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We propose a generalization of S-folds to 4d N ¼ 2 theories. This construction is motivated by the
classification of rank one 4d N ¼ 2 super-conformal field theories (SCFTs), which we reproduce from
D3-branes probing a configuration of N ¼ 2 S-folds combined with 7-branes. The main advantage of this
point of view is that realizes both Coulomb and Higgs branch flows and allows for a straightforward
generalization to higher rank theories.
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I. INTRODUCTION

The classification of superconformal field theories
(SCFTs) with 8 supercharges has seen immense advances
in the past years. Starting with the chiral supersymmetric
theories in 6d, where a classification framework has been
developed in F-theory on elliptic Calabi-Yau threefolds
[1–3], recent years have seen a concerted effort to establish
a classification of 5d N ¼ 1 SCFTs constructed from
M-theory on singular Calabi-Yau threefolds [4–20]. The
advantage of all these constructions is that they provide a
systematic approach to study theories with 8 supercharges,
within one framework, which often allows extracting
highly nonperturbative properties of the theories, such as
enhanced flavor symmetries at the conformal fixed points
(e.g., see [1,2] in 6d and [13–15,20] in 5d). Furthermore,
the geometry underlying these string theoretic construc-
tions encodes the spectrum of Bogomol'nyi-Prasad-
Sommerfield states and information about the moduli
spaces, such as tensor branches, or Higgs and Coulomb
branches, in terms of geometric moduli spaces of the
singular Calabi-Yau threefolds. A complementary approach
to the geometric one in 5d are the five-brane webs, which
cover a large class of 5d SCFTs and their nonperturbative
properties [21–34].
A natural question is whether a similar classification

exists for 4d N ¼ 2 SCFTs. In 4d, theories with 8 super-
charges are of course very well studied based on the
seminal papers [35,36]. Since the Seiberg-Witten solution,
many new (strongly coupled) theories have been discov-
ered (see, e.g., [37–43] and earlier work [44,45]). In
particular the so-called class S construction initiated in

[46] has significantly expanded the landscape of N ¼ 2
SCFTs in 4d. Although by now we have several tools to
study 4d theories with 8 supercharges, we are still missing a
complete classification. Recently in a series of papers a
classification program was proposed, studying directly the
Coulomb branch (CB) geometries of such theories [47–51].
In particular the authors propose a classification of rank one
4d N ¼ 2 SCFTs from this approach, and some prelimi-
nary results on higher rank extensions. Alternatively, some
of these rank one theories have been constructed from
twisted torus compactification of 6d/5d SCFTs [52]. As this
analysis is entirely developed from a bottom-up point of
view, making no direct reference to a string theoretic
construction, it is natural to ask whether this classification
approach can be reproduced from a geometric setup, and
ideally extended to higher rank.
The goal of this paper is to fill this gap and provide a

string-theoretic realization of all the rank one theories in
[50] (in particular the Table 1 in this reference) modulo
discrete gauging, and furthermore propose a higher rank
generalization. The discrete gaugings can be implemented
field theoretically, or in a string theoretic way as in [53–55].
The framework we consider is D3-branes probing singu-
larities in type IIB string theory, including quotients that act
on the axio-dilaton τ, i.e., S-folds [56,57]. To obtain all rank
one SCFTs in 4d with 8 supercharges, we have to slightly
extend the notion of S-folds to quotients that preserve
N ¼ 2 on a probe D3-brane, and also include 7-branes in
the background of the S-folds. This approach has several
advantages: first, it provides a straightforward generaliza-
tion to higher rank theories by considering stacks of D3-
branes, which are more difficult to study from the Coulomb
branch picture. Second, we will be able to easily derive the
Higgs branch flows from the brane picture, which again, is
more challenging from a purely field-theoretic approach.
From a string theoretic point of view, these S-folds are new
backgrounds, which are worth studying in their own right.
They fall into the class of type IIB backgrounds where there
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is a nontrivial action or variation of the coupling, and are
thus broadly speaking part of F-theory backgrounds.
Probing such backgrounds with D3-branes results in 4d
theories with specific values of τ [56,57], or varying τ
(see [58–60]).
This paper is organized as follows. We begin with a

general discussion in Sec. II of N ¼ 2 S-folds in the
presence of 7-branes and the various compatibility con-
straints. This is followed by an analysis of the quotients of
the associated Kodaira singularities in Sec. III. With this
setup in place, we reproduce the classification of rank one
4d N ¼ 2 SCFTs in Sec. IV. In Sec. V we compute the
D3-brane charges in the presence of S-fold plus 7-branes,
and discuss discrete fluxes, and the necessity to turn these
on. Finally, in Sec. VI we compute the a and c central
charges of the 4d theories, using insights from holography,
and discuss the extension to higher rank theories.

II. S-FOLDS WITH 7-BRANES

We consider type IIB string theory on an S-fold, which is
a generalized orientifold that also acts on the axio-dilaton
τ ¼ C0 þ e−ϕi by an S-duality, thereby fixing it to a
specific value [56,57]. The standard application of S-folds
is to 4d N ¼ 3 theories. We extend this notion to N ¼ 2
preserving backgrounds. We apply this to construct all rank
one 4d N ¼ 2 SCFTs and provide a systematic generali-
zation to a class of higher rank theories. The main idea is to
combine N ¼ 3 S-folds with 7-branes and to probe these
configurations with D3-branes.

A. 4d N = 3 and N = 2 S-folds

Consider type IIB on 4d flat Minkowski space times C3,
which is orbifolded by the spacetime action that multiplies
each complex coordinate zi by a phase as follows

ρ≡ diagðeiΨ1 ; eiΨ2 ; eiΨ3Þ: ð1Þ
Placing a D3-brane transverse to the C3 induces an action
on the supercharges by the phase rotations in the SUð4Þ
R-symmetry directions, which act on the supercharges Qi
of the N ¼ 4 SYM theory living on the D3-brane world-
volume by

Mρ ¼ diag
�
ei

ðΨ1þΨ2þΨ3Þ
2 ; ei

ðΨ1−Ψ2−Ψ3Þ
2 ; ei

ðΨ2−Ψ1−Ψ3Þ
2 ; ei

ðΨ3−Ψ1−Ψ2Þ
2

�
:

ð2Þ
For a similar analysis see also [61]. We would like to

determine all such spacetime actions, such that when
supplemented with 7-branes on the D3-brane world-
volume N ¼ 2 supersymmetry is preserved.
The main focus of our paper is the study of the so-called

S-folds, where the action on the D3-brane induced by (1) is
accompanied by an SLð2;ZÞ transformation. The allowed
transformations in SLð2;ZÞ are of the form Zk with k ¼ 2,

3, 4, 6 and it is possible to implement them only if the axio-
dilaton τ is frozen to the following values (there is no
restriction on τ for k ¼ 2)

Zk Value of τ

k ¼ 2 τ

k ¼ 3 eπi=3

k ¼ 4 eπi=2

k ¼ 6 eπi=3

: ð3Þ

Assuming the axio-dilaton is fixed at the required value, the
supercharges transform under the S-transformation in
SLð2;ZÞ as follows [62]

S∶ Qi → e−i
π
kQi: ð4Þ

If this transformation is accompanied by a rotation (1) of
the form

Ψ1 ¼ Ψ2 ¼ −Ψ3 ¼
2π

k
; ð5Þ

three out of the four supercharges are preserved by the
quotient and in this way we can engineerN ¼ 3 theories in
four dimensions. These are N ¼ 3-preserving S-folds and
have been discussed in detail in [56,57].
The notion of S-folds can be extended to preserve less

supersymmetry, e.g., N ¼ 2 S-folds, for which we simply
require that two of the phases in Mρ agree, and are equal
opposite to the action of S, (4), for some value of k. Note
that of course there are more general spacetime actions than
(1), and the most general setup would leave invariant an
SUð2Þ × Uð1Þ subgroup of the SUð4Þ, and does not
necessarily have to be diagonal. However for our purpose
of studying rank one 4dN ¼ 2 theories we will require the
action to be diagonal. The conditions for theN ¼ 2 S-folds
are (without loss of generality preserving the first two
supercharges)

Ψ2 ¼ −Ψ3 mod 2πn; Ψ1 ¼
2π

k
: ð6Þ

Note that we will refer to S-fold backgrounds of this type as
N ¼ 2 S-folds, but more generally, as we will see in the
next section, also to all combinations of S-fold actions with
7-branes that preserve N ¼ 2 supersymmetry overall.

B. S-folds with 7-branes

We now turn to generalizing the S-fold backgrounds
in type IIB to include 7-branes, which are placed at the
locus z1 ¼ 0 inside C3. The supercharges preserved by the
7-branes are the ones which have eigenvalue þ1 with
respect to the generator of the rotation in the complex
plane Cz1 , parametrized by z1. We note that this spacetime
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projection is compatible with the N ¼ 2 preserving
S-fold, (6).
Next we include the SLð2;ZÞ-action on the super-

charges: this is specified by an equal phase rotation, (4).
We can observe that considering the 7-brane action together
with (4) and (2), we get that the first two phases in (2) are
canceled by the SLð2;ZÞ action in (4), and still preserved
by the z1 spacetime rotation due to the 7-branes. In total this
results in 8 preserved real supercharges. Additionally, we
need to consider the action of the 7-brane on the axio-
dilaton. Since the S-transformation (4) can be performed
only when τ is fixed to one of the values in (3), we must
consider 7-branes which are compatible with this constant
value of the axio-dilaton. In [63] a related construction was
considered, namely 7-branes with constant τ wrapping an
orbifold singularity, such that the background is a product
of two noncompact K3-surfaces. In that case, the theories
engineered by probing the geometry with one or more D3-
branes have always rank bigger than one. These are other
example of N ¼ 2 background that combine 7-branes with
orbifolds, which we will not consider further here.
Our goal is therefore to construct N ¼ 2-preserving

backgrounds that combine S-folds, which are quotients
acting on spacetime and axio-dilaton, with a stack of
7-branes at a fixed axio-dilaton value. The latter fall into
the Kodaira classification of singularities as we will now
review.
The list of relevant 7-branes are reported in Table I. In the

first column of Table I the singularity type are shown,
whereas in the third column we have indicated the scaling
dimension Δ7 of the corresponding Coulomb branch (CB)
operator. Each stack is a bound state of

n7 ¼ 12

�
Δ7 − 1

Δ7

�
ð7Þ

mutually nonlocal 7-branes, whose presence creates a 2π
Δ7

deficit angle in the transverse plane. The axio-dilaton is
fixed to the values in the last column. These backgrounds

can be described in the context of F-theory by compacti-
fications on R8 × K3, where the K3 is elliptic, with
noncompact base C, and defined by the Weierstrass model
in Table I. We incorporate theZk S-fold by orbifolding a C2

inside R8 and accompanying this with a Zk-quotient of the
K3. The latter involves a Zk action on the base of the
elliptic fibration, which is identified with the Coulomb
branch of the four dimensional theory living on the probe
D3-brane. The CB operator of the resulting theory will have
dimension kΔ7. This transformation can be seen as a
ZkΔ7

⊂ Uð1ÞR action, which corresponds to a phase rota-
tion on the supercharges. In order to preserve supersym-
metry, we should accompany this with a transformation
ZkΔ7

⊂ SLð2;ZÞ. We therefore conclude that kΔ7 ¼ 2, 3, 4
or 6, and we find the following six possibilities:

(i) k ¼ 2 S-fold with 7-branes of type H2, D4, and E6,
(ii) k ¼ 3 S-fold with 7-branes of type H1 and D4,
(iii) k ¼ 4 S-fold with a 7-brane of type H2.

Notice that the ZkΔ7
⊂ SLð2;ZÞ quotient can be performed

only if the axio-dilaton is frozen at the required value, as
reported in (3) and this should of course be compatible with
the value of the axio-dilaton associated with the given stack
of 7-branes (as in Table I). Remarkably, all the six options
listed above pass this consistency condition.
Before discussing in detail the quotients of Kodaira

singularities, let us pause to explain why we think of these
backgrounds, which we will also refer to asN ¼ 2 S-folds,
as N ¼ 3 S-folds and 7-branes combined: if we probe the
background with a D3-brane and we move it along the C2

corresponding to the last two entries in (1), away from the
fixed point of the Zk action, the probe D3-brane does not
perceive any longer the presence of the quotient and there-
fore sees only the Kodaira singularity, i.e., the 7-brane. In
this sense the background includes a 7-brane wrapping the
same C2. If on the other hand we deform the resulting
singularity by activating the deformation parameters of the
original 7-brane which survive the Zk quotient, we are left
with a Zk N ¼ 3 S-fold only, as we will show in detail in
the next section. We therefore recover both building blocks.

TABLE I. The seven Kodaira singularities with fixed axio-dilaton values with the corresponding Weierstrass
models. We have included explicitly all the deformations including the relevant couplings ci and mass parameters
Mi (where i denotes the scaling dimension) of the corresponding four-dimensional theory living on a probe
D3-brane. Only in the D4 case the axio-dilaton (i.e., the 4d gauge coupling) is not frozen to a specific value. Δ7

denotes the scaling dimension of the CB operator z.

Kodaira type G Δ7 Weierstrass model Value of τ

II H0
6
5

y2 ¼ x3 þ c4=5xþ z eπi=3

II H1
4
3

y2 ¼ x3 þ xzþ c2=3zþM2 eπi=2

IV H2
3
2

y2 ¼ x3 þ z2 þM3 þ xðc1=2zþM2Þ eπi=3

I�0 D4 2 y2 ¼ x3 þ xðτz2 þM2zþM4Þ þ z3 þ M̃4zþM6 τ
IV� E6 3 y2 ¼ x3 þ z4 þP

4
i¼2 M3iz4−i þ xðP2

i¼0 M2þ3iz2−iÞ eπi=3

III� E7 4 y2 ¼ x3 þ xðz3 þM8zþM12Þ þ
P

4
i¼0 M2þ4iz4−i eπi=2

II� E8 6 y2 ¼ x3 þ z5 þP
5
i¼2 M6iz5−i þ xðP3

i¼0 M2þ6iz3−iÞ eπi=3
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We can organize the consistent S-folds in the presence of
7-branes, labeled by their singularity type (E8; E7; E6; D4;
H2; H1; H0;∅) according to the nontrivial Zk action of
the quotient on the CB. We will give evidence for the
presence of the possibilities in Table II. These models will
be denoted by

hG;Zki; ð8Þ

where G labels the 7-brane singularity type and Zk the
S-fold. In the next section we will show that all models in
a column with fixed k are related by mass deformations,
i.e., RG-flows, by considering the quotients of the corre-
sponding Kodaira fibers.

III. QUOTIENTS OFKODAIRA SINGULAR FIBERS

We now describe in detail the quotient of the Kodaira
singularities. A similar quotient in F-theory was con-
sidered also in [64] to describe discrete three-form flux
in M-theory. A complementary point of view is to consider
the Seiberg-Witten curve for the theories in Table II as
performed in [50]. Here we will work on the level of the
Kodaira singular fiber and constrain the quotients by
requiring the invariance of the holomorphic 2-form.
Let us start by explaining the general idea: If we write the

Kodaira singularities in Table I in the form Wðx; y; zÞ ¼ 0,
the corresponding holomorphic two-form of the associated
K3-surface is

Ω2 ¼
dz ∧ dx ∧ dy

dW
: ð9Þ

We want the Zk quotient to act on z as z → e2πi=kz and
therefore we can introduce the invariant coordinateU ¼ zk.
We then assign a transformation law to x and y in such a
way that y2 and x3 transform in the same way and Ω2 is

invariant under the quotient. We also introduce the corre-
sponding invariant coordinates X and Y, which are obtained
by rescaling x and y by suitable powers of z, and require
that Ω2 can be written in terms of X, Y, and U only. These
requirements imply that the invariant coordinates are

X ¼ xz2k−2; Y ¼ yz3k−3: ð10Þ

Furthermore, the holomorphic two-form in the new coor-
dinates reads

Ω2 ¼
dU ∧ dX ∧ dY
dWðX; Y;UÞ : ð11Þ

In the previous formula we have implicitly assumed that
the Kodaira singularity can be rewritten in terms of the
invariant coordinates only. As we will see momentarily, this
is possible only for certain values of k (reproducing the list
of allowed S-fold/7-branes found earlier, see Table II) and
only when suitable constraints on the deformations of the
singularity are imposed. All the quotients which are not
discussed explicitly below are not consistent. For each of
the consistent models we determine the scaling dimension
D of Coulomb branch operators for the theories on the
D3-branes probing the singularity.

A. Z2-quotient of type IV� fibers

We start with the IV� singularity (or 7-brane of type E6)
including mass deformations

IV�∶ y2 ¼ x3 þ xðz2M2 þ zM5 þM8Þ
þ z4 þM6z2 þM9zþM12: ð12Þ

In order to perform the Zk quotient we consider the change
of variables (10)

Y ¼ yz3ðk−1Þ; X ¼ xz2ðk−1Þ; ð13Þ

which brings the curve to the form

Y2 ¼ X3 þ Xðz4k−2M2 þ z4k−3M5 þ z4k−4M8Þ
þz6k−2 þ z6k−4M6 þ z6k−5M9 þM12z6k−6: ð14Þ

Even if we turn off all the mass deformations we still have
the leading term of the singularity z6k−2 and we require this
to be an integer power of the invariant coordinate U ¼ zk.
Clearly this is the case only for k ¼ 2 and therefore we
restrict to this case from now on. Notice that we should set
M5 ¼ M9 ¼ 0 since the corresponding terms cannot be
written in terms of U. We are therefore left with the II�
singularity

TABLE II. S-fold with 7-branes, where k is the S-fold actionZk
and G the 7-brane type. In the following we will denote these
models by hG;Zki. Δ7 indicates the 7-brane type realized by a
Weierstrass model as in Table I. Each entry in the table specifies
the Kodaira type and the global symmetry, which makes contact
with the notation in [50]. Models shown in black areN ¼ 2, blue
is an N ¼ 4 theory and the green entries are N ¼ 3 theories.

G Δ7 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

E8 6 ½II�; E8�
E7 4 ½III�; E7�
E6 3 ½IV�; E6� ½II�; C5�
D4 2 ½I�0; D4� ½III�; C3C1� ½II�; A3⋊Z2�
H2 3=2 ½IV;H2� ½IV�; C2U1� ½II�; A2⋊Z2�
H1 4=3 ½III; H1� ½III�; A1U1⋊Z2�
H0 6=5 ½II; H0�
∅ 1 ½I�0; C1χ0� ½IV�; U1� ½III�; U1⋊Z2�

½IV�
1;∅�
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II�∶ Y2 ¼ X3 þ XðU3M2 þU2M8Þ
þ U5 þU4M6 þU3M12: ð15Þ

We can now determine the scaling dimension of the new
Coulomb branch operator U by imposing homogeneity of
the curve and the condition that the dimension of the SW
differential (and therefore the dimension of Ω2 as well) is
equal to one. From (11) we find

DðYÞ ¼ 15; DðXÞ ¼ 10; DðUÞ ¼ 6;

DðM2Þ ¼ 2; DðM6Þ ¼ 6; DðM8Þ ¼ 8; DðM12Þ ¼ 12:

ð16Þ

The geometry (15) can be effectively used to study
deformations of the theory (or equivalently deformations
of the stack of 7-branes in the presence of the Z2 S-fold). If
for instance we turn on M2 we land on the following type
III� singularity

III�∶ Y2 ¼ X3 þ XðU3 þ U2M8Þ þ U4M6 þU3M12:

ð17Þ

We will recover this geometry later.

B. Z2- and Z3-quotients of type I�0 fibers

The Weierstrass model for the I�0 singularity (or 7-brane
of type D4) is

I�0∶ y2 ¼ x3 þ xðτz2 þM2zþM4Þ þ z3 þ M̃2z2

þ M̃4zþM6: ð18Þ

Of course by shifting z we can get rid of M2 or M̃2: only
one of them is a physical parameter and in Table I we have
removed M̃2. Here we prefer keeping both parameters for
later convenience.
If we now consider as before the change of variables

(10), we find

Y2 ¼ X3 þ Xðτz4k−2 þ z4k−3M2 þ z4k−4M4Þ
þ z6k−3 þ z6k−4M̃2 þ z6k−5M̃4 þ z6k−6M6: ð19Þ

If we now impose that the leading term z6k−3 is an integer
power of U, we conclude that k ¼ 3 and we should set to
zero τ, M4, M̃2, and M̃4 since the corresponding terms
cannot be rewritten in terms of invariant coordinates. We
therefore obtain the II� singularity

II�∶ Y2 ¼ X3 þ XU3M2 þ U5 þU4M6: ð20Þ

Again we can determine the scaling dimension of U by
imposing that Ω2 has scaling dimension 1. We find

DðYÞ ¼ 15; DðXÞ ¼ 10; DðUÞ ¼ 6;

DðM2Þ ¼ 2; DðM6Þ ¼ 6: ð21Þ

Notice that the value of the axio-dilaton is automatically
frozen at the value τ ¼ eπi=3 as required for a singularity of
type II�. As in the previous case we can analyze mass
deformations: if we turn on the mass parameterM2 we find
again a III� singularity of the form

III�∶ Y2 ¼ X3 þ XU3 þ U4M6: ð22Þ

We will exploit this result later.
This case is special as it is the only 7-brane for which the

axio-dilaton is not frozen to a specific value. Corres-
pondingly, there are two leading singular terms and there
is another case we should consider: we can require that the
term τz4k−2 is expressible in terms of U, which implies
k ¼ 2. This time we should discard the term z6k−3 since it
cannot be expressed in terms of U and the axio-dilaton is
frozen to the value τ ¼ i. We should also set M2 ¼
M̃4 ¼ 0. We end up with the III� geometry

III�∶ Y2 ¼ X3 þ XðU3 þ U2M4Þ þ U4M̃2 þU3M6:

ð23Þ

We have removed the parameter τ since it can now be
reabsorbed with a rescaling of the coordinates and a
redefinition of the parameters. Notice that (23) is precisely
the geometry (17). We therefore conclude that the geo-
metry corresponding to a 7-brane of type E6 combined with
aZ2 S-fold can be deformed to the geometry corresponding
to a 7-brane of type D4 combined with a Z2 S-fold.
Analogously to the previous cases we can analyze mass
deformations: when we turn on M̃2 we find the IV�
singularity

IV�∶ Y2 ¼ X3 þ XU2M4 þ U4 þU3M6: ð24Þ

C. Z2- and Z4-quotients of type IV fibers

The type IV singularity (7-brane of type H2) is

IV∶ y2 ¼ x3 þ xðzc1=2 þM2Þ þ z2 þM3: ð25Þ

Performing again the change of variables (10) we find

Y2 ¼ X3 þ Xðz4k−3c1=2 þ z4k−4M2Þ þ z6k−4 þ z6k−6M3;

ð26Þ

and demanding again that the leading term z6k−4 can be
written in terms of U ¼ zk we easily see that there are two
options for the quotient: Z2 and Z4.
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Consider first the Z2 quotient. From (26) we conclude
that we have to set c1=2 ¼ 0 and the resulting singularity is
of type IV�:

IV�∶ Y2 ¼ X3 þ XU2M2 þ U4 þU3M3: ð27Þ

Demanding that the holomorphic two-form (9) has
dimension one we find DðUÞ ¼ 3. Notice that this is
precisely the geometry we find by deforming the Z2

quotient of the D4 singularity (24). Let us now study the
deformation: if we turn on M3 (the other option has
exactly the same effect) we get a I�0 singularity which is
not further deformable:

I�0∶ Y2 ¼ X3 þ Xτ0U2 þ U3: ð28Þ

In this case the parameter τ (inherited from M2) can be
easily checked to be dimensionless and plays the role of
a marginal coupling in the 4d theory living on the D3-
brane probe: we can easily see that the j-invariant is not
constrained in the above geometry. What we find here is
just the Weierstrass model for the Z2 S-fold without any
7-branes.
The analysis for theZ4 quotient is similar: in this case we

should turn off both c1=2 and M3, resulting in the II�

geometry

II�∶ Y2 ¼ X3 þ XU3M2 þU5; ð29Þ

with the scaling dimensions

DðYÞ ¼ 15; DðXÞ ¼ 10; DðUÞ ¼ 6; DðM2Þ ¼ 2:

ð30Þ

By turning on the deformation parameter M2 we land on
the frozen III� singularity

III�∶ Y2 ¼ X3 þ XU3; ð31Þ

which we interpret as theWeierstrass model associated with
a Z4 S-fold.

D. Z3-quotient of type III fibers

Consider the type III singularity (i.e., 7-brane of type
H1), with mass deformation M2

III∶ y2 ¼ x3 þ xzþ zc2=3 þM2: ð32Þ

After the change of coordinates (10) we get

Y2 ¼ X3 þ Xz4k−3 þ z6k−5c2=3 þ z6k−6M2; ð33Þ

and by demanding that z4k−3 can be written as an integer
power of U we conclude that k ¼ 3. We should then set to
zero c2=3 and we obtain a III� singularity:

III�∶ Y2 ¼ X3 þ XU3 þ U4M2: ð34Þ

The dimension of the CB operator U of the 4d field theory
living on a probe D3-brane is 4. Notice that this is precisely
the singularity we found by deforming the 7-brane of type
D4 combined with a Z3 S-fold (22). The mass deformation
of (34) leads to a frozen IV� singularity which we associate
with a Z3 S-fold:

Y2 ¼ X3 þU4:

IV. RANK ONE 4D N = 2 SCFTs
FROM S-FOLDS

In this section we will discuss the physics of the four-
dimensional N ¼ 2 theory living on a D3-brane probing
the backgrounds we have studied in Sec. II and provide
evidence for the identification of these theories with the
models recently discussed by [50]. We will identify them
with the models in [50] that do not correspond to discrete
gaugings.

A. N = 2 S-folds and rank one theories

In Sec. III we have seen that our backgrounds can be
deformed to N ¼ 3 preserving S-folds according to the
following pattern, within the Table II

(i) k ¼ 2: hZ2; E6i → hZ2; D4i → hZ2; H2i → Z2

S-fold.
(ii) k ¼ 3: hZ3; D4i → hZ3; H1i → Z3 S-fold.
(iii) k ¼ 4: hZ4; H2i → Z4 S-fold.

Of course we know that the endpoints of these flows have
enhanced N ¼ 3 (actually N ¼ 4 in the Z2 case) super-
symmetry. From the perspective of the field theory living
on a probe D3-brane, the deformations we have discussed
in the previous section correspond to mass deformations.
The question now is which N ¼ 2 theories flow to rank
one models with enhanced supersymmetry upon a mass
deformation according to the pattern we have just
described? The answer is given in terms of the theories
appearing in Table II. We are therefore led to the following
identification between theories living on a D3-brane prob-
ing the N ¼ 2 S-folds and known rank-one theories

S-fold with 7-branes : hG;Zki ½Kodaira Type; GF�
hE6;Z2i ½II�; C5�
hD4;Z2i ½III�; C3C1�
hH2;Z2i ½IV�; C2U1�
hD4;Z3i ½II�; A3⋊Z2�
hH1;Z3i ½III�; A1U1⋊Z2�
hH2;Z4i ½II�; A2⋊Z2�

:ð35Þ

At this stage it is worth making a remark about the
global symmetry: the Weierstrass models for the quotient
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singularities we have derived in Sec. III do not correspond
to the SW-curve of the corresponding 4d theories with all
the mass parameters turned on. If we denote by r the rank
of the actual global symmetry of the field theory in the
Weierstrass model we see only r − 1 mass parameters
(which are in general polynomials in the Casimirs of the
full global symmetry). The explanation for this apparent
mismatch is rather clear: the N ¼ 3 theories we land on
once we have activated all possible deformations are not the
endpoints of the RG-flow, since for everyN ¼ 3 theory we
can turn on an N ¼ 2-preserving mass deformation. The
underlying S-fold background on the other hand is a
terminal singularity and cannot be deformed, so we con-
clude that the corresponding mass parameter cannot be
interpreted as a deformation of the geometry. Taking this
caveat into account, we see that the rank of the global
symmetry predicted by our geometric construction per-
fectly agrees with the known result. In Sec. IV C we will
discuss another remarkable piece of evidence for our claim
by considering the Higgs branch flows.

B. The enhanced Coulomb branch

As we have seen our proposal for the 4d theories living
on a D3-brane probe is strongly supported by the pattern of
deformations of our backgrounds. On the other hand, it
automatically leads to a sharp prediction for the effective
four dimensional theory we get by compactifying F-theory
on an N ¼ 2-preserving S-fold (without adding any D3-
branes). This can be seen as follows: suppose that we move
the probe D3-brane away from the 7-brane. Field theoreti-
cally this corresponds to moving away from the origin of
the Coulomb branch. Since the probe is now at a smooth
point of spacetime (away both from the fixed point of our
quotient and from the 7-brane), the low-energy effective
theory includes the modes on the D3-brane, namely a free
vectormultiplet and a free hypermultiplet and a second
sector consisting of the 4d theory one gets by compactify-
ing F-theory on an N ¼ 2-preserving S-fold. These two
sectors are expected to be decoupled from one another in
the low energy limit.
On the other hand, we know exactly what is the low-

energy effective theory for the rank one models appearing in
Table III at a generic point on the Coulomb branch: there is a
free vectormultiplet and a collection of h free hypermultip-
lets (h is called the dimension of the enhanced Coulomb
branch). Therefore, if our claim is correct, we conclude just
by looking at Table III that the 4d theory corresponding to an
S-fold compactification of F-theory is given by a collection
of kðΔ7 − 1Þ free hypermultiplets (where indeed k is the
order of the orbifold and 2π=Δ7 is the deficit angle induced
by the 7-brane).We do not know how to check this result and
it would definitely be interesting to fill in this gap. However,
we will be able to provide a nontrivial consistency check for
this prediction when we compute the central charges a and c
of the field theory on the probe D3-brane: wewill see that the

central charges match those of the known rank one theories
only if the central charges of F-theory compactified on an
N ¼ 2-preserving S-fold are those of kðΔ7 − 1Þ free
hypermultiplets.

C. Higgs branch flows

Our proposed identification of the field theories living on
a D3-brane probing an N ¼ 2-preserving S-fold with the
rank one theories in [50] passes a highly nontrivial
consistency check. The motion of the D3-brane within
the 7-brane (i.e., along z2 and z3), but away from the S-fold
singularity, geometrizes an RG-flow initiated by turning on
an expectation value for a Higgs branch operator.1 The low-
energy effective theory in the infrared can be easily
predicted by recalling one of the remarks we have made
in the previous section: once the D3-brane is away from the
S-fold singularity, the probe does not perceive the presence
of the S-fold quotient anymore, but it still sees the 7-brane.
We therefore conclude that the low-energy effective theory

TABLE III. Coulomb branch dimensions for 4d N ¼ 2 rank 1
theories in the notation of Table II. Again the color coding is:
black are N ¼ 2 theories, blue are N ¼ 4, and green are N ¼ 3
supersymmetric.

Model h a c

½II�; E8� 0 95
24

31
6

½III�; E7� 0 59
24

19
6

½IV�; E6� 0 41
24

13
6

½IV;H2� 0 7
12

2
3

½III; H1� 0 11
24

1
2

½III; H0� 0 43
120

11
30

Model h a c

½II�; C5� 5 41
12

49
12

½III�; C3C1� 3 25
12

29
12

½IV�; C2U1� 2 17
12

19
12

½I�0; C1χ0� 1 3
4

3
4

Model h a c

½II�; A3⋊Z2� 4 25
8

7
2

½III�; A2U1⋊Z2� 2 15
8

2
½IV�; U1� 1 5

4
5
4

Model h a c

½II�; A2⋊Z2� 3 71
24

19
6

½III�; U1⋊Z2� 1 7
4

7
4

½IV�;∅� 0 55
48

25
24

1This is simply because this motion does not break the Uð1ÞR
symmetry of the theory which acts on the plane transverse to the
7-brane only.
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is that of a D3-brane probing the same type of 7-brane in
flat space plus the effective four dimensional theory coming
from the background, i.e., a collection of kðΔ7 − 1Þ hyper-
multiplets in our case. We therefore predict the existence of
the following Higgs branch flows

½II�; C5� → ½IV�; E6� þ 5 hypers

½III�; C3C1� → ½I�0; D4� þ 3 hypers

½IV�; C2U1� → ½IV; A2� þ 2 hypers

½II�; A3⋊Z2� → ½I�0; D4� þ 4 hypers

½III�; A1U1⋊Z2� → ½III;A1� þ 2 hypers

½II�; A2⋊Z2� → ½IV; A2� þ 3 hypers: ð36Þ

It is easy to verify that all these RG flows are consistent
with ’t Hooft anomaly matching for the unbroken Uð1ÞR
symmetry.
Remarkably, these RG-flows match those that are found

purely field theoretically in [65]. Our geometric setup
allows us to derive and predict this nontrivial dynamical
fact in a simple and natural way.

D. Global symmetries and mass parameters

The global symmetry of the 4d theory on the D3-brane
arises from the gauge symmetry supported on 7-branes and
also from isometries of the F-theory background. In the
well known case of D3-branes probing flat 7-branes (the
case k ¼ 1 in our notation) for example, the isometries of
the background provide a SUð2Þ (non R) global symmetry
which acts on the free hypermultiplet parametrizing the
position of the center of mass of the D3-branes along the
world volume of the 7-branes (and also on the strongly-
coupled SCFT if we have multiple D3-branes).
As far as the global symmetry coming from 7-branes is

concerned, we can easily read off the rank from the
Weierstrass quotients we have discussed in Sec. III. The
corresponding mass parameters are in one-to-one corre-
spondence with the deformations of the Weierstrass moel,
which survive the Zk quotient. We therefore have 4 mass
parameters for the Z2 quotient of the IV� singularity, 3 for
the Z2 quotient of the I�0 singularity and so on.
In the case of N ¼ 2 S-folds we are considering, the

isometries of the background include the Uð1ÞR symmetry
of the SCFT, which acts on the plane parametrized by z1,
there is also a SUð2Þ isometry of the quotientC2=Zk, which
is identified with the SUð2Þ R-symmetry, and then a further
Uð1Þ (actually enhanced to SUð2Þ for k ¼ 2) which is a
global (non R) symmetry of the theory. This symmetry is of
course there also in cases with enhanced supersymmetry
(when there are no 7-branes) and we can turn on a
corresponding N ¼ 2-preserving mass deformation. We
should point out that this mass parameter cannot be

described by deforming the singularity (which indeed is
not deformable in the N ¼ 3 case), but rather arises by
turning on a Ω-background along directions z2 and z3. This
is how N ¼ 2� theories are engineered in type IIB (see
[66]). If we denote by ϵ2 and ϵ3 the Ω-background
parameters associated with rotations in the z2 and z3 planes
respectively, by setting ϵ2 þ ϵ3 ¼ 0 we preserve N ¼ 2
supersymmetry and the parameter ϵ3 is identified with the
N ¼ 2-preserving mass.2 In the perturbative cases dis-
cussed in [66] one can check that stringy modes corre-
sponding to fields charged under the global symmetry
acquire a mass proportional to ϵ3. In our case we claim that,
once all the mass parameters appearing in the Weierstrass
have been activated and we flow to a model with enhanced
supersymmetry, the theory living on the D3-brane probe we
get by further turning on the Ω-background deformation is
identified with the mass-deformed version of the under-
lying N ¼ 3 theory (or N ¼ 4 in the case k ¼ 2).
In summary, the rank of the global symmetry of the

theory is obtained just by counting mass deformations in
the Weierstrass and adding one (the contribution from ϵ3).
We therefore find

Theory hG;Zki RankðGFÞ
hZ2; E6i 5

hZ2; D4i 4

hZ2; H2i 3

hZ3; D4i 3

hZ3; H1i 2

hZ4; H2i 2

ð37Þ

This is in perfect agreement with the actual rank of the
global symmetry of the N ¼ 2 SCFT’s we associate with
our N ¼ 2 S-folds, therefore landing further support to
our claim.

V. D3-BRANE CHARGES, DISCRETE FLUXES
AND CENTRAL CHARGES

In this section we will compute the D3-brane charge of
our systems of S-folds plus 7-branes, which will be needed
later on when we compute the a and c central charges. As a
first step we perform in Sec. VA the computation neglect-
ing the contribution from the torsional flux following the
approach of [67]. We then incorporate the discrete flux in
Sec. VA 1. The outcome of our analysis is that the D3-
brane charge of our backgrounds does not depend on the
type of 7-brane we introduce and equals that of the
underlying S-fold.

2We thank J. F. Morales for explaining this point to us.
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A. Computation of the D3-brane charge

The induced D3-brane charge is sourced by background
D3-branes, fluxes and the contribution to the Euler char-
acteristic from the bulk, meaning the fixed points of the
orbifold (the total space being noncompact we do not
impose any cancellation of this induced charge) [67]. In the
absence of fluxes and background D3-branes this is

ϵD3 ¼ −
χbulk
24

: ð38Þ

We present two computations of the Euler characteristic. In
Appendix A it is derived in a purely geometric way. In the
following we will compute it using the Euler characteristic
of orbifolds of T8 obtained in [68]. In the following we will
analyze in detail three examples: the Z2 S-fold combined
with 7-branes of type D4 and E6 respectively and the Z3

S-fold combined with 7-branes of type D4. Before entering
the details, let us first remind the reader about the following
well-known facts regarding orbifolds of T2:

(i) T2=Z2 has four fixed points.
(ii) T2=Z3 has three fixed points.
(iii) T2=Z4 has two fixed points and two Z2-fixed points

which are interchanged by the residual Z2.
(iv) T2=Z6 has one fixed point, two Z3-fixed points

which are interchanged by the residual Z2 and three
Z2-fixed points which are interchanged by the
residual Z3.

We will use these facts repeatedly below.

1. Z2 S-fold in the presence of a D4 7-brane

In this case the relevant fourfold can be described by the
following Z4 quotient of T2 × C3:

T2 C C C
γ4 γ−14 γ24 γ−24

ð39Þ

where indeed γ44 ¼ 1. In order to compute the induced
D3-brane charge, we start by considering the same kind of
Z4 quotient for T8:

T2 T2 T2 T2

γ4 γ−14 γ24 γ−24
ð40Þ

The Euler characteristic of this fourfold, which we denote
as T8=Z̃4, was found in [68] to be

χðT8=Z̃4Þ ¼ 192:

The contribution to the Euler characteristic comes from the
fixed points under the orbifold action. In our case we have
64 points invariant under the Z4 action: there are 22 fixed
points coming from the first two T2 factors in (40), times
the 16 points of the remaining T4 which are invariant under
the action of γ24. Around each of these singular points the
singularity is equivalent to an orbifold of C4 of the form

C C C C
γ4 γ−14 γ24 γ−24

In the following we will denote this space as C4=Z̃4. The
Z2-fixed points of the first two T2 factors in (40) do not
contribute: These are invariant under a Z2 subgroup acting
as follows:

T2 T2 T2 T2

γ24 γ−24 1 1

Around each such point we therefore have the singularity
C2=Z2 × T4, which has vanishing Euler character. Overall,
we find

χðT8=Z̃4Þ ¼ 64χðC4=Z̃4Þ ¼ 192 → χðC4=Z̃4Þ ¼ 3:

Since we are ultimately interested in the space (40), we
should take into account the fact that there are two Z4-fixed
points in T2. Again, theZ2-fixed points can be ignored since
the subgroup which leaves them invariant acts trivially on the
last twoC factors in (40) and therefore they do not contribute
to the D3-brane charge. This leads to the conclusion that the
D3-brane charge of our background is

ϵD3 ¼ −
1

24
ð2χðC4=Z̃4ÞÞ ¼ −

1

4
; ð41Þ

which is the D3-brane charge of a Z2 S-fold.

2. Z2 S-fold in the presence of an E6 7-brane

The fourfold is now described by the following Z6

quotient of T2 × C3:

T2 C C C
γ6 γ−16 γ36 γ−36

ð42Þ

where γ66 ¼ 1. We again start from the same kind of Z6

quotient for T8:

T2 T2 T2 T2

γ6 γ−16 γ36 γ−36
ð43Þ

The Euler characteristic of this fourfold, which we denote
as T8=Z̃6, was found in [68] to be

χðT8=Z̃6Þ ¼ 192:

In this case there are 16 fixed points: T4=Z6 has just one
fixed point and the remaining T4=Z2 has sixteen fixed
points. Locally around each point the singularity is a Z6

orbifold of the form

C C C C
γ6 γ−16 γ36 γ−36

and we will denote this space as C4=Z̃6. Rather as the
Z2-fixed points of the previous case, we do not find any
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contribution from the Z3 fixed points since the stabilizer
subgroup of these points acts trivially on the last two T2

factors in (43). We have instead a nontrivial contribution
from Z2-fixed points: around such points the singularity is
locally C4=Z2, whose Euler characteristic is 3=2 [67]. Next
we count the number of such points: on T2=Z6 we have
four Z2-fixed points (including the Z6-invariant one) and
therefore on T4=Z6 there are 42 − 1 such points (where we
have subtracted the Z6 fixed point). We should then divide
this number by three to account for the nontrivial action of
Z3 on these points. Finally, we should multiply by 16 [the
number of fixed points under the Z2 action on the last two
T2 factors in (43)]. We therefore conclude that

χðT8=Z̃6Þ ¼ 16χðC4=Z̃6Þ þ
42 − 1

3
16

3

2
¼ 192

→ χðC4=Z̃6Þ ¼
9

2
: ð44Þ

In order to compute the D3-brane charge of the geometry
(42) we have to sum the Euler characteristic of the various
fixed points and then multiply by − 1

24
. We have one Z6-

fixed point, for which we can use the result we have just
derived and we also have the contribution from the Z2-
fixed point (there are three of them but they are identified
by the Z6 quotient). We can again neglect Z3-fixed points
since they do not contribute to the D3-brane charge. As a
result, we find that the D3-brane charge equals

ϵD3 ¼ −
1

24
ðχðC4=Z̃6Þ þ χðC4=Z2ÞÞ

¼ −
1

24

�
9

2
þ 3

2

�
¼ −

1

4
: ð45Þ

Again we find that the D3-brane charge is equal to that of
the underlying S-fold.

3. Z3 S-fold in the presence of a D4 7-brane

The Z6 quotient on T2 × C3 is

T2 C C C
γ6 γ−16 γ26 γ−26

ð46Þ

with γ66 ¼ 1.

T2 T2 T2 T2

γ6 γ6 γ26 γ26
ð47Þ

By a change of coordinate we can rewrite this orbifold
action on T8 as (46). The Euler characteristic of this
fourfold, which we denote as T8=Z0

6, was found in [68],
and it reads χðT8=Z0

6Þ ¼ 144. We repeat exactly the same
procedure of the first two cases. The following Euler
characteristic has various contributions:

χðT8=Z0
6Þ ¼ 9χðC4=Z0

6Þ þ
32 − 1

2
9
8

3
¼ 144

→ χðC4=Z0
6Þ ¼

16

3
; ð48Þ

where in T8 we have 16 fixed point of the type ðC4=Z0
6Þ,

ð33 − 1Þ × 9ðC4=Z3Þ, whose Euler characteristic is
χðC4=Z3Þ ¼ 8

3
. In addition we have C4=Z2 fixed points,

which can be thought as the 7-brane contributions, and its
Z2 action is

T2 C C C
γ36 γ−36 1 1

ð49Þ

On the other hand, these fixed points on T8 contribute as
C2=Z2 × T4, and since χðT4Þ ¼ 0, their Euler characteristic
also vanishes. Putting everything together the D3-brane
charge is

ϵD3 ¼ −
1

24

�
χðC4=Z0

6Þ þ
3 − 1

2
χðC4=Z3Þ

�

¼ −
1

24

�
16

3
þ 8

3

�
¼ −

1

3
: ð50Þ

For the model with 7-branes whose backgrounds are
not of orbifold type, i.e., H0;1;2, we do not have a direct
computation of the D3-brane charge. However, we have
observed that the action of the 7-branes leaves always a T4

untouched. Consequently, it is reasonable to conjecture that
like in the case of the orbifold 7-branes, these H0;1;2 type
7-brane configurations do not contribute to the D3-brane
charge either. This implies that also in those cases, the
D3-brane charge is given by the one of the corresponding
N ¼ 3 S-fold.

4. Discrete flux

We provide here a geometric argument why the D3-
brane charge does not depend on the 7-brane even in the
presence of ðH3; F3Þ discrete flux. For the N ¼ 3 S-fold
cases the flux quanta were computed from M-theory on
C4=Zk in [67]. The torsion M2-brane charge reads

Qtorsion
M2 ¼ −

1

2

Z
C4=Zk

G4

2π
∧ G4

2π
¼ −

1

2

Z
S7=Zk

G4

2π
∧ C3

2π
;

ð51Þ
where G4 ¼ dC3 is the 4-form flux of M-theory. In order
to compute the integral one needs to construct the explicit
4-dimensional submanifold W whose boundary is the
torsion cycle S3=Zk. The IIB 3-brane flux is then computed
by reducing the M2-branes on a wrapped circle, and
subsequently T-dualizing the system to IIB on a circle
prependicular to the IIA O2-plane/D2-brane system [57].
The G4 flux quanta is
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Z
W

G4

2π
¼ l

k
; l ∈ Z: ð52Þ

For this purpose it is useful to parametrize the S7

coordinates as follows:

z1 ¼ cos

�
ξ

2

�
cos

�
θ1
2

�
e
iðψ1þϕ1Þ

2 ð53Þ

z2 ¼ cos

�
ξ

2

�
sin

�
θ1
2

�
e
iðψ1−ϕ1Þ

2 ð54Þ

z3 ¼ sin

�
ξ

2

�
cos

�
θ2
2

�
e
iðψ2þϕ2Þ

2 ð55Þ

z2 ¼ sin

�
ξ

2

�
sin

�
θ2
2

�
e
iðψ2−ϕ2Þ

2 ð56Þ

where ξ;θ1;θ2 ∈ ½0;π=2�, ψ1;ψ2 ∈ ½0;2π�, and ϕ1;ϕ2 ∈
½0;4π�. The orbifold acts as follows on S7

ϕ1 → ϕ1 þ
2π

k
; ϕ2 → ϕ2 þ

2π

kΔ7

: ð57Þ

and the metric takes the form of two orbifold S3 fibered
over an interval ξ ∈ ½0; π=2�, that is

ds2S7=ZkΔ7
¼ dξ2 þ cos2ðξÞ

4
ðds2S3=Zk

Þ

þ sin2ðξÞ
4

ðds2S3=ZkΔ7
Þ: ð58Þ

In principle there are two submanifold whose boundary are
given by S3=Zk and S3=ZkΔ7

at ξ ¼ 0 and ξ ¼ π=2
respectively. However, in our background one of the C
factor of C2 is actually compactified resulting in a T2

orbifolded by ZkΔ7
. For this reason, one of the boundary

S3=ZkΔ7
does not exist anymore in our background, and the

flux quanta gets only contribution from the torsional S3=Zk
exactly as in the N ¼ 3 S-fold case.
All in all we have computed the D3-brane charge with

and without flux, and have established that the 7-branes do
not contribute explicitly to the value of the D3-brane
charge, which are summarized as:

k D3-charge ϵD3

2 1
4

3 1
3

4 3
8

ð59Þ

We will show later that the a global anomaly for the
combined geometry implies however, that a nontrivial flux
has to be turned on for the background to be consistent.

B. S-folds without discrete flux and anomalies

As is known, S-folds that preserve N ¼ 3 supersym-
metry (at least those with k < 6), come in two variants,
depending on whether we turn on a discrete flux forH3 and
F3, or not. The flux contributes to the induced D3-brane
charge and we need to take this into account in order to
compute the central charges of the resultingN ¼ 2 SCFTs.
Before discussing this issue, we would like to point out that
the field theories we have discussed so far correspond to
N ¼ 2 S-folds with a nontrivial three-form flux. The
easiest way to see this is to notice that the models with
enhanced supersymmetry we get upon mass deformation
(as described before) correspond to N ¼ 3-preserving
S-folds with the discrete flux turned on.
The natural question regarding our N ¼ 2-preserving

S-folds is then what happens when we switch off the
discrete flux and what are the corresponding 4d theories
on the probe D3-brane. Our claim is that this issue does
not even arise when we introduce 7-branes because we do
not get a consistent background unless we turn on the
flux. The argument we would like to provide in support
for this conclusion has to do with anomalies and is
closely related to the analysis of [69] which we now
briefly recall.
The conclusion of [69] is that 8d SYM with gauge group

G ¼ F4, SOð2N þ 1Þ is affected by an anomaly measured
by π8ðGÞ. Oneway to understand the anomaly is as follows:
we put the 8d theory on S4 ×R4 and we consider an
instanton background along S4 for a SUð2Þ subgroup of the
gauge group. When we shrink the sphere we get an
effective 4d theory living in R4 with gauge group H, the
commutant of SUð2Þ insideG. The fermions charged under
H arise from the instanton zero modes of the gaugino. In
[69] it was found that for a gauge configuration with
instanton number one on S4, the resulting 4d theory is
affected by Witten’s Z2 anomaly whenever G ¼ F4;
SOð2N þ 1Þ. The same argument applies in our case
as well. This time the 8d gauge fields arising from the
7-branes propagate on R4 × C2=Zk and we can consider an
SUð2Þ instanton on the ALE space instead of S4.
First of all we should understand what the gauge group is

expected to be in the case without three-form flux. As we
have seen, since our orbifold involves a Zk quotient in the
z1 plane transverse to the 7-brane world volume, the versal
deformations of the Weierstrass are constrained which
means that the quotients acts nontrivially on the gauge
bundle. Rather as in the case of nonsplit singularities in
F-theory, this action can be identified with a Zk outer
automorphism of the gauge algebra. Inner automorphisms
can in fact be undone with a gauge transformation. Let us
now focus on the cases k ¼ 2 and 7-branes of type E6 and
D4. In the former case the invariant subgroup under the
action of the Z2 outer automorphism is F4, therefore we
conclude that we are dealing with a 8d F4 SYM theory on
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R4 × C2=Z2.
3 In the latter case the invariant subgroup is

SOð7Þ, so we expect a 8d SOð7Þ SYM theory on
R4 × C2=Z2. These two theories are anomalous according
to [69] and the replacement of S4 with the ALE space
C2=Z2 does not change this conclusion.
In order to see this, let us recall how the fermion zero

modes counting works for SUð2Þ instantons on ALE spaces
(we use the conventions of [70]). If we have a SUð2Þ gauge
theory on C2=Z2 with a fermion in the spin s representa-
tion, the number of zero modes in an instanton background
Isn is

Isn ¼
2sð2sþ 1Þðsþ 1Þ

3
n

−
ð2sþ 1Þð8s2 þ 8sþ 3 − 3ð−1Þ2sÞ

24
; ð60Þ

where n can be identified with the instanton number since
the second Chern class of the gauge bundle E is

c2ðEÞ ¼ n −
1

2
: ð61Þ

If we consider an SUð2Þ instanton with n ¼ 1, SUð2Þ
doublets do not contribute any fermion zero modes, but for
n ¼ 2 we find

I1=22 ¼ 1; I12 ¼ 6; I3=22 ¼ 14: ð62Þ

Using such an instanton background we can easily recover
the anomaly discussed in [69], therefore providing evi-
dence that our claim is indeed correct: we have to introduce
extra ingredients (i.e., the flux) in order to get a consistent
background.
Let us start by discussing the case G ¼ SOð2N þ 1Þ

with N > 2, which in particular applies to the 7-brane of
type D4 combined with a k ¼ 2 S-fold. We consider the
decomposition

SOð2N þ 1Þ ⊃ SUð2Þ × SUð2Þ0 × SOð2N − 3Þ; ð63Þ

and turn on the instanton for the first SUð2Þ factor. We
therefore have H ¼ SUð2Þ0 × SOð2N − 3Þ and the adjoint
of G decomposes under (63) as

ð2Nþ 1ÞN → ð2; 2; 2N − 3Þ ⊕ ð3; 1; 1Þ
⊕ ð1; 3; 1Þ ⊕ ð1; 1; ð2N − 3ÞðN − 2ÞÞ: ð64Þ

Using (62) we find that the resulting 4d theory has fermions
transforming in the representation

ð2; 2N − 3Þ þ singlets under H; ð65Þ

and this theory is anomalous because it contains an odd
number (2N − 3) of SUð2Þ0 doublets.
The argument for F4, which is relevant for a 7-brane of

type E6 combined with a k ¼ 2 S-fold, follows from the
previous one. It is known that F4 ⊃ SOð9Þ and the adjoint
representation decomposes into the adjoint and spinor of
SOð9Þ

52 → 36þ 16 ð66Þ

As we have seen before, the adjoint of SOð9Þ leads to an
anomalous theory in 4d and therefore, unless the contri-
bution from the 16-dimensional spinor representation
cancels the anomaly, the resulting theory will be anoma-
lous. As before, we consider the subgroup SUð2Þ×
SUð2Þ0 × SOð5Þ, under which the spinor of SOð9Þ decom-
poses as

16 → ð2; 1; 4Þ þ ð1; 2; 4Þ: ð67Þ

From this decomposition we see that, if we turn on the
instanton for SUð2Þ, the spinor of SOð9Þ does not con-
tribute to the SUð2Þ0 anomaly and therefore we conclude
that the F4 theory as well is anomalous.
This confirms our expectation that the theories without

flux will be inconsistent and we therefore have to turn on
flux in the presence of the 7-branes with S-folds. We should
emphasize however that the direct check of this is only
performed for the case k ¼ 2 and 7-branes of type E6 and
D4. In the other cases it would be very interesting to find a
similarly compelling argument.

C. S-folds and discrete flux

Although we do not have a detailed understanding of the
mechanism which resolves the anomaly issue we have just
discussed, once the flux is included, let us attempt to give a
qualitative explanation. As is well known, one consequence
of the inclusion of torsional flux is a change in the topology
of the gauge bundle due to the Freed-Witten (FW) anomaly
[71] (actually its extension proposed by Kapustin [72]). In
our case the manifold wrapped by the 7-branes has
vanishing W3 class, as was pointed out for k ¼ 2 in
[73], therefore the FW equation relates the cohomology
class of the flux to the topological class of the gauge
bundle, which is measured by H2ðM; π1ðGÞÞ (where M is
the base, in our case a ALE space). For this quantity to be
nontrivial, the gauge groupG cannot be a simply connected
Lie group, but rather a quotient thereof by (a subgroup of)
the center. This suggests that in the presence of discrete flux
we are dealing with the so-called gauge bundles without
vector structure, which is not surprising after all since such
bundles are a key ingredient of the construction of rank one
theories from compactification of 6d SCFTs [52].

3More precisely we are dealing with an E6 bundle twisted by
an outer automorphism around the nontrivial Z2 cycle. We
propose that this does not affect our conclusion since the non-
F4 twisted-E6 bundles do not give rise to 4d massless modes.
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The quotient along the z1-direction is now accompanied
by a Zk automorphism of the gauge bundle, which however
does not necessarily coincide with the automorphism group
of the underlying Lie algebra. In summary, the Zk projec-
tion we have to consider once the flux is turned on may
differ from the usual outer automorphism we have dis-
cussed before and therefore the invariant subgroup, which
is the crucial piece of information for the anomaly
computation presented above, can change. Let us discuss
in more detail this point for the k ¼ 2 cases analyzed
before. In the case of E6, besides the outer automorphism
with invariant subgroup F4, there is a Z2 projection whose
invariant subgroup is Spð4Þ. If this is the relevant Z2 we
have to consider, then we end up with a different twisted-E6

bundle in 8d. The fact that the invariant subgroup is Spð4Þ
suggests that the anomaly should not be an issue anymore,
since after all 8d SYM with symplectic gauge group arises
in string theory by combining D7-branes with a O7þ
orientifold plane. Analogously, the invariant subgroup of
SOð8Þ under the Z2 outer automorphism is SOð7Þ which
is anomalous, but there is also another Z2 projection
whose invariant subgroup is Spð2Þ × SUð2Þ and again
the anomaly is not an issue in this case.
Based on this considerations, we expect the global

symmetry GF of the 4d theory living on the world volume
of the D3-brane to contain as a subgroup:

TheoryhG;Zki G ⊂ GF

hE6;Z2i Spð4Þ×SUð2Þ
hD4;Z2i Spð2Þ × SUð2Þ×SUð2Þ
hH2;Z2i SUð2Þ ×Uð1Þ×SUð2Þ
hD4;Z3i SUð3Þ×Uð1Þ
hH1;Z3i Uð1Þ×Uð1Þ
hH2;Z4i SUð2Þ×Uð1Þ

ð68Þ

In the table we have included in blue the global symmetry
coming from the isometries of the background and in black
(a choice for) the invariant subgroup under the Zk quotient.
Notice that in all cases we get subgroups of the actual
global symmetry of the corresponding SCFT, which is
known. We do not capture the full global symmetry of the
theory because the subgroup arising from 7-branes and the
subgroup coming from isometries are not on equal footing
in our setup, whereas in the 4d theory they fit inside a larger
group GF which we do not see. As we will see momen-
tarily, there is a good reason for this. The enhancement of
global symmetry is an “accident” of the rank one case and
does not occur for higher rank models. Such accidental low
rank enhancements are quite common, also in other
dimensions. Since in our setup increasing the rank just
corresponds to introducing more D3-branes, we can at best
see the global symmetry which is common to arbitrary rank
theories. We will provide below one example in which the

rank two version of the theory has exactly the global
symmetry G appearing in (68).

VI. CENTRAL CHARGES, HIGHER RANK,
AND HOLOGRAPHY

In order to compute the central charges of the SCFTs, we
implement the method introduced in [74]. Having com-
puted the D3-brane charges in (59), we can now study the
near-horizon geometry of the F-theory background. We
recall that being defined in F-theory the background
does not need to have a small string coupling gs, and such
F-theoretic holography setups are by now well studied (see,
e.g., [75–77]). The strategy would be to extract the
contribution at orders OðN2Þ; OðNÞ. The order Oð0Þ is
somewhat trickier to estimate and depends on the number
of free hypermultiplet at any point of the Coulomb branch.

A. Central charges

Asalreadyanticipated,we canviewourN ¼ 2S-folds as a
two-fold action on the space resulting of an N ¼ 3
S-fold on top of a 7-brane background. This point of view
is useful to define the holographic limit. Let us first start with
the7-branebackground in flat-space.Thegeometry reads [75]

ds2 ¼ ds2mink8
þ 1

Δ2
7

jz−n7
12dzj2; n7 ¼ 12

ðΔ7 − 1Þ
Δ7

; ð69Þ

where z ¼ x8 þ ix9. The transverse space to the 7-brane
corresponds to the orbifolds C=ZΔ7

with Δ7 ¼
1; 6

5
; 4
3
; 3
2
; 2; 3; 4; 6 respectively.4 The coordinate of C is u,

and we have that

z ¼ uΔ7 : ð70Þ

The orbifold action is u → e2πi=Δ7u, which implies
that jz−n7=12dzj2 ¼ Δ2

7du
2.

In addition to this 7-brane background we introduce the
S-fold action. The S-fold acts on C=ZΔ7

and on a C2 inside
the 8-dimensional space wrapped by the 7-branes. The C2

is parametrized by the coordinates v ¼ x4 þ ix5 and
ṽ ¼ x6 þ ix7. The action can be summarized as follows

v → e
2πi
k v ð71Þ

ṽ → e−
2πi
k ṽ ð72Þ

z → e
2πi
k z: ð73Þ

4In order to treat all these cases in a unified fashion, the
notation is slightly simplified: For instance, when Δ7 is not
integer (for H0, H1, H2), the backgrounds are not really global
orbifolds. On the other hand, the important data for the central
charge computation is the deficit angle 2π

Δ7
, which is well defined

for any Δ7.
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The last orbifold action on the coordinate u is given by

u → e
2πi
kΔ7u: ð74Þ

WhenN D3-branes probe this geometry we can take a near-
horizon limit where we first implement the following
spherical change of coordinate

u ¼ r cosðϕÞeiθ ð75Þ

v ¼ r sinðϕÞ cosðβÞeiω ð76Þ

v ¼ r sinðϕÞ sinðβÞeiω̃; ð77Þ

where θ;ω; ω̃ ∈ ½0; 2π� and ϕ; β ∈ ½0; π=2�. The coordi-
nates β;ω; ω̃ parametrize an S3, and the Zk symmetry acts
freely on it.
The near-horizon geometry is

ds2 ¼ α0
�
α0

R2
ρ2ds2mink4

þ R2

α0
dρ2

ρ2

þ R2

α0

�
dϕ2 þ cos2ðϕÞ

k2Δ2
7

dθ2 þ sin2ðϕÞdΩS3=Zk

��
;

ð78Þ

where R is the radius of AdS5 andM5 ¼ ðS5=ZΔ7
Þ=Zk, and

the second orbifold is a free action on S5. The flux
quantization for F5 reads

Z
M5

F5 ¼ N þ ϵD3; ð79Þ

where ϵD3 is the charge of the S-fold (59). It follows that the
radius R is related to squared YM-coupling, the number of
D3-branes, N, and the S-fold charge

R2

α0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2YMðN þ ϵD3Þ

q
: ð80Þ

This completes what we need to know about the holo-
graphic dual, and we are ready to compute the central
charges.
a. Bulk contribution: in order to evaluate the contribution

from the bulk, which contains the leading order behavior of
the central charges, OðN2Þ, we follow the procedure of
[78]. The bulk action goes as follows,

Sbulk ∼
R8VolðM5Þ

Gð10Þ
N VolðM5Þ2

ð81Þ

where the ten-dimensional Newton constant is Gð10Þ
N ∼

g2sα04 and gs ∼ g2YM. We then plug into (81) the value of
R in (80), similarly to [74] we get

aðbulkÞ ¼ cðbulkÞ ¼ ðN þ ϵD3Þ2
4VolðM5Þ

; ð82Þ

where we normalized the volume of M5 such that π does
not appear. By substituting the integrated volume form on
M5 we get

aðbulkÞ ¼ cðbulkÞ ¼ kΔ7

ðN þ ϵD3Þ2
4

: ð83Þ

This contribution is similar to the central for the N ¼ 3
theories computed in [57], indeed it reduces to it when
Δ7 ¼ 1, where in this case the ϵ2D3 contribution is canceled
by the Oð0Þ order, see Appendix B.
b. Subleading order behavior: to compute this contri-

bution we again implement the procedure highlighted in
[74]. The expression we need to evaluate is the Chern-
Simons term of the 7-brane world volume action

SCS7 ∼ An7

Z
C4 ∧ ðtrðRT ∧ RTÞ − trðRN ∧ RNÞÞ ð84Þ

where RT is the curvature of the tangent bundle to the
7-branes, whereas RN is the curvature of the normal bundle.
In AdS5 they will give rise to terms proportional to
Uð1ÞRSUð2ÞR;L and Uð1Þ3R, p1ðTM4ÞUð1ÞR respectively.
On dimensional ground we can estimate that the 7-brane

CS-action is proportional to

SCS7 ∼
R4

gsα02
VolðS3=ZkÞ
VolðM5Þ

: ð85Þ

We substitute the integrated volumes and we normalize the
contribution like [74], such that for k ¼ 1 it reproduces
their result. The linear contribution of the central charges is
given by

að7-braneÞ ¼ kΔ7n7ðN þ ϵD3Þ
24k

¼ ðN þ ϵD3ÞðΔ7 − 1Þ
2

;

cð7-braneÞ ¼ kΔ7n7ðN þ ϵD3Þ
16k

¼ 3ðN þ ϵD3ÞðΔ7 − 1Þ
4

:

ð86Þ

c. Lowest order behavior, OðN0Þ: we need to evaluate
the smallest contribution which comes at order zero in N.
This contribution comes from massless hypermultiplets
which are present at any point of the Coulomb branch,
which are neutral under the gauge symmetry and span what
in [50] is called enhanced Coulomb branch. One of these
hypermultiplet is associated to closed string modes of IIB
supergravity localizing on the D3-brane. In Appendix B,
we look at the closed string spectrum as in [74,75,79]. The
outcome of this analysis is

(i) for k ¼ 1 this hypermultiplet is always projected out
similarly to the N ¼ 4 case.
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(ii) When the S-fold group is nontrivial, this hyper-
multiplet survives.

(iii) When k > 1 and Δ7 ≠ 1, there are additional mass-
less hypermultiplets on top of the one corres-
ponding to the IIB supergravity closed string
mode localizing on the D3-brane. These are coming
from the effective theory engineered by the F-theory
background. In particular, as explained in Sec. IV B,
see also [50], when the D3-brane is away from
the S-fold singularity, the theory is described by a
free vector and h massless free hypers, which are
counted by

h ¼ kðΔ7 − 1Þ þ 1: ð87Þ

We now write the full formula for the central charges,
where we have removed the OðN0Þ terms coming from ϵD3

and ϵ2D3 contribution in (86) and (83) in order to properly
count the massless hypermultiplets,

a ¼ kΔ7N2

4
þ NðkΔ7 þ Δ7 − 2Þ

4
þ kðΔ7 − 1Þ

24

c ¼ kΔ7N2

4
þ NðkΔ7 þ 2Δ7 − 3Þ

4
þ kðΔ7 − 1Þ

12
ð88Þ

We need to consider that, however, the last term for k ¼ 1 is
actually not there, since in that case for N ¼ 0 and k ¼ 1
there is no S-fold, and the theory is not 4-dimensional
without a D3-brane. Notice that for Δ7 ¼ 1 the formula
reproduce the central charges for the N ¼ 3 theories.
Remarkably, for N ¼ 1 the formula (88) perfectly

reproduces the central charges of known rank one theories
according to our identification (35). Notice that the inclu-
sion of the OðN0Þ terms in (88) (i.e., the contribution from
the free hypers) is crucial for reproducing the central
charges reported in Table III.

B. Coulomb branch operators and
higher rank theories

The Coulomb branch of higher rank N ¼ 2 S-fold
theories is parametrized by the positions of N D3-branes
along the direction orthogonal to the 7-branes, that is
C=ZkΔ7

. The positions are denoted by ui, where i ¼ 1;
…; N. The Coulomb branch moduli space is symmetric
with respect to the exchange of D3-brane positions,
ui ↔ uj. Moreover we have the ZkΔ7

symmetry coming
from the S-fold and 7-branes acting on C, and therefore on
the ui,

ui → e
2πi
kΔ7ui; ð89Þ

This resembles the background identification on the u
coordinate in (74). The gauge invariant operators in the
Coulomb branch are then identified with the polynomials in

ui which respect the symmetries of the background, as well
as the one exchanging the D3-branes. They correspond to
the following symmetric polynomials,

XN
i¼1

ujkΔ7

i ; j ¼ 1;…; N: ð90Þ

The scaling dimensions of these polynomial are measured
by their exponents, and they read,

kΔ7; 2kΔ7;…; NkΔ7: ð91Þ

As a further highly nontrivial consistency check of our
construction, we notice that at least one of these theories
has already been analyzed in the context of class S theories:
The rank two version of the ½II�; C5� theory is a trinion of
the twisted E6 theory [80], exactly with central charges
(88). Notice that the global symmetry reported in [80] is
Spð4Þ × SUð2Þ, which is precisely the symmetry found in
(68), without any further enhancement.
We can also easily predict the properties of Higgs branch

flows and the dimension of the enhanced Coulomb branch.
As we move the stack of D3-branes away from the singular
point along the directions z2;3, the information about the
orbifold is lost and the probe branes only see the 7-branes.
The effective low energy theory at these special points of
the Higgs branch is therefore identified with the rank N
version of the H1, H2, D4 or E6 SCFTs, depending on the
case, plus a collection of kðΔ7 − 1Þ þ 1 free hypermultip-
lets. We therefore conclude that the dimension of the
enhanced Coulomb branch is

h ¼ kðΔ7 − 1Þ þ N: ð92Þ
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APPENDIX A: ALTERNATIVE COMPUTATION
OF ORBIFOLD EULER CHARACTERISTICS

The D3-brane charge computation in presence of an
orbifold relies on the Euler characteristic of the fixed
points, [67]. In Sec. VA we have computed the Euler
characteristic of the fixed points by using results of
perturbative string theory on orbifolded tori [68]. As
pointed out in [67], one also estimate the Euler character-
istic of the fixed points by removing boundary contribu-
tions. For instance, in case of the following actions,
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C C C C
γk γ−1k γk γ−1k

ðA1Þ

for γk ¼ e
2πi
k ∈ Zk and k ¼ 2, 3, 4, 6, we have that

χfixed pntsðC4=ZkÞ
¼ χbulkðC4=ZkÞ ¼ χðC4=ZkÞ − χ∂ðC4=ZkÞ

¼ k −
1

k
; ðA2Þ

where the contribution from bulk and boundary ∂ are

χbulkðMÞ ¼
Z
M

eðTMÞ ¼ k ðA3Þ

χ∂ðMÞ ¼
Z
∂M

CS7ðωÞ ¼
1

k
; ðA4Þ

where the last equalities are valid because M ¼ C4=Zk

[81], and ∂M ¼ S7=Zk with a Zk free action, more-
over CS7ðωÞ is the Chern-Simons 7-form for the spin
connection ω.
We want now to implement this method for more

complicated orbifold actions, that are

C C C C
γ̃4 ¼ γ4 γ−14 γ24 γ−24
γ̃6 ¼ γ6 γ−16 γ36 γ−36
γ̃6

0 ¼ γ6 γ−16 γ26 γ−26

ðA5Þ

In particular the some of the orbifold actions will have the
following set of fixed loci:

γ̃24 → fixed locus : C2=Z2

fγ̃26; γ̃46g → fixed locus : C2=Z2

γ̃036 → fixed locus : C2=Z3

ðA6Þ

The Euler characteristic receives contribution from these
fixed loci as well. In fact we have that

χbulkðC4=Z̃kÞ
¼ χðC4=Z̃kÞ − χfree−∂ðC4=Z̃kÞ − χfixed−∂ðC4=Z̃kÞ ðA7Þ

where ∂ stands for boundary, and where in this case we
have an extra piece, due to χfixed−∂ðC4=Z̃kÞ listed in (A6).
In other words this is actually the contribution of the fixed
loci at the boundary, which are

γ̃24 → boundary fixed locus :S3=Z2

fγ̃26; γ̃46g → boundary fixed locus : S3=Z2

γ̃036 → boundary fixed locus : S3=Z3

ðA8Þ

where all action on S3 are free, and its Euler characteristic
reads

χ∂ðC2=Z2Þ ¼
Z
∂ðC2=Z2Þ

CS3ðωÞ

¼
Z
S3=Z2

CS3ðωÞ ¼
1

2
ðA9Þ

χ∂ðC2=Z3Þ ¼
Z
∂ðC2=Z3Þ

CS3ðωÞ

¼
Z
S3=Z3

CS3ðωÞ ¼
1

3
: ðA10Þ

The final result is

χbulkðC4=Z̃kÞ ¼ 4 −
1

2
−
1

2
¼ 3;

χbulkðC4=Z̃kÞ ¼ 6 −
1

2
− 2 ×

1

2
¼ 9

2
;

χbulkðC4=Z̃kÞ ¼ 6 −
1

3
− ×

1

3
¼ 16

3
; ðA11Þ

which matches with the characters computed in Sec. VA,
and the rest of the computation for the D3-brane charge is
completely analogous.

APPENDIX B: CLOSED STRING SPECTRUM
ON ADS5 ×M5

As we anticipated, one way to detect the contribution at
zero’th order in N is to consider the closed string spectrum.
ForN ¼ 4 it is enough to look at the fermionic spectrum in
AdS5 × S5, which contains the following tower of states
denoted by λ [82,83],

ðj1; j2Þ m SUð4ÞR
ð1
2
; 0Þ −ðkþ 7

2
Þk ≥ 0 4�; 20�;…

ð1
2
; 0Þ −ðk − 1

2
Þk ≥ 1 20�;…

ðB1Þ

where ðj1; j2Þ are the SUð2Þ × SUð2Þ spins of SOð1; 3Þ
Lorentz, whereas m2 ¼ ΔðΔ − 4Þ with Δ the conformal
dimension of dual operators. This tower is the only
fermionic tower with a discrepancy of the spectrum.
Indeed we can observe that in the second line (B1)
there is a missing 4 representation of the N ¼ 4 SUð4Þ
R-symmetry. In [79] it was shown that this discrepancy
leads to the following Oð1Þ contribution to the central
charge

að1Þ ¼ cð1Þ ¼ −
1

4
: ðB2Þ

This was by computing the chiral anomaly induced by
these modes. This contribution corresponds to the decou-
pling of the center of mass Uð1Þ of the D3-brane stack.
Our geometry can be seen as a combination of two kind

of quotients of S5. Let us separately analyze the effect of
these two quotients on the tower (B1). The other fermionic
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states will not contribute since there is no discrepancy in the
R-symmetry representations.
Free S-fold quotientN ¼ 3: In this case the R-symmetry

SUð4ÞR becomes SUð3ÞR ×Uð1ÞP, [56]. We have then the
following branching rule for the fermionic tower λ

4 → 1−3 ⊕ 31: ðB3Þ

This modes acquire a phase under the free orbifold action of
Zk on S5, which is given by

eπi
qPþ1

k ðB4Þ

where theþ1 shift is due to the fact that we are considering
fermionic modes. As we can see since qP ¼ 1;−3, these
phases are noninvariant and, therefore, these states are all
projected out from the spectrum. This leads to no chiral
discrepancy, and no order zero contribution to the central
charges of k > 2. For this reason, we need to subtract the
following contribution from (83), kϵ2D3=4, and the number
of gauge neutral massless hypermultiplets in the CB
is h ¼ 1
Moreover, since the action is free on S5 there are no

twisted states to analyze.
7-brane type quotient N ¼ 2: In this case the SUð4ÞR

breaks into SUð2ÞL × SUð2ÞR ×Uð1ÞR. Consequently we
have the following branching rule

4 → ð2; 1Þ−1 ⊕ ð1; 2Þ1: ðB5Þ

Again under the orbifold action these modes acquire a
phase

eπi
qRþ1

Δ7 ðB6Þ

where qR is the charge of this fermionic tower underUð1ÞR.
As we can see the second state is projected out and does
not contribute to the discrepancy. ð2; 1Þ−1 is associated to
the decoupling of the free hyper which transforms as the
fundamental of SUð2ÞL. This contributes að1Þ ¼ − 1

24
and

að1Þ ¼ − 1
12
[74]. In this case the number of gauge neutral

massless hypermultiplets in the CB is h ¼ 0.
S-fold plus 7-branes, N ¼ 2: Let us take the SUð4ÞR →

SUð2ÞL × SUð2ÞR ×Uð1ÞR R-symmetry fermionic tower

4 → ð2; 1Þ−1 ⊕ ð1; 2Þ1: ðB7Þ

The S-fold breaks this symmetry into SUð2ÞR ×Uð1ÞR ×
Uð1ÞL, and we have

4 → ð2; 1Þ−1 ⊕ ð1; 2Þ1 → 1ð−1;−1Þ ⊕ 1ð−1;1Þ ⊕ 2ð1;0Þ: ðB8Þ

Under the orbifold action these modes acquire a phase

eπi
qRþqLþ1

k : ðB9Þ

By plugging in the charges we get that none of these states
survives. As in the N ¼ 3 case there is no order zero
contribution from the closed string spectrum, such that the
gauge neutral massless hypermultiplets in the CB is (at
least 1) h ≥ 1. As already anticipated, we followed the
procedure of [79], which gives the expected result in terms
of the supergravity spectrum on AdS5 ×M5, dual toN ¼ 2
theories coming from D3-branes probing the S-fold plus
7-branes background. In [84,85], (c − a) was computed
from the spectrum of supergravity on AdS5 ×M5, where
M5 is an orbifold of S5. It was shown that for dual N ¼ 1
theories this contribution can be rather nontrivial. It would
be interesting to apply this approach to our backgrounds
and to fully reproduce (c − a), in particular the 7-brane
contribution as well as the zeroth order one. In addition,
[85] analyzes the twisted modes which are present when the
orbifold produces an S1 fixed-locus on S5. In our case the
geometry of the fixed-loci is different, i.e., AdS5 × S3=Zk,
and the twisted modes come from reduction of the 8d
theory on the 7-branes reduced on S3=Zk. We believe that
these twisted modes reproduce the contribution of the rest
of the free hypermultiplets, counted by kðΔ7 − 1Þ. It would
be interesting to explore this further.
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