;

x2ðθ;ϕÞ ¼ sin θ sinϕ;

x3ðθ;ϕÞ ¼ cos θ; ð3:17Þ

is given by

TNNðxAÞ ¼
1

J þ 1
LðJÞA; ð3:18Þ

where LðJÞA are the (2J þ 1)-dimensional representation
matrices of the SUð2Þ generators satisfying the Lie algebra

5For example, 2J and 2r are not necessarily even numbers
since J and r can take half-integers. However, 2ðJ þ rÞ must be
an even number from r ¼ −J;−J þ 1;…; J. This also holds for
the pairs in which the sign of either J or r or both is reversed. The
similar discussion can be applied to the pairs of J0 and r0 and l and
Q=2.
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½LðJÞA; LðJÞB� ¼ iϵABCLðJÞC. This is the well-known con-
figuration for the fuzzy sphere [29].

D. Laplacian on fuzzy S2

Here, we construct the matrix Laplacian which acts on
the rectangular matrices (3.15).
The Laplacian for functions on S2 is given by the Casimir

operator of SUð2Þ. Since we have the representation of
SUð2Þ on the space of charged scalar fields with charge Q
as explained in Appendix D, we can naturally define the
Laplacian on the fields by

ΔφðQÞ ¼ ðLðQÞ
A Þ2φðQÞ: ð3:19Þ

Here, LðQÞ
A are the representation of the SUð2Þ generators

defined by (D1). By the definition (D2), the monopole

harmonics YðQÞ
lm are the eigenfunctions of Δ and the

spectrum is given by flðlþ 1Þg where l ¼ jQj=2;
jQj=2þ 1;…;∞. The only difference from the spectrum
of the ordinary spherical harmonics is the presence of the
lower bound of the angular momentum l ¼ jQj=2.
Similarly, there is another representation of SUð2Þ on the

space of rectangular matrices, which is given in
Appendix E. From this structure, it is natural to define
the matrix Laplacian by

Δ̂M ¼ ðLðJJ0Þ
A ∘ Þ2M; ð3:20Þ

for any N × N0 matrix M. Here, LðJJ0Þ
A ∘ are the represen-

tation of the SUð2Þ generators defined by (E1). By the
definition (E2), the fuzzy spherical harmonics ŶlmðJJ0Þ
are the eigenvectors of Δ̂ and the spectrum is given by
flðlþ 1Þg where l ¼ jJ − J0j; jJ − J0j þ 1;…; J þ J0.
Since we have the relation 2J0 − 2J ¼ Q, the spectrum
of Δ̂ coincides with that of Δ except for the cutoff J þ J0,
which depends on the matrix size and goes to infinity in the
large-N limit. From (3.15), we therefore have

Δ̂TNN0 ðỸðQÞ
lm Þ ¼ TNN0 ðΔỸðQÞ

lm Þ; ð3:21Þ

for l ≤ J þ J0.

IV. FUZZY TORUS

In this section, we construct the quantization on a
torus T2.

A. Geometry of T2 with a magnetic flux

A complex torus is defined as a quotient space of the
complex plane,

T2 ≔ C=∼; ð4:1Þ

where ∼ stands for the periodic identifications of a discrete
lattice:

z ∼ z0 ⇔ ∃ n; m ∈ Z∶z ¼ z0 þ nþmτ ðz; z0 ∈ CÞ:
ð4:2Þ

Without loss of generality, the parameter space of τ can be
restricted to the fundamental domain with jτj > 1, ℑτ > 0
and −1=2 < ℜτ < 1=2 as usual. We express z in terms of
two real variables x, y as

z ¼ xþ τy; ð4:3Þ

where x and y are periodic coordinates, for which we take
the fundamental region as x; y ∈ ½0; 1Þ.
We introduce the Kähler metric on T2 as

g ¼ 2dzdz̄: ð4:4Þ

According to (A2), a compatible symplectic form is then
given by

ω ¼ idz ∧ dz̄ ¼ 2ℑτdx ∧ dy: ð4:5Þ

Thus, the symplectic volume will be V ¼ RT2 ω=2π ¼
ℑτ=π. From (A7), the Kähler potential for the metric
(4.4) can be chosen by

ρ ¼ jzþ ζj2 ð4:6Þ

where ζ ≔ ζ1 þ τζ2 and ζ1 and ζ2 are real constants
corresponding to the gauge holonomies along the 1-cycles
on T2. From (A9), the Uð1Þ gauge field is given by

A ¼ π

ℑτ
ℑ½ðz̄þ ζ̄Þdz�: ð4:7Þ

The gauge field A is periodic up to a gauge transforma-
tion as

Aðzþ 1; z̄þ 1Þ ¼ Aðz; z̄Þ þ dλ1;

Aðzþ τ; z̄þ τ̄Þ ¼ Aðz; z̄Þ þ dλ2; ð4:8Þ

where λ1 and λ2 are given by the Wilson loop phases for x
and y directions, respectively:

λ1 ≔
I

dxðAz∂xzþ Az̄∂xz̄Þ ¼
π

ℑτ
ℑðzþ ζÞ;

λ2 ≔
I

dyðAz∂yzþ Az̄∂yz̄Þ ¼
π

ℑτ
ℑ½τ̄ðzþ ζÞ�: ð4:9Þ

The gauge transformation (4.8) is sometimes called the
twisted boundary condition. The spin connection on T2 is
evidently zero from (A6).
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We also introduce spinor fields on T2. Let ψ ðNÞ be a
spinor field with charge N ∈ Z. We impose the twisted
boundary condition as

ψ ðNÞðzþ 1; z̄þ 1Þ ¼ eiNλ1ψ ðNÞðz; z̄Þ

¼ exp

�
iNπ

ℑτ
ℑðzþ ζÞ

�
ψ ðNÞðz; z̄Þ;

ψ ðNÞðzþ τ; z̄þ τ̄Þ ¼ eiNλ2ψ ðNÞðz; z̄Þ

¼ exp

�
iNπ

ℑτ
ℑ½τ̄ðzþ ζÞ�

�
ψ ðNÞðz; z̄Þ:

ð4:10Þ
With this boundary condition, it is easy to see that covari-
ant derivatives of ψ ðNÞ also satisfy the same boundary
condition.

B. Dirac zero modes on T2

Let us construct a Dirac operator on T2. From (4.6) and
(A9), the Dirac operator is given by

Dþ ¼
ffiffiffi
2

p
i

�
∂ z̄ þ

Nπ

2ℑτ
ðzþ ζÞ

�
;

D− ¼
ffiffiffi
2

p
i

�
∂z −

Nπ

2ℑτ
ðz̄þ ζ̄Þ

�
: ð4:11Þ

We decompose a Dirac spinor as ψ ðNÞ ¼ ðψ ðNÞþ;ψ ðNÞ−Þ
and we introduce χ�ðz; z̄Þ by

ψ ðNÞ�ðz; z̄Þ ¼ exp

�
iNπ

2ℑτ
ℑ½ðzþ ζÞ2�

�
χ�ðz; z̄Þ: ð4:12Þ

Then, the Dirac equation Dψ ðNÞ ¼ 0 is equivalent to the
following equations:�

∂ z̄ þ
iNπ

ℑτ
ℑðzþ ζÞ

�
χþ ¼ 0;�

∂z þ
iNπ

ℑτ
ℑðzþ ζÞ

�
χ− ¼ 0: ð4:13Þ

The boundary conditions for χ� are given from (4.10) and
(4.12) as

χ�ðzþ 1; z̄þ 1Þ ¼ χ�ðz; z̄Þ;
χ�ðzþ τ; z̄þ τ̄Þ ¼ exp ð−iNπRe½τ þ 2ðzþ ζÞ�Þχ�ðz; z̄Þ:

ð4:14Þ
Below, we solve (4.13) to determine χ� [32]. Let us first

consider χþ.6 The periodicity of χþ along the x direction
enables us to expand it in a Fourier series:

χþðx; yÞ ¼
X
n∈Z

cnðyÞei2πnx: ð4:15Þ

By substituting (4.15) into (4.13), we obtain the differential
equations for the coefficients cnðyÞ,

c0nðyÞ
cnðyÞ

¼ i2πnτ − 2NπðℑðτÞyþ ℑζÞ ð4:16Þ

for ∀ n ∈ Z, where the prime denotes the y derivative. The
solution to these equations is given by

cnðyÞ ¼ kn exp

�
−Nπ

ℑτ
ðℑðzþ ζÞÞ2

�
expði2πnτyÞ ð4:17Þ

for ∀ n ∈ Z, where kn are complex integration constants.
By substituting this into (4.15), we obtain

χþðz; z̄Þ ¼
X
n∈Z

kn exp
�
−Nπ

ℑτ
ðℑðzþ ζÞÞ2

�
ei2πnz: ð4:18Þ

Then, we use the boundary condition for the y direction.
From the second equation in (4.14), we obtain the follow-
ing recursion relation:

kn ¼ exp ð−iπð2nþ NÞτÞ exp ð−i2NπζÞknþN: ð4:19Þ

The solution to this equation is

kn ¼ N n exp
�
iπn2τ
N

�
exp ði2πnζÞ ðN n ¼ N nþNÞ:

ð4:20Þ

From (4.12), (4.18), and (4.20), we obtain

ψ ðNÞþ ¼ eiNπðzþζÞℑðzþζÞ
ℑτ

X
n∈Z

N ne
iπn2τ
N ei2nπðzþζÞ: ð4:21Þ

Because the condition N n ¼ N nþN , ψ ðNÞþ can be further
decomposed into jNj linearly independent solutions:

ψ ðNÞþ
r ¼ N reiNπðzþζÞℑðzþζÞ

ℑτ ϑ

� r
N

0

�
ðNðzþ ζÞ; NτÞ; ð4:22Þ

where r ¼ 0; 1;…; N − 1 and ϑ is the Jacobi-theta function
defined by

ϑ

�
a

b

�
ðν; τÞ ≔

X
l∈Z

eiπðaþlÞ2τei2πðaþlÞðνþbÞ: ð4:23Þ

The negative chirality mode ψ ðNÞ− can be computed in a
similar way and is given by

6Here, we will use both ðx; yÞ and ðz; z̄Þ coordinates. We will
write χþðx; yÞ or χþðz; z̄Þ to represent which coordinate we are
using, but these shall be the same quantity: χþðx; yÞ ¼ χþðz; z̄Þ.
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ψ ðNÞ−
r ¼ N 0

reiNπðz̄þζ̄ÞℑðzþζÞ
ℑτ ϑ

� r
N

0

�
ðNðz̄þ ζ̄Þ; Nτ̄Þ: ð4:24Þ

From the definition of the Jacobi-theta function and the

positivity of ℑτ, ψ ðNÞþ
r and ψ ðNÞ−

r converge only when
N > 0 and N < 0, respectively. In the following, we
assume that N > 0, so that ψ ðNÞ− ¼ 0 and the zero modes
are finally given as

ψ ðNÞ
r ¼

�
ψ ðNÞþ
r

0

�
; ð4:25Þ

with ψ ðNÞþ
r given by (4.22).

We can determine the normalization factor N r in such a

way that ψ ðNÞ
r become orthonormal. The inner product of

the zero modes ψ ðNÞ
r is computed in Appendix F and is

given by

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ N 2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℑτ=N

p
δr;r0 : ð4:26Þ

Thus, if we put

N r ¼
�

N
2ℑτ

�
1=4

; ð4:27Þ

fψ ðNÞ
r jr ¼ 0; 1;…; N − 1g forms an orthonormal basis of

the zero modes.

C. Berezin-Toeplitz quantization on T2

In this subsection, we construct the Toeplitz operator
(2.4) for local sections of a complex line bundle on T2.
To construct (2.4), we need two copies of spinor bundles

with charges N and N0. Let fψ ðNÞ
r jr ¼ 0; 1;…; N − 1g

and fψ ðN0Þ
r0 jr0 ¼ 0; 1;…; N0 − 1g be the orthonormal

bases of the Dirac zero modes, each of which has the
form (4.25). We consider another scalar field φðQÞ with
charge Q ¼ N0 − N, which satisfies the twisted boundary
condition,

φðQÞðzþ 1; z̄þ 1Þ ¼ exp

�
iQπ

ℑτ
ℑðzþ ζÞ

�
φðQÞðz; z̄Þ;

φðQÞðzþ τ; z̄þ τ̄Þ ¼ exp

�
iQπ

ℑτ
ℑ½τ̄ðzþ ζÞ�

�
φðQÞðz; z̄Þ:

ð4:28Þ
The map (2.4) for φðQÞ is then given by

TNN0 ðφðQÞÞrr0 ≔ ðψ ðN0Þ
r0 ;φðQÞψ ðNÞ

r Þ: ð4:29Þ

Note that the integrand in the inner product on the right-
hand side is gauge invariant and hence is a completely
periodic function on the torus.

The map (4.29) reproduces the well-known configura-
tion of the fuzzy torus given by the clock-shift matrices. To
see this, we consider the quantization of the functions
uðx; yÞ ≔ expði2πxÞ and vðx; yÞ ≔ expði2πyÞ, which are
completely periodic and hence have the vanishing charge
Q ¼ 0. The Toeplitz operator (4.29) for these functions are
given as

U ≔ TNðuÞ ¼ e−
πjτj2
2Nℑτ−i2πζ1S†;

V ≔ TNðvÞ ¼ e−
π

2Nℑτ−i2πζ2C†; ð4:30Þ

where C and S are clock and shift matrices respectively:

C ¼

0
BBBBBB@

1

q

q2

. .
.

qN−1

1
CCCCCCA
;

S ¼

0
BBBBBB@

1

1

1

. .
.

1

1
CCCCCCA

ð4:31Þ

with q ¼ ei2π
1
N. They satisfy the well-known algebra of the

fuzzy torus7: CN ¼ SN ¼ idðNÞ and CS ¼ qSC.
Similarly, for any periodic function with Q ¼ 0, which

can be expanded as

fðx; yÞ ¼
X
n;m∈Z

fnmei2πðnxþmyÞ; ð4:32Þ

the Toeplitz operator takes the form of

TNðfÞ ¼
XN−1

n;m¼0

f̃nmUnVm: ð4:33Þ

Note that because of the relationsUN; VN ∝ idðNÞ as well as
the orthogonality under the trace, the matrices UnVm with
n;m ¼ 0; 1;…N − 1 form a complete basis ofMNðCÞ. The
coefficients f̃nm in (4.33) are given as follows. By a direct
calculation, we can first obtain

7The two complex functions u and v define an embedding of
T2 intoC2. This embedding is not an isometric embedding for the
metric (4.4), which is in general very difficult to construct for
general τ. However, in [33], a smart construction of such
embedding and its quantization for special values of τ is
proposed.
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TNðe2πiðnxþmyÞÞ ¼ Cln;lm;ñ;m̃U
ñVm̃; ð4:34Þ

where ln and ñ are the quotient and remainder of n divided
by N,

n ¼ lnN þ ñ; ð4:35Þ

and Cln;lm;ñ;m̃ are given by

Cln;lm;ñ;m̃¼e−2πiNðlnζ1þlmζ2Þe−
πjτj
2Nℑτðn2−ñÞe πτ̄

Nℑτnme−
π

2Nℑτðm2−m̃Þqm̃ñ:

ð4:36Þ

Then, we find that the coefficients f̃nm in (4.33) are
given by

f̃ñ m̃ ¼
X

ln;lm∈Z
fnmCln;lm;ñ;m̃: ð4:37Þ

Now, let us consider the quantization forQ ≠ 0. As in the
case of the sphere, it is convenient to consider (4.29) for a
basis of the local sections. See Appendix G, where we
construct such a basis as eigenstates of the Laplacian. In the
following, we focus on

TNN0 ðφðQÞ
n;s Þrr0 ¼ ðψ ðN0Þ

r0 ;φðQÞ
n;s ψ

ðNÞ
r Þ ð4:38Þ

for the eigenstates φðQÞ
n;s of the Laplacian, which are defined

in Appendix G.
For this computation, we put some useful relations in

Appendix H. By putting m ¼ 0 in (H7), we first obtain

φðQÞ
n;s ðz; z̄Þψ ðNÞþ

r ðz; z̄Þ ¼ 1ffiffiffiffiffi
N0p
Xn
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

k

��
Q
N0

�
k
�
N
N0

�
n−k

s

×
XN0

t¼1

φðN0Þ
k;rþsþQtðz; z̄ÞφðQNN0Þ

n−k;Ns−QrþQNtð−ζ;−ζ̄Þ: ð4:39Þ

By using this relation, we write (4.38) as

TNN0 ðφðQÞ
n;s Þrr0 ¼

1ffiffiffiffiffi
N0p
Xn
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

k

��
Q
N0

�
k
�
N
N0

�
n−k

s XN0

t¼1

φðQNN0Þ
n−k;Ns−QrþQNtð−ζ;−ζ̄Þ

× ðφðN0Þ
0;r0 ;φ

ðN0Þ
k;rþsþQtÞ; ð4:40Þ

where the inner product in the last line is used in the sense of (G11). By using (G11),8 we obtain

TNN0 ðφðQÞ
n;s Þrr0 ¼

1ffiffiffiffiffi
N0p
�
N
N0

�
n=2XN0

t¼1

δr0;rþsþQtðmod N0Þφ
ðQNN0Þ
n;Ns−QrþQNtð−ζ;−ζ̄Þ: ð4:41Þ

By substituting the analytic form (G10) for φðQÞ
n;r , we finally obtain

TNN0 ðφðQÞ
n;s Þrr0 ¼

1ffiffiffiffiffiffiffiffiffi
2nn!

p
�

QN
2N0ℑτ

�
1=4
�
N
N0

�
n=2XN0

t¼1

δr0;rþsþQtðmod N0Þ

×
X
l∈Z

Hn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QNN0πℑτ

p �
lþ Ns −QrþQNt

QNN0

��
eiQNN0πðlþNs−QrþQNt

QNN0 Þ2τ: ð4:42Þ

See also [34,35], in which essentially the same computa-
tions are done in different contexts.
The rectangular matrices (4.42) are the fuzzy version of

the eigenstates of the Laplacian. Though they look very
complicated, we will show in the following that they give

approximate eigenstates of the matrix version of the
Laplacian and the spectrum indeed agrees in the large-N
limit with that of the continuum Laplacian.

D. Laplacian on fuzzy T2

In this subsection, we construct the matrix Laplacian,
which acts on the rectangular matrices (4.42). From now
on, we put τ ¼ i and ζ ¼ 0 for simplicity.

8Note that the range of indices in (G11) can be extended such
that ðφðNÞ

n;r ;φ
ðNÞ
m;sÞ ¼ δn;mδr;sð mod NÞ.
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We first note that there is a crucial difference between the
spectrum of the continuum Laplacian for Q ¼ 0 and that
for Q ≠ 0. When Q ¼ 0, the Laplacian is given by

Δ ≔ −2gab∂a∂b ¼ −
1

ðℑτÞ2 ðjτj
2∂2

x − 2ℜτ∂x∂y þ ∂2
yÞ

¼ −∂2
x − ∂2

y: ð4:43Þ

The spectrum of this operator is just 4π2ðn2 þm2Þ, where n
and m are integers. For Q ≠ 0, however, as shown
in Appendix H, the spectrum becomes that of the one-
dimensional harmonic oscillator (or equivalently the
Landau level), because of the relation ½Dz;Dz̄� ¼ const.
As we will see below, the matrix Laplacian naturally
reproduces both of these spectra in the large-N limit.
We first consider the matrix Laplacian for Q ¼ 0, which

is relatively well known. In this case, the continuum
Laplacian can be written in terms of a Poisson bracket
and we can construct the matrix Laplacian by replacing the
Poisson brackets with the commutators of matrices. Let us
introduce the Poisson bracket induced from the symplectic
form (4.5):

ff; gg ≔ ωðXf; XgÞ ¼
1

2
ð∂xf∂yg − ∂yf∂xgÞ; ð4:44Þ

where Xf is the Hamiltonian vector field of f, namely, it is
defined by ωðXf; vÞ ¼ dfðvÞ. The partial derivatives can
be expressed in terms of the Poisson bracket as

fe�i2πx; fg ¼ �πie�i2πx∂yf;

fe�i2πy; fg ¼∓ πie�i2πy∂xf: ð4:45Þ

Thus, we can express the Laplacian as

ΔðfÞ ¼ −
1

π2
ðfū; fu; fgg þ fv̄; fv; fggÞ: ð4:46Þ

From the algebras, fu; vg ¼ −2π2uv and ½U;V� ¼
ð1 − qÞUV ¼ −2πiUV=N þOð1=N2Þ, we obtain the fol-
lowing mapping rule for the Poisson bracket:

TNðff; ggÞ ¼ −Nπi½TNðfÞ; TNðgÞ� þOð1=NÞ: ð4:47Þ

This suggests that a natural choice of the matrix
Laplacian is

Δ̂ðFÞ ¼ N2ð½U†; ½U;F�� þ ½V†; ½V; F��Þ: ð4:48Þ

From the algebra of U and V, we can easily prove that
UnVmðn;m ∈ NÞ are eigenstates of Δ̂ as

Δ̂ðUnVmÞ ¼ N2e−
π
Njq1=2 − q−1=2jð½n�2q þ ½m�2qÞUnVm;

ð4:49Þ

where

½n�q ≔
qn=2 − q−n=2

q1=2 − q−1=2
¼ sinðnπ=NÞ

sinðπ=NÞ : ð4:50Þ

Since jq1=2 − q−1=2j → 4π2=N2 and ½n�q → n as N → ∞,
the spectrum of the matrix Laplacian reduces to

Δ̂ðUnVmÞ ¼ 4π2ðn2 þm2ÞUnVm þOð1=NÞ ð4:51Þ

in the large-N limit. This agrees with the continuum
spectrum.
We next construct the matrix Laplacian for Q ≠ 0. A

natural generalization of the Laplacian (4.48) for rectan-
gular matrices is

Δ̂ðFÞ ¼ N2½U† ∘ ðU ∘FÞ þ V† ∘ ðV ∘FÞ�; ð4:52Þ

where F is an arbitrary N × N0 rectangular matrix and the
operation ∘ is defined by

A ∘F ≔ AðNÞF − FAðN0Þ ð4:53Þ

with Toeplitz operators AðNÞ and AðN0Þ with dimension N
and N0, respectively.
Now, let us investigate the spectrum of (4.52). We

compute Δ̂ðTNN0 ðφðQÞ
n;s ÞÞ, where φðQÞ

n;s is the eigenfunction
of the Laplacian with charge Q obtained in (G10). We can
first show that

Δ̂ðTNN0 ðφðQÞ
n;s ÞÞrr0

¼ 2N2ðe−π=N þ e−π=N
0 ÞTNN0 ðφðQÞ

n;s Þrr0
− N2e−

π
2
ð1Nþ 1

N0Þ
X

i¼x;y;j¼�1

ðφðN0Þ
0;r0 ; ðe

j
N0DiφðQÞ

n;s Þðe−
jQ
NN0DiφðNÞ

0;r ÞÞ:

ð4:54Þ

See Appendix I for the derivation of (4.54). We then make
an asymptotic expansion of (4.54) in the large-N limit as

Δ̂ðTNN0 ðφðQÞ
n;s ÞÞrr0

¼ ðφðN0Þ
0;r0 ; ð−D2

x −D2
yÞφðQÞ

n;s φ
ðNÞ
0;r Þ þOð1=NÞ

¼ ðφðN0Þ
0;r0 ;ΔðφðQÞ

n;s ÞφðNÞ
0;r Þ þOð1=NÞ: ð4:55Þ

This shows that the spectrum of (4.52) agrees with that in
the continuum limit:

Δ̂ðTNN0 ðφðQÞ
n;s ÞÞ ¼ 4Qπðnþ 1=2ÞTNN0 ðφðQÞ

n;s Þ þOð1=NÞ:
ð4:56Þ

Although we could not obtain the exact analytical solution
to this eigenvalue problem for finite N, we give the
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numerical analysis of the spectrum of the Laplacian
(4.52) in Fig. 1. We plotted five numerical results of the
spectrum for N ¼ 10, 15, 20, 50, 100 along with the exact
Landau spectrum in the case of Q ¼ 1. We can see that the
spectrum for finite N indeed approaches to the Landau
spectrum as N increases.
In Appendix J, we show that the exact eigenvalue

problem of (4.52) can be mapped to the so-called
Hofstadter problem [36]. Numerical studies of this problem
also show that the eigenvalues are given as (4.56).
Note that if we write U ¼ X1 þ iX2 and V ¼ X3 þ iX4

with the four Hermitian matrices Xi corresponding to an
embedding into R4, (4.48) is proportional to ½Xi; ½Xi; F��,
which is the natural Laplacian appearing in the matrix
models. The matrix Laplacian (4.52) for rectangular matri-
ces also naturally appears in the matrix models. For
example, let us consider a block diagonal matrix configu-
ration in the matrix models,

Xi ¼
 
XðNÞ
i 0

0 XðN0Þ
i

!
; ð4:57Þ

where XðNÞ
i and XðN0Þ

i are the configurations of the fuzzy
torus with size N and N0, respectively. Then, the Laplacian
½Xi; ½Xi; F�� in the matrix models reduces to (4.52) for the
off-diagonal blocks of F, while it reduces to (4.48) for the
diagonal blocks. Thus, (4.52) can be seen as the Laplacian
of the open string modes connecting the two fuzzy tori. In
fact, the same structure can also be found for the case of the
sphere [30,31]. It is interesting that the natural matrix
Laplacian ½Xi; ½Xi; F�� reproduces in a unified way both
spectra of the charged and noncharged fields.

V. DISCUSSION ON FUZZY RIEMANN SURFACES
WITH HIGHER GENERA

In this section, we discuss cases with higher genera.

A. Construction of Riemann surfaces
with higher genera

Any Riemann surface with the genus greater than 1 can
be constructed as the Poincaré disk with some identifica-
tions imposed. We first review this construction. See e.g.,
[37] for more details.
Let us consider a unit disk D2 ¼ fz ∈ Cjjzj < 1g on the

complex plane. We adopt the Poincaré metric on D2,

g ¼ 2dzdz̄
ð1 − jzj2Þ2 ; ð5:1Þ

which is the Kähler metric compatible with the standard
complex structure on D2. The space ðD2; gÞ is called the
Poincaré disk.
We consider a group SUð1; 1Þ, which acts on D2 as

γðzÞ ¼ āzþ b̄
bzþ a

; ð5:2Þ

where a, b are complex numbers satisfying jaj2 − jbj2 ¼ 1
and γ represents an element of SUð1; 1Þ,

γ ¼
�
ā b̄

b a

�
: ð5:3Þ

For any γ ∈ SUð1; 1Þ, the map z ↦ γðzÞ is an automor-
phism on D2 preserving the Kähler structure. Note that
γ and −γ give the same transformation on D2, so the
automorphism group is isomorphic to PSUð1; 1Þ ¼
SUð1; 1Þ=Z2. Let Γ be a Fuchsian group, which means a
discrete subgroup of PSUð1; 1Þ. Compact Riemann surfa-
ces with genera greater than 1 are known to be constructed
as a coset space M ¼ D2=Γ. In this construction, all the
information about the genus or the moduli of M is
contained in Γ, and M is given by a set of all orbits on
D2 with respect to actions of Γ. By analogy with the torus,
it is also useful to regardM as the diskD2 with a nontrivial
boundary condition imposed by actions of Γ. Note that this
construction also gives a natural metric on M. Since Γ
preserves g, the metric (5.1) also gives a local Kähler metric
on M.

B. Geometric structures on M

We next consider charged scalars and spinor fields on
M. For simplicity, we assume that the symplectic volume
is V ¼ RM ω=2π ¼ 1, where ω is defined by (A2).
From (5.1), a Kähler potential on M is given by

ρ ¼ − logð1 − jz2jÞ: ð5:4Þ

Then, from (A6) and (A8), a spin connection and Uð1Þ
gauge field are

FIG. 1. Numerical results of the spectrum of the Laplacian
(4.52) for finite NðQ ¼ 1Þ. Here λn represents the nth smallest
eigenvalue.

MATRIX REGULARIZATION FOR RIEMANN SURFACES WITH … PHYS. REV. D 101, 106009 (2020)

106009-11



Ω12 ¼ i
z̄dz − zdz̄
1 − jzj2 ;

A ¼ −
i
2

z̄dz − zdz̄
1 − jzj2 : ð5:5Þ

In this gauge, we have Ωabσaσb=4 ¼ −iAσ3. For γ ∈ Γ
given by (5.3), the gauge field A transforms as

AðγðzÞ; γ̄ðzÞÞ ¼ Aðz; z̄Þ þ d

�
−
i
2
log

bzþ a
b̄ z̄þā

�
: ð5:6Þ

This is analogous to (4.8) on T2.
Let φðQÞ be a complex scalar field coupling to A with

charge Q and ψ ¼ ðψþ;ψ−Þ a spinor field on M. For
γ ∈ Γ, they transform as

φðQÞðγðzÞ; γ̄ðzÞÞ ¼
�
bzþ a
b̄ z̄þā

�
Q=2

φðQÞðz; z̄Þ;

ψ�ðγðzÞ; γ̄ðzÞÞ ¼
�
bzþ a

b̄ z̄þā

��1=2
ψ�ðz; z̄Þ: ð5:7Þ

Note that ψ� behave as charged scalars with charge �1.

C. Dirac zero modes and automorphic forms

We next construct Dirac zero modes on M.
In our case, from (5.4) and (A9), the Dirac operator is

locally given by

Dþ ¼
ffiffiffi
2

p
i

�
ð1 − jzj2Þ∂ z̄ þ

N þ 1

2
z

�
;

D− ¼
ffiffiffi
2

p
i

�
ð1 − jzj2Þ∂z −

N − 1

2
z̄

�
: ð5:8Þ

We find that the zero modes ψ ðNÞ ¼ ðψ ðNÞþ;ψ ðNÞ−Þ take the
following form:

ψ ðNÞ� ¼ ð1 − jzj2Þð1�NÞ=2h�; ð5:9Þ

where hþ and h− are holomorphic and antiholomorphic
functions. As we discussed in the previous subsection, their
gauge transformations are given by

ψ ðNÞ�ðγðzÞ; γ̄ðzÞÞ ¼
�
bzþ a

b̄ z̄þā

�ðN�1Þ=2
ψ ðNÞ�ðz; z̄Þ: ð5:10Þ

By substituting (5.9), we obtain the transformation of h� as

hþðγðzÞÞ ¼ ðbzþ aÞð1þNÞhþðzÞ ¼
�
dγðzÞ
dz

�
−ð1þNÞ=2

hþðzÞ;

h−ðγðzÞÞ ¼ ðb̄ z̄þāÞð1−NÞh−ðz̄Þ ¼
�
dγ̄ðzÞ
dz̄

�
−ð1−NÞ=2

h−ðz̄Þ:

ð5:11Þ

Thus, h� are given by automorphic forms.9 The automor-
phic forms h� can be represented in terms of the Poincaré
series [6,38] as

hþðzÞ ¼
X
γ∈Γ

�
dγðzÞ
dz

�ð1þNÞ=2
fþðγðzÞÞ;

h−ðz̄Þ ¼
X
γ∈Γ

�
dγ̄ðzÞ
dz̄

�ð1−NÞ=2
f−ðγ̄ðzÞÞ: ð5:12Þ

Here, the summations are taken over all elements of Γ and
fþ and f− are arbitrary holomorphic and antiholomorphic
functions on D2, respectively. Note that for any γ0 ∈ Γ,
we have

hþðγ0ðzÞÞ ¼
X
γ∈Γ

�
dðγγ0ÞðzÞ
dγ0ðzÞ

�ð1þNÞ=2
fþððγγ0ÞðzÞÞ

¼
X
γ∈Γ

�
dz

dγ0ðzÞ
�ð1þNÞ=2�dðγγ0ÞðzÞ

dz

�ð1þNÞ=2

× fþððγγ0ÞðzÞÞ

¼
�
dγ0ðzÞ
dz

�
−ð1þNÞ=2

hþðzÞ: ð5:13Þ

Thus, (5.12) indeed satisfies the transformation law (5.11).
As shown in Appendix K, the norm of ψ− does not
converge. Hence, any Dirac zero mode takes the form

ψ ðNÞðz; z̄Þ ¼ ð1 − jzj2ÞðNþ1Þ=2
�
hþðzÞ
0

�
: ð5:14Þ

In order to construct (2.1) and (2.4), we need to construct
an orthonormal basis of the zero modes by choosing hþ (or
fþ) in (5.14) appropriately. This should be done case by
case, since it highly depends on the structure of Γ. For
example, for the Bolza surface [39,40], which is the
simplest example of surfaces with genus 2, the structure
of Γ is relatively well studied and it might be possible to
obtain an orthonormal basis in this case. However, this is in
general very difficult and is beyond the scope of this paper
(see [38] for a formal construction).10

D. Quantization on M

As explained in Appendix B, the quantization map can
be defined as (B2) in terms of the projection operators onto
zero modes of the Dirac operator. This definition does not
explicitly depend on the orthonormal basis of zero modes,
which is only needed to write down the matrix elements of

9Functions with the same transformation law as hþ are
generally called automorphic forms with weight 1þ N.

10See also [41–43] for another approach to construct the matrix
regularization of Riemann surfaces.
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(B2). Here, we show that (B2) can be constructed for the
Riemann surfaces considered above.
The projection is given by the Bergman kernel (B3).

From (5.14), one finds that the Bergman kernel is given
by [6]

KðNÞðz; wÞ ¼ N
2π

ð1 − jzj2ÞðNþ1Þ=2ð1 − jwj2ÞðNþ1Þ=2

×
X
γ∈Γ

�
dγðzÞ
dz

�ðNþ1Þ=2
ð1 − γðzÞw̄Þ−ðNþ1Þ

×

�
1 0

0 0

�
: ð5:15Þ

This is very similar to the Bergman kernel onD2, which we
review in Appendix L, except that the factor ð1 − zw̄Þ−ð1þNÞ
is now given as a Poincaré series. Since the map (B2)
depends only on the Bergman kernel, the expression (5.15)
defines the quantization map (B2) for the Riemann
surfaces.

VI. CONCLUSION AND DISCUSSION

In this paper, we considered the Berezin-Toeplitz quan-
tization for local sections of nontrivial complex line
bundles on Riemann surfaces. This corresponds to the
matrix regularization of fields with nonvanishing Uð1Þ
charges in a nontrivial gauge flux. We argued that such
fields are naturally mapped to rectangular matrices, while
fields with vanishing charge are mapped to square matrices.
We also showed that these mappings are embedded in the
Berezin-Toeplitz quantization in a Uð2Þ gauge theory in a
unified way. We then explicitly constructed those mappings
for the sphere and the torus and also discussed a possible
extension to Riemann surfaces with higher genera. For the
case of the sphere, we showed that this mapping reproduces
the well-known fuzzy spherical harmonics. For the case of
the torus, we found that the mapping produces rectangular
matrices written in terms of elliptic functions and we also
proposed a matrix Laplacian, which reproduces the spec-
trum on the commutative torus in the large-N limit.
In our examples of the sphere and the torus, the operation

∘ , which is defined in (4.53) or (E1), was used in
constructing the matrix Laplacians. This operation gives
another module structure of the matrix algebra satisfying

A ∘ ðBFÞ ¼ ½A; B� ∘F þ BðA ∘FÞ;
ðABÞ ∘F ¼ AðB ∘FÞ þ ðA ∘FÞB;

A ∘ ðB ∘FÞ − B ∘ ðA ∘FÞ ¼ ½A; B� ∘F; ð6:1Þ

where A and B are square matrices and F is a rectangular
matrix. If there exists a classical (commutative) counterpart
of this operation, it should satisfy the classical versions of
these properties. Unfortunately, we could not find such an
object and our present optimal choices are

ff; ag1 ≔ Wμνð∂μfÞðDνaÞ; ð6:2Þ

ff; ag2 ≔ Wμνð∂μfÞðDνaÞ − iQfa; ð6:3Þ

where f and a are arbitrary smooth function and local
section with charge Q, respectively, and Wμν is a Poison
tensor, given by the inverse of the symplectic form. f; g1
only satisfies the first and the second properties of (6.1),
while f; g2 satisfies the first and the third, provided that the
quantization condition ½Dμ; Dν�a ¼ −iQωμνa is satisfied.
These operations cannot be the classical counterpart of ∘ ,
because the violations of the classical counterpart of (6.1)
contradict with the properties (1.1) and (1.3). Probably, we
would need another structure to construct the classical
operation in general. Nevertheless, we found that the
continuum Laplacian on the sphere is proportional to
fxi; fxi; g2g2, while that on the torus is proportional to
fū; fu; g1g1 þ fv̄; fv; g1g1, and we consider that these
brackets may still have meanings when some special
functions are put in the first slots. It should be important
to understand this correspondence to find the description of
the Laplacian in a general matrix geometry.
The mapping for the local sections we considered in this

paper should also be relevant for describing D-branes with
gauge fluxes. In particular, it is known that the Berezin-
Toeplitz quantization naturally appears in non-BPS
D-brane systems with tachyon condensations [19,20]
(see also [44,45]). In this context, introducing non-
Abelian gauge groups seems to be quite natural, so that
our formulation using the Uð2Þ gauge theory will be
naturally understood. This will be studied elsewhere. It
is important to understand properties of the quantization
with a general gauge group in order to understand its
implications in the D-brane systems.
Our results will also shed light on the problem of

describing curved spaces in the matrix models. For exam-
ple, by using the mapping for rectangular matrices, it will
be possible to generalize the work [30,31] and construct the
large-N reduction for nontrivial Uð1Þ bundles on Riemann
surfaces, called Seifert manifolds.
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APPENDIX A: DIRAC OPERATOR ON RIEMANN
SURFACES WITH MAGNETIC FLUXES

In this appendix, we construct a Dirac operator on a
general Riemann surface M with a magnetic flux.
Let z be a local complex coordinate on an open subset

U ⊂ M. We define the standard complex structure J onM
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by Jð∂zÞ ¼ i∂z and Jð∂ z̄Þ ¼ −i∂ z̄. Note that this definition
does not depend on the choice of the local coordinate. Let g
be a Kähler metric onM compatible with J. OnU, we have
gzz ¼ gz̄ z̄ ¼ 0 and we can write g as

g ¼ 2gzz̄dzdz̄; ðA1Þ

where gzz̄ ¼ gð∂z; ∂ z̄Þ. We define a symplectic form on M
by ωð·; ·Þ ¼ gðJ·; ·Þ. In terms of the local coordinate, we can
write ω as

ω ¼ igzz̄dz ∧ dz̄: ðA2Þ

We choose a Uð1Þ gauge field A which satisfies ω ¼ VdA,
as explained in Sec. II A.
Let ea be the zweibein for the Kähler metric (A1). They

are explicitly given by

e1 ¼
1ffiffiffiffiffiffiffiffi
2gzz̄

p ð∂z þ ∂ z̄Þ;

e2 ¼
iffiffiffiffiffiffiffiffi
2gzz̄

p ð∂z − ∂ z̄Þ: ðA3Þ

Note that from the positivity of the metric, gzz̄ is always
positive. The inverse θa of ea is given by

θ1 ¼
ffiffiffiffiffiffi
gzz̄
2

r
ðdzþ dz̄Þ;

θ2 ¼
1

i

ffiffiffiffiffiffi
gzz̄
2

r
ðdz − dz̄Þ: ðA4Þ

The spin connection is determined by

Ωa
b ∧ θb þ dθa ¼ 0; ðA5Þ

and Ωab ¼ −Ωba. By solving this equation, we find

Ω12 ¼
i
2
ð∂z log gzz̄dz − ∂ z̄ log gzz̄dz̄Þ: ðA6Þ

Any Kähler metric is locally written as

gzz̄ ¼ ∂z∂ z̄ρ; ðA7Þ

in terms of the Kähler potential ρ, which is a real function
defined locally on U. The geometric structures we intro-
duced above can also be expressed in terms of ρ. For
example, from (A2) and ω ¼ VdA, the gauge field A is
given by

A ¼ −
i
2V

ð∂zρdz − ∂ z̄ρdz̄Þ; ðA8Þ

up to the gauge transformation.

For M, the Dirac operator D defined by (2.2) flips the
chirality, so that it has only off-diagonal elements. Using
the above data, we can express D as

Dþ ¼ i

ffiffiffiffiffiffi
2

gzz̄

s �
∂ z̄ þ

1

2
∂ z̄

�
N
V
ρþ 1

2
log gzz̄

��
;

D− ¼ i

ffiffiffiffiffiffi
2

gzz̄

s �
∂z −

1

2
∂z

�
N
V
ρ −

1

2
log gzz̄

��
; ðA9Þ

whereD� are the matrix elements ofD acting on the spaces
with chirality �1, respectively.

APPENDIX B: BERGMAN KERNEL

In this section, we give a formulation of the maps (2.1)
and (2.4) in terms of the Bergman kernel.

Let us consider a product φðQÞψ ðNÞ
I of a charged scalar

fields φðQÞ with charge Q and a Dirac zero mode ψ ðNÞ
I with

charge N, where I ¼ 1; 2;…; N. This product has the total
charge N0 ¼ N þQ, and can be expanded in terms of the
Dirac eigenmodes with charge N0 as

φðQÞψ ðNÞ
I ¼

XN0

J¼1

cIJψ
ðN0Þ
J þ � � � ; ðB1Þ

where � � � stands for the terms of nonzero modes. If ψ ðNÞ
I

and ψ ðN0Þ
J are orthonormal basis of the zero modes, the

coefficients cIJ can be extracted as cIJ ¼ ðψ ðN0Þ
J ;φðQÞψ ðNÞ

I Þ.
This is just the map (2.4) for Q ≠ 0 and (2.1) for Q ¼ 0.
Thus, those maps are obtained as actions of the charged
scalar fields accompanied with the projections ΠðN0Þ and
ΠðNÞ onto the spaces of the zero modes [16]:

T̂NN0 ðφðQÞÞ ¼ ΠðN0ÞφðQÞΠðNÞ: ðB2Þ
The projections are given by the so-called Bergman kernel,

KðNÞðz; wÞ ≔
XN
I¼1

ψ ðNÞ
I ðzÞψ ðNÞ†

I ðwÞ: ðB3Þ

Here, the spinor indices are not contracted, so that
KðNÞðz; wÞ is a 2 × 2 matrix with those indices. The
projection ΠðNÞ is then defined by

ðΠðNÞψÞðzÞ ¼
Z
M

ωðwÞKðNÞðz; wÞψðwÞ: ðB4Þ

Note that the original expression (2.4) is just the matrix
representation of (B2)11:

11In our convention, the matrix representation of T̂NN0 is the
transpose of TNN 0 .
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TNN0 ðφðQÞÞIJ ¼ ðψ ðN0Þ
J ; T̂NN0 ðφðQÞÞψ ðNÞ

I Þ

¼
Z
M

ωψ ðN0Þ†
J · φðQÞψ ðNÞ

I : ðB5Þ

APPENDIX C: PROOF OF (1.3)

In this appendix, we give a proof of (1.3) following [16].
We first show that Dirac eigenmodes with charge N have

a large energy gap in the large-N limit. Let D be a Dirac
operator for the charged spinors. Let us consider the action
of D on a two-component spinor χ. Since D generally flips
the chirality, D can be represented as

Dχ ¼
�

0 D−

Dþ 0

��
χþ

χ−

�
; ðC1Þ

where χþ and χ− are the positive and negative chirality
modes of χ, respectively. Below, we assume that D is
normalized such that it is Hermitian and ðD�Þ† ¼ D∓. If χ
is a normalized eigenmode of D with eigenvalue E,
we have

Dþχþ ¼ Eχ−; D−χ− ¼ Eχþ; ðχ; χÞ ¼ 1: ðC2Þ

Then, we can estimate the energy E as

E2 ¼ E2ðχ; χÞ

¼ E2

Z
ωðjχþj2 þ jχ−j2Þ

¼
Z

ωðjDþχþj2 þ jDþχ−j2 þ χ̄−½Dþ; D−�χ−Þ

≥
Z

ωχ̄−½Dþ; D−�χ−: ðC3Þ

Now, we can assume that ½Dþ; D−� ¼ −iFþ− þOðN0Þ is
positive in the large-N limit without loss of generality, since
if it is negative, we can just exchange � in the above
calculation and ½D−; Dþ� is positive there. If χ is a nonzero
mode, χ− is nonvanishing. In this case, Eq. (C3) shows that
E2 is bounded from below by a positive quantity of orderN.
Thus, we found the energy gap,

jEj ≥ OðN1=2Þ: ðC4Þ

Now, we prove (1.3) for arbitrary smooth function f and
section a. From (2.1), (2.4) and (B4), we have

½TNðfÞTNN0 ðaÞ − TNN0 ðf · aÞ�IJ
¼
Z
M

ωψ ðN0Þ†
J · a½ΠðNÞ; f�ψ ðNÞ

I : ðC5Þ

Thus,

j½TNðfÞTNN0 ðaÞ − TNN0 ðf · aÞ�IJj

≤
Z
M

ωjψ ðN0Þ†
J · a½ΠðNÞ; f�ψ ðNÞ

I j

≤ kakk½ΠðNÞ; f�k
Z
M

ωjψ ðN0Þ†
J · ψ ðNÞ

I j: ðC6Þ

Here, we have defined the norms for local sections and
operators on spinors by

kak ¼ sup
x∈M

jaðxÞj;

k½ΠðNÞ; f�k ¼ sup
kψk¼1

k½ΠðNÞ; f�ψk: ðC7Þ

From the orthonormality
R
M ωψ ðNÞ†

I · ψ ðNÞ
J ¼ δIJ, the last

integral in (C6) is of OðN0Þ. Also, the norm kak is finite in
the large-N limit. The only nontrivial factor is k½ΠðNÞ; f�k
and we will estimate this in the following. Let us consider
an operator ð1þ αD2Þ−1, where α is an N-independent
positive number. Note that 1þ αE2 > 0 for any eigenvalue
E, so that the operator ð1þ αD2Þ−1 is well defined. Since
E ≥ OðN1=2Þ except for the case E ¼ 0 as shown in (C4),
the operator ð1þ αD2Þ−1 behaves as a projection onto
KerD for sufficiently large values of N. Hence, we obtain

ΠðNÞ ¼ ð1þ αD2Þ−1 þ α−1OðN−1Þ: ðC8Þ

Thus, the problem of estimating ½ΠðNÞ; f� reduces to that of
½ð1þ αD2Þ−1; f�. In order to evaluate the latter, we first
rewrite this as

½ð1þ αD2Þ−1; f� ¼ ð1þ αD2Þ−1½f; ð1þ αD2Þ�ð1þ αD2Þ−1
¼ αð1þ αD2Þ−1½f;D2�ð1þ αD2Þ−1:

ðC9Þ

By using the Leibniz rule DðfψÞ ¼ ðiσμ∂μfÞψ þ fðDψÞ,
where σμ ¼ σaθμa, we also have

½f;D2� ¼ fD2 −Dððiσμ∂μfÞ þ fDÞ
¼ −Dðiσμ∂μfÞ − ðiσμ∂μfÞD
¼ −fD; ðiσμ∂μfÞg: ðC10Þ

Thus, we obtain

½ΠðNÞ; f� ¼ −αð1þ αD2Þ−1fD; ðiσμ∂μfÞg
× ð1þ αD2Þ−1 þ α−1OðN−1Þ: ðC11Þ

This gives the following estimation:

k½ΠðNÞ; f�k ≤ 2αkð1þ αD2Þ−1Dkkð1þ αD2Þ−1kkσμ∂μfk
≤ 2jE1j−1kσμ∂μfk ðC12Þ
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where E1 is the smallest nonzero eigenvalue of D. The last
inequality is obtained as follows. For any eigenvalue E, we
have the relation,

jE1j
1þ αE2

1

−
jEj

1þ αE2
¼ ðjEj − jE1jÞðαjE1jjEj − 1Þ

f1þ αE2
1gf1þ αE2g ≥ 0:

ðC13Þ
This implies that

kð1þ αD2Þ−1Dk ≤
jE1j

1þ αE2
1

≤ α−1jE1j−1; ðC14Þ

which, togetherwith theobvious relationkð1þαD2Þ−1k≤1,
leads to the second inequality in (C12). By applying (C12) to
(C6), we finally obtain

j½TNðfÞTNN0 ðaÞ − TNN0 ðf · aÞ�IJj

≤ 2jE1j−1kakkσμ∂μfk
Z
M

ωjψ ðN0Þ†
J · ψ ðNÞ

I j: ðC15Þ

Since jE1j ≥ OðN1=2Þ, the right-hand side vanishes in the
large-N limit and we find that (1.3) is indeed satisfied.

APPENDIX D: MONOPOLE HARMONICS

In this appendix, we review the definition of the
monopole harmonics. See [25,26] for more details.
We first introduce linear operators which is locally

defined on U1 and U2 as

LðQÞ
1 ¼ iðsinϕ∂θ þ cot θ cosϕ∂ϕÞ −

Q
2

1 ∓ cos θ
sin θ

cosϕ;

LðQÞ
2 ¼ ið− cosϕ∂θ þ cot θ sinϕ∂ϕÞ −

Q
2

1 ∓ cos θ
sin θ

sinϕ;

LðQÞ
3 ¼ −i∂ϕ ∓ Q

2
; ðD1Þ

where the upper and lower signs represent the expressions
onU1 andU2, respectively. These operators are the angular
momentum operator in the presence of a monopole
with magnetic charge Q=2 at the origin and reduces to
the ordinary angular momentum operators when Q ¼ 0.

In fact, LðQÞ
A (A ¼ 1, 2, 3) satisfy the SUð2Þ algebra

½LðQÞ
A ;LðQÞ

B � ¼ iϵABCLðQÞC and give a representation of
the Lie algebra of SUð2Þ on the space of charged scalar
fields which transform as (3.5). In particular, the action of

LðQÞ
A is covariant under the gauge transformation (3.5).

The monopole harmonics YðQÞ
lm ðl ¼ jQj=2; jQj=2þ

1;…;∞; m ¼ −l;−lþ 1;…; lÞ are defined as the standard
basis of this representation space which satisfies

ðLðQÞ
A Þ2YðQÞ

lm ¼ lðlþ 1ÞYðQÞ
lm ;

LðQÞ
3 YðQÞ

lm ¼ mYðQÞ
lm ; ðD2Þ

and the orthonormal conditionZ
S2
ωðYðQÞ

lm Þ�YðQÞ
l0m0 ¼ δll0δmm0 ; ðD3Þ

for a fixed l, where ω is the volume form for the metric

(3.1). The concrete expression of YðQÞ
lm is

YðQÞ
lm ¼ ð−1Þl−m−Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2π

r
hl −mje−iθLðlÞ

2 jl Q
2
ieið�Q=2þmÞϕ;

ðD4Þ

where LðlÞ
A are the (2lþ 1)-dimensional irreducible repre-

sentation of the generators of SUð2Þ and jlmi are the
standard basis of the representation space. Again, the upper
and lower signs represent the expressions defined on U1

and U2, respectively.
The following formula is very useful:Z

S2
ωðYðQ1Þ

l1m1
Þ�YðQ2Þ

l2m2
YðQ3Þ
l3m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2 þ 1Þð2l3 þ 1Þ

2πð2l1 þ 1Þ

s
Cl1m1

l2m2l3m3
Cl1Q1=2
l2Q2=2l3Q3=2

; ðD5Þ

where Cl1m1

l2m2l3m3
is the Clebsch-Gordan coefficient. For the

gauge invariance of the left-hand side, Q1 ¼ Q2 þQ3

must hold.

APPENDIX E: FUZZY SPHERICAL
HARMONICS

In this appendix, we review the definition of the fuzzy
spherical harmonics [10–12]. See [30,31] for more details.
We first define linear operators on MN×N0 ðCÞ by

LðJJ0Þ
A ∘M ≔ LðJÞ

A M −MLðJ0Þ
A ðE1Þ

for M ∈ MN×N0 ðCÞ, where LðJÞ
A are the (2J þ 1)-

dimensional representation of the SUð2Þ generators. Then,
LðJJ0Þ
A ∘ satisfy the SUð2Þ algebra ½LðJJ0Þ

A ∘ ; LðJJ0Þ
B ∘ � ¼

iϵABCLðJJ0ÞC ∘ and therefore give the ðN × N0Þ-dimensional
representation of the Lie algebra of SUð2Þ.
The fuzzy spherical harmonics ŶlmðJJ0Þ ðl ¼ jJ − J0j;

jJ − J0j þ 1;…; J þ J0; m ¼ −l;−lþ 1;…; lÞ are defined
as the standard basis of this representation space which
satisfies

ðLðJJ0Þ
A ∘ Þ2ŶlmðJJ0Þ ¼ lðlþ 1ÞŶlmðJJ0Þ;

LðJJ0Þ
3 ∘ ŶlmðJJ0Þ ¼ mŶlmðJJ0Þ; ðE2Þ

and the orthonormal condition

1

N
trfðŶlmðJJ0ÞÞ†Ŷl0m0ðJJ0Þg ¼ δll0δmm0 ; ðE3Þ
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for a fixed l. Here, the trace is defined over N × N0
matrices. In terms of the basis fjJrihJ0r0jg, they are
expressed as

ŶlmðJJ0Þ ¼
ffiffiffiffi
N

p XJ
r¼−J

XJ0
r0¼−J0

ð−1Þ−Jþr0Clm
JrJ0−r0 jJrihJ0r0j: ðE4Þ

APPENDIX F: DETAILED CALCULATION OF
THE NORMALIZATION FACTOR N r

In this appendix, we derive (4.26).
From the explicit form of the Jacobi-theta function, we

first write

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN rN r0
X
l;l0∈Z

eiNπfτðlþr=NÞ2−τ̄ðl0þr0=NÞ2g
Z

1

0

dx
Z

1

0

dy

× e−2NπfℑðzþζÞg2=ℑτei2Nπfðlþr=NÞðzþζÞ−ðl0þr0=NÞðz̄þζ̄Þg: ðF1Þ

Then, by shifting the integration variable as z → z − ζ and substituting z ¼ xþ τy, we obtain

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN rN r0
X
l;l0∈Z

eiNπfτðlþr=NÞ2−τ̄ðl0þr0=NÞ2g
Z

1þζ1

ζ1

dx
Z

1þζ2

ζ2

dy

× e−2NπℑðτÞy2ei2πfðrþNlÞτ−ðr0þNl0Þτ̄gyei2πfr−r0þNðl−l0Þgx: ðF2Þ

The integration over x just produces the Kronecker delta factor δr;r0δl;l0. Thus, by taking the summation over l0 we obtain

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN 2
rδr;r0

X
l∈Z

e−2Nπðlþr=NÞ2ℑτ
Z

1þζ2

ζ2

dy e−2NπℑðτÞy2e−4πðrþNlÞℑðτÞy: ðF3Þ

This can also be written in a compact form as

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN 2
rδr;r0

X
l∈Z

Z
1þζ2

ζ2

dy e−2NπℑðτÞðyþlþr=NÞ2 : ðF4Þ

By again shifting the integration variable as y → y − l − r=N, we obtain

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN 2
rδr;r0

X
l∈Z

Z
lþ r

Nþ1þζ2

lþ r
Nþζ2

dy e−2NπℑðτÞy2 : ðF5Þ

Since the l dependence appears only in the integration range, summing up all l ∈ Z is equivalent to extending the
integration range to ð−∞;∞Þ. Thus, we finally arrive at a simple Gaussian integral. The final result is

ðψ ðNÞþ
r0 ;ψ ðNÞþ

r Þ ¼ 2ℑðτÞN 2
rδr;r0

Z
∞

−∞
dy e−2NπℑðτÞy2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℑτ=N

p
δr;r0 : ðF6Þ

APPENDIX G: ORTHONORMAL BASIS OF
LOCAL SECTIONS ON THE TORUS

In this appendix, we construct an orthonormal basis of
local sections of the nontrivial line bundle with charge Q.
As the orthonormal basis, we consider a set of eigen-

functions of the Laplacian. Let us consider the Laplacian
for charge Q ∈ N given by

Δ ≔ −2gabDaDb ¼ −2ðDzDz̄ þDz̄DzÞ; ðG1Þ

where

Dz ¼ ∂z −
Qπ

2ℑτ
ðz̄þ ζ̄Þ;

Dz̄ ¼ ∂ z̄ þ
Qπ

2ℑτ
ðzþ ζÞ: ðG2Þ

In the following, we will solve the eigenvalue problem,

ΔφðQÞ
n ¼ Enφ

ðQÞ
n ðn ∈ Z≥0Þ; ðG3Þ
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to find the orthonormal eigenmodes φðQÞ
n as well as the

eigenvalues En. Here, the eigenmodes shall be ordered
as En < Enþ1ð∀ n ∈ Z≥0Þ.
We first introduce the creation-annihilation operators as

â ≔ −i

ffiffiffiffiffiffiffi
ℑτ
Qπ

s
Dz̄;

â† ¼ −i

ffiffiffiffiffiffiffi
ℑτ
Qπ

s
Dz; ðG4Þ

which satisfy the commutation relation

½â; â†� ¼ 1: ðG5Þ

Then, (G3) can be expressed in terms of the number
operator N̂ ≔ â†â as

4Qπ

ℑτ

�
N̂ þ 1

2

�
φðQÞ
n ¼ Enφ

ðQÞ
n : ðG6Þ

This is completely the same as the system of the one-
dimensional harmonic oscillator. Hence, from the standard
argument, we find that the normalized eigenfunctions and
the eigenvalues are given by

φðQÞ
n ¼ ðâ†Þnffiffiffiffiffi

n!
p φðQÞ

0 and En ¼
4Qπ

ℑτ

�
nþ 1

2

�
ðn ∈ Z≥0Þ;

ðG7Þ
and the ground state is determined by

âφðQÞ
0 ¼ 0 ⇔ Dz̄φ

ðQÞ
0 ¼ 0: ðG8Þ

Taking the boundary condition (4.28) into account, we find
the following form for the ground states:

φðQÞ
0;r ¼

�
Q
2ℑτ

�
1=4

eiQπðzþζÞℑðzþζÞ
ℑτ ϑ

� r
Q

0

�
ðQðzþ ζÞ; QτÞ:

ðG9Þ
Here, the index r ¼ 0; 1;…; Q − 1 labels the degeneracy of
the ground states. The normalization factors were deter-

mined by the orthonormality of φðQÞ
0;r with respect to the

standard norm given by the integration with the symlectic
form (4.5). We can also calculate the excited modes from
(G7). The result is given by

φðQÞ
n;r ¼ 1ffiffiffiffiffiffiffiffiffi

2nn!
p

�
Q
2ℑτ

�
1=4

eiQπðzþζÞℑðzþζÞ
ℑτ

×
X
l∈Z

Hn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qπℑτ

p �
ℑðzþ ζÞ

ℑτ
þ lþ r

Q

��

× ei
π
QðrþQlÞ2τei2πðrþQlÞðzþζÞ; ðG10Þ

where HnðxÞ is the Hermite polynomial satisfy-
ing Hnþ1ðxÞ ¼ 2xHnðxÞ −H0

nðxÞ.
The set fφðQÞ

n;r jr ¼ 0; 1;…; Q − 1; n ∈ Z≥0g forms an
orthonormal basis of local sections with the twisted
boundary condition (4.28). The orthonormality of this
basis is expressed as

ðφðQÞ
n;r ;φ

ðQÞ
n0;r0 Þ ≔

Z
ωφ̄ðQÞ

n;r φ
ðQÞ
n0;r0 ¼ δnn0δrr0 : ðG11Þ

APPENDIX H: USEFUL RELATIONS FOR THE
EIGENSTATES OF THE LAPLACIAN

In this appendix, we show some useful identities for the
eigenstates of the Laplacian.
Let us consider the product

φðQÞ
n;s ðy; ȳÞφðNÞ

m:rðz; z̄Þ ¼ ðâ†yÞnffiffiffiffiffi
n!

p φðQÞ
0;s ðy; ȳÞ

ðâ†zÞmffiffiffiffiffiffi
m!

p φðNÞ
0;r ðz; z̄Þ

ðH1Þ

of the eigenstates (G10), where â†y and â†z stand for the
creation operators (G4) acting on the complex variables y
and z, respectively.12 By using the identity of the Jacobi-
theta function,

ϑ

� s
Q

0

�
ðQz1; QτÞϑ

� r
N

0

�
ðNz2; NτÞ

¼
XQþN

t¼1

ϑ

� rþsþQt
QþN

0

�
ðQz1 þ Nz2; ðQþ NÞτÞ

× ϑ

� Ns−QrþQNt
QNðQþNÞ

0

�
ðQNðz1 − z2Þ; QNðQþ NÞτÞ; ðH2Þ

we rewrite (H1) into

φðQÞ
0;s ðy; ȳÞφðNÞ

0;r ðz; z̄Þ

¼ 1ffiffiffiffiffi
N0p
XN0

t¼1

φðN0Þ
0.rþsþQtðX; X̄ÞφðQNN0Þ

0;Ns−QrþQNtðY; ȲÞ; ðH3Þ

where we used N0 ¼ N þQ and X and Y are defined by

X ≔
Qyþ Nz

N0 ;

Y ≔
y − z
N0 − ζ: ðH4Þ

If we regard (H4) as a change of variables from ðy; zÞ to
ðX; YÞ, we can also convert â†y and â

†
z to those in the X and

Y coordinates:

12In this appendix, we use y as a complex variable excep-
tionally, while it is used as a real variable in the other sections.
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â†y ¼
ffiffiffiffiffi
Q
N0

r
â†X þ

ffiffiffiffiffi
N
N0

r
â†Y;

â†z ¼
ffiffiffiffiffi
N
N0

r
â†X −

ffiffiffiffiffi
Q
N0

r
â†Y: ðH5Þ

By using (H3) and (H5), we calculate (H1) as

φðQÞ
n;s ðy; ȳÞφðNÞ

m;rðz; z̄Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!N0p

Xn
k¼0

Xm
l¼0

XN0

t¼1

ð−1Þm−l
�
n

k

��
m

l

��
Q
N0

�
k=2
�
N
N0

�ðn−kÞ=2�N
N0

�
l=2
�
Q
N0

�ðm−lÞ=2

× ðâ†XÞkþlφðN0Þ
0;rþsþQtðX; X̄Þðâ†YÞnþm−k−lφðQNN0Þ

0;Ns−QrþQNtðY; ȲÞ

¼
Xn
k¼0

Xm
l¼0

ð−1Þm−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lÞ!ðnþm − k − lÞ!

n!m!N0

r �
n

k

��
m

l

��
Q
N0

�ðkþm−lÞ=2�N
N0

�ðlþn−kÞ=2

×
XN0

t¼1

φðN0Þ
kþl;rþsþQtðX; X̄ÞφðQNN0Þ

nþm−k−l;Ns−QrþQNtðY; ȲÞ: ðH6Þ

Finally, we put y ¼ z and obtain

φðQÞ
n;s ðz; z̄ÞφðNÞ

m;rðz; z̄Þ ¼
Xn
k¼0

Xm
l¼0

ð−1Þm−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lÞ!ðnþm − k − lÞ!

n!m!N0

r �
n

k

��
m

l

��
Q
N0

�ðkþm−lÞ=2�N
N0

�ðlþn−kÞ=2

×
XN0

t¼1

φðN0Þ
kþl;rþsþQtðz; z̄ÞφðQNN0Þ

nþm−k−l;Ns−QrþQNtð−ζ;−ζ̄Þ: ðH7Þ

APPENDIX I: DERIVATION OF (4.54)

In this appendix, we derive Eq. (4.54).
For this purpose, we first need to compute

A ∘TNN0 ðφðQÞ
n;s Þrr0 ¼ ðφðN0Þ

0;r0 ;φ
ðQÞ
n;s ½AðNÞ

rr̃ φðNÞ
0;r̃ �Þ − ð½ĀðN0Þ

r̃r0 φ
ðN0Þ
0;r̃ �;φðQÞ

n;s φ
ðNÞ
0;r Þ ðI1Þ

for A ¼ U, V, where the inner product is defined in (G11). For A ¼ V, we can calculate this as

VðNÞ
rr̃ φðNÞ

0;r̃ ðx; yÞ ¼ e−
π
2Ne−i2π

r
NðN=2Þ1=4eiNπyðxþiyÞX

l∈Z
e−

π
NðrþNlÞ2ei2πðrþNlÞðxþiyÞ

¼ e−
π
2NðN=2Þ1=4eiNπyðx−1

Nþiyþ1
NÞ
X
l∈Z

e−
π
NðrþNlÞ2ei2πðrþNlÞðx−1

NþiyÞ

¼ e−
π
2NeiπyφðNÞ

0;r

�
x −

1

N
; y

�
: ðI2Þ

Similarly, we can obtain

V̄ðNÞ
r̃r φðNÞ

0;r̃ ðx; yÞ ¼ e−
π
2Ne−iπyφðNÞ

0;r

�
xþ 1

N
; y

�
: ðI3Þ

By repeating a similar computation, we obtain for A ¼ U,
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UðNÞ
rr̃ φðNÞ

0;r̃ ðx; yÞ ¼ e−
π
2NφðNÞ

0;rþ1ðx; yÞ
¼ e−

π
2NðN=2Þ1=4eiNπyðxþiyÞX

l∈Z
e−

π
Nðrþ1þNlÞ2ei2πðrþ1þNlÞðxþiyÞ

¼ e−
π
2NðN=2Þ1=4eiNπyðxþiyÞX

l∈Z
e−

π
NðrþNlÞ2e−π

Ne−
2π
N ðrþNlÞei2πðrþNlÞðxþiyÞei2πðxþiyÞ

¼ e−
π
2NeiπxðN=2Þ1=4eiNπðyþ1

NÞðxþiyþi1NÞ
X
l∈Z

e−
π
NðrþNlÞ2ei2πðrþNlÞðxþiyþi1NÞ

¼ e−
π
2NeiπxφðNÞ

0;r

�
x; yþ 1

N

�
: ðI4Þ

Similarly, we obtain

ŪðNÞ
r̃r φðNÞ

0;r̃ ðx; yÞ ¼ e−
π
2NφðNÞ

0;r−1ðx; yÞ

¼ e−
π
2Ne−iπxφðNÞ

0;r

�
x; y −

1

N

�
: ðI5Þ

Using the above results, we find that

V ∘TNN0 ðφðQÞ
n;s Þrr0 ¼ e−

π
2N

�
φðN0Þ
0;r0 ðx; yÞ; eiπyφðQÞ

n;s ðx; yÞφðNÞ
0;r

�
x −

1

N
; y

��

− e−
π

2N0

�
e−iπyφðN0Þ

0;r0

�
xþ 1

N0 ; y
�
;φðQÞ

n;s ðx; yÞφðNÞ
0;r ðx; yÞ

�
; ðI6Þ

and

V† ∘ ðV ∘TNN0 ðφðQÞ
n;s ÞÞrr0 ¼ e−

π
NðφðN0Þ

0;r0 ðx; yÞ;φðQÞ
n;s ðx; yÞφðNÞ

0;r ðx; yÞÞ

− e−
π
2
ð1Nþ 1

N0Þ
�
φðN0Þ
0;r0

�
x −

1

N0 ; y
�
;φðQÞ

n;s ðx; yÞφðNÞ
0;r

�
x −

1

N
; y

��

− e−
π
2
ð1Nþ 1

N0Þ
�
φðN0Þ
0;r0

�
xþ 1

N0 ; y
�
;φðQÞ

n;s ðx; yÞφðNÞ
0;r

�
xþ 1

N
; y

��

þ e−
π
N0 ðφðN0Þ

0;r0 ðx; yÞ;φðQÞ
n;s ðx; yÞφðNÞ

0;r ðx; yÞÞ
¼ ðe−π

N þ e−
π
N0 ÞðφðN0Þ

0;r0 ðx; yÞ;φðQÞ
n;s ðx; yÞφðNÞ

0;r ðx; yÞÞ

− e−
π
2
ð1Nþ 1

N0Þ
X
j¼�1

�
φðN0Þ
0;r0 ðx; yÞ;φðQÞ

n;s

�
xþ j

N0 ; y
�
φðNÞ
0;r

�
x −

jQ
NN0 ; y

��
; ðI7Þ

where we used ðe−iπyϕ;ψÞ ¼ ðϕ; eiπyψÞ and we also made a shift of the integral variable x in the second equality. We further
rewrite

φðQÞ
n;s

�
xþ j

N0 ; y
�
φðNÞ
0;r

�
x −

jQ
NN0 ; y

�
¼ ðe j

N0∂xφðQÞ
n;s ðx; yÞÞðe−

jQ
NN0∂xφðNÞ

0;r ðx; yÞÞ

¼ ðe j
N0ð∂xþiQπyÞφðQÞ

n;s ðx; yÞÞðe−
jQ
NN0ð∂xþiNπyÞφðNÞ

0;r ðx; yÞÞ
¼ ðe j

N0DxφðQÞ
n;s ðx; yÞÞðe−

jQ
NN0DxφðNÞ

0;r ðx; yÞÞ ðI8Þ

in terms of the covariant derivatives Di, which are given for fields with charge N by

Dx ¼ Dz þDz̄ ¼ ∂x þ iNπy;

Dy ¼ iðDz −Dz̄Þ ¼ ∂y − iNπx: ðI9Þ
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Therefore, we obtain

V† ∘ ðV ∘TNN0 ðφðQÞ
n;s ÞÞrr0

¼ ðe−π
N þ e−

π
N0 ÞðφðN0Þ

0;r0 ;φ
ðQÞ
n;s φ

ðNÞ
0;r Þ

− e−
π
2
ð1Nþ 1

N0Þ
X
j¼�1

ðφðN0Þ
0;r ; ðe j

N0DxφðQÞ
n;s Þðe−

jQ
NN0DxφðNÞ

0;r ÞÞ: ðI10Þ

We can repeat the similar computation for U and obtain

U† ∘ ðU ∘TNN0 ðφðQÞ
n;s ÞÞrr0

¼ ðe−π
N þ e−

π
N0 ÞðφðN0Þ

0;r0 ;φ
ðQÞ
n;s φ

ðNÞ
0;r Þ

− e−
π
2
ð1Nþ 1

N0Þ
X
j¼�1

ðφðN0Þ
0;r0 ; ðe

j
N0DyφðQÞ

n;s Þðe−
jQ
NN0DyφðNÞ

0;r ÞÞ: ðI11Þ

By summing (I10) and (I11), we finally obtain (4.54).

APPENDIX J: LAPLACIAN FOR
RECTANGULAR MATRICES AND

HOFSTADTER PROBLEM

In this appendix, we consider the exact eigenvalue
problem of the matrix Laplacian (4.52) for rectangular
matrices. We show that the problem is equivalent to a
special case of the Hofstadter problem [36], which we will
review below.
The eigenvalue equation for N × N0 matrices is written

as

Δ̂ðFÞ ¼ N2½U† ∘ ðU ∘FÞ þ V† ∘ ðV ∘FÞ� ¼ EF: ðJ1Þ

In terms of the matrix elements of F, this is equivalent to

Frþ1;r0þ1 þ 2 cos

�
2π

�
r
N
−

r0

N0

��
Fr;r0 þFr−1;r0−1 ¼ ẼFr;r0 ;

ðJ2Þ

where Ẽ is given by

Ẽ ¼ 4 cosh

�
Qπ

2NN0

�
−

E
N2

e
π
2
ð1Nþ 1

N0Þ: ðJ3Þ

The periodic structure of (J2) enables us to extend the range
of indices as FrþN;r0þN0 ¼ Fr;r0 . With this notation, assum-
ing that N and N0 are coprime, we relabel the matrix
elements as

Fr ≔ Fr;r ðJ4Þ
for r ¼ 0; 1;…; NN0 − 1. In this notation, (J2) reduces to

Frþ1 þ 2 cos

�
2Qπr
NN0

�
Fr þ Fr−1 ¼ ẼFr ðJ5Þ

for r ¼ 0; 1;…; NN0 − 1, where F−1 ≔ FNN0−1 and
FNN0 ≔ F0. This is also equivalent to the following
eigenvalue problem:

HF⃗ ¼ Ẽ F⃗; ðJ6Þ
where

H ¼ ðCðNN0ÞÞQ þ ðCðNN0Þ†ÞQ þ SðNN0Þ þ SðNN0Þ† ðJ7Þ

F⃗ ¼ ðF0; F1;…; FNN0−1ÞT: ðJ8Þ

The eigenvalue problem of H is what is known as the
Hofstadter problem [36]. Finding an exact solution to this
problem is still an open problem, though some numerical
analyses have been done [36] and revealed a fractal
structure of the spectrum, known as a Hofstadter butterfly.
It is interesting that the same Hofstadter problem also

arises in a system of tight-binding Bloch electrons under a
constant magnetic flux in a periodic two-dimensional
surface, which has the following Hamiltonian:

H ¼ −t
Xq−1
i¼0

X
k⃗

X
σ¼↑↓

ωiðk⃗Þd†i;σðk⃗Þdi;σðk⃗Þ; ðJ9Þ

where t is the hopping parameter, q is the number of lattice
sites, di;σðk⃗Þ is a creation and annihilation operator for the

wave number k⃗ and spin σ, satisfying anticommutation
relations fdi;σðk⃗Þ; d†j;σ0 ðk⃗0Þg ¼ δijδσσ0δk⃗k⃗0 . The eigenvalue

ωiðk⃗Þ is obtained by solving the eigenvalue problem of

Hðk⃗Þ ¼

0
BBBBBBBBBBBB@

2 cos k2 1 0 � � � 0 e−iqk1

1 2 cosðk2 − 2πϕÞ 1 0

0 1 . .
. . .

. ..
.

..

. . .
. . .

. . .
.

0

0 . .
. . .

.
1

eiqk1 0 � � � 0 1 2 cosðk2 − 2πϕðq − 1ÞÞ

1
CCCCCCCCCCCCA
; ðJ10Þ
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where ϕ ¼ p
q is the strength of Uð1Þ flux per unit plaquette

and p is the Chern number. Here, we assumed that p and q
are coprime for simplicity. Readers may refer to [46] for the
derivations of the Hamiltonian (J9) and the matrix (J10). If
we put ϕ ¼ Q

NN0, q ¼ NN0 and k⃗ ¼ 0, the matrix (J10)
reduces to the Hamiltonian (J7) for the matrix Laplacian.
The spectrum of (J7) or (J10) has been studied numeri-

cally. In the large-q limit, it is shown that the spectrum of

(J7) indeed coincides with the Landau level [47], and this is
consistent with our result.

APPENDIX K: EVALUATING THE NORM OF ψ −

In this appendix, we show that the norm of ψ−, which is
given by (5.9) and (5.12), does not converge.
First, for the inner product (2.3), the norm of ψ− can be

rewritten as

kψ−k2 ¼
X
γ;γ0

Z
M

ωð1 − jzj2Þ1−N
�
dγðzÞ
dz

dγ̄0ðzÞ
dz̄

�ð1−NÞ=2
f̄−ðγ̄ðzÞÞf−ðγ̄0ðzÞÞ

¼
X
γ;η

Z
M

ωð1 − jzj2Þ1−N
�
dγðzÞ
dz

dðη̄ γ̄ÞðzÞ
dz̄

�ð1−NÞ=2
f̄−ðγ̄ðzÞÞf−ððη̄ γ̄ÞðzÞÞ

¼
X
γ;η

Z
γ−1ðMÞ

ωð1 − jγ−1ðwÞj2Þ1−N
�

dw
dγ−1ðwÞ

dη̄ðw̄Þ
dγ̄−1ðwÞ

�ð1−NÞ=2
f̄−ðw̄Þf−ðη̄ðw̄ÞÞ

¼
X
γ;η

Z
γ−1ðMÞ

ωð1 − jwj2Þ1−N
�
dη̄ðw̄Þ
dw̄

�ð1−NÞ=2
f̄−ðw̄Þf−ðη̄ðw̄ÞÞ: ðK1Þ

To obtain the second equality we changed the dummy variable from γ0 to η ¼ γ0γ−1 and to obtain the third equality, we
changed the integral variable by w ¼ γðzÞ. Note that ω is invariant under actions of Γ. To obtain the last equality, we used
the fact that for any γ ∈ Γ, the relation

1 − jγðzÞj2 ¼
				 dγðzÞdz

				ð1 − jzj2Þ ðK2Þ

holds, so that

ð1 − jγ−1ðwÞj2Þ1−N
�

dw
dγ−1ðwÞ

dη̄ðw̄Þ
dγ̄−1ðwÞ

�ð1−NÞ=2
¼ ð1 − jwj2Þ1−N

�
dη̄ðw̄Þ
dw̄

�ð1−NÞ=2
: ðK3Þ

In the last line of (K1), we can use the relation
P

γ

R
γ−1ðMÞ ¼

R
D2 . Hence, from ω ¼ idw ∧ dw̄=ð1 − jwj2Þ2, we obtain

kψ−k2 ¼
X
η

Z
1

0

djwj2ð1 − jwj2Þ−1−N
Z

2π

0

dðargwÞ
�
dη̄ðw̄Þ
dw̄

�ð1−NÞ=2
f̄−ðw̄Þf−ðη̄ðw̄ÞÞ: ðK4Þ

This shows that for N ≥ 1, the integration of jwj2 does not converge. Thus, kψ−k2 is not convergent for N ≥ 1.

APPENDIX L: BERGMAN KERNEL ON DISK

In this appendix, we construct a Bergman kernel on the Poincaré disk D2. See [5] for more details.
On the Poincaré disk, an orthonormal basis of the Dirac zero mode is given by

ψnðz; z̄Þ ¼ ð1 − jzj2ÞðNþ1Þ=2
�
N
2π

�
1=2
�
N þ n
N

�
1=2

zn: ðL1Þ

Here, n ¼ 1; 2;…;∞, so the dimension of KerD is infinity. This comes from the noncompactness of D2. We can check the
orthonormality as follows:
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ðψn;ψmÞ ¼
N
2π

�
N þ n
N

�
1=2
�
N þm
N

�
1=2
Z

1

0

djzj2ð1 − jzj2ÞN−1
Z

2π

0

dðarg zÞz̄nzm

¼ δnmN

�
N þ n
n

�Z
1

0

djzj2ð1 − jzj2ÞN−1jzj2n

¼ δnmN

�
N þ n
n

�
ΓðNÞΓðnþ 1Þ
ΓðN þ nþ 1Þ

¼ δnm: ðL2Þ

By using the generalized binomial theorem ð1 − xÞ−ðNþ1Þ ¼P∞
n¼0ðNþn

N Þxn, we find that the Bergman kernel is given by

KðNÞðz; wÞ ¼ N
2π

ð1 − jzj2ÞðNþ1Þ=2ð1 − jwj2ÞðNþ1Þ=2ð1 − z̄wÞ−ðNþ1Þ: ðL3Þ
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