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In this paper, we provide the representation of the symplectic group Spð2n;RÞ in polymer quantum
mechanics. We derive the propagator of the polymer free particle and the polymer harmonic oscillator
without considering a polymer scale. The polymer scale is then introduced to reconcile our results with
those expressions for the polymer free particle. The propagator for the polymer harmonic oscillator implies
nonunitary evolution.

DOI: 10.1103/PhysRevD.101.106004

I. INTRODUCTION

Polymer quantum mechanics (PQM) is a quantization
scheme mimicking some of the techniques used in Loop
Quantum Cosmology (LQC) [1–5]. That is to say, at the
kinematical level, the Hilbert spaces used in both quanti-
zations are the mathematically the same. Also, their
observable algebras are given by their corresponding
Weyl algebras, on the reduced phase space for the LQC
scenario and on the standard phase space in the PQM
case [1,6–8].
The main feature of these quantizations is that the Stone–

von Neumann theorem is evaded. Consequently, the
quantum description of LQC is nonunitarily equivalent
to the so-called Wheeler–De Witt quantization [8], whereas
PQM is nonunitarily equivalent to the usual Schrödinger
representation of standard quantum mechanics [1]. Based
on this, PQM can be considered as a theoretical lab for
some of the techniques used at the kinematical level
in LQC.
An intrinsic aspect of PQM is the introduction of a

length scale, called a polymer scale, which is the analog
of the Planck length in loop quantum cosmology and
loop quantum gravity. This scale, denoted by μ, is intro-
duced when the square of the momentum operator in
the Hamiltonian is replaced by a combination of Weyl
generators depending on μ.
The effect of what this replacement might induce on the

symmetries of “polimerically” quantized systems have
been explored in some papers [9,10]. However, a key
ingredient in this direction is still absent: the linear
canonical transformations. These transformations are the
symplectic group action of the phase space and leave the
Hamilton equations of motion invariant. A relevant feature
of this group, denoted by Spð2n;RÞ, is that time evolution

of linear systems can be described as a curve in the group.
Therefore, a representation of the symplectic group in PQM
will pave the way to study time evolution and more general
linear symmetries.
On the other hand, in the last decades, the symplectic

group has played a relevant role in the construction of
squeeze states [11–13] and their separability conditions
[14,15]. In cosmological scenarios, some approaches use
squeezed states to explore entropy production [16] and time
evolution of matter degrees of freedom [17]. In LQC,
squeezed states have been considered in Refs. [18–20] to
explore the robustness of the bounce. Also, a polymeric
version of the squeezed states was considered in Ref. [21]
for the particular case of the polymer field theory, where the
Fourier modes of the electromagnetic field are quantized
using the polymer formalism. Due to the connection
between the symplectic group and the squeeze operator
[13], a representation of this group in PQM, and thus in
LQC, may offer new insights for constructing generalized
squeezed states, i.e., to extend their use to systems with
more degrees of freedom.
For these reasons, in this paper, we give the representa-

tion of the symplectic group Spð2n;RÞ in PQM. Our
construction was done within the full polymer Hilbert
space, and no polymer scale was considered at the first
stage of the analysis. As a result, the propagators for the
free particle and the harmonic oscillator are also derived in
the full polymer Hilbert space. We then insert the polymer
scale in our results and discuss its implications. These
results, to the best of our knowledge, are new and have not
been reported elsewhere.
This paper is organized as follows. In Sec. II, we provide

the unitary representation of the symplectic group in the
standard quantum mechanics and its expansion to momen-
tum representation. We also show how the propagators
of the quantum free particle and the quantum harmonic
oscillator emerge from the given representation. Section III*alechung@xanum.uam.mx
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summarizes the main features of polymer quantum
mechanics to be used for the construction of the repre-
sentation of Spð2n;RÞ given in Sec. IV. The propagators
for both polymer systems, the free particle, and the
harmonic oscillator are derived in Sec. V. We discuss
our results in Sec. VI.

II. SYMPLECTIC GROUP AND ITS STANDARD
UNITARY REPRESENTATION

The unitary representation of the symplectic group in the
Schrödinger representation was derived by Mochinsky and
Quesne in Ref. [22] and revisited by Wolf in Ref. [23]. An
excellent and detailed study of the symplectic group and its
representation can be found in Ref. [24]. However, in order
to be self-contained, we summarize the construction of the
unitary representation of Spð2n;RÞ in this section. We
follow on the lines of Refs. [22,23] together with Ref. [25].
The symplectic group Spð2n;RÞ is formed by 2n × 2n

matrices M of the form

M ¼
�
A B

C D

�
; ð1Þ

where A, B, C, and D are n × n matrices such that

ADT −BCT ¼ 1; ABT ¼ BAT; CDT ¼ DCT: ð2Þ

These relations result from the symplectic group condition
[22] given as�

0 1

−1 0

�
¼ M

�
0 1

−1 0

�
MT; ð3Þ

whereMT is the transpose matrix. The group multiplication
is the usual matrix multiplication

M1M2 ¼
�
A1 B1

C1 D1

��
A2 B2

C2 D2

�
¼

�
A1A2 þ B1C2 A1B2 þ B1D2

C1A2 þ D1C2 C1B2 þ D1D2

�
; ð4Þ

and the inverse of matrix M, which we denote as M−1, is
given by

M−1 ¼
�

DT −BT

−CT AT

�
: ð5Þ

The identity 2n × 2n matrix is the identity element of
this group.
Some of the important subgroups of this group are

the SOðn;RÞ group and the nonsingular diagonal matrix
group diagðλ1; λ2;…; λnÞ or as we call it the scaling group.
A rotation R ∈ SOðn;RÞ can be implemented as an
element MðRÞ ∈ Spð2n;RÞ as

MðRÞ ¼
�
R 0

0 R

�
; ð6Þ

and a scaling matrix S ¼ diagðλ1; λ2;…; λnÞ, where λj ≠ 0

for j ¼ 1; 2;…; n, corresponds to an element MðSÞ ∈
Spð2n;RÞ given as

MðSÞ ¼
�
S 0

0 S−1

�
: ð7Þ

The standard representation of Spð2n;RÞ was derived in
Ref. [22] by Mochinsky and Quesne. They considered the
Schrödinger representation in the Hilbert space HðqÞ ¼
L2ðRn; dx⃗Þ given by the fundamental operators

⃗q̂Ψðx⃗Þ ¼ x⃗Ψðx⃗Þ; ⃗p̂Ψðx⃗Þ ¼ ℏ
i
∇⃗ðqÞΨðx⃗Þ; ð8Þ

where ⃗q̂ stands for a horizontal array of operators

ðq̂1; q̂2;…; q̂nÞ and, similarly, ⃗p̂ and ∇⃗ðqÞ stand for
ðp̂1; p̂2;…; p̂nÞ and ð∂x1 ; ∂x2 ;…; ∂xnÞ respectively.
The condition for the group action in HðqÞ is of the form

ĈM

� ⃗q̂T

⃗p̂T

�
Ĉ−1
M ¼ M−1

� ⃗q̂T

⃗p̂T

�
; ð9Þ

where ĈM is the quantum operator associated to the group
element M. In (9), the operator products on the left are
taken component by component in the ⃗q̂ and ⃗p̂, and the
matrix M−1 on the right is given in (5). The action of the
group element ĈM on the state Ψðx⃗Þ is

ΨMðx⃗Þ ¼ ĈMΨðx⃗Þ ¼
Z

dnx⃗0CMðx⃗; x⃗0ÞΨðx⃗0Þ: ð10Þ

Here, ΨMðx⃗Þ is the new state in L2ðRn; dx⃗Þ, and the kernel
CMðx⃗; x⃗0Þ satisfies the relation

CM1M2
ðx⃗; x⃗00Þ ¼

Z
dnx⃗0CM1

ðx⃗; x⃗0ÞCM2
ðx⃗0; x⃗00Þ ð11Þ

and is such that the operator ĈM is unitary. The expression
for this kernel, as shown by Wolf in Ref. [23] is

CMðx⃗; x⃗0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πiℏÞn detBp e

i
2ℏ½x⃗TDB−1x⃗−2x⃗0TB−1x⃗þx⃗0TB−1Ax⃗0�;

ð12Þ

and recall that A, B, and D are given by M via (1).
In the present work, the analysis for the group repre-

sentation requires both representations, the coordinate
representation and the momentum representation in poly-
mer quantum mechanics. For this reason and in order to be
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self-contained, we show some of the main ingredients of
the momentum representation of the symplectic group in
the standard quantum mechanics. To do so, recall that the
Hilbert space in the momentum representation is HðpÞ ¼
L2ðRn; dp⃗Þ and the fundamental operators are given as

⃗q̂ Ψ̃ðp⃗Þ ¼ iℏ∇⃗ðpÞΨ̃ðp⃗Þ; ⃗p̂ Ψ̃ðp⃗Þ ¼ p⃗ Ψ̃ðp⃗Þ; ð13Þ

where ⃗p̂ is now a horizontal array of operators ðp̂1; p̂2;

…; p̂nÞ whereas ⃗q̂ and ∇⃗ðpÞ are ðq̂1; q̂2;…; q̂nÞ and
ð∂p1

; ∂p2
;…; ∂pn

Þ respectively.
To derive the expression for the kernel, we can proceed

in a twofold manner: (i) we can perform the Fourier
transform of the kernel in (12), or (ii) we can reproduced
the steps given in Refs. [22,23] but in the momentum
representation. The result is the same, and once the
calculation is carried out, we obtain the expression for
the new kernel in HðpÞ to be of the form

C̃Mðp⃗; p⃗0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

i
2πℏ

�
n 1

detC

s
e−

i
2ℏ½p⃗TAC−1p⃗−2p⃗0TC−1p⃗þp⃗0TC−1Dp⃗0�:

ð14Þ

On both Eqs. (12) and (14), singular matrices B and C
produce a singular value of the kernel. To overcome this
issue, Mochinksky and Quesne [22] proved that every
matrix M with a singular matrix B can be written as the
productM ¼ M0M̃, where the matricesM0 and M̃, given as

M0 ¼
�
1 B0

0 1

�
; M̃ ¼

�
A −B0C B −B0D

C D

�
;

ð15Þ

are such that the matrix B0 is nonsingular and diagonal and
the matrix B −B0D is nonsingular. Therefore, the kernel in
(12) is well defined for these matrices. A similar analysis
can be carried out for the kernel in (14), but we will omit it
in this work since it is not required.

A. Propagator analysis

In this subsection, we derive the propagator for two
mechanical systems using the given representation of
Spð2n;RÞ. Both examples are linear Hamiltonian systems
since their time evolution is a matrix belonging to the
symplectic group. The first example is the n ¼ 1 free
particle of mass m. The solution of the classical Hamilton
equations for this system are

qðtÞ ¼ qþ t
m
p; pðtÞ ¼ p

and can be written in matrix form as follows,�
qðtÞ
pðtÞ

�
¼ MFPðtÞ

�
q

p

�
; ð16Þ

where the matrix MFPðtÞ takes the form

MFPðtÞ ¼
�
1 t

m

0 1

�
: ð17Þ

Notice thatMFPðtÞ is not just a matrix but also a curve in
Spð2;RÞ; i.e., it is a map t∶ R → Spð2;RÞ. From (17), we
read A ¼ D ¼ 1, C ¼ 0, and B ¼ t=m. After inserting
these expressions in (12) together with n ¼ 1, we have

CFPðx; x0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2πiℏt

r
e

im
2ℏtðx−x0Þ2 ; ð18Þ

which is the propagator of the quantum free particle. Recall
that no Hamiltonian operator Ĥ was used to derive the
propagator in (18), although it is defined as the kernel
hxjei

ℏΔtĤjx0i. This is the main idea we want to exploit using
the representation of the symplectic group in polymer
quantum mechanics.
The second example is the n ¼ 1 harmonic oscillator for

which the Hamilton equations

qðtÞ ¼ q cosðωtÞ þ p
mω

sinðωtÞ;
pðtÞ ¼ −mωq sinðωtÞ þ p cosðωtÞ;

where m and ω are respectively the mass and the oscillator
frequency. When these equations are written in matrix
form, they give the matrix MHOðtÞ as

MHOðtÞ ¼
�

cosðωtÞ 1
mω sinðωtÞ

−mω sinðωtÞ cosðωtÞ

�
: ð19Þ

Plugging in (12) the expressions for A ¼ D ¼ cosðωtÞ and
B ¼ 1

mω sinðωtÞ and C ¼ −mω sinðωtÞ, we get

CHOðx; x0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω

2πiℏ sinðωtÞ
r

e
imω

2ℏ sinðωtÞ½ðx2þx02Þ cosðωtÞ−2xx0�;

ð20Þ

which is the propagator for the quantum harmonic
oscillator.
The expression for the propagator in the momentum

representation can also be derived using the formula in
(14). In the case of the quantum harmonic oscillator, it takes
the form
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C̃HOðp; p0; tÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2πiℏmω sinðωtÞ

s
e

i
2ℏmω sinðωtÞ½ðp2þp02Þ cosðωtÞ−2pp0�: ð21Þ

The expressions for the propagators (18) and (20),
together with (21), were derived using the classical equa-
tions of motion. The quantum dynamics has not yet been
considered; only the Schrödinger representations (8) and
(13) were considered to obtain these propagators.
The aim of this subsection was to show the advantage of

having the (unitary) representation of the symplectic group:
it allows us to derive the quantum propagator for linear
Hamiltonian systems. Of course, all the analysis was done
without explicitly knowing the representation of the
Hamiltonian operator. In the next sections, we will imple-
ment this analysis in the polymer quantum mechanics, and
then we will derive the polymer propagators for the free
particle and the quantum harmonic oscillator.

III. REPRESENTATIONS IN POLYMER
QUANTUM MECHANICS

In polymer quantum mechanics [1–5], HðqÞ
poly ¼

L2ðRd; dxcÞ is the Hilbert space used in the coordinate
representation. Here, Rd is the real line with discrete
topology, whereas dxc is the countable measure on it.
An arbitrary state in this Hilbert space can be written as

ΨðxÞ ¼
X
fxjg

Ψxjδx;xj ; ð22Þ

i.e., a complex-valued function on Rd such that (i) the
coefficients Ψxj vanish at all but a countable number of
points and (ii) they can be used to define the norm of the
state as X

fxjg
jΨxj j2 < ∞: ð23Þ

In this notation, fxjg is an arbitrary graph of numbers
in the real line, and the coefficients Ψxj ∈ C are nonzero
only on a countable subset denoted as fx̃jg∞j¼1. Also, the

basis in HðqÞ
poly is uncountable, which can be seen from the

state (22) where the Kronecker deltas δx;xj are the basis
elements.
This construction can be expanded for a system

with n degrees of freedom and a Hilbert space given by

HðqÞ
ðnÞpoly ¼ L2ðRn

d; dx⃗cÞ. Again, an arbitrary state is of the

form

Ψðx⃗Þ ¼
X
fx⃗jg

Ψx⃗jδx⃗;x⃗j ; ð24Þ

where, similarly to the n ¼ 1 case, fx⃗jg represents a graph
in the Rn

d space with discrete topology and dx⃗c is the
countable measure on it.
The fundamental operators are described using the Weyl

algebra elements Ŵða⃗; b⃗Þ, which, for a system with n
degrees of freedom, satisfies the canonical commutation
relations

Ŵða⃗1; b⃗1ÞŴða⃗2; b⃗2Þ ¼ e−
i
2ℏða⃗T1 b⃗2−b⃗T1 a⃗2ÞŴða⃗1 þ a⃗2; b⃗1 þ b⃗2Þ:

ð25Þ

The real arrays a⃗¼ða1;a2;…;anÞ and b⃗¼ ðb1;b2;…;bnÞ,
which have dimensions ½aj� ¼ momentum and ½bj� ¼
coordinate, label the Weyl algebra generators. The repre-

sentation of the generators in HðqÞ
ðnÞpoly is

Ŵða⃗; b⃗ÞΨðx⃗Þ ¼ e
i
2ℏa⃗

T b⃗e
i
ℏa⃗

T x⃗Ψðx⃗þ b⃗Þ; ð26Þ

and notice the parameters b⃗ are related with finite trans-
lations. For this reason, the Weyl algebra generators
Ŵða⃗; b⃗Þ are split in two types of generators,

Ûða⃗Þ ≔ Ŵða⃗; 0Þ; V̂ðb⃗Þ ≔ Ŵð0; b⃗Þ: ð27Þ

The operator V̂ is responsible for finite translations in the
coordinate representation as can be seen from (26) by
taking a⃗ ¼ 0,

V̂ðb⃗ÞΨðx⃗Þ ¼ Ψðx⃗þ b⃗Þ: ð28Þ

Because the representation is not weakly continuous, there
are no infinitesimal translations operators; i.e., there are no
p̂j operators. To circumvent this issue and in order to set a

dynamical description, V̂ðb⃗Þ is used to provide a replace-
ment for the square momentum operator. To do so, a
polymer scale is considered; i.e., we assume the existence
of a “fundamental” length scale, denoted as μ, which
mimics the polymer scale in loop quantum cosmology,
but in this case, the value of this fundamental scale is rather
arbitrary although it has an upper bound. This upper bound
on μ is for consistency with basic observations [1].
Once this polymer scale μ is considered, the replacement

for the square momentum is given as the following
combinations of V̂ðμ⃗Þ operators,

cp2
μ ≔

ℏ2

μ2
½2 − V̂ðμ⃗Þ − V̂†ðμ⃗Þ�; ð29Þ

where μ⃗ ≔ ðμ; μ;…; μÞ. Of course, some might consider a
polymer scale for each of the degrees of freedom, but in this
work, we restrict ourselves to consider only one for the sake
of the simplicity in the construction.
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Naturally, there are plenty of combinations of the V̂ðμ⃗Þ,
for example,

cp2
μ ≔

ℏ2

12μ2

× ½30þ V̂ð2μ⃗Þ þ V̂ð−2μ⃗Þ − 16V̂ðμ⃗Þ − 16V̂ð−μ⃗Þ�;
ð30Þ

which will render a dynamical description completely
different from that given by the proposal (29). This is
what is considered as the Hamiltonian ambiguity in
polymer quantum mechanics.
The usual approach to this issue is to consider that a well-

defined cp2
μ proposal should correspond, in the “limit”

when the polymer scale is far smaller than the intrinsic
length of the physical system, to the quantum description of
the standard quantum mechanics. Nevertheless, despite this
limit criterion, (polymer) quantum systems described with
Hamiltonian (29) and (30) are going to be entirely different;
a polymer free particle with (29) is not the same physical
system as a polymer free particle using (30), and yet we
consider both as a “polymer free particle.” Moreover, the
symmetries can be drastically altered when different
Hamiltonians are in use.
In the next section, we will come back to this analysis

and point out some of the advantages of the representation
of the symplectic group in polymer quantum mechanics.

A. Momentum representation

Similarly to the standard quantum mechanics descrip-
tion, we will briefly describe the momentum representation
in polymer quantum mechanics. The Hilbert space used for
the momentum representation is given by

HðpÞ
poly ¼ L2ðR̄; dxBohrÞ; ð31Þ

where R̄ is the Bohr compactification of the real line and
dxBohr is the Bohr measure on this space (see Ref. [4] for
more details). As before, an arbitrary state can be written as

Ψ̃ðpÞ ¼
X
fxjg

Ψxje
i
ℏxjp; ð32Þ

and the set fxjg and the coefficients Ψxj satisfy the same
conditions mentioned in the analysis of the coordinate
representation. The norm in this space is

kΨ̃k2 ¼ lim
L→∞

1

2L

Z
L

−L
jΨ̃ðpÞj2dp ð33Þ

and coincides with (23).

The Weyl algebra representation is

Ŵða⃗; b⃗ÞΨ̃ðp⃗Þ ¼ e−
i
2ℏa⃗

T b⃗e−
i
ℏb⃗

T p⃗Ψ̃ðp⃗þ a⃗Þ; ð34Þ

and notice that now the translation is induced with the
parameter a⃗, which implies the operator Ûða⃗Þ is giving rise
to infinitesimal translations but in momentum space. In this
non-weakly continuous representation the operator V̂ðb⃗Þ
acts multiplicatively, and again, there is no momentum
operator p̂.
For systems with n degrees of freedom, the Hilbert space

used for the momentum representation is given as

HðpÞ
ðnÞpoly ¼ L2ðR̄n; dp⃗BohrÞ; ð35Þ

and a general element in this space is

Ψ̃ðp⃗Þ ¼
X
fx⃗jg

Ψx⃗je
i
ℏp⃗

T x⃗j : ð36Þ

The physics on both representations is the same, and this
can be stated by introducing what is called a Fourier
transform F between these representations,

Ψ̃ðpÞ ¼ F ½ΨðxÞ� ¼
X
x

e
i
ℏxpΨðxÞ; ð37Þ

ΨðxÞ ¼ F−1½Ψ̃ðpÞ� ¼ lim
L→∞

1

2L

Z
L

−L
Ψ̃ðpÞe− i

ℏxpdp; ð38Þ

for ΨðxÞ ∈ HðqÞ
poly and Ψ̃ðpÞ ∈ HðpÞ

poly. This Fourier trans-
formation can be extended to n degrees of freedom using
the replacement X

x

e
i
ℏxp ⇒

X
x⃗

e
i
ℏx⃗

T p⃗; ð39Þ

and its inverse can be similarly defined.

B. Distribution analysis

In the next section, we use an ansatz to derive the
representation of the symplectic group. To clarify our
proposal for this ansatz, let us show some features needed
for its derivation.

Consider HðqÞ
poly and the arbitrary state (22). The identity

operator 1̂ acting on this Hilbert space is such that
1̂ΨðxÞ ¼ ΨðxÞ; this can also be formally written as an
integral operator,

ΨðxÞ ¼ 1̂ΨðxÞ ¼
X
x0
δx;x0Ψðx0Þ ¼

Z
Rd

δx;x0Ψðx0Þdxc; ð40Þ

for any ΨðxÞ ∈ HðqÞ
poly. In the last equality, we replaced the

summation symbol with a formal integral notation, just to
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emphasize the nature of the Kronecker delta as a distribu-
tion in (40). Wewill do this to facilitate the analysis of some
expressions, which is better done using a formal integral
notation rather than an uncountable summation. Our goal is
then to find the Fourier transform of the kernel δx;x0 in the
momentum representation. The Fourier transform of δx;x0 is

λðp; p0Þ ¼
X
x;x0

e
i
ℏxpδx;x0e−

i
ℏx

0p0 ¼
X
x

e
i
ℏxðp−p0Þ; ð41Þ

where the summation
P

x naturally appears once the
Kronecker delta is evaluated.
It can be checked that indeed

Ψ̃ðpÞ ¼ 1̂ Ψ̃ðpÞ ¼ lim
L→∞

1

2L

Z
L

−L
λðp; p0ÞΨ̃ðp0Þdp0; ð42Þ

hence, λðp; p0Þ is the kernel of the identity operator 1̂ in the
momentum representation. Notice the uncountable sum-
mation

P
x in (41) is a result of the Fourier transform on

each of the arguments of the Kronecker delta and that it is
well defined as (42) shows. Moreover, this expression can
be expanded to a system with n degrees of freedom as

λðp⃗; p⃗0Þ ¼
X
x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0T x⃗: ð43Þ

This summationlike structure in (43), when restricted to
integer numbers, is known as “Dirac comb.” However, in
the present case, the summation index x⃗ runs over the real
numbers [26,27]. When written in the integral form, the
summation in (43) for n ¼ 1 takes the formX

x

e
i
ℏðp−p0Þx ¼

Z
Rd

e
i
ℏðp−p0Þxdxc; ð44Þ

where Rd stands for the discrete topology of the real line
and dxc is the counting measure. What we want to
emphasize is that this measure is scale invariant; if we
take x ¼ ax̃, where a ≠ 0 is a real number, then we have

X
x

e
i
ℏðp−p0Þx ¼

X
x̃

e
i
ℏðp−p0Þax̃ ¼

X
x

e
i
ℏðp−p0Þax; ð45Þ

and if we use the integral formal notation in (44), this givesZ
Rd

e
i
ℏðp−p0Þxdxc ¼

Z
Rd

e
i
ℏðp−p0Þax̃dx̃0c; ð46Þ

which implies
R
Rd

dxc ¼
R
Rd

dx̃0c for x and x0 scale related.
Finally, we can conclude that distributions in the poly-

mer Hilbert space L2ðR̄; dpBohrÞ can have this uncountable
summation structure, as we will see in the case of the
propagators of the free particle and the harmonic oscillator
in the last section.

IV. POLYMER REPRESENTATION OF THE
SYMPLECTIC GROUP

The first step to give the representation of the symplectic
group in polymer quantum mechanics is to rewrite the
condition (9) but in terms of the Weyl algebra generators
Ŵða⃗; b⃗Þ. By exponentiating each condition in (9), we have
that

ĈðpolyÞ
M Ŵða⃗; 0ÞĈðpolyÞ−1

M ¼ ŴðDa⃗;−Ba⃗Þ; ð47Þ

ĈðpolyÞ
M Ŵð0; b⃗ÞĈðpolyÞ−1

M ¼ Ŵð−Cb⃗;Ab⃗Þ: ð48Þ

Analogously to ĈM in the standard quantum mechanics,

the operator ĈðpolyÞ
M is the representation of the group

element M in polymer quantum mechanics, and its action
is given by

ΨMðp⃗Þ ≔ ðĈðpolyÞ
M ΨÞðp⃗Þ

¼ lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗; p⃗0ÞΨðp⃗Þ; ð49Þ

and CðpolyÞ
M ðp⃗; p⃗0Þ is the unknown polymer kernel.

We now multiply on both sides of Eq. (47) by the state
ΨMðp⃗Þ. On the lhs, we have

ĈðpolyÞ
M Ŵða⃗; 0ÞĈðpolyÞ−1

M ΨMðp⃗Þ ¼ ĈðpolyÞ
M Ψðp⃗þ a⃗Þ ¼ lim

L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗; p⃗0ÞΨðp⃗0 þ a⃗Þ; ð50Þ

and on the rhs, the expression

ŴðDa⃗;−Ba⃗ÞΨMðp⃗Þ ¼ e
i
2ℏa⃗

TDTBa⃗e
i
ℏa⃗

TBT p⃗ lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗þ Da⃗; p⃗0ÞΨðp⃗0Þ; ð51Þ

hence equating (50) with (51), gives the resulting condition to be of the form

lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗; p⃗0ÞΨ̃ðp⃗0 þ a⃗Þ ¼ e
i
2ℏa⃗

TDTBa⃗e
i
ℏa⃗

TBT p⃗ lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗þ Da⃗; p⃗0ÞΨðp⃗0Þ: ð52Þ

ANGEL GARCIA-CHUNG PHYS. REV. D 101, 106004 (2020)

106004-6



Following the same steps with the expression (48), we obtain the condition

lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗; p⃗0Þe− i
ℏb⃗

T p⃗0Ψ̃ðp⃗0Þ ¼ e
i
2ℏb⃗

TCTAb⃗e−
i
ℏb⃗

TAT p⃗ lim
L→∞

1

2L

Z
L

−L
dnp⃗0CðpolyÞ

M ðp⃗ − Cb⃗; p⃗0ÞΨðp⃗0Þ: ð53Þ

We now have to consider an ansatz to solve the
condition (53). In Ref. [22], the ansatz is given by an
exponential function whose argument is a bilinear term
in the coordinates. This ansatz gives rise to (12) and
similarly, in the momenta representation, to (14). Because
we are working in momenta representation, the bilinear
term p⃗0TC−1Dp⃗0 in (14) brings difficulties to the calcu-
lation of the integral using the Bohr measure in
L2ðR̄; dpBohrÞ. To overcome this issue, we will consider
an ansatz analogous to (14) but with ep⃗

0TC−1Dp⃗0
written in

the form of an infinite summation of exponentials eip⃗
0Tγx⃗.

As a result, the integral of the kernel using the Bohr
measure in p⃗0 can be carried out. The general form of
this ansatz is

CðpolyÞ
M ðp⃗; p⃗0Þ ¼ kðpolyÞM e−

i
2ℏp⃗

Tαp⃗
X
x⃗

e
i
ℏp⃗

T x⃗e−
i
ℏp⃗

0Tγx⃗e
i
2ℏx⃗

Tδx⃗;

ð54Þ

where α, γ, and δ are n × n matrices to be determined

and kðpolyÞM is an unknown complex-valued factor. After
inserting this ansatz (54) in the condition (52), we obtain
that

α ¼ BD−1; γ ¼ DT: ð55Þ

With these results for α and γ, the kernel now reads as

CðpolyÞ
M ðp⃗; p⃗0Þ ¼ kðpolyÞM e−

i
2ℏp⃗

TBD−1p⃗
X
x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TDtx⃗þ i
2ℏx⃗

Tδx⃗:

ð56Þ
Proceeding now with the second condition (53), we insert
(56) and obtain the expression for the matrix δ as

δ ¼ DCT; ð57Þ
which yields the following expression for the kernel:

CðpolyÞ
M ðp⃗; p⃗0Þ ¼ kðpolyÞM e−

i
2ℏp⃗

TBD−1p⃗
X
x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TDT x⃗þ i
2ℏx⃗

TDCT x⃗:

ð58Þ
To determine the coefficient kðpolyÞM , we calculate first the

kernel of the operator ĈðpolyÞ
M3

, where M3 ¼ M1 ·M2. This

allows us to relate this kernel CðpolyÞ
M3

with the kernel

of the operators ĈðpolyÞ
M1

and ĈðpolyÞ
M2

such that ĈðpolyÞ
M3

¼
ĈðpolyÞ
M1

· ĈðpolyÞ
M2

. The relation is given by the expression

CðpolyÞ
M3

ðp⃗; p⃗0Þ ¼ lim
L→∞

1

2L

Z
L

−L
dnp⃗00CðpolyÞ

M1
ðp⃗; p⃗00Þ

× CðpolyÞ
M2

ðp⃗00; p⃗0Þ ð59Þ
and gives the following condition for the kernels
multiplication:

CðpolyÞ
M3¼M1M2

ðp⃗; p⃗0Þ ¼ kðpolyÞM1M2
e−

i
2ℏp⃗

TðA1B2þB1D2ÞðC1B2þD1D2Þ−1p⃗
X
x⃗

exp

�
i
ℏ
p⃗T x⃗ −

i
ℏ
p⃗0TðC1B2 þ D1D2ÞTx⃗

þ i
2ℏ

x⃗TðC1B2 þ D1D2ÞðC1A2 þD1C2ÞTx⃗
�
: ð60Þ

We now plug in the expression for the ansatz given in (58) and obtain that

CðpolyÞ
M1M2

ðp⃗; p⃗0Þ ¼ kðpolyÞM1
kðpolyÞM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðD2B−1

2 Þ
detðD2B−1

2 þD−1
1 C1Þ

s
e−

i
2ℏp⃗

T ðA1B2þB1D2ÞðC1B2þD1D2Þ−1p⃗
X
x⃗0
e−

i
ℏx⃗

0TD2p⃗00

× e
i
ℏx⃗

0TD2ðC1B2þD1D2Þ−1p⃗e
i
2ℏx⃗

0T ½D2CT
2
þCT

1
D−T

1
−D−1

1
C1ðD2B−1

2
þD−1

1
C1ÞD−1

1
C1�x⃗0 : ð61Þ

By considering the change of variable x⃗0 ¼ D−T
2 ðC1B2 þD1D2ÞTx⃗ in the summation index x⃗0, the previous expression

takes the form

CðpolyÞ
M1M2

ðp⃗; p⃗0Þ ¼ kðpolyÞM1
kðpolyÞM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðD2B−1

2 Þ
detðD2B−1

2 þ D−1
1 C1Þ

s
e−

i
2ℏp⃗

TðA1B2þB1D2ÞðC1B2þD1D2Þ−1p⃗
X
x⃗

e
i
ℏx⃗

T p⃗

× e−
i
ℏx⃗

T ðC1B2þD1D2Þp⃗00
e

i
2ℏx⃗

T ðC1A2þD1C2ÞðC1B2þD1D2ÞT x⃗: ð62Þ
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We now equate both expressions (60) and (62) and
consider it also holds for the product 1 ¼ M ·M−1. This

yields the following condition for the coefficient kðpolyÞM :

kðpolyÞM ¼ detðDATÞ−1
4: ð63Þ

This last coefficient is inserted on (58) to give the final form
for the kernel

CðpolyÞ
M ðp⃗; p⃗0Þ ¼ detðDATÞ−1

4e−
i
2ℏp⃗

TBD−1p⃗

×
X
x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TDT x⃗þ i
2ℏx⃗

TDCT x⃗; ð64Þ

and this constitutes the main result of this section.
The first and most relevant aspect of the kernel (64) is

that it gives rise to a nonunitary representation. A unitary
representation is achieved if the kernel in (64) satisfies

lim
L

1

2L

Z
L

−L
dp⃗CðpolyÞ

M ðp⃗; p⃗0ÞC�ðpolyÞ
M ðp⃗; p⃗00Þ

¼
X
x⃗

e−
i
ℏx⃗

T ðp⃗0−p⃗00Þ; ð65Þ

but this is only the case when jkMj2 ¼ 1, which implies that

detðDATÞ ¼ 1: ð66Þ

This condition only holds for very special groups elements
but not for the whole symplectic group; hence, the
representation is nonunitary.
The second aspect to be considered is the action of the

subgroups mentioned before, SOðn;RÞ, and the scaling
group. Using expression (64) for the rotation group,
we have

Ψ̃ðp⃗ÞMðRÞ ¼ lim
L→∞

1

2L

Z
L

−L
dp⃗0CðpolyÞ

MðRÞ ðp⃗; p⃗0ÞΨ̃ðp⃗0Þ ¼ lim
L→∞

1

2L

Z
L

−L
dp⃗0X

x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TR−1x⃗Ψ̃ðp⃗0Þ;

¼
X
x⃗

e
i
ℏp⃗

T x⃗ΨðR−1x⃗Þ ¼
X
Rx⃗

e
i
ℏp⃗

TRx⃗Ψðx⃗Þ ¼
X
x⃗

e
i
ℏp⃗

TRx⃗Ψðx⃗Þ ¼ Ψ̃ðRTp⃗Þ; ð67Þ

which coincides with the representation given by Chiou in Ref. [9]. As for the scalings, we have a similar result:

Ψ̃ðp⃗ÞMðSÞ ¼ lim
L→∞

1

2L

Z
L

−L
dp⃗0CðpolyÞ

MðSÞ ðp⃗; p⃗0ÞΨ̃ðp⃗0Þ ¼ lim
L→∞

1

2L

Z
L

−L
dp⃗0X

x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TS−1x⃗Ψ̃ðp⃗0Þ;

¼
X
x⃗

e
i
ℏp⃗

T x⃗ΨðS−1x⃗Þ ¼
X
Sx⃗

e
i
ℏp⃗

TSx⃗Ψðx⃗Þ ¼
X
x⃗

e
i
ℏp⃗

TSx⃗Ψðx⃗Þ ¼ Ψ̃ðSp⃗Þ: ð68Þ

Both subgroups are unitarily represented. As we will see
later, this is also the case for the polymer free particle but
not for the harmonic oscillator.

V. PROPAGATORS IN POLYMER
QUANTUM MECHANICS

In this section, we determine the expressions for the
propagators of the polymer free particle and the harmonic
oscillator using (64). We showed that in the case of the
harmonic oscillator the propagator yields nonunitary evo-
lution of any arbitrary polymer state (22).

A. Free particle

The propagator for the free particle in a regular lattice
was given by Flores et al. in Ref. [28]. There, the
propagator GðEFÞðp; p0Þ was derived using the eigenvalues
solutions of the polymer free particle Hamiltonian. The
propagator in momentum representation takes the form

GðEFÞðp; p0Þ ¼ 2πℏ
μ

e−
i
ℏEp0 ðt−t0Þδðp − p0Þ; ð69Þ

where the energy eigenvalue Ep is of the form

Ep ¼ ℏ2

mμ2

�
1 − cos

�
μp
ℏ

��
: ð70Þ

The propagator (69) provides the time evolution of an
arbitrary polymer state, say,

Ψ̃ðrlÞðpÞ ¼
X
j

Ψnje
i
pnjμ

ℏ ; ð71Þ

where fnjg∞j¼1 is a countable set of integers such that the
set fμnjg∞j¼1 gives a graph with a countable number of
elements. The graph constructed in this way is called
regular lattice graph, and the states defined on this graph
are abbreviated as Ψ̃ðrlÞðpÞ. The polymer scale μ is, as
usual, considered to be a small and arbitrary parameter.
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The time evolution of the state (71) using (69) is

Ψ̃ðrlÞðp; tÞ ¼
Z þπℏ

μ

−πℏ
μ

GðEFÞðp; p0ÞΨ̃ðp0Þdp0

¼
Z þπℏ

μ

−πℏ
μ

e−
i
ℏEp0 ðt−t0Þδðp − p0ÞΨ̃ðp0Þdp0;

¼ e−
i
ℏEptΨ̃ðrlÞðpÞ: ð72Þ

Let us analyze this system in our approach. First,
recall the expression for MFPðΔtÞ given in (17), where
A ¼ D ¼ 1, C ¼ 0, and B ¼ Δt=m together with n ¼ 1.
Plugging these values in (64), we obtain that the propagator
for the free particle is given by

GðpolyÞ
FP ðp; t;p0; t0Þ ¼ e−

i
2ℏ

ðt−t0Þ
m p2

X
x

e
i
ℏðp−p0Þx; ð73Þ

which, when acting on a given arbitrary state in the full
polymer Hilbert space of the form

Ψ̃ðpÞ ¼
X
fxjg

Ψxje
i
pxj
ℏ ; ð74Þ

gives

Ψ̃ðp; tÞ ¼ lim
L→∞

1

2L

Z
L

−L
GðpolyÞ

FP ðp; t;p0; t0ÞΨ̃ðp0; t0Þdp0

¼ e−
i
2ℏ

ðt−t0Þ
m p2

X
fxjg

Ψxje
i
ℏpxj ;

¼ e−
i
2ℏ

ðt−t0Þ
m p2Ψ̃ðpÞ; ð75Þ

where we have taken t0 ¼ 0 for simplicity.
Let us compare and analyze both results, Eqs. (72) and

(75). First, both propagators act similarly in the sense that
they produce a global phase on both results. The explicit
form of the phase contains the information of whether we
are working in a regular lattice or not. Second, the time
evolution is norm preserving due to A ¼ D ¼ 1; i.e.,
condition (66) holds. Recall that (72) corresponds to a
regular lattice with polymer scale, whereas (75) corre-
sponds to time evolution in the full polymer Hilbert space
with no polymer scale. Moreover, we used an unmodified
Hamiltonian or energy spectrum for time evolution (75).
We can recover (72) from expression (75). To do so, we

have to consider a polymer scale μ which allows us to
rewrite an arbitrary graph fxjg as the uncountable union of
regular lattices centered in λ. That is to say, every point xj
can be written as

xj ¼ λþ μnj; ð76Þ

where λ ∈ ½0; μÞ and nj ∈ Z. As a result, this condition
modifies the expression for (64) because it restricts the sum
in (64).

Using these decomposition for the points xj of the state
in (74) and fixing λ ¼ 0 gives

Ψ̃ðpÞ ¼
X
fjg

Ψnje
i
ℏpμnj ; ð77Þ

which takes the same form as the expression for the state
(71). By doing the same on the state (75), we have

Ψ̃ðp; tÞ ¼ e−
i
2ℏ

ðt−t0Þ
m p2

X
fjg

Ψnje
i
ℏμpnj ; ð78Þ

if we now consider the following replacement for the
square momentum term in (78),

p2 →
2ℏ2

μ2

�
1 − cos

�
μp
ℏ

��
; ð79Þ

the resulting state coincides with (72). In this way, the time
evolution provided by the polymer Hamiltonian considered
for the free particle in Ref. [28] is obtained.
This result has the following importance: the time

evolution provided by the unitary action of the symplectic
group in the full polymer Hilbert space (75) can be used
to derive time evolution using a polymer scale (72), that
is to say, using the eigenvalues and eigenstates of the
Hamiltonian (29). Naturally, to do this, we followed a
heuristic procedure, which we summarize as follows:
(1) Calculate the propagator in the full polymer Hilbert

space (73).
(2) Time evolve an arbitrary polymer state (74) to obtain

a new state (75).
(3) Introduce the polymer scale μ and “decompose” the

graph points fxjg of the state (74) as in (76). Instead
of working on arbitrary lattices, consider only those
centered in zero, i.e., λ ¼ 0.

(4) Replace the p2 term in the global phase using the
approximation in (79).

This procedure allows us to derive, in the next sub-
section, the propagator of the polymer harmonic oscillator.

B. Quantum harmonic oscillator

The first step leads us to consider the symplectic
matrix MHOðtÞ in (19) where A ¼ D ¼ cosðωtÞ and B ¼
1
mω sinðωtÞ and C ¼ −mω sinðωtÞ. With these values, the
propagator in the full polymer Hilbert space is given as

GðpolyÞ
HO ðp; t;p0; t0Þ

¼ e−
i
2ℏ

tanðωtÞ
mω p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðωtÞp X
x

e
i
ℏðp−p0 cosðωtÞÞx− i

4ℏmω sinðωtÞx2 : ð80Þ

We now proceed with the second step, which requires the
time evolution of an arbitrary state, say, a polymer state of
the form (74). The general expression is
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Ψ̃ðp; tÞ ¼ lim
L→∞

1

2L

Z
L

−L
GðpolyÞ

HO ðp; t;p0; t0ÞΨ̃ðp0; t0Þdp0;

ð81Þ

and the time evolved state takes the following form:

Ψ̃ðp; tÞ ¼ e−
i
2ℏ

tanðωtÞ
mω p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðωtÞp X
fxjg

Ψxje
i
ℏ

xjp

cosðωtÞe
− i
4ℏ

mω sinðωtÞ
cos2ðωtÞ x

2
j : ð82Þ

We now introduce the polymer scale μ and rewrite the
graph points using (76) and then take λ ¼ 0. Using this, the
former state takes the form

Ψ̃ðp; tÞ ¼ e−
i
2ℏ

tanðωtÞ
mω p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðωtÞp X
fjg

Ψnje
i
ℏ

μnjp

cosðωtÞe
− i
4ℏ

mω sinðωtÞ
cos2ðωtÞ μ

2n2j : ð83Þ

Finally, as part of the fourth step, we approximate the
square term p2 as given in (79). The final expression for the
time evolution of the polymer harmonic oscillator is

Ψ̃ðp;tÞ¼e
tanðωtÞ
imω

ℏ
μ2
½1−cosðμpℏ Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðωtÞp X
fjg

Ψnje
i
ℏ

μnjp

cosðωtÞe
− i
4ℏ

mωsinðωtÞ
cos2ðωtÞ μ

2n2j : ð84Þ

As before, let us analyze these results. First, the state (84) is
the time evolution of a quantum state in a regular lattice
with a unique approximation given by step 4. Similarly to
the free particle case, we obtain a global phase in (84) and
also a global factor cos−1=2ðωtÞ. Remarkably, this global
factor induces a nonunitary time evolution. Second, the
state is also modified with a local phase quadratic in the
lattice points ðμnjÞ2.
On the other hand, the state in (82) corresponds to the

time evolution of an arbitrary state within the entire
polymer Hilbert space. Remarkably, the steps defined in
the previous subsection yield similar expressions for both
states, Eqs. (82) and (84), with the explicit difference in the
approximation of step 4. Notably, this approximation alters
the global factor, but the global and the local phases are not
altered. As a result, the time evolution in both scenarios
(82) and (84) is not unitary because condition (66) does
not hold.
These results together with the expressions (82) or (80)

are the main results of this subsection. They provide an
explicit relation for the propagator of the polymer harmonic
oscillator, with or without polymer scale, in a regular lattice
or in the full polymer Hilbert space.

VI. CONCLUSIONS

In this paper, we presented the representation of the
symplectic group in polymer quantum mechanics (64). We

paid particular attention to those linear transformations
generating time evolution of linear systems such as the free
particle and the harmonic oscillator, and in this way, we
derived their quantum propagators. Although the repre-
sentation is non-unitary, a subset of the symplectic group,
such that det A det D ¼ 1, admits a unitary representa-
tion. Among the subgroup unitarily represented, we found
the rotation group SOðn;RÞ and the scaling group formed
by nonsingular diagonal matrices.
The propagator for the free particle was derived in the

full polymer Hilbert space (73), and the time evolution it
provides on an arbitrary state was also calculated in (75).
We rederived the result in Ref. [28] for the polymer free
particle by implementing some procedures within the full
polymer Hilbert space to obtain the regular lattice descrip-
tion. This procedure served later to obtain the time
evolution for the polymer harmonic oscillator. On the other
hand, time evolution for the polymer free particle on both
the full polymer Hilbert space and the regular lattice
description is unitary. Remarkably, time evolution for this
system is consistent with the Hamiltonian in (29) instead of
Hamiltonian (30). Further analysis is required to explore
why this representation selects one polymer Hamiltonian
over the other options.
We determined the propagator for the polymer harmonic

oscillator in (80), and then we used it to obtain the time
evolution of an arbitrary state in the full polymer Hilbert
space (82). Finally, we applied the procedures derived in
the polymer free particle case to obtain the time evolution in
a regular lattice (84). Because condition (66) does not hold,
the time evolution is not unitary in the case of the polymer
harmonic oscillator. This contradicts the unitary time
evolution using the exponentiation of the polymer
Hamiltonian in (29). Moreover, the time evolved state in
(84) seems to violate the superselection rules due to the

time dependency in the phase e
i
ℏ

μnjp

cosðωtÞ, although more
analysis to confirm this is needed.
Finally, these results might suggest that in any limiting

procedure to describe or recover the standard quantum
mechanics for these two systems, the free particle and the
harmonic oscillator, should also recover the unitary repre-
sentation of the symplectic group.
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