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We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a
nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix
regularization. We construct the matrix regularization explicitly for the case of the sphere and torus based
on the Berezin-Toeplitz quantization, and also discuss a possible generalization to cases with higher genera.
We also discuss the matrix version of the Laplacian acting on the rectangular matrices.
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I. INTRODUCTION

The matrix regularization plays important roles in the
matrix-model formulations of M-theory or superstring
theory [1,2]. The first quantized theory of a membrane
or a string is mapped by the matrix regularization to the
matrix model [3], which is conjectured to give a non-
perturbative formulation of M-theory or superstring theory.

In the matrix regularization, functions on a closed
symplectic manifold (M, ) are linearly mapped to N x
N matrices. In this paper, we consider the case that the
manifold M is a closed Riemann surface, which is relevant
to the regularizations of closed membranes or strings. In
this case, the main property of the matrix regularization is
that, for any f, g € C®°(M), their images Ty (f),Ty(g) €
My (C) of the matrix regularization satisfy [4]

lim |7 (£)Tn(9) = Tw(£9)l| = 0,

13&20||N[TN(JC>’ TN(Q)] - iTN({f’ 9})” =0,

“3e0 [ =0

where || - || is @ matrix norm, {, } is the Poisson bracket on
M defined by w, and V = [, w/2x is the symplectic

1
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volume. The first two properties show that the matrix
regularization approximately preserves two algebraic struc-
tures of functions associated with the ordinary pointwise
product and the Poisson bracket. For Riemann surfaces, the
matrix regularization satisfying (1.1) can be constructed by
using the Berezin-Toeplitz quantization [5-8], which we
will review later.

In this paper, we consider a generalization of the above
setup to Riemann surfaces with nonzero magnetic flux.
Suppose that there exists a U(1) magnetic flux on M as
/ wm F/2r = Q with O a nonzero integer. Note that the
gauge field A of the field strength F cannot be globally
defined, since any globally defined connection would lead
to [\ dA/2z = [,,,A/2r = 0 for a closed manifold. The
gauge field A should be defined on each local patch and, on
an overlap of any two patches, they are related to each other
by gauge transformations. A typical example is given by
the Wu-Yang monopole configuration on S, which we will
review in later sections. Complex scalar fields coupling
to A through the gauge covariant derivative are also
defined locally and receive gauge transformations on the
overlaps. In the matrix regularization, only globally defined
functions are usually considered. We will consider the
matrix regularization of locally defined fields, which
couple to the gauge field of the nontrivial magnetic flux.
This setup will be relevant for describing D-branes in terms
of matrices, on which there can exist nontrivial gauge
fluxes.

The locally defined scalar fields are mathematically said
to be local sections of the complex line bundle on M with
the connection A, where the globally defined fields corre-
spond to the special case of the trivial bundle with A = 0.
The local sections form a module of the algebra C*(M).
Here, a left module M of a unital algebra A is an Abelian
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group such that there exists an operation -: A x M; — M,
which satisfies

f-latb)=f-a+f-b,
(f+g)-a=f-a+tg-a,
(fg)-a=f-(g9-a),

ly-a=a, (1.2)
for all f,g€ A and a,b € M;, where 1, is the identity
element of 4. Similarly, the right module can also be
defined with the right multiplication. For the case of the
local sections of the line bundle, A = C*(M) and multi-
plying an element of C*(M) to local sections gives the
operation -. In physical terminology, (1.2) is just the
property that U(1) charged fields with the same charge
form a vector space and a product of a U(1) charged field
and a neutral field gives another charged field with the same
charge. In this case, the left and right multiplication gives
the same operation, so the local sections give left and right
modules of the algebra C®(M).

The Serre-Swan theorem [9] states that vector bundles on
M are dual to modules of the corresponding algebra of
functions on M. The fuzzy counterpart of this theorem
would suggest a correspondence between the fuzzy version
of vector bundles and modules of the matrix algebra
My (C). Any module of My(C) can be written as a set
of rectangular matrices.' Thus, it is expected that the matrix
regularization should be generalized such that the charged
scalar fields are mapped to rectangular matrices.

For the fuzzy sphere, there is indeed such a mapping
from local sections to rectangular matrices [10-12] (see
also [13,14] for the fuzzy CP"). In [15,16], it is shown that
the map can be formally constructed for Kidhler manifolds.
The main property of this map is that the relation,

lim || 7y (f)Tyn(a) = Ty (f-a)|| =0,  (1.3)

N—->oco

holds for any smooth function f and local section a of a
complex line bundle, where T is the linear map from
local sections to N x N’ rectangular matrices. The differ-
ence N' — N corresponds to the monopole charge (the
Chern number) of the line bundle and this should be kept
fixed when one takes the large-N limit. The property (1.3)
guarantees that the structure of the module (1.2) is
approximated well in terms of the rectangular matrices.
Note that when N = N’, the charge is vanishing and the
local sections are just ordinary functions. In this case, Ty
reduces to Ty and (1.3) just means the first property
of (1.1).

'The set of all N x N’ or N’ x N matrices gives a left or right
module of My(C), respectively.

In this paper, after presenting a general construction of
the maps Ty and Ty, we first show that this construction
can be embedded in the Berezin-Toeplitz quantization in a
U(2) gauge theory. Then, we explicitly demonstrate the
construction for the sphere and the torus. In the case of the
fuzzy sphere, this construction gives the well-known fuzzy
spherical harmonics [10-12,14]. For the fuzzy torus, this
provides rectangular matrices written in terms of elliptic
functions. We will also construct fuzzy versions of the
Laplacians, which act on the rectangular matrices and
realize the continuum spectra in the commutative limit.

We also discuss the case of Riemann surfaces with
higher genera. In this case, we could not explicitly con-
struct the mappings due to some technical difficulties. In
particular, we will discuss that obtaining the orthonormal
basis of spinors, which is necessary for defining each
matrix element of Ty and Ty, is technically difficult to
compute, though a nonorthonormal basis can be generally
written down. Nevertheless, we present a general form of
the Bergman kernel, which formally defines the map 7'y p:.

This paper is organized as follows. In Sec. II, we review
the Berezin-Toeplitz quantization, which gives systematic
constructions of 7y and T . We also discuss that these
constructions are unified in the Berezin-Toeplitz quantiza-
tion in a U(2) gauge theory. In Secs. III and IV, we
explicitly construct this mapping for the case of the sphere
and the torus, respectively. In Sec. V, we discuss the
generalization to surfaces with higher genera. In Sec. VI,
we summarize our results and discuss possible applications.
In the appendixes, we show some details.

II. BEREZIN-TOEPLITZ QUANTIZATION

In this section, we review the Berezin-Toeplitz quanti-
zation and its generalization to rectangular matrices. We
also show that the quantizations with square and rectan-
gular matrices can be reformulated in terms of a U(2)
gauge theory. In the following, we denote a closed Riemann
surface by M.

A. Quantization for functions

Let us first briefly outline the Berezin-Toeplitz quanti-
zation for C*®(M). In this quantization, one first needs to
construct zero modes of a certain Dirac operator.2 Let N be
the number of independent zero modes and {w;|l =
1,2,...,N} be an orthonormal basis of the zero modes.
Then, the Berezin-Toeplitz quantization is given by a map

TN(f)U:/Mw‘//}'fV/I» (2.1)

where - means the contraction of spinor indices. This map
satisfies (1.1), if appropriate geometric quantities are used

Instead of the Dirac zero modes, one can use holomorphic
sections of complex line bundles [5-7].
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in the construction of the zero modes or the Dirac operator,
as we will explain below.?

A more detailed setup is as follows. Let (g, w,J) be a
Kihler structure on M, which is a compatible triple of a
metric, a symplectic form, and a complex structure. The
surface M has a spin structure associated with J. Let S be a
spinor bundle on M. The fiber of S is C? and sections of S
are spinors with two components. We define a Dirac
operator acting on sections of S by

1
D = iGa%Dﬂ = iﬂa% (Ql + Zgﬂbco-bac - lNAM> . (22)

where 6 (a = 1, 2) are Pauli matrices, €2, and @, are the
spin connection and the inverse of the zweibein for the
metric g, respectively, and N is a positive integer corre-
sponding to the charge of the spinor fields. We choose the
gauge field A to be the symplectic potential, namely, A is
given by @ =VdA on each local patch, where
V = [ ®/2r. The field strength F = dA then satisfies
/ m F/2m = 1. See Appendix A for a detailed definition of
the Dirac operator. With this setup, it follows from the
index theorem that the number of zero modes of (2.2) is
equal to N. Let {y,;|I =1,2,...,N} be an orthonormal
basis of the zero modes, with respect to the inner product

(w.y') = / oy -y (2.3)
M
Then, the Toeplitz operator for f € C®(M) is defined by

(2.1). It is shown that with this definition, (2.1) satisfies the
main properties (1.1) of the matrix regularization [7,8].

B. Quantization for local sections

The spinor fields of S transform as y — e¥*y under a
gauge transformation, where a is a local gauge parameter.
We can consider complex scalar fields with charge Q,
which transform as ¢ — e/%%¢p. In this subsection, we
consider a matrix regularization of such charged scalar
fields.

One cannot use (2.1) for the charged fields, since y/; .
@y is not gauge invariant. In order to make a gauge
invariant mapping, we introduce two copies of the spinor

bundles S?) and S?') which have the same connection A
but different charges, N and N, respectively. Let {wf,N) |l =

1,2,...,N} and {y/gN/)|I: 1,2,...,N'} be orthonormal

bases of the Dirac zero modes, which transform as WEM -

Ny and y V) = eiN'ay ) Then, for a given charged

scalar ¢ with charge Q, we define a rectangular matrix

The Berezin-Toeplitz quantization also naturally appears in
the Landau problem and the problem of tachyon condensation on
D-branes. For example, see [17,18] and [19,20] for these
contexts, respectively.

Ty (fﬂ)u = /M wl//(JN)% 'fﬂWgN)- (2-4)

In order for this to be gauge invariant, N and N’ have to be
related by N' — N = Q. Note that (2.4) reduces to (2.1) for
O = 0. The map (2.4) can also be formulated in terms of
the Bergman kernel, which is a projection operator onto the
Dirac zero modes. See Appendix B for this formulation.

The map (2.4) has the property (1.3) [16]. See
Appendix C for the proof. Thus, it indeed gives a natural
matrix regularization of the charged scalar fields.

C. Quantization in U(2) gauge theory

Here, we show that the map (2.4) is naturally obtained as
Toeplitz operators in a U(2) gauge theory.

Note that the definition of (2.1) can be generalized such
that the gauge group of A is non-Abelian [18,21,22].
Suppose that the gauge group is U(2) and S is the spinor
bundle in the fundamental representation. We represent the
two-dimensional vector space of the fundamental repre-
sentation by using the two-component representation

(v)

where each upper and lower component is a spinor on M.
On these spinors, we can consider actions of adjoint scalar
fields of U(2), which can be represented as 2 x 2 matrices:

(V/) <(P11 ¢12><W>
- .
7 1 90/ \Y
We then consider a quantization of the algebra of the
adjoint scalars using the Toeplitz operators.

In order to realize the mapping (2.4), let us consider a

special case’ where only the connection of a diagonal U(1)
subgroup is nontrivial and the Dirac operator takes the form

(o wa))- @7

where A, is a U(1) connection satisfying [, F/2z = 1.
Namely, the upper and lower components of the funda-
mental representation transform as spinors with charge N
and N’, respectively, under the diagonal U(1) gauge
transformation. The spinor bundle is thus decomposed to
a direct sum of S and S introduced in the previous
subsection. From (2.6), we see that the (1,2) and (2,1)
elements of an adjoint scalar field behave as fields with

(2.5)

(2.6)

1
D = l-Gan <8ﬂ +ZQ”/,L.U[70'C - l

“It is worth pointing out that this configuration of the U(2)
connection is also recovered as solutions of the equation of
motion of a matrix model which formulates pure Yang-Mills
theory on fuzzy spaces [23,24].
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charge N — N’ and N’ — N, respectively, while the diagonal
elements behave as neutral fields. A basis of zero modes of
the Dirac operator is given by {¥;|[ =1,2,....N+ N’}
with

0
0
lPI— (N/) fOfI:N+1,N+2,...,N+N/,
Vi-N
(2.8)
where y\" and " are b i i i
y,; ~and y,; ’ are bases introduced in the previous

subsection. For an adjoint scalar field ¢, the Toeplitz
operator is defined by

Tyon (@), = /M 0¥ - ¥, (2.9)

If we consider a complex adjoint scalar with only a (2,1)
element, the Toeplitz operator (2.9) is nonvanishing only
for I=1,2,..,.N and J=N+1,N+2,...N+N".
Thus, we obtain the rectangular map (2.4) as a special
case of the Berezin-Toeplitz quantization in the U(2) gauge
theory. Note that the quantization of the diagonal elements
of scalar fields gives the mapping between neutral fields
and square matrices. Hence, this formulation using the
U(2) gauge theory gives a unified quantization for charged
and noncharged fields.

III. FUZZY SPHERE

In this section, we construct the quantization on a
sphere S°.

A. Geometry of S*> with a magnetic flux

We define two open subsets of S? by U, = {(0, ¢)|0 <
0 <x}and U, = {(0,9)|0 < 6 <z}, where (0, ¢) are the
polar coordinates and 0 < ¢ < 2z. We also define the

stereographic coordinates on U; and U, by z=
tan(0/2)e’® and w = 1/z, respectively.
We define a Kihler metric on S? by
2dzdz
=——. 3.1
A CFL 0

The compatible symplectic form is then given by (A2) and
the volume is V = f ¢ w/2r = 1. With respect to this
metric, we can choose a Kihler potential, which is defined
by (A7), as

p =log(1+ |z]?). (3.2)

From (A6) and (A8), we also choose a spin connection and
U(1) gauge field defined on U, as

Zdz — zdz

Qp, = —i——— 2%

12 ! 1+ |z
i zdz — zdz

A=——"" " 3.3
2 14z (3:3)

respectively. Note that we have Q,,6%6” /4 = iAo in this
gauge. This gauge field is known as the Wu-Yang gauge
configuration. On the overlap region U; N U,, the gauge
field A transforms as

(3.4)

Let 9@ be a complex scalar field with charge Q
coupling to A. Corresponding to the gauge transformation

(3.4), 9 transforms as

(p(Q) (w) = e—iQ(/)(p(Q) (z), (3.5)

on U, N U,. In general, ¢'@) can be expanded in terms of
the monopole harmonics Ygg) [25,26]. See Appendix D for
the definition of ¥!?)

Im *

Let w = (w,y~) be a spinor field on S, where +
stands for the chirality of each component. In our gauge,
w* transform as

y(w) = e Pyt (2), (3.6)
on U; N U,. This means that y* are charged scalars with
charge = 1.

B. Dirac zero modes on S?

We first construct a Dirac operator (2.2) on S? and
compute its zero modes. The Dirac operator flips the
chirality, so that it has only off-diagonal elements in the
chiral representation. From (3.2) and (A9), the Dirac
operator is given by [20,27,28]

N-1
=R

N+1
D‘—\/ii{(H—lzlz)az— ;_ Z},

Dt = ﬁi{(l e)a; +

(3.7)

where D* are the matrix elements of D acting on the spaces
with chirality 1, respectively. In this section, we also write
N = 2J + 1 by using a half integer spin J. Note that spinor
fields ™) = (w™+,w(™)=) on which D acts transform as

yVEw) = TN (38)

on U;NnU, As shown below, an orthonormal basis

{WSN)|r =—J,-J+1,...,J} of KerD with respect to
the inner product (2.3) can be expressed in terms of the
monopole harmonics as

106009-4
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(N-1)
Y
l//gN) — (_1)]—r< Jz)r ) (3.9)

See Appendix D for the definition of the monopole
harmonics.

In the following, we will derive (3.9). For the decom-
positiony = (w,y ™), the Dirac equation Dy = 0 reduces
to two differential equations D¥y* = 0. We can easily solve
these equations and find that ™ = (1 + |z|?)FVFU/2p*,
where A" and /™ are arbitrary holomorphic and antiholo-
morphic functions on U, respectively. We focus on the norm
of y* given by

/2w|y/i|2_ i/2 dzdz(1 + |z|*)FN-1AE2. (3.10)
S S

We find that the norm of y~ does not converge for N > 1
unless 2~ = 0, whereas the norm of w™ converges when
the degree of h™ is less than N. Therefore, we find
KerD = KerD* = N, which is consistent with the index
theorem. Since A" can be expanded in terms of the basis

N—1 (N)+

1,z.2%,...,z2¥71, we can choose y, ' as

I/I(N)+ _ ﬁ 1 2J l/zzj—r
' V2r (1 +z2)/ \J+r '
— 4 /ﬁ<Jr|e—ieL;” |JJ>€i(J—r)(/)’
2

where we used z = tan(6/2)e" in the second equality. By
comparing this with the definition of the monopole harmon-
ics (D4), we finally obtain (3.9).

(3.11)

C. Berezin-Toeplitz quantization on S

Here, we construct the Berezin-Toeplitz map on S? and
show that (2.4) relates the monopole harmonics and the so-
called fuzzy spherical harmonics.

By using these Dirac zero modes derived above, we can
construct (2.4) for a charged scalar go(Q) as

Tyw (@), , = / oy gy,

(R N'=1)\« N-1
= () [y

(3.12)

where N' — N = Q. Since any charged scalars with charge
Q can be expanded in terms of the monopole harmonics
y(@ ()

Im > Im

we focus only on the mapping of Y, *’. We introduce a

normalization as f/grg) = 27:Y§g) for convenience. Then,
we have

,.,(Q) (21 + l)N _rr U
TNN’<Y Im )rr’ = TC{mJ—rCZQJ/ZJJ’

= (1)Y= lNC, Ll e (313)

(_1)J+J’—r—r’

Here, we used the formula (D5) in the first line and the
symmetric properties for the Clebsch-Gordan coefficients
in the second line. Furthermore, by taking into account the
parity” for the pairs of J and r, J' and /, and [ and Q/2 as
well as the relation 2J' — 2J = Q, we find that

(=1)3=2r=r'H = ()= H = (=)~

= (=)= (3.14)

Thus, we have

Tyw (V2) = (=D)7"CligpYimry.  (3.15)

where f/lm( ) 18 the fuzzy spherical harmonics [10-12,
14,29-31]. See Appendix E for the definition of y Im(JT')-
Here, the Clebsch-Gordan coefficient in (3.15) is given by

o (N=DI(N + Q)! _
oz (N +Q/2+ DN +0/2-1-1)!

(3.16)

From (3.16), we find that CJ},, = 1+ O(1/N), if [ =
O(1) as N — oo. This means that T NN/(f/(Q)) coincides

Im
with the fuzzy spherical harmonics in the large-N limit
except for the trivial overall factor (—1)7..
Note that (3.12) contains the ordinary matrix regulari-
zation for functions as a special case with N’ = N. For
example, the Toeplitz operator for the standard embedding

function into R3,

x'(0, ¢) = sin O cos ¢,
x%(0, ¢) = sinOsin ¢,

x*(0, ¢) = cos 0, (3.17)
is given by
Tyn(xh) = LLW, (3.18)
J+1
where L4 are the (2J + 1)-dimensional representation

matrices of the SU(2) generators satisfying the Lie algebra

>For example, 2J and 2r are not necessarily even numbers
since J and r can take half-integers. However, 2(J + r) must be
an even number from r = —J,—J + 1, ..., J. This also holds for
the pairs in which the sign of either J or r or both is reversed. The
similar discussion can be applied to the pairs of J' and ' and / and

Q/2.
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[LWA LUB] = je, 5 LV)C. This is the well-known con-
figuration for the fuzzy sphere [29].

D. Laplacian on fuzzy S>

Here, we construct the matrix Laplacian which acts on
the rectangular matrices (3.15).

The Laplacian for functions on $? is given by the Casimir
operator of SU(2). Since we have the representation of
SU(2) on the space of charged scalar fields with charge Q
as explained in Appendix D, we can naturally define the
Laplacian on the fields by

(3.19)

Here, [,gQ) are the representation of the SU(2) generators

defined by (D1). By the definition (D2), the monopole

harmonics Y ES) are the eigenfunctions of A and the

spectrum is given by {l(/+ 1)} where [=|0Q|/2,
|0|/2+ 1, ...,00. The only difference from the spectrum
of the ordinary spherical harmonics is the presence of the
lower bound of the angular momentum [ = |Q|/2.

Similarly, there is another representation of SU(2) on the
space of rectangular matrices, which is given in
Appendix E. From this structure, it is natural to define
the matrix Laplacian by

(3.20)
for any N x N’ matrix M. Here, LE{” o are the represen-
tation of the SU(2) generators defined by (El). By the
definition (E2), the fuzzy spherical harmonics f/lm( 70
are the eigenvectors of A and the spectrum is given by
{I(I+ 1)} where [=[J=J||J=J]+1,....0J+J.
Since we have the relation 2J' —2J = Q, the spectrum

of A coincides with that of A except for the cutoff J + J',
which depends on the matrix size and goes to infinity in the
large-N limit. From (3.15), we therefore have

ATy (V12 = Ty (AT12), (3.21)

fori<J+J.

IV. FUZZY TORUS

In this section, we construct the quantization on a
torus 72

A. Geometry of T? with a magnetic flux

A complex torus is defined as a quotient space of the
complex plane,

T2 = C/~, (4.1)

where ~ stands for the periodic identifications of a discrete
lattice:
meZl.z=7+n+mr

z~7 & dn, (z,7 € C).

(4.2)

Without loss of generality, the parameter space of 7 can be
restricted to the fundamental domain with |z| > 1, 37> 0
and —1/2 < 9z < 1/2 as usual. We express z in terms of
two real variables x, y as
z=x+1y, (4.3)
where x and y are periodic coordinates, for which we take
the fundamental region as x,y € [0, 1).
We introduce the Kihler metric on 772 as
g = 2dzdz. (4.4)
According to (A2), a compatible symplectic form is then
given by
o = idz N dZ = 237dx N dy. (4.5)
Thus, the symplectic volume will be V = [5. w/2x =
Jt/m. From (A7), the Kéhler potential for the metric
(4.4) can be chosen by
p=lz+(P (4.6)
where ¢ :=¢'+ 7% and ¢' and ¢? are real constants

corresponding to the gauge holonomies along the 1-cycles
on T2. From (A9), the U(1) gauge field is given by

T

A=< Sz + &)dz]. (4.7)

o~

N

The gauge field A is periodic up to a gauge transforma-
tion as
Alz+ 1,24 1) =A(z,2) + dAy,

A(z+1,24+7) = A(z,2) + dhy, (4.8)

where 4, and 4, are given by the Wilson loop phases for x
and y directions, respectively:

A = %dx(AzaxZ +Azax2) = é?ﬁ(z + g)’
b= §dAD,z 4400 = TR+ (49)

The gauge transformation (4.8) is sometimes called the
twisted boundary condition. The spin connection on 72 is
evidently zero from (A6).

106009-6
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We also introduce spinor fields on 72. Let ™) be a
spinor field with charge N € Z. We impose the twisted
boundary condition as

M+ 1,724 1) =My (z,7)
N,
= exp <l3:2‘s(z + é))y/(N)(z,Z),

yWM(z+17,2+7) = eNoyW(z,2)

— exp (’gf” ez + c)]) y™)(2,7).

~

(4.10)

With this boundary condition, it is easy to see that covari-

ant derivatives of V) also satisfy the same boundary
condition.

B. Dirac zero modes on 72

Let us construct a Dirac operator on 72. From (4.6) and
(A9), the Dirac operator is given by

Dt = \/ii{82+&(z+C)},

237

D—:\/ii{az—Nf(z+E)}. (4.11)

2371

We decompose a Dirac spinor as y™) = (y™)+ ("))
and we introduce y*(z,z) by

iNm
231

wNE(z2,2) = exp ( S[(z + 6)2]>;(i(z, 7). (4.12)

(N

Then, the Dirac equation Dy™) = 0 is equivalent to the

following equations:
iN
(82 +%‘3<Z”)>’” -0

(814—1.({:]:%&—!—()))(‘ 0. (4.13)

The boundary conditions for y* are given from (4.10) and

(4.12) as

rz+1,z2+1) =x%(z.2).

X2+ 7.2+7) = exp (—iNzRelz + 2(z + {)])r*(z. 2).
(4.14)

Below, we solve (4.13) to determine y* [32]. Let us first
consider y*.° The periodicity of y* along the x direction
enables us to expand it in a Fourier series:

®Here, we will use both (x,y) and (z,Z) coordinates. We will
write y(x,y) or y*(z,Z) to represent which coordinate we are
using, but these shall be the same quantity: y*(x,y) = ¥ (z,2).

7 (xy) =) enly)e ™. (4.15)

nez
By substituting (4.15) into (4.13), we obtain the differential

equations for the coefficients c,(y),

C,,(y§ = i2znt — 2Nx(J(7)y + J¢)

(4.16)

for V n € Z, where the prime denotes the y derivative. The
solution to these equations is given by

Nrn
o)~k (2

(3(z + C))2> exp(i2znty) (4.17)

for V n € Z, where k, are complex integration constants.
By substituting this into (4.15), we obtain

27(2.2) =) kpexp <_§2” ((z+ C))2> e (4.18)

nez

Then, we use the boundary condition for the y direction.
From the second equation in (4.14), we obtain the follow-
ing recursion relation:

k, = exp (—iz(2n + N)z)exp (—i2Nnl)k,,n. (4.19)

The solution to this equation is

k, =N, exp (’ﬁ’f’) exp (i2an8) (N, =Ny,
(4.20)
From (4.12), (4.18), and (4.20), we obtain
M+ = euvrz(z+a:)%z Nnei"]’f/z’eﬂnﬂ(z-&-()_ (4.21)

neZz

Because the condition A/, = NV, v, w™)* can be further
decomposed into |N| linearly independent solutions:

pVt = N e ORS m (N(z+¢),N7),  (422)

where r = 0,1, ..., N — 1 and 3§ is the Jacobi-theta function
defined by

a
9 7)== eiﬂ(a+l)zrei27r(a+l)(u+b) ) 4.23
en=3 (423)

s/4

The negative chirality mode ™)~

similar way and is given by

can be computed in a
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Y = A B | (VG4 D)., (424)

From the definition of the Jacobi-theta function and the
positivity of 3z, 1//£N>+ and yfﬁN)_ converge only when
N >0 and N <0, respectively. In the following, we
assume that N > 0, so that z//“v )= = 0 and the zero modes

are finally given as

W (yt
o)
0
W)

with y"'" given by (4.22).
We can determine the normalization factor N\, in such a

way that 1//£N>

(4.25)

become orthonormal. The inner product of

the zero modes yng) is computed in Appendix F and is
given by
™M WY = N2250/NS,,. (4.26)
Thus, if we put
N 1/4
No=(55) " (4.27)
St

{ylgN)|r =0,1,...,N—1} forms an orthonormal basis of
the zero modes.

C. Berezin-Toeplitz quantization on 7?

In this subsection, we construct the Toeplitz operator
(2.4) for local sections of a complex line bundle on 72.

To construct (2.4), we need two copies of spinor bundles
with charges N and N’. Let {wﬁN)|r =0,1,...N=1}
and {l//yv,)|r/ =0,1,....N' =1} be the orthonormal
bases of the Dirac zero modes, each of which has the
form (4.25). We consider another scalar field ¢(@) with
charge Q = N’ — N, which satisfies the twisted boundary
condition,

P (z4+ 1,724+ 1) =exp (lgfi‘s(z + C))§0(Q)(Z,Z),
9 Q(z+1,2+7) =exp (lgf ez + C)]) 9 (z,2).
(4.28)
The map (2.4) for p(@) is then given by
Taw (@), = () o @y™). (429

Note that the integrand in the inner product on the right-
hand side is gauge invariant and hence is a completely
periodic function on the torus.

The map (4.29) reproduces the well-known configura-
tion of the fuzzy torus given by the clock-shift matrices. To
see this, we consider the quantization of the functions
u(x,y) =exp(i2zx) and v(x,y) := exp(i2zy), which are
completely periodic and hence have the vanishing charge
Q = 0. The Toeplitz operator (4.29) for these functions are
given as

U = Ty (u) = e e 57,

V= Ty(v) = e w27t (4.30)

where C and § are clock and shift matrices respectively:

(4.31)

1

with ¢ = e, They satisfy the well-known algebra of the
fuzzy torus’: CN = SN = id(y) and CS = ¢SC.

Similarly, for any periodic function with Q = 0, which
can be expanded as

f(x,y) — Z fnmeiZn(nermy)’ (432)
n,meZ
the Toeplitz operator takes the form of
N-1
Tn(f) =Y FunU"V™. (4.33)

n,m=0

Note that because of the relations UV, V¥  id w) as well as
the orthogonality under the trace, the matrices U" V" with
n,m=0,1,...N — 1 form a complete basis of M (C). The
coefficients f,,, in (4.33) are given as follows. By a direct
calculation, we can first obtain

"The two complex functions u and v define an embedding of
T? into C2. This embedding is not an isometric embedding for the
metric (4.4), which is in general very difficult to construct for
general 7. However, in [33], a smart construction of such
embedding and its quantization for special values of 7 is
proposed.

106009-8



MATRIX REGULARIZATION FOR RIEMANN SURFACES WITH ...

PHYS. REV. D 101, 106009 (2020)

Ty (62ﬂi(nx+my) ) — Cln,lmflﬁl yrym , (434)

where [, and 71 are the quotient and remainder of n divided
by N,
n=1,N+, (4.35)

and C; ; ;5 are given by

Cl L i —
(4.36)

Then, we find that the coefficients fnm in (4.33) are
given by

cp%)(z, Z)wﬁN) (z,2)

t=1

By using this relation, we write (4.38) as

o= 27N (1L 41, 0%) g (12 =i1) pfnm = (m?— i) g

(4.37)

Now, let us consider the quantization for Q # 0. As in the
case of the sphere, it is convenient to consider (4.29) for a
basis of the local sections. See Appendix G, where we
construct such a basis as eigenstates of the Laplacian. In the
following, we focus on

N N
(() (g)())

=W, 5 Pns¥r (4-38)

Ty (401(1.Qs) )rr’
for the eigenstates (pS,% of the Laplacian, which are defined
in Appendix G.

For this computation, we put some useful relations in
Appendix H. By putting m = 0 in (H7), we first obtain

\/JVZ < )(N)k%)k

ONN')
x Z‘Pk r+s+Qt(Z Z)‘/’n ins—orront (=€ =0).

TNN’((p" s ) =

)@

( ') (N)
X (¢0.r’ ’¢k,r+S+Qt)’

where the inner product in the last line is used in the sense of (G11). By using (G1 1),8 we obtain

1 [N\ & NN }
TNN/((psl-QS))rr’ = \/_— <ﬁ) Z 5r’.r+s+Qt(mod N’)(pEl,QNs—érJrQNz(_Z:v _é,)

!
N t=1

(Q)

By substituting the analytic form (G10) for ¢, we finally obtain

Ty (¢Sl%) ) r’

leZ

See also [34,35], in which essentially the same computa-
tions are done in different contexts.

The rectangular matrices (4.42) are the fuzzy version of
the eigenstates of the Laplacian. Though they look very
complicated, we will show in the following that they give

8Note that the range of indices in (G11) can be extended such

N N
that ((ﬂsl,r)s (ﬂ:(n,z) = 5n‘m6r,s( mod N)*

1 QN 1/4 ﬁ
N <2N’\sr) <N’>

Ns — Nt ; (14N QrONn2
3 (VaONNSe {14 GG O ot

n/2 N

(4.39)
) ( ) anljx/s—Qr+QNt( C’ _5)
(4.40)
(4.41)
z 5r’.r+S+Qt(mod N')
—1
(4.42)

ONN’

|

approximate eigenstates of the matrix version of the
Laplacian and the spectrum indeed agrees in the large-N
limit with that of the continuum Laplacian.

D. Laplacian on fuzzy T>

In this subsection, we construct the matrix Laplacian,
which acts on the rectangular matrices (4.42). From now
on, we put 7 =i and ¢ = 0 for simplicity.
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We first note that there is a crucial difference between the
spectrum of the continuum Laplacian for Q = 0 and that
for Q # 0. When Q = 0, the Laplacian is given by

A :=-2¢"0,0, = —(;7 (|7]*0% — 20M20,0, + %)
=-07 - 05. (4.43)
The spectrum of this operator is just 4z (n*> + m?), where n
and m are integers. For Q # 0, however, as shown
in Appendix H, the spectrum becomes that of the one-
dimensional harmonic oscillator (or equivalently the
Landau level), because of the relation [D,, D:| = const.
As we will see below, the matrix Laplacian naturally
reproduces both of these spectra in the large-N limit.

We first consider the matrix Laplacian for Q = 0, which
is relatively well known. In this case, the continuum
Laplacian can be written in terms of a Poisson bracket
and we can construct the matrix Laplacian by replacing the
Poisson brackets with the commutators of matrices. Let us
introduce the Poisson bracket induced from the symplectic
form (4.5):

1
{f’ g} = w(Xf’ Xq) = 5 (axfayg - 8yfaxg)’ (444)
where X [ is the Hamiltonian vector field of f, namely, it is
defined by w(X;, v) = df(v). The partial derivatives can

be expressed in terms of the Poisson bracket as

{eﬂ:l‘ZJZX,f} — iﬂieiiz”"a‘,f,

{e*2m £} =F mie* 2™, f. (4.45)
Thus, we can express the Laplacian as
[y _
Af) = - {afu. f1} +{0.{v.f}}).  (440)
From the algebras, {u,v} = —27°uv and [U,V]=

(1-q)UV = =27iUV/N + O(1/N?), we obtain the fol-
lowing mapping rule for the Poisson bracket:

Ty({f.g9}) =

This suggests that a natural choice of the matrix
Laplacian is

A(F)

From the algebra of U and V, we can easily prove that
U"V™(n,m € N) are eigenstates of A as

—Nxi[Tn(f), Tn(9)] + O(1/N).  (4.47)

= N*([U",[U, F]] + [V', [V, F])). (4.48)

A(Urvm) = N*ei|q? = g | (Inl + [m]3) U V™,

(4.49)

where

n/2 _ q—n/Z

q sin(nz/N)

= = . 4.50

[, 42— ¢ 2~ Tsin(z/N) (4.50)

Since |¢'/? — g7'/?| - 4% /N? and [n], — n as N — o,

the spectrum of the matrix Laplacian reduces to

A(U"V™) = 472 (n2 + m®)U"V™ + O(1/N)  (4.51)

in the large-N limit. This agrees with the continuum
spectrum.

We next construct the matrix Laplacian for Q #0. A
natural generalization of the Laplacian (4.48) for rectan-
gular matrices is

A(F) =N*[UTo(UoF) + Vo (VoF)],
where F is an arbitrary N x N’ rectangular matrix and the
operation o is defined by

(4.52)

AoF := ANF — FAWN) (4.53)

with Toeplitz operators AN) and AN) with dimension N
and N, respectively.

Now, let us 1nvest1gate the sgectrum of (4.52). We
compute A(TNN/(ga“) where (p“ is the eigenfunction
of the Laplacian with charge Q obtained in (G10). We can
first show that

A(Tyy (@2)),
=2N?(e7™N + - ”/N)TNN’(f/’ns )
- NI ST () (o) a)).

i=x,y;j==%1

(4.54)

See Appendix I for the derivation of (4.54). We then make
an asymptotic expansion of (4.54) in the large-N limit as

A(Tyy (@),
= (¢ (=D = D)% wly)) + O(1/N)

" (Q)

= (g%, MA@ 2)oi)) + O(1/N). (4.55)

This shows that the spectrum of (4.52) agrees with that in
the continuum limit:

ATy (002)) = 407 (n +1/2) Ty (@h2)) + O(1/N).
(4.56)

Although we could not obtain the exact analytical solution
to this eigenvalue problem for finite N, we give the
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FIG. 1. Numerical results of the spectrum of the Laplacian

(4.52) for finite N(Q = 1). Here A, represents the nth smallest
eigenvalue.

numerical analysis of the spectrum of the Laplacian
(4.52) in Fig. 1. We plotted five numerical results of the
spectrum for N = 10, 15, 20, 50, 100 along with the exact
Landau spectrum in the case of Q = 1. We can see that the
spectrum for finite N indeed approaches to the Landau
spectrum as N increases.

In Appendix J, we show that the exact eigenvalue
problem of (4.52) can be mapped to the so-called
Hofstadter problem [36]. Numerical studies of this problem
also show that the eigenvalues are given as (4.50).

Note that if we write U = X + iX, and V = X5 + iX,
with the four Hermitian matrices X; corresponding to an
embedding into R*, (4.48) is proportional to [X;, [X;, F]],
which is the natural Laplacian appearing in the matrix
models. The matrix Laplacian (4.52) for rectangular matri-
ces also naturally appears in the matrix models. For
example, let us consider a block diagonal matrix configu-
ration in the matrix models,

(xY o
Lo xM)

where X EN> and X EN/) are the configurations of the fuzzy

torus with size N and N’, respectively. Then, the Laplacian
[X;, [X;, F]] in the matrix models reduces to (4.52) for the
off-diagonal blocks of F, while it reduces to (4.48) for the
diagonal blocks. Thus, (4.52) can be seen as the Laplacian
of the open string modes connecting the two fuzzy tori. In
fact, the same structure can also be found for the case of the
sphere [30,31]. It is interesting that the natural matrix
Laplacian [X;, [X;, F]] reproduces in a unified way both
spectra of the charged and noncharged fields.

(4.57)

V. DISCUSSION ON FUZZY RIEMANN SURFACES
WITH HIGHER GENERA

In this section, we discuss cases with higher genera.

A. Construction of Riemann surfaces
with higher genera

Any Riemann surface with the genus greater than 1 can
be constructed as the Poincaré disk with some identifica-
tions imposed. We first review this construction. See e.g.,
[37] for more details.

Let us consider a unit disk D?> = {z € C||z| < 1} on the
complex plane. We adopt the Poincaré metric on D?,

2dzdz
g="—"">, (5.1)
(1= z*)?
which is the Kéhler metric compatible with the standard
complex structure on D?. The space (D?, g) is called the
Poincaré disk.
We consider a group SU(1, 1), which acts on D? as

_Zzz-i—B
bz +a’

7(z) (5.2)

where a, b are complex numbers satisfying |a|*> — |[b|* =1
and y represents an element of SU(1, 1),

(& )
! b a)
For any y € SU(1,1), the map z + y(z) is an automor-
phism on D? preserving the Kihler structure. Note that
y and —y give the same transformation on D?, so the
automorphism group is isomorphic to PSU(1,1) =
SU(1,1)/Z,. Let T be a Fuchsian group, which means a
discrete subgroup of PSU(1, 1). Compact Riemann surfa-
ces with genera greater than 1 are known to be constructed
as a coset space M = D?/I'. In this construction, all the
information about the genus or the moduli of M is
contained in I', and M is given by a set of all orbits on
D? with respect to actions of I'. By analogy with the torus,
itis also useful to regard M as the disk D? with a nontrivial
boundary condition imposed by actions of I". Note that this
construction also gives a natural metric on M. Since I'

preserves g, the metric (5.1) also gives a local Kihler metric
on M.

(5.3)

B. Geometric structures on M

We next consider charged scalars and spinor fields on

M. For simplicity, we assume that the symplectic volume

isV= fM w/2x = 1, where w is defined by (A2).

From (5.1), a Kéhler potential on M is given by

p = —log(1 - [2%). (5.4)

Then, from (A6) and (A8), a spin connection and U(1)
gauge field are
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Zdz — zdZ
Q - ’
12 14 1 |Z|2
i Zdz — zdz
A=——7-——. 5.5
2 1-|z? (5:5)

In this gauge, we have Q%s,6,/4 = —iAc>. For y €T
given by (5.3), the gauge field A transforms as

A 76)) = A(z.2) + d (310502 (56)

This is analogous to (4.8) on T2.

Let @ be a complex scalar field coupling to A with
charge Q and w = (y",w~) a spinor field on M. For
y €T, they transform as

D7) = (G2 e) " @),

V(). 7(2)) = (?Zf f‘)ﬂ/zwz,z).

5.7
bz+a (57)

Note that w* behave as charged scalars with charge +1.

C. Dirac zero modes and automorphic forms

We next construct Dirac zero modes on M.
In our case, from (5.4) and (A9), the Dirac operator is
locally given by

D+:\/§i{(1—|z| )0 +NT+1 }

D™= ﬂi{(l LA —N—_lz}. (5.8)

2
We find that the zero modes yV) = (y ™)+ y/(V)-) take the
following form:

(N)+ (

W = (1= |Z|2)(liN)/2hi,

(5.9)
where h* and A~ are holomorphic and antiholomorphic
functions. As we discussed in the previous subsection, their
gauge transformations are given by

. bz + a\ (V£1)/2 i
V% (2).7(2)) = (5_ ) P2, (5.10)
Z+a

By substituting (5.9), we obtain the transformation of 4™ as

P0) = b+ @) = (4 e

) = b2+ @) = (1) o

(5.11)

Thus, A* are given by automorphic forms.’ The automor-
phic forms #* can be represented in terms of the Poincaré
series [6,38] as

@ =5 (1) e

yel’

@ =% (1) ot

yer

(5.12)

Here, the summations are taken over all elements of I" and
fT and f~ are arbitrary holomorphic and antiholomorphic
functions on D?, respectively. Note that for any y’ €T,
we have

h (Y (z)) = ;{ 2 /()z()Z)} o (/) (2)
7er< cffg)) Y /2( (rr')(z )) 14N)/2
x f((y ,)(
2)\ I+

h*(z). (5.13)

_ (dr'(z)
dz
Thus, (5.12) indeed satisfies the transformation law (5.11).

As shown in Appendix K, the norm of yw~ does not
converge. Hence, any Dirac zero mode takes the form

p M (2.2) = (1= [o) V)72 (’“( >>.

0 (5.14)

In order to construct (2.1) and (2.4), we need to construct
an orthonormal basis of the zero modes by choosing 4™ (or
fT) in (5.14) appropriately. This should be done case by
case, since it highly depends on the structure of I'. For
example, for the Bolza surface [39,40], which is the
simplest example of surfaces with genus 2, the structure
of I' is relatively well studied and it might be possible to
obtain an orthonormal basis in this case. However, this is in
general very difficult and is beyond the scope of this paper
(see [38] for a formal construction).10

D. Quantization on M

As explained in Appendix B, the quantization map can
be defined as (B2) in terms of the projection operators onto
zero modes of the Dirac operator. This definition does not
explicitly depend on the orthonormal basis of zero modes,
which is only needed to write down the matrix elements of

’Functions with the same transformation law as h* are
generally called automorphic forms with weight 1 + N.

19See also [41-43] for another approach to construct the matrix
regularization of Riemann surfaces.
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(B2). Here, we show that (B2) can be constructed for the
Riemann surfaces considered above.

The projection is given by the Bergman kernel (B3).
From (5.14), one finds that the Bergman kernel is given
by [6]

N
KM (z,w) = E(1 — |2 NHD/2(1 = |w|?) VD)2
dy(z)\ W+D/2 i
X — 1- =(N+1)
Z( i (1= 7))

1 0

X (O 0 ) (5.15)
This is very similar to the Bergman kernel on D?, which we
review in Appendix L, except that the factor (1 — ziw)~(!*¥)
is now given as a Poincaré series. Since the map (B2)
depends only on the Bergman kernel, the expression (5.15)
defines the quantization map (B2) for the Riemann
surfaces.

VI. CONCLUSION AND DISCUSSION

In this paper, we considered the Berezin-Toeplitz quan-
tization for local sections of nontrivial complex line
bundles on Riemann surfaces. This corresponds to the
matrix regularization of fields with nonvanishing U(1)
charges in a nontrivial gauge flux. We argued that such
fields are naturally mapped to rectangular matrices, while
fields with vanishing charge are mapped to square matrices.
We also showed that these mappings are embedded in the
Berezin-Toeplitz quantization in a U(2) gauge theory in a
unified way. We then explicitly constructed those mappings
for the sphere and the torus and also discussed a possible
extension to Riemann surfaces with higher genera. For the
case of the sphere, we showed that this mapping reproduces
the well-known fuzzy spherical harmonics. For the case of
the torus, we found that the mapping produces rectangular
matrices written in terms of elliptic functions and we also
proposed a matrix Laplacian, which reproduces the spec-
trum on the commutative torus in the large-N limit.

In our examples of the sphere and the torus, the operation
o, which is defined in (4.53) or (El), was used in
constructing the matrix Laplacians. This operation gives
another module structure of the matrix algebra satisfying

Ao (BF)=[A,B]oF + B(AoF),
(AB)oF =A(BoF)+ (Ao F)B,

AO(BOF)—BO(AOF):[A,B]OF, (6.1)
where A and B are square matrices and F' is a rectangular
matrix. If there exists a classical (commutative) counterpart
of this operation, it should satisfy the classical versions of
these properties. Unfortunately, we could not find such an
object and our present optimal choices are

{f.a}, =W (9,f)(D,a),
{f’ a}Z = Wﬂv(aﬂf)(Dva> —iQfa,

(6.2)
(6.3)

where f and a are arbitrary smooth function and local
section with charge Q, respectively, and W*¥ is a Poison
tensor, given by the inverse of the symplectic form. {, },
only satisfies the first and the second properties of (6.1),
while {, }, satisfies the first and the third, provided that the
quantization condition [D,,D,]Ja = —iQw,,a is satisfied.
These operations cannot be the classical counterpart of o,
because the violations of the classical counterpart of (6.1)
contradict with the properties (1.1) and (1.3). Probably, we
would need another structure to construct the classical
operation in general. Nevertheless, we found that the
continuum Laplacian on the sphere is proportional to
{xi,{xi, }2},, while that on the torus is proportional to
{a,{u, },}; +{v,{v, },},, and we consider that these
brackets may still have meanings when some special
functions are put in the first slots. It should be important
to understand this correspondence to find the description of
the Laplacian in a general matrix geometry.

The mapping for the local sections we considered in this
paper should also be relevant for describing D-branes with
gauge fluxes. In particular, it is known that the Berezin-
Toeplitz quantization naturally appears in non-BPS
D-brane systems with tachyon condensations [19,20]
(see also [44,45]). In this context, introducing non-
Abelian gauge groups seems to be quite natural, so that
our formulation using the U(2) gauge theory will be
naturally understood. This will be studied elsewhere. It
is important to understand properties of the quantization
with a general gauge group in order to understand its
implications in the D-brane systems.

Our results will also shed light on the problem of
describing curved spaces in the matrix models. For exam-
ple, by using the mapping for rectangular matrices, it will
be possible to generalize the work [30,31] and construct the
large-N reduction for nontrivial U(1) bundles on Riemann
surfaces, called Seifert manifolds.
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APPENDIX A: DIRAC OPERATOR ON RIEMANN
SURFACES WITH MAGNETIC FLUXES

In this appendix, we construct a Dirac operator on a
general Riemann surface M with a magnetic flux.

Let z be a local complex coordinate on an open subset
U C M. We define the standard complex structure J on M
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by J(0,) = i0, and J(0;) = —i0. Note that this definition
does not depend on the choice of the local coordinate. Let g
be a Kdhler metric on M compatible with J. On U, we have
9., = g-> = 0 and we can write g as
g = 2g.:dzdz, (Al)
where g,- = g(0., 0:). We define a symplectic form on M
by @(-,-) = g(J-, ). In terms of the local coordinate, we can
write @ as
o = ig.:dz N\ dZ. (A2)
We choose a U(1) gauge field A which satisfies @ = VdA,
as explained in Sec. IT A.

Let e, be the zweibein for the Kidhler metric (A1). They
are explicitly given by

elz\/%ﬁ(ﬁ +0.),
622\/59—;(3 0z). (A3)

Note that from the positivity of the metric, g,- is always
positive. The inverse 6, of e, is given by

1 _
0, =~ [%(dz — a2) (A4)
l
The spin connection is determined by
Q% A 6O° +do* =0, (A5)
and Q,, = —€Q,,. By solving this equation, we find
Qpp = 5(8 log gzdz — 0;log g.;dz). (A6)
Any Kéhler metric is locally written as
= = 0.0:p. (A7)

in terms of the Kihler potential p, which is a real function
defined locally on U. The geometric structures we intro-
duced above can also be expressed in terms of p. For
example, from (A2) and @ = VdA, the gauge field A is
given by

A= (azpdz

Toy azﬂdz)’

(A8)

up to the gauge transformation.

For M, the Dirac operator D defined by (2.2) flips the
chirality, so that it has only off-diagonal elements. Using
the above data, we can express D as

2 1
| ;
oz (o puees)
(2 1. (N 1
D™ =i g—zz{az_iaz(vp_zlogg&)}’

where D* are the matrix elements of D acting on the spaces
with chirality +1, respectively.

Dt =i

(A9)

APPENDIX B: BERGMAN KERNEL

In this section, we give a formulation of the maps (2.1)
and (2.4) in terms of the Bergman kernel.

(N)

Let us consider a product ¢@y;" of a charged scalar

fields @) with charge Q and a Dirac zero mode l[I§N> with
charge N, where I = 1,2, ..., N. This product has the total
charge N' = N + Q, and can be expanded in terms of the
Dirac eigenmodes with charge N’ as

NI
N/
:ZCIJ‘//s R (B1)
J=1
where - - - stands for the terms of nonzero modes. If z//gN)
and 1//§N,) are orthonormal basis of the zero modes, the

coefficients ¢;; can be extracted as ¢;; = (W(JN/), qa(Q)wEN)).
This is just the map (2.4) for Q # 0 and (2.1) for Q = 0.
Thus, those maps are obtained as actions of the charged
scalar fields accompanied with the projections IT") and

™) onto the spaces of the zero modes [16]:
TNN, (q,(Q)) = H(N’)q,(Q)H(N). (B2)

The projections are given by the so-called Bergman kernel,

N
N N)T
=S wM @ w).
=1

Here, the spinor indices are not contracted, so that
M (z,w) is a 2 x 2 matrix with those indices. The
prOJectlon 1™ is then defined by

(B3)

(V) () = /M oKD (e ww(w).  (B4)

Note that the original expression (2.4) is just the matrix
. 11
representation of (B2) :

11 . . . A .
In our convention, the matrix representation of 7y, is the
transpose of T'yy.

106009-14



MATRIX REGULARIZATION FOR RIEMANN SURFACES WITH ...

PHYS. REV. D 101, 106009 (2020)

N) A N
TNN’((p(Q))IJ = (V/(J )»TNN’(§0(Q))WE >)

= /M oy @y, (B5)

APPENDIX C: PROOF OF (1.3)

In this appendix, we give a proof of (1.3) following [16].

We first show that Dirac eigenmodes with charge N have
a large energy gap in the large-N limit. Let D be a Dirac
operator for the charged spinors. Let us consider the action
of D on a two-component spinor y. Since D generally flips
the chirality, D can be represented as

0 D~ +
Dy = “ ,

DT 0 Ve
where y™ and y~ are the positive and negative chirality
modes of y, respectively. Below, we assume that D is
normalized such that it is Hermitian and (D*)" = D¥. If

is a normalized eigenmode of D with eigenvalue FE,
we have

(C1)

Diy*=Ey. Dy =Ef. (nx)=1 (C2)
Then, we can estimate the energy E as
E? = E*(y.%)

£ [l + b P)

= [ @D+ Do+ 707 D)

> / w0z~ [D*. DI (C3)
Now, we can assume that [D*, D] = —iF,_ + O(N°) is

positive in the large-N limit without loss of generality, since
if it is negative, we can just exchange + in the above
calculation and [D~, D] is positive there. If y is a nonzero
mode, y~ is nonvanishing. In this case, Eq. (C3) shows that
E? is bounded from below by a positive quantity of order N.
Thus, we found the energy gap,
|E| = O(N'/?). (C4)
Now, we prove (1.3) for arbitrary smooth function f and
section a. From (2.1), (2.4) and (B4), we have

[Tn(f)Tyn (@) = Tyw (f - @)y

N /M oy aI®), . (C5)

Thus,

TN () Tww (@) = Ty (f - a)lyyl

> / oy ™), Y|
M
< Jla)lIm™, 1| /M ol WM. (o)

Here, we have defined the norms for local sections and
operators on spinors by

lall = sup|a(x).
XeM
0. A= sup |l (€)

From the orthonormality [, a)y/gN)T . l//(JN) = §;, the last

integral in (C6) is of O(N?). Also, the norm ||a|| is finite in
the large-N limit. The only nontrivial factor is ||[TI™), f]]|
and we will estimate this in the following. Let us consider
an operator (1 + aD?)~!, where @ is an N-independent
positive number. Note that 1 + aE? > 0 for any eigenvalue
E, so that the operator (1 + aD?)~! is well defined. Since
E > O(N'/?) except for the case E = 0 as shown in (C4),
the operator (1 + aD?)~! behaves as a projection onto
KerD for sufficiently large values of N. Hence, we obtain

™ = (1 +aD?)~' +a'O(N7). (C8)

Thus, the problem of estimating [TT), f] reduces to that of
[(1+ aD?)7!, f]. In order to evaluate the latter, we first
rewrite this as
[(1+aD?)7! f]= (1 +aD?)7'[f.(1 +aD?)|(1 +aD?)!
=a(1 +aD*)7'[f, D (1 +aD?)".
(C9)
By using the Leibniz rule D(fy) = (ic*0,f)y + f(Dw),
where ¢* = 6@, we also have
[f.D*| = fD* = D((ic"9,f) + fD)
= —D(ic"0,f) — (ic"0,f)D

= —{D, (ic"0,f)}. (C10)
Thus, we obtain
MW, f] = —a(1 + aD*)~Y{D, (ic*0,f)}
x (1 +aD?)~' +atO(N7). (C11)

This gives the following estimation:

I, 711} < 201 + aD?) 7' D[[(1 + aD?)~ | [lo#8, £
<2E[Mlo"0,f]] (C12)

106009-15



ADACH]I, ISHIKI, MATSUMOTO, and SAITO

PHYS. REV. D 101, 106009 (2020)

where E| is the smallest nonzero eigenvalue of D. The last
inequality is obtained as follows. For any eigenvalue E, we
have the relation,

B El _(EI-|E)@EE-1)
1+aE? 1+aE? {1+aE3}{1 +aE?}
(C13)
This implies that
2\-1 |E1| ! I
|(14+aD*)"'D|| < +a 2 |Ey |~ (C14)

1

which, together with the obvious relation || (1 +aD?)7!|| <1,
leads to the second inequality in (C12). By applying (C12) to
(C6), we finally obtain

HTN<f>TNN'< ) TNN'( : 1J|

<2|Ed[™ [lallllo" D, 1l / oy (C15)
Since |E,| > O(N'/?), the right-hand side vanishes in the
large-N limit and we find that (1.3) is indeed satisfied.

APPENDIX D: MONOPOLE HARMONICS

In this appendix, we review the definition of the
monopole harmonics. See [25,26] for more details.

We first introduce linear operators which is locally
defined on U, and U, as

1 0
EEQ) i(sin 9y + cot @ cos p0,) — g% 0s ¢,
1 0
EEQ) i(—cos ¢pdy + cotOsin p0,) — 0 ﬂ in ¢,
sin @
9 =—io, ¥ = (D1)

2

where the upper and lower signs represent the expressions
on U, and U,, respectively. These operators are the angular
momentum operator in the presence of a monopole
with magnetic charge Q/2 at the origin and reduces to
the ordinary angular momentum operators when Q = 0.

In fact, EE\Q) (A=1, 2, 3) satisfy the SU(2) algebra

[ﬁI(QQ), /J](_,;Q)] = i pcL9€ and give a representation of
the Lie algebra of SU(2) on the space of charged scalar
fields which transform as (3.5). In particular, the action of
ﬁE‘Q)

is covariant under the gauge transformation (3.5).

The monopole harmonics Y Eg) (1=
1,...,00,m=—I,—1+1,...,1) are defined as the standard
basis of this representation space which satisfies

(£ 22r@ =11+ 1y,
LY =my)?, (D2)

and the orthonormal condition

ﬂz w(Ygr%)) 5/ ) = 81

for a fixed [, where w is the volume form for the metric

(3.1). The concrete expression of Y ;% is

20+ 1 ) .
ngg) = (=1)-"-0,/ 2: (- m|e—l€L;’)|l%>ez(ig/2+m)¢’

(D4)

(D3)

where LX) are the (2/ + 1)-dimensional irreducible repre-

sentation of the generators of SU(2) and |lm) are the
standard basis of the representation space. Again, the upper
and lower signs represent the expressions defined on U,
and U,, respectively.

The following formula is very useful:

/ w(ngl))* Y(Qz) Y(Q3)
SZ

1m lymy © I3my
_ (212 + 1><2’l3 + l)pllml L,0:1/2 (DS)
2”(2[1 + 1) S lhmylsmy ~1,0,/21505/2°
where C'™ s the Clebsch-Gordan coefficient. For the

Lymylymy
gauge invariance of the left-hand side, Q; =

must hold.

0, + 03

APPENDIX E: FUZZY SPHERICAL
HARMONICS

In this appendix, we review the definition of the fuzzy
spherical harmonics [10-12]. See [30,31] for more details.
We first define linear operators on My, (C) by
LY om=1Vm - ML) (E1)
for M € My, (C), where ng) are the (2J 4+ 1)-
dimensional representation of the SU(2) generators. Then,
LE‘”/) o satisfy the SU(2) algebra [L/(L‘”/) o, Lg”/) o] =
i€ pcLY7)C o and therefore give the (N x N')-dimensional
representation of the Lie algebra of SU(2).

The fuzzy spherical harmonics Y, (l=1|J1-J1,
J=J|+1,...J+J m=-l,-1+1,...,1) are defined
as the standard basis of this representation space which
satisfies

(Lix“/) O)Z?Im(u’) =1+ 1)?1m(JJ')’
LYoy (1) = MY g (E2)
and the orthonormal condition
1 N .
Ntr{(Ylm(JJ’))1 Yy} = OuwSmm (E3)
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for a fixed [. Here, the trace is defined over N x N’ APPENDIX F: DETAILED CALCULATION OF
matrices. In terms of the basis {|Jr)(J'r|}, they are THE NORMALIZATION FACTOR N,
expressed as

In this appendix, we derive (4.26).
From the explicit form of the Jacobi-theta function, we
Vi) = VN Z Z (1), Py (') (B4)  first write

r=—J /==J'

(W5{V)+’w(rN)+) \NS NN ZelNﬂ{T I+r/N)>=%(I'+r' /N)?} / dx/ dy

LI'eZ
—2Nﬂ{J z+0)}? /A\r 2Nz{(l+r/N)(z+)—(I'+r /N)(Z+E)} (Fl)

Then, by shifting the integration variable as z — z — ¢ and substituting z = x + 7y, we obtain

;o 1+C 1+¢
(l//gfv)+,l//£’) )_2\9 NN zelNﬂ{ 2(l4+r/N)>=Z(I'+1 /N)? / ! / 2

LI'eZ

X e—ZNIrTS( )v lZﬂ{(rJer T—(IJ+N1/)T}vel2ﬂ'{r—}J+Nl )} (FZ)

The integration over x just produces the Kronecker delta factor 8, 9, . Thus, by taking the summation over /" we obtain
N 1+
(WSVM" ng)+) — 28‘(‘[),/\/%5},’/ZE_ZN”(I'H/N)AW/(; 2 dy —2Nrm(r) —47‘[(r+Nl)J( ) (F3)
l€Z 2

This can also be written in a compact form as

1+¢
(l//(,> VT = 23 ()2 5”2/ * dy em2NTS@ 0 LEr/NP (F4)

leZ

By again shifting the integration variable as y - y — [ — r/N, we obtain

i ) = 23oae, S [

leZ

1+N+1+Cz e—2NE(D)? (FS)
N+CZ

Since the / dependence appears only in the integration range, summing up all / € Z is equivalent to extending the
integration range to (—oo, 00). Thus, we finally arrive at a simple Gaussian integral. The final result is

W) = 230N, [ dye RO — /Oe/NG,. (Fo)
|
APPENDIX G: ORTHONORMAL BASIS OF where
LOCAL SECTIONS ON THE TORUS
T _
In this appendix, we construct an orthonormal basis of D, =0,- ;QN (z+9),
local sections of the nontrivial line bundle with charge Q. 57
As the orthonormal basis, we consider a set of eigen- D: = o (z+9). (G2)

functions of the Laplacian. Let us consider the Laplacian

for charge Q € N given by In the following, we will solve the eigenvalue problem,

A:=-2¢"D,D, = -2(D.D; + D:D,),  (Gl) A(PSzQ) = En¢£lQ) (n € Zsy), (G3)
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to find the orthonormal eigenmodes q),(lQ) as well as the

eigenvalues E,. Here, the eigenmodes shall be ordered
as En < EnH(Vn S ZZO)'
We first introduce the creation-annihilation operators as

a:=—i &DZ’
R \sr
at = Qﬂ.' (G4)

(G5)

Then, (G3) can be expressed in terms of the number
operator N := ata as

4
QOn <N+2> © _ g 0

(Go)

RY7

This is completely the same as the system of the one-
dimensional harmonic oscillator. Hence, from the standard
argument, we find that the normalized eigenfunctions and
the eigenvalues are given by

at 40n 1
(ple) (\/l gﬂ(()Q) and En = ¥ (7’1 +5) (l’l (S ZZ())’
(G7)
and the ground state is determined by
apl®) =0 D.p® = 0. (G8)

Taking the boundary condition (4.28) into account, we find
the following form for the ground states:

/ w0 |5
¢é%) _ <%>1 4eiQn(z+¢>%,9{§] (Q(z+¢), O1).

237
(G9)

Here, the index r = 0, 1, ..., Q — 1 labels the degeneracy of

the ground states. The normalization factors were deter-

mined by the orthonormality of (pé? with respect to the

standard norm given by the integration with the symlectic
form (4.5). We can also calculate the excited modes from
(G7). The result is given by

(PSz,r) — ! ( g >1/4eiQﬂ(z+§)3(%g>

V2 \ 237
xZH( 20737 (MJFH ))
I€Z. 37 0
x eio(rtQD T ei2a(r+Ql)(z+) (G10)

where H,(x) is the Hermite polynomial satisfy-

ing H,,,(x) = 2xH, (x) = Hi(x).
The set {(pf,,Qr)|r =0,1,....,0-1,n€Zyy} forms an

orthonormal basis of local sections with the twisted
boundary condition (4.28). The orthonormality of this
basis is expressed as

(92 i) = / oS0\, = b, (GL1)

APPENDIX H: USEFUL RELATIONS FOR THE
EIGENSTATES OF THE LAPLACIAN

In this appendix, we show some useful identities for the
eigenstates of the Laplacian.
Let us consider the product

AT Af\m
N _ (a ) - (a ) N _
22 (3, ) (2,2) = \/}; o2 (v.5) \/Zm—' oy (2,2)

(H1)

of the eigenstates (G10), where &; and &; stand for the
creation operators (G4) acting on the complex variables y
and z, respectively.'> By using the identity of the Jacobi-
theta function,

3 {%] (Qz;,07)8 [ﬁ} (Nzy, N7)

O+N r4s+0t
= E [ oN } 0z, + Nz,,(Q + N)1)

Ns— Qr+QNt

](QN( _ ). ON(@+ N, (H2)

we rewrite (H1) into

o2 (v, y)%’?(z ?)

— QNN/ —
\/]7 Z ‘Po r+s+Qt (X, X)(p((),Ns—()zr+QNt(Y’ Y), (H3)

where we used N' = N + Q and X and Y are defined by

Oy + Nz
X="N
y—z
Y= N -Z. (H4)

If we regard (H4) as a change of variables from (y, z) to

(X.Y), we can also convert &} and & to those in the X and
Y coordinates:

“In this appendix, we use y as a complex variable excep-
tionally, while it is used as a real variable in the other sections.
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=%
N
\/;a; - \/%a;. (H5)

¥
Z

D>

By using (H3) and (HS), we calculate (H1) as

% (0. 9) o (2.2) = migi(—l)m*@)( >< )k/z(%> n-h/2 <N’>I/2(%)(m_l)/2

v\ /At \n+tm—k— ONN' Vv
X (&) i) L o (XX (@) O ) (Y. T)

3y (—l)m—l\/(k+l> (:!;!r;, k=1)! ( )(n;)( >k+ml (%><Z+n—k)/2

k=0 [=0

N/
(N') ), (QNN) 7
x Z (pk+l,r+s+Ql(X’ X)(pn+m—k—l,Ns—Qr+QNt(Y’ Y) (H6)

=1

Finally, we put y = z and obtain

(Q) ymet (k+D'(n+m—-k—=1)! m\ (Q (k+m=1)/2 N (I+n-k)/2
Pn.s (Z Z §0mr Z, Z ZZ \/ n'm'N' k I N ¥

k=0 (=0

N ONN'
x Zqoh),,ﬂw,(z,z)wim Livs—orront (=5 =0). (H7)
=1

APPENDIX I: DERIVATION OF (4.54)

In this appendix, we derive Eq. (4.54).
For this purpose, we first need to compute

ATy (@), = @0, 2 AY o)) — (AN 6% 02 i) (1)

for A = U, V, where the inner product is defined in (G11). For A = V, we can calculate this as

V(r{r\/)qog\;)(x’ y) :e—ﬁe—iZnﬁ(N /2)1/4eiNﬂy(x+iy) e—E(r+NI)? gi2a(r+NI) (x+iy)

IZ
_ e—ﬁ(N/2)1/4eiNﬂy(x—%+iy+§) e~ m(r+NI)? ezZ;z(rJer)(x—%ﬂ'y)
IeZ

_atimy, M (1 P

ey, (X =5y (12)

Similarly, we can obtain
_ . 1
Vi ohy (x.y) = e e ™y’ ( i W)' (13)

By repeating a similar computation, we obtain for A = U,
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N N _z (N
U g6y (x.y) = g (x.3)
_ e—ﬁ(N/z)l/éleiNﬂy(x%»iy) e—ﬁ(r+l+Nl) i27(r+14+NI)(x+iy)

leZ
_ e—ﬁ(N /2)1/4eiN7ry(x+iy)Ze—ﬁ(r+NZ) e~re—w(r+ND) oi2a(r+NI)(x-+iy) gi2a(x-+iy)
leZ
— e mmeinx ( N /2) 1/4 giNm(y+3) (x-+Hiy+iy) Ze—ﬁ(wm)z ei2n(r+NI) (x+iy+iy)
I€Z
/4 H 1
= e‘ﬁe’”x(pg\;) <x, v+ —> . (14)
’ N
Similarly, we obtain
=(N) (N _z (N
U;,)(p(()‘;)(x, y)=e ZN(P((),r)—l(va
— iz (V) !
N (x, . N) , (15)

Using the above results, we find that
£ 4 - 1
VoTyy(phd), = e (tﬂé{vﬂ) (x.). e (x. y) gl <x - y))
_z —ix ! 1
e (e You) <x + ,y> 3 (x.y)p (x,y)>, (16)

and

Vio (Vo Ty (@), = e (o) (x.7), 01 (x. vl (x. 1)

1

— i <%r < ,,y) o (x.y)phy <x—ﬁ,y>>
1
N

1
fp r/ <x N,,y> o2 (x,y)od) )<X+

+e N’(fﬂffv,)(x ), 2 (x, )’)fﬂ(() (%))

= (e + &) (! (x.). 4% (x. 9 (x.9))

_z(l, 1 ]Q
—e Z(NJFN/)Z (90((” (x y) (pns < +N/7)’)(p(N) (X_NN/vy>>a <I7)

j==%1

where we used (67 ¢, w) = (¢, ™) and we also made a shift of the integral variable x in the second equality. We further
rewrite

J ]Q 19 )/
" )< N ’y)“’é? ( TN J) = (@9l (e ) () (x.)
— (@10 (O (¢ y)) (e IOtV ) ()
J _Jo
— (@@ (x,y)) (el (x, 1)) (18)

in terms of the covariant derivatives D;, which are given for fields with charge N by

D,=D.+ D; =0, +iNny,
D, =i(D,—D;) = 0, — iNzx. (19)
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Therefore, we obtain

Vie(VoTyy (Q”nQr D
= (e‘ﬁ +e N’)(go(()l\:/ s Pn, s)€0(() r>)

A _JQ N
(@), (i) (e P M),
j==*1

— e (110)

We can repeat the similar computation for U and obtain

Ut o (Uo Ty (i),
= (eF+e )@l o2 ol))

_z(l, L N’ —2p (N
DY () (@) (P gg)).
j=*

(111)

—_

By summing (I10) and (I11), we finally obtain (4.54).

APPENDIX J: LAPLACIAN FOR
RECTANGULAR MATRICES AND
HOFSTADTER PROBLEM

In this appendix, we consider the exact eigenvalue
problem of the matrix Laplacian (4.52) for rectangular
matrices. We show that the problem is equivalent to a
special case of the Hofstadter problem [36], which we will
review below.

The eigenvalue equation for N x N’ matrices is written
as

A(F) = N*[Ufo

In terms of the matrix elements of F, this is equivalent to

(UoF)+Vio(VoF) =EF. (J1)

/

r r
Fr+1 r+1 +2cos <2ﬂ<N_N)>Frr +Fr—l =1 _EFrr/’

(J2)
where E is given by
Qﬂ' E 1 L
E = 4cosh <2NN’> N Hty) (J3)
|
2cosk, 1
1 2cos(ky — 2mh)
- 0 1
H(k) =
0
eidk 0

The periodic structure of (J2) enables us to extend the range
of indices as F,.,y .y = F, . With this notation, assum-
ing that N and N’ are coprime, we relabel the matrix
elements as

Fr = Fr,r (J4)

for r=0,1,...,NN' — 1. In this notation, (J2) reduces to
2Qxr

F,. +2cos<NN,

)F +F,_, =EF, (J5)
for r=0,1,....,NN' =1, where F_;:=Fyy_; and
Fyy == Fy. This is also equivalent to the following
eigenvalue problem:

HF = EF, (J6)
where
H = (CNN))Q 4 (CINNITYQ 4 §INNY) L gINNDF - (37)

F=(Fy,Fy ... Fyy_)". (J8)
The eigenvalue problem of H is what is known as the
Hofstadter problem [36]. Finding an exact solution to this
problem is still an open problem, though some numerical
analyses have been done [36] and revealed a fractal
structure of the spectrum, known as a Hofstadter butterfly.

It is interesting that the same Hofstadter problem also
arises in a system of tight-binding Bloch electrons under a
constant magnetic flux in a periodic two-dimensional
surface, which has the following Hamiltonian:

g—1

H=-1Y >3 wik)d],K)d; (k).  (19)

i=0 " § o=14

where 7 is the hopping parameter, ¢ is the number of lattice
sites, d; ,(k) is a creation and annihilation operator for the
wave number k and spin o, satisfying anticommutation
relations {di,g(k) (k)} = 8060011

wi(l;) is obtained by solving the eigenvalue problem of

The eigenvalue

O e_iqkl
0
. (J10)
0
. . 1
0 1 2cos(ky—2n¢p(q—1))
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where ¢ = L is the strength of U(1) flux per unit plaquette ~ (J7) indeed coincides with the Landau level [47], and this is
and p is the Chern number. Here, we assumed that p and ¢ consistent with our result.

are coprime for simplicity. Readers may refer to [46] for the

derivations of the Hamiltonian (J9) and the matrix (J10). If APPENDIX K: EVALUATING THE NORM OF y~

we put ¢ =%n ¢ = NN’ and k=0, the matrix (J10) In this appendix, we show that the norm of y~, which is
reduces to the Hamiltonian (J7) for the matrix Laplacian. given by (5.9) and (5.12), does not converge.

The spectrum of (J7) or (J10) has been studied numeri- First, for the inner product (2.3), the norm of y~ can be
cally. In the large-g limit, it is shown that the spectrum of  rewritten as

=3 [ ot =R () T e
:;;[Qwu—uvww(ﬁf“@%§ﬁfhme%@@»fwmwc»
B ; /r‘(m W= (dyfllv:W) difjf?i)) T aem)
- ; /yl(m o(1 = w])!=N (%) (I—N)/2]—C—(W)f—(ﬁ(w)). 1)

To obtain the second equality we changed the dummy variable from y’ to = y'y~! and to obtain the third equality, we
changed the integral variable by w = y(z). Note that @ is invariant under actions of I". To obtain the last equality, we used
the fact that for any y € I', the relation

dy(z)

1= r@P = 221 - ) (<2
holds, so that
w m(w) \ (1-N) ii(w)\ (1-N)
] e L R (RO L € R (x3)

In the last line of (K1), we can use the relation }°, [ -\ = [p2. Hence, from @ = idw A dw/(1 — |w[*)?, we obtain
B 1 e 27 dij(w (1—N)/2__ e
ol =35 [ =y [ dtarew) () o) (ka)
n

This shows that for N > 1, the integration of |w|> does not converge. Thus, |ly~||> is not convergent for N > 1.

APPENDIX L: BERGMAN KERNEL ON DISK

In this appendix, we construct a Bergman kernel on the Poincaré disk D?. See [5] for more details.
On the Poincaré disk, an orthonormal basis of the Dirac zero mode is given by

N\12 /N +n\1/2
7)) =(1- 2\(N+1)/2 [ n L1
wa(z,2) = (1 - [z%) > N z (L1)

Here, n = 1,2, ..., o0, so the dimension of KerD is infinity. This comes from the noncompactness of D?. We can check the
orthonormality as follows:
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N (N+n\12(N+m\'/2 [1 2
, — d 2 11— 2N—1/ d =n.m
=5 (") (YN e = et [T darg e
N+n 1
o (V) [ e =
0

B N +n\ T(N)[(n + 1)
_5’""N< )F(N+n+1>

n

= 5nm'

By using the generalized binomial theorem (1 — x)~(V*1) =

(L2)

® oMM x", we find that the Bergman kernel is given by

N N
KM (z,w) = Z(l — |zP)NED2(1 — w2 )NHD/2(1 — Zw) =N+ (L3)
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