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In this work, we present a study to probe the nature of interactions between black hole microstructures
for the case of the Banados, Teitelboim, and Zanelli (BTZ) black holes. Even though BTZ black
holes without any angular momentum or electric charge thermodynamically behave as an ideal
gas, i.e., with noninteracting microstructures; in the presence of electric charge or angular momentum,
BTZ black holes are associated with repulsive interactions among the microstructures. We extend the study
to the case of exotic BTZ black holes with mass M ¼ αmþ γ j

l and angular momentum J ¼ αjþ γlm, for
arbitrary values of ðα; γÞ ranging from purely exotic ðα ¼ 0; γ ¼ 1Þ to slightly exotic ðα > 1

2
; γ < 1

2
Þ to

highly exotic ðα < 1
2
; γ > 1

2
Þ. We find that, unlike the normal BTZ black holes [the case (α ¼ 1, γ ¼ 0)],

there exist both attraction as well as repulsion dominated regions in all the cases of exotic BTZ
black holes.
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I. INTRODUCTION

Since the work of Bekenstein [1,2] and Hawking [3,4]
and related developments [5,6], there have been active
efforts to understand the microscopic degrees of freedom,
thermodynamics, and phase transitions [7] of black holes,
more recently, in extended thermodynamic phase space
[8–26]. Further, there has been a considerable amount
of interest in the study of thermodynamic geometry of
black holes and their underlying microstructures [27–62].
Since it is possible to define a temperature for a black hole,
it is then the most natural to think of an associated
microscopic structure. These black hole microstructures
are in general interacting just like the molecules in a
nonideal fluid. The fact that asymptotically anti-de Sitter
(AdS) black holes have thermodynamic behavior similar to
that of a van der Waals fluid [11,12,24] makes the picture of
fluidlike interacting microstructures quite natural. The
commonly adapted technique to probe the nature of
interactions between these microstructures is to look at
the thermodynamic geometry of the corresponding macro-
scopic system. For example, the study of Ruppeiner
geometry in standard thermodynamics reveals that for a

particular system the curvature of the Ruppeiner metric
indicates the nature of interactions between the underlying
molecules. For a system in which the microstructures
interact attractively as in a van der Waals fluid, the
curvature scalar of the Ruppeiner metric carries a negative
sign, whereas in a system in which the microstructures
interact in a repulsive manner, the curvature is positive.
For a noninteracting system such as the ideal gas, the metric
is flat. In the attempts to probe the nature of interactions
between the microstructures, Ruppeiner geometry has
therefore been applied quite extensively in black hole
thermodynamics. The investigation of the nature of inter-
actions between the black hole microstructures was first
done in the context of Banados, Teitelboim and Zanelli
(BTZ) black holes in three dimensions in Ref. [50].
Furthermore, in Ref. [56], Ruppeiner geometry for
Reissner-Nordström, Kerr, and Reissner-Nordström-AdS
black holes was explored in the nonextended thermody-
namic space, where the divergence of the scalar curvature
is consistent with the Davies phase transition point [57].
For example, for the case of both Reissner-Nordström-
AdS (RN-AdS) and electrically charged Gauss-Bonnet-
AdS (GB-AdS) black holes [27,29–31,62], there is a
competition between attractive and repulsive interactions
between the microstructures of the black hole. In the case
in which attraction exactly balances the repulsion, the
black hole can be regarded as effectively noninteracting.
It has also been recently noted that the Schwarzschild-
AdS [32] and neutral GB-AdS black holes [61] are
dominated by attractive interactions among the putative
microstructures.
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A. Motivation and results

In this work, with a motivation to probe the nature of
interactions among the black hole microstructures, we
study BTZ black holes in the extended phase space with
full generality including the effects due to electric charge
and angular momentum. In the nonextended thermody-
namic phase space, Ruppeiner geometry has been applied
previously to study BTZ black holes in various approaches
[50–55]. However, to decipher the true microstructures of
black holes in AdS and to know the regions of attraction
and repulsive behavior, a thorough study in extended phase
space (where the fluidlike behavior is most clear due to the
availability of an equation of state) is required, as noted
recently in Refs. [27,30]. In three dimensions, there are
interesting possible connections with exact formulas avail-
able to study the statistical interpretations from the holo-
graphically dual side [63–65]. Motivated by this, we study
these (2þ 1)-dimensional black holes, having a thermo-
dynamic behavior which is not only interesting in itself but
also provides clues to the understanding of the higher-
dimensional counterparts. For example, the thermodynam-
ics of the rotating BTZ black hole is much more transparent
as compared to that of a Kerr black hole in higher
dimensions. In other words, these (2þ 1)-dimensional
black holes, even though simpler to study, can be regarded
as toy models that can be used to shed light onto the
behavior of black holes in d ≥ 4. We show that a charged
and nonrotating BTZ black hole is dominated by repulsive
interactions. This is expected since it is now understood
that charged microstructures interact in a repulsive manner
[27,29–31,62]. We also note that a neutral but rotating BTZ
black hole behaves qualitatively in a similar manner as a
charged BTZ and is dominated by repulsive interactions.
This is because at the thermodynamic level the angular
momentum of the black hole behaves very much like
electric charge and therefore from the phenomenological
level it suggests associating microstructures to rotating
BTZ black holes that interact repulsively. For the general
case which includes both rotation and electric charge, these
two repulsive effects can add up, and therefore there is no
attraction at all.
We also study the case of exotic BTZ black holes

[66–68], in which the roles of mass and angular momentum
are reversed [69–72] and in the general case the solutions
may emerge from a gravitational action [73–77], which is a
linear combination of the standard Einstein-Hilbert together
with the Chern-Simons action [73]. The study of holog-
raphy with gravitational Chern-Simons terms has opened
up interesting new avenues [78–85]. For the exotic BTZ
black hole case [66–68], we find that the Ruppeiner
curvature scalar changes sign with the inner horizon radius.
Therefore, there are both attraction and repulsion domi-
nated regions for exotic BTZ black holes, in general.

The paper is organized as follows. In Sec. II, we give a
very brief review of thermodynamic geometry that will be
useful for the rest of the paper. We begin our study of
Ruppeiner geometry for BTZ black holes in Sec. III,
starting with the general charged and rotating case, hence
discussing the special cases. The results are then physically
interpreted from a nonideal fluid point of view. In Sec. IV,
we explore the thermodynamic geometry of neutral exotic
BTZ black holes and show that there are both attraction and
repulsion dominated regions as compared to only repulsive
interactions for the ordinary BTZ black holes with charge
and/or angular momentum. We end the paper with remarks
in Sec. V.

II. THERMODYNAMIC GEOMETRY

In this section, we recall the essential aspects of the
geometry of the thermodynamic phase space and how it
naturally leads to Ruppeiner geometry. It is well known that
the thermodynamic phase space is endowed with a contact
structure [86–91]; i.e., it assumes the structure of a contact
manifold. This means that the thermodynamic phase space
is a pair ðM; ηÞ where M is a manifold of odd dimension
[say (2nþ 1)] that is smooth and thatM is equipped with a
one form η such that the volume form, η ∧ ðdηÞn is nonzero
everywhere on M. One can always locally find (Darboux)
coordinates ðs; qi; piÞ on M where qi and pi are said to be
a conjugate pairs such that

η ¼ ds − pidqi: ð2:1Þ

Of interest in thermodynamics is a very special class of
submanifolds ofM, known as the Legendre submanifolds.
If Φ∶ L → M is a submanifold with Φ being an embed-
ding, then ifΦ�η ¼ 0 or equivalently ηL ¼ 0, one calls L an
isotropic submanifold. From Eq. (2.1), it is clear that an
isotropic submanifold cannot include a conjugate pair of
local coordinates. Further, if L is an isotropic submanifold
of maximal dimension, it is then a Legendre submanifold. It
is easy to verify that the maximal dimension is n and
therefore all Legendre submanifolds are n dimensional. On
an arbitrary Legendre submanifold L, one has

ds − pidqi ¼ 0: ð2:2Þ

One immediately identifies this statement as a first law of
thermodynamics which for black holes in the extended
phase space is given by

dM − TdS − VdP −ΦdQ −ΩdJ ¼ 0; ð2:3Þ

with the identifications s ¼ M, q1 ¼ S, q2 ¼ P, q3 ¼ Q,
q4 ¼ Ω, p1 ¼ T, p2 ¼ V, p3 ¼ Φ, p4 ¼ J. Here, M is
the mass of the black hole, which in the extended
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thermodynamics framework is equated to the enthalpy, i.e.,
M ¼ H, while other symbols1 have their usual meanings
from black hole thermodynamics.
A contact manifold can be associated with a Riemannian

metric (see Refs. [90–93]) G, which is in a sense compat-
ible with the contact structure. The metric is bilinear,
symmetric, and nondegenerate. It is usually written down
in the coordinate form as

G ¼ η2 − dpidqi: ð2:4Þ

However, the full metric is not particularly as important in
thermodynamics as is its projections on various Legendre
submanifolds. Legendre submanifolds appearing in
thermodynamics have the local form given by

s ¼ ϕðqiÞ; pi ¼
∂ϕðqiÞ
∂qi ; ð2:5Þ

where ϕ ¼ ϕðqiÞ is a thermodynamic potential and is
known as the generator of the Legendre submanifold
(say L). It then follows that when projected on L the
metric takes the form

GjL ¼−dpidqijL ¼−
∂2ϕ

∂qi∂qj dq
idqj; i;j∈ f1;2;…:;ng:

ð2:6Þ

This exactly corresponds to the metric of Weinhold [94]
and Ruppeiner [95], whose lines elements are, respectively,
given as

ds2W ¼−
∂2U
∂xi∂xj dx

idxj; ds2R ¼−
∂2S

∂xi∂xj dx
idxj; ð2:7Þ

where fxig are independent thermodynamic variables. It is
a simple exercise to show that ds2R ¼ βds2W , where β ¼ 1=T
is the inverse temperature, so the metrics differ only by a
conformal factor. In case of static black holes, however,
since entropy and volume are not independent thermody-
namic variables, the study of metric structures should not
be done taking the internal energy U ¼ UðS; VÞ as a
fundamental potential [32].
In the extended thermodynamic phase space framework,

taking the enthalpy (equated to the mass of the black hole)
as the generator of the Legendre submanifold representing
the black hole, it follows that on the ðS; PÞ plane the
Ruppeiner line element after some manipulations can be
written down in the form [32,62]

ds2R ¼ 1

CP
dS2 þ 2

T

�∂T
∂P
�

S
dSdP −

V
TBS

dP2; ð2:8Þ

where CP is the specific heat at constant pressure and BS ¼
−Vð∂P=∂VÞS is the adiabatic bulk modulus of the black
hole. Notice that BS ¼ ∞ for black holes where V and S are
not independent and the last term drops from Eq. (2.8).
Alternatively, the Ruppeiner metric is also often calculated
on the ðT; VÞ plane in a representation in which the
fundamental thermodynamic potential is naturally the
Helmholtz potential. The line element for the general case
is given by [32,62]

ds2R¼
1

T

�∂P
∂V
�

T
dV2þ 2

T

�∂P
∂T
�

V
dTdVþCV

T2
dT2; ð2:9Þ

whereCV is the specific heat at constant volume, which turns
out to be zero for black holes where the thermodynamic
volume and the entropy are not independent. The scalar
curvature remains equivalent on both the ðS; PÞ and ðT; VÞ
planes. This can be easily verified in the examples. We
remark that the singularities of the Ruppeiner curvature are
related to critical points in the thermodynamics (see, for
example, the recent work [96] and references therein). We
shall, however, not be concerned with the curvature singu-
larities in the work and rather focus on probing the inter-
actions relying on the sign of the curvature.

III. BTZ BLACK HOLES

Black hole solutions in (2þ 1)-dimensional topological
gravity were found by BTZ [97,98]. These are the BTZ
black holes with a negative cosmological constant which,
from the black hole thermodynamics perspective, leads to a
positive thermodynamic pressure and therefore a fluidlike
behavior in extended black hole thermodynamics. Even
though in (2þ 1) dimensions gravitational fields do not
have dynamical degrees of freedom and general relativity
has no Newtonian limit, (2þ 1)-dimensional theories are
studied because they are often easier to work with yet share
similar properties with their (3þ 1)-dimensional counter-
parts. Despite certain similarities the BTZ black holes share
with higher-dimensional black holes in extended black hole
thermodynamics, these (2þ 1)-dimensional black holes are
associated with some peculiar thermodynamic behavior. For
instance, static2 BTZ black holes behave exactly like an ideal
gas if the specific volume of the black hole is understood as
the fluid volume. This feature is unlike any other asymp-
totically AdS black holes in higher dimensions which
approach this ideal gas behavior only when the limit of
large rþ is taken.Another important feature is that BTZblack
holes do not admit any critical behavior, unlike most higher-
dimensional counterparts which show critical behavior just1In this paper, we shall work in the fixed chargeQ and angular

momentum J ensemble; i.e., we set dQ ¼ dJ ¼ 0 in subsequent
discussions. 2With static, we mean Q ¼ 0, J ¼ 0.
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like nonideal systems in thermodynamics. BTZ black holes
are therefore interesting to study in their own right apart from
being regarded as toy models for asymptotically AdS black
holes in higher dimensions.
The thermodynamics of static BTZ black holes is

described by their enthalpy being given as [99]

M ¼ HðS; PÞ ¼ 4PS2

π
; ð3:1Þ

where the black hole entropy is defined from the horizon
radius rþ as

S ¼ A
4
; A ¼ 2πrþ: ð3:2Þ

This leads to the following equation of state:

P
ffiffiffiffi
V

p
¼

ffiffiffi
π

p
T

4
: ð3:3Þ

The equation of state exactly corresponds to the ideal gas
limit of black holes in d ¼ 3 where the specific volume in
this case is identified as v ¼ 4

ffiffiffiffiffiffiffiffiffi
V=π

p
. All other black holes

in d ≥ 4 approach this ideal gas behavior PV1=ðd−1Þ ∼ T in
the large rþ limit. A straightforward calculation shows that
the Ruppeiner metric for this case is flat; i.e., the scalar
curvature is zero as expected for the case of an ideal gas.
We shall conclude from here that nonrotating and neutral
BTZ black holes are associated with microstructures that do
not interact.

A. BTZ black holes with electric charge and angular
momentum

We now turn to BTZ black holes which are associated
with both electric charge and angular momentum. The
thermodynamics is much more interesting and the corre-
sponding behavior is akin to that of a nonideal fluid, i.e.,

one with interactions. The thermodynamics is, however, not
of the van der Waals type, as will be pointed out later. The
enthalpy is given by [67]

HðS; PÞ ¼ π2J2

128S2
−

1

32
Q2 log

�
32PS2

π

�
þ 4PS2

π
: ð3:4Þ

The thermodynamic volume now depends on charge and is
not directly related to entropy. As a result,CV is not zero for
charged BTZ black holes. The volume is given as

V ¼ 4S2

π
−

Q2

32P
: ð3:5Þ

Specific heat CP for the charged and rotating case is
given by

CP ¼ −
π3J2S − 512PS5 þ 4πQ2S3

3π3J2 þ 512PS4 þ 4πQ2S2
: ð3:6Þ

From Eq. (3.4), it is possible to calculate the Ruppeiner
metric on the ðS; PÞ plane analytically, with the Ruppeiner
curvature obtained as

R ¼ −πðA1 þ A2 þ A3Þ
B

A1 ¼ 3π9J6Q2ð1280PS2 − 3πQ2Þ þ 13824π6J4PQ2S4ðπQ2 − 128PS2Þ
A2 ¼ 24576PQ2S8ðπQ2 − 128PS2Þ3
A3 ¼ 16π2J2S4ðπQ2 − 128PS2Þ2ð−262144P2S4 þ 3072πPQ2S2 þ π2Q4Þ
B ¼ ðπ3J2S − 512PS5 þ 4πQ2S3Þð3π4J2Q2 þ 4S2ðπQ2 − 128PS2Þð256PS2 þ πQ2ÞÞ2: ð3:7Þ

The curvature for the metric on the ðS; PÞ plane is plotted in
Fig. 1 as a function of S for fixed P. As seen from Fig. 6,
temperature is positive only beyond S ¼ 0.5, and hence
only that region in Fig. 1 is shown, signifying the presence
of repulsive interactions. We may alternatively calculate the
Ruppeiner metric on the ðT; VÞ plane using the Helmholtz

free energy representation. The corresponding curvature is
plotted as a function of V in Fig. 2. It is clearly noted that
the curvatures carry a positive sign in either of the planes,
clearly indicating repulsive interactions. For the case with
Q ≠ 0 and J ¼ 0, the specific heat at constant volumeCV is
nonzero and is expressed as

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
S

0.5

1.0

1.5

2.0

2.5

R
R vs S: Charged–Rotating BTZ

P=1,Q=1,J=1

FIG. 1. Ruppeiner curvature for a charged-rotating BTZ black
hole on the ðS; PÞ plane as a function of S for fixed P.
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CV ¼ 4S3 − πSV
πV − 12S2

; ð3:8Þ

and the Ruppeiner curvature on the ðS; PÞ plane can be
obtained from Eq. (3.7) as

RJ¼0 ¼
384πPQ2S

ð256PS2 þ πQ2Þ2 : ð3:9Þ

We note that charged black holes can be associated with
electrically charged microstructures [27,29–31,62] which
are repulsive. This explains the origin of the positive scalar
curvature of the Ruppeiner metric and hence repulsive
interactions between black hole microstructures from a
phenomenological level. It should also be remarked that
charged BTZ black holes can be thought of as a particular
case of a general fluid with the equation of state,

P ¼ T
v
þ a
v2

; ð3:10Þ

where a > 0 with the specific choice of the constant, a ¼
Q2=2π in Eq. (3.10) corresponding to the case of charged
BTZ black hole. The equation of state resembles that of the
van der Waals fluid. The second term in the right-hand side,
however, carries a positive sign, as opposed to the negative
sign for the case of the van derWaals fluid. This signifies the
presence of repulsive interactions unlike the attractive
interactions that are present in the van der Waals case.
Moreover, the presence of such a repulsive term in Eq. (3.10)
imposes a lower bound in the specific volume, which for the
case of the charged BTZ black hole is given by3

vmin ¼
Qffiffiffiffiffiffi
2π

p ffiffiffiffi
P

p : ð3:11Þ

We now consider the neutral (Q ¼ 0) and rotating cases
(J ≠ 0).We note that, since thevolume does not dependon J,
in this case, the entropy and the volume are independent.
Consequently, CV ¼ 0 for neutral rotating BTZ black holes.
From Eq. (3.7), we note the Ruppeiner curvature on the
ðS; PÞ plane for this case is

RQ¼0 ¼
4π3J2

512PS5 − π3J2S
: ð3:12Þ

TheRuppeiner curvature is always positive if the temperature
T of the black hole is taken to be positive. On the ðT; VÞ
plane, the Ruppeiner curvature is even simpler, given as

R0
Q¼0 ¼

J2

TV2
: ð3:13Þ

A few simple manipulations will show that the Ruppeiner
curvatures on either of the planes are equivalent and are
positive definite if we demand positivity of the temperature.
The interactions are therefore repulsive. Since the neutral and
nonrotating BTZ black holes are associated with micro-
structures that are noninteracting, it is then natural to think of
the rotating cases as being associated with additional micro-
structures which interact repulsively and carry the degrees of
freedomof the total angularmomentum.On the other hand, if
a black hole is associated with both electric charge and
angular momentum, both classes of these repulsive micro-
structures are present, thereby leading to an overall repulsion
or equivalently a positive sign of Ruppeiner curvature, as
obtained from Eq. (3.7).
The thermodynamic equation of state for the rotating

BTZ black holes is given by

P ¼ T
v
þ 8J2

πv4
; ð3:14Þ

where v ¼ 4rþ is the specific volume. The second term in
the right-hand side implies repulsive interactions and
consequently no phase transitions associated with the
rotating BTZ black hole. If the black hole were a fluid,
such a term would account for repulsions between four
molecules and appear in the virial expansion form of the
equation of state for nonideal fluids. In fact, Eq. (3.14)
corresponds to a particular case of the RN-AdS fluid
proposed recently in Ref. [100] with the absence of the
bimolecular attraction term. One notes the presence of a
minimum volume being given by

vmin ¼
23=4

ffiffiffi
J

p
ffiffiffi
π4

p ffiffiffiffi
P4

p : ð3:15Þ

5 10 15 20
V

0.05

0.10

0.15

R
R vs V: Charged–Rotating BTZ

J=1,T=1,Q=0.5

FIG. 2. Ruppeiner curvature for a charged-rotating BTZ black
hole on the ðT; VÞ plane as a function of V for fixed T.

3In the present case, the thermodynamic volume V and specific
volume v are not linearly related, as seen from Eq. (3.5),
i.e., V ¼ πv2

16
− Q2

32P. To get the correct vmin, one has to choose
Vmin ¼ 0. There is, however, an alternative possibility of retain-
ing a linear relation between V and v, at the cost of introducing
a new renormalization length scale [67], in which case
vmin ¼ Vmin. We, however, continue using the definition of V
as obtained in Eq. (3.5) from enthalpy.

THERMODYNAMIC GEOMETRY AND INTERACTING … PHYS. REV. D 101, 106007 (2020)

106007-5



IV. GENERAL EXOTIC BTZ BLACK HOLES

General exotic BTZ black holes [66–68] which originate
from gravitational actions following from purely Chern-
Simons terms in three dimensions have generated a lot of
interest, as being examples of systems which may be
superentropic.4 Let us start from the (2þ 1)-dimensional
rotating BTZ black hole with metric given as

ds2 ¼ −VðrÞdt2 þ 1

VðrÞ dr
2 þ r2

�
dθ −

4j
r2

dt

�
2

; ð4:1Þ

with

VðrÞ ¼ −8mþ r2

l2
þ 16j2

r2
: ð4:2Þ

The inner and outer horizon radii are given as

r� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2 − j2

p
Þ

q
. This form of the metric

actually solves the Einstein equations with a negative
cosmological constant in three dimensions in quite different
cases [75]. More generally, if one takes the form of
gravitational action to be of the form I ¼ αIEH þ γIGCS,
where IEH stands for the Einstein-Hilbert (EH) action and
IGCS stands for the gravitational Chern-Simons (GCS)
action [73,83], then it is possible to obtain more general
situations in which the form of the black hole metric does
not change, but the parameters of the black hole satisfy
novel relations [66–68]. For the case of an exotic black
hole, the conserved mass M and angular momentum J are
related to the parameters in the metric (4.1) as

M ¼ αmþ γ
j
l
; ð4:3Þ

J ¼ αjþ γlm: ð4:4Þ

Here, α and γ are constant coupling functions with limits:
α ∈ ½0; 1� and

αþ γ ¼ 1: ð4:5Þ

The case with α ¼ 1 corresponds to the standard rotating
BTZ black hole [70], whereas α ¼ 0 leads to the purely
exotic BTZ black hole [66]. More general situations are
noted in other models [69–72]. Mass M, angular momen-
tum J, and entropy S for general exotic BTZ black holes are
given as [68]

M ¼ αðr2− þ r2þÞ
8l2

þ γr−rþ
4l2

; ð4:6Þ

J ¼ αr−rþ
4l

þ γðr2− þ r2þÞ
8l

; ð4:7Þ

S ¼ 1

2
ðπαrþ þ πγr−Þ: ð4:8Þ

V ¼ απr2þ þ γπr2−

�
3rþ
2r−

−
r−
2rþ

�
: ð4:9Þ

The temperature and angular velocity are given as

T ¼ r2þ − r2−
2πl2rþ

; Ω ¼ r−
rþl

; ð4:10Þ

which are the same for either normal BTZ (α ¼ 1) or exotic
BTZ (α ¼ 0). Together, the above thermodynamic varia-
bles satisfy the first law, dM ¼ TdSþ VdPþΩdJ, and
also respect the Smarr relation, TS − 2PV þ ΩJ ¼ 0. The
specific choice α ¼ 8=π2 reproduces the results of normal
BTZ black holes discussed in Secs. I, II, and III. In this
section, we concentrate on the cases in which both α and γ
take different values restricted by the constraint, which
corresponds to the general exotic BTZ black holes. The
enthalpy can be obtained from mass M in Eq. (4.6) by
eliminating r− and rþ, in favor of thermodynamic varia-
bles, to be

HðS;PÞ¼ 2
ffiffiffiffi
P

p

πðα−1Þ2
 
223=4ðα−1ÞS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−2αÞ ffiffiffiffi

P
p

α−1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
π3=2ðα−1ÞJþ ffiffiffi

2
p ffiffiffiffi

P
p

S2

α−1

s
þ

ffiffiffi
2

p
π3=2ðα−1ÞαJþ4S2

ffiffiffiffi
P

p
α

!
; ð4:11Þ

where for later convenience γ was eliminated using Eq. (4.5), without loss of generality, and thus we have α ≤ 1. The
temperature T and volume V, resulting from enthalpy in Eq. (4.11), are given, respectively, as

T ¼ −
4

�
23=4π3=2ð1−2αÞJPffiffiffiffiffiffiffiffiffiffiffi

ð1−2αÞ ffiffiPp
α−1

p þ 4PS

� ffiffiffi
24

p
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−2αÞ ffiffiffiPp

α−1

q
− α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−π3=2J −

ffiffi
2

p ffiffiffi
P

p
S2

α−1

q ��

πðα − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−π3=2J −

ffiffi
2

p ffiffiffi
P

p
S2

α−1

q ð4:12Þ

4They violate the reverse isoperimetric (RI) inequality [20], by having more entropy than what is allowed by RI inequality. For these
systems, new instability conjectures are being actively pursued [101–104] and depend on the signs of CP as well as CV .
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V ¼ V1 þ V2

πðα − 1Þ3 ffiffiffiffi
P

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−2αÞ ffiffiffiPp

α−1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− π3=2ðα−1ÞJþ ffiffi

2
p ffiffiffi

P
p

S2

α−1

q

V1 ¼ 8
ffiffiffiffi
P

p
S2
 
ðα − 1Þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2αÞ ffiffiffiffi

P
p

α − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
π3=2ðα − 1ÞJ þ ffiffiffi

2
p ffiffiffiffi

P
p

S2

α − 1

s
þ

ffiffiffi
2

4
p

ð2α − 1Þ
ffiffiffiffi
P

p
S

!

V2 ¼
ffiffiffi
2

p
π3=2ðα − 1ÞJ

 
ðα − 1Þα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2αÞ ffiffiffiffi

P
p

α − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
π3=2ðα − 1ÞJ þ ffiffiffi

2
p ffiffiffiffi

P
p

S2

α − 1

s
þ 3

ffiffiffi
2

4
p

ð2α − 1Þ
ffiffiffiffi
P

p
S

!
: ð4:13Þ

Writing back in appropriate variables, it can of course be
checked that these are same as the ones given in Eqs. (4.9)
and (4.10). Now, we note that it is in general difficult to
write an equation of state P ¼ PðV; TÞ in the case of exotic
BTZ black holes, due to the highly nonlinear nature of
Eqs. (4.12) and (4.13), as indicated in Ref. [68]. Now, using
the form of the metric in the ðS; PÞ plane in Eq. (2.8), the
Ruppeiner curvature can be calculated in the most general
case analytically. The special case of purely exotic black
hole (α ¼ 0, γ ¼ 1) is treated separately, and more details
are given later in this section. For general exotic black
holes, since the expressions are quite cumbersome, we
directly give the plots for Ruppeiner curvature and classify
the results in two broad classes, namely, α > γ (slightly
exotic) and α < γ (highly exotic). The thermodynamics and

also phase structure of BTZ black holes in these two broad
classes are different and hence need to be treated separately,
as noted in Ref. [68]. Figures 3 and 4 summarize the results
of the computation of curvature for various values of α and
γ. The most important feature we find from these figures is
that the Ruppeiner curvature crosses over from positive to
negative at a valid point (meaning the temperature is
positive) of entropy and represents the presence of both
attraction and repulsion dominated regions in exotic BTZ
black holes. This generic feature is quite contrasting to the
case α ¼ 1, γ ¼ 0 of normal BTZ black holes (charged and/
or rotating cases) discussed in Sec. III A, in which the
microstructures are only repulsive.
We now discuss two special cases, corresponding to

normal and purely exotic BTZ black holes, which are the
extreme cases, coming from making the choices γ ¼ 0 and
α ¼ 0, respectively. The purely exotic case is quite inter-
esting, as it was one of the first studied cases of exotic black
holes in which mass and angular momentum are essentially
interchanged, as seen from Eq. (4.3). In these extreme
cases, the enthalpy and related thermodynamic quantities
cannot be obtained from Eq. (4.11), as the limits α ¼ 0 and
α ¼ 1 (γ ¼ 0) are singular. However, the enthalpy for each
of these cases can be obtained directly from (4.6) as5

Hnormal
γ¼0 ðS; PÞ ¼ π2αJ2

2S2
þ 4PS2

πα
ð4:14Þ

Hpurely exotic
α¼0 ðS; PÞ ¼

4PS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffi
2

p
π3=2γJffiffiffi
P

p − 4S2
q

πγ
: ð4:15Þ

For the case of normal rotating BTZ black holes, thermo-
dynamic quantities can be derived from Eq. (4.14) and are
noted to be the same as in Sec. III A (obtained by setting
Q ¼ 0). For the case of normal BTZ black holes (γ ¼ 0),
the Ruppeiner curvature is shown explicitly in Eq. (3.9) and
was found to be only positive. For the case of purely exotic
rotating BTZ, the temperature and volume resulting from
Eq. (4.15) are

5 10 15 20
S

−0.002

0.000

0.002

0.004

0.006
R
R vs S: Slightly Exotic Rotating BTZ

J=1,P=1, =0.55, =0.45

J=1,P=1, =0.62, =0.38

J=1,P=1, =0.75, =0.25

FIG. 3. Ruppeiner curvature on ðS; PÞ plane for slightly exotic
rotating BTZ black holes as a function of S for fixed P and J.
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S

−10

−5

0

5

10

15
R

R vs S: Highly Exotic Rotating BTZ

J=1,P=1, =0.1, =0.9

J=1,P=1, =0.25, =0.75

J=1,P=1, =0.4, =0.6

FIG. 4. Ruppeiner curvature on ðS; PÞ plane for highly exotic
rotating BTZ black holes as a function of S for fixed P and J.

5The enthalpy in Eq. (4.14) corresponding to normal BTZ
black hole can be seen to be same as the one obtained from
Eq. (3.4), for the choice α ¼ 1, Q ¼ 0 and scaling J by a factor
of 64.
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T ¼ 8π3=2γJ
ffiffiffiffi
P

p
− 16

ffiffiffi
2

p
PS2

πγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
π3=2γJffiffiffi
P

p − 2S2
q ð4:16Þ

V ¼ 6π3=2γJS − 8
ffiffiffi
2

p ffiffiffiffi
P

p
S3

πγ
ffiffiffiffi
P

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
π3=2γJffiffiffi
P

p − 2S2
q : ð4:17Þ

Now, using the above thermodynamic quantities in the
form of the metric in the ðS; PÞ plane in Eq. (2.8), the
Ruppeiner curvature can be calculated6 analytically as

Rpurely exotic ¼
4π3=2γJ

ffiffiffiffi
P

p
SðA1 þ A2Þ

B1B2

; ð4:18Þ

where

A1 ¼ −50320π6γ4J4P2S8 þ 18336
ffiffiffi
2

p
π9=2γ3J3P5=2S10

þ 15744π3γ2J2P3S12 − 18304
ffiffiffi
2

p
π3=2γJP7=2S14

þ 9216P4S16; ð4:19Þ

A2 ¼ −189π12γ8J8 þ 1827
ffiffiffi
2

p
π21=2γ7J7

ffiffiffiffi
P

p
S2

− 13734π9γ6J6PS4 þ 25938
ffiffiffi
2

p
π15=2γ5J5P3=2S6;

ð4:20Þ

B1 ¼
ffiffiffi
2

p
π3γ2J2 − 6π3=2γJ

ffiffiffiffi
P

p
S2 þ 4

ffiffiffi
2

p
PS4; ð4:21Þ

B2 ¼ ð9π6γ4J4 − 81
ffiffiffi
2

p
π9=2γ3J3

ffiffiffiffi
P

p
S2 þ 408π3γ2J2PS4

− 392
ffiffiffi
2

p
π3=2γJP3=2S6 þ 256P2S8Þ2: ð4:22Þ

Rpurely exotic is plotted in Fig. 5, together with the Ruppeiner
curvature for normal rotating BTZ black holes. Note that

we can use the positivity of temperature from the relevant
curves in Fig. 5 to find the physically meaningful range of
entropy, as the temperature becomes negative for higher
values of S (purely exotic case) and there are also further
thermodynamic instabilities [102]. We note the following
from Fig. 5: for the normal BTZ black holes, the curvature
is always positive, and the plots are valid only beyond S ¼
1.403 (the point before which temperature is negative, as
seen from case of normal BTZ in Fig. 7). On the other hand,
for the purely exotic case, the plots beyond the point S ¼
1.403 are not valid, as the temperature becomes negative
after this (as seen from purely exotic case in Fig. 7).
Furthermore, the crossing of Ruppeiner curvature from
positive to negative at S ¼ 1.04 (for the particular choice of
parameters shown in the figure) represents the shifting of
dominant interactions from being repulsive to attractive. It
is, of course, important to remember that in the case of a
purely exotic BTZ black hole in which α ¼ 0, γ ¼ 1 the
entropy is given in terms of the inner, rather than the outer,
horizon [66], providing a novel viewpoint of the question of
location of microstructures in black holes.
The sign change of the Ruppeiner curvature indicates

that both attraction and repulsion dominated regions exist
for all the cases of general exotic BTZ black holes. The
physics of such shifting of interactions at the point where
the curvature scalar has a zero crossing can be understood
qualitatively from the two fluid model [29,62], which
essentially considers such an interacting system as a binary
mixture of two fluids, respectively, with purely repulsive
and attractive interactions among the molecules which
share the degrees of freedom of the total entropy of the
system. The crossing point is then determined from the
relative number densities of the fluid molecules of the two
types which compete with one another, deciding which
kind of interaction has an overall dominance at a particular
thermodynamic point. The number density has previously
been used to understand microstructures and phase tran-
sitions in charged black holes in AdS [27]. It should also be
remarked that a change of sign of the Ruppeiner curvature
does not imply a phase transition and is consistent with the
previously noted result that exotic BTZ black holes do not
admit a critical behavior [68]. The nature of microstructure
interactions can some times be modeled in the mean field
approximation using an interaction potential between two
neighboring fluid molecules. For instance, for the van der
Waals fluid, interaction potential is taken to be of the
Lennard-Jones type, which effectively provides a short-
range repulsive and a long-range attractive interaction. The
attractive part is known to dominate in this system. But
repulsive interactions could still be there [105] due to
thermal fluctuation related effects or also intermolecular
collisions (which is very much the case for charged black
holes in AdS [30]). It would be interesting to explore the
aforementioned issues to gain a better understanding of
microstructures of black holes.
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−20
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=0, =1: Purely Exotic

FIG. 5. Ruppeiner curvature on ðS; PÞ plane for P ¼ 1 and J ¼
1 for (a) thick red curve, normal rotating BTZ black holes (α ¼ 1,
γ ¼ 0) and (b) blue dashed curve, purely exotic rotating BTZ
black holes (α ¼ 0, γ ¼ 1).

6Ruppeiner curvature using a different three-dimensional
metric was used in Ref. [55] to study the critical points and
phase transitions in exotic BTZ black holes.
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V. REMARKS

In this work, we have used Ruppeiner geometry to probe
the nature of interactions between microstructures in the
case of normal and exotic BTZ black holes. For the normal
BTZ black hole, for which (α ¼ 1, γ ¼ 0), it was recorded
that the interactions are always repulsive for black holes
carrying charge and/or angular momentum, whereas there
are no interactions between the microstructures for BTZ
black holes without electric charge and/or rotation. In the
case without charge or angular momentum, the BTZ black
holes admit the thermodynamics of the ideal gas, and as a
result, the underlying microstructures are noninteracting.
Moreover, at the thermodynamic level, the similarity
between angular momentum and electric charge of a black
hole is well known in black hole thermodynamics. For
instance, plotting the expression for temperature of non-
exotic BTZ black holes,

T ¼ −
π2J2

64S3
þ 8PS

π
−

Q2

16S
; ð5:1Þ

where S ¼ πrþ=2 is the entropy of the black hole horizon,
shows that, qualitatively, rotating and charged BTZ
black holes behave in a similar fashion. The plot is
shown in Fig. 6. Therefore, similar to electrically charged
microstructures for charged black holes as discussed in
Refs. [27,29–31,62], it is suggested to associate rotating
black holes with microstructures of another type, which
carry the rotating degrees of freedom and interact with each
other in a repulsive manner. For black holes with both
electric charge and rotation, the interactions can add up
since they are both repulsive. This also means that
nonexotic BTZ black holes do not admit any critical
behavior, as has been noted earlier [25]. It is also interesting
to make contact with the fluid picture proposed in
Ref. [100], with a novel equation state in a virial expansion
(analogous to, yet different from, van der Waals fluids),
which resembles the charged fluids in AdS and, in
particular, has nonzero heat capacity at constant volume
[106]. This BTZ fluid picture is important, as it can lead to
a statistical mechanical understanding of the microstruc-
tures [107]. In fact, it is possible to have such a fluid
picture, by proposing an equation of state as

P ¼ kBT
vf

þ a
v2f

þ d
v4f

; ð5:2Þ

which resembles the charged and rotating BTZ black hole,
only for the specific choice a ¼ Q2 and d ¼ J2. Here, vf is
the volume per molecule, and if a and d are arbitrary
positive constants, Eq. (5.2) stands for a general BTZ fluid
with Cvf ≠ 0 in general. There is, in fact, a minimum
volume for the fluid molecules, which can be found out by
imposing the positivity of temperature in Eq. (5.2) as

vf;min ¼
1ffiffiffiffiffiffi
2P

p ½ða2 þ 4PdÞ1=2 þ a�1=2; ð5:3Þ

which differs from that of the RN-AdS fluid [100] in the
sign of a. The minimum volumes noted in the special cases
for only charged and only rotating BTZ black holes given
in Eqs. (3.15) and (3.11), respectively, match with the
expression given in Eq. (5.3), in appropriate limits. There
is, of course, an important difference when compared to
RN-AdS fluids [100]. In the limit P → ∞, minimum
volume in Eq. (5.3) goes to zero, similar to the RN-AdS
fluids. But at P ¼ 0, minimum volume in Eq. (5.3) goes to
infinity. The thermodynamics is therefore, as one could
appropriately call it, the anti-van der Waals type. An
immediate consequence of this fact is that there are no
phase transitions because such an anti-van der Waals fluid
can never undergo a liquefaction due to presence of only
repulsive interactions between molecules. It would be
interesting to compute the Ruppeiner curvature for the
BTZ fluid taking Cvf as a constant [30,31,62,100] and
compare it with the one for BTZ black hole. The Ruppeiner
curvatures in both cases may in general be different, but
features, such as the presence of only repulsive interactions,
are not expected to change for BTZ fluids.
For the general exotic BTZ black holes, the Ruppeiner

curvature was calculated exactly for various values of the
parameters α and γ, and the results were presented by
classifying them into two broad classes, namely, α > γ
(slightly exotic) and α < γ (highly exotic), apart from
the case α ¼ 0, γ ¼ 1, corresponding to purely exotic
black holes. For all three cases, it was noted that there
are in general attraction and repulsion dominated regions,
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FIG. 6. Variation of the black hole temperature T vs entropy S for BTZ black holes.
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as the Ruppeiner curvature crosses zero, as noted from
Figs. 3, 4, and 5. We also found that the behavior of
Ruppeiner curvature in Figs. 4 and 5 for the highly exotic
and purely exotic cases is similar, in which cases the nature
of temperature curves is also identical, as shown in Fig. 7.7

For the slightly exotic BTZ case, although, the temperature
variation with respect to entropy is similar to that of normal
BTZ (as noted from Fig. 7), the behavior of Ruppeiner
curvature is different. A change in sign of curvature
happens for slightly exotic BTZ black holes as well, as
seen from Fig. 3, which should be compared with the
appropriate curve in Fig. 5 for the standard rotating BTZ
black hole, in which such a sign change does not happen. It
would be interesting to explore other black hole systems in
three dimensions, with the inclusion of dilaton and other
nonlinear couplings involving nonlinear electromagnetic
fields, in which further interesting behavior of micro-
structures may exist, including novel critical behavior.
More importantly, a statistical mechanical understanding
of the microscopic degrees of freedom may be explored
with phenomenological models for normal [50] as well as
exotic BTZ black holes [67].
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