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The string breaking phenomenon in QCD can be studied using the gauge/string duality. In this approach,
one can make estimates of some of the string breaking distances at nonzero temperature and baryon
chemical potential. These point toward the enhancement of baryon production in strong decays of heavy
mesons in a dense baryonic medium.
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I. INTRODUCTION

In the string models, the strong decay of hadrons is
described through light quark-antiquark pair creation [1].
The most well-known example is that of a heavy meson
decay into a pair of heavy-light mesons

QQ̄ → Qq̄þ Q̄q: ð1:1Þ

In fact, this is one of the possible decay modes of the heavy
meson—the meson mode. From the string theory view-
point, one can interpret it as a string rearrangement between
the heavy and light sea quarks: QQ̄þ qq̄ → Qq̄þ qQ̄.
Although it is true that the meson mode is dominant in the
vacuum, there are other decay modes which might be of
interest for the physics of strong interactions. The next, in
number of light quarks, is the baryon mode

QQ̄ → Qqqþ Q̄ q̄ q̄ : ð1:2Þ

It is natural to expect that this mode is subdominant to the
meson mode because it is not energetically favorable,
and the probability for a string rearrangement between
six quarks is lower than between four unless the sea quarks
are regarded as a diquark-antidiquark pair ½qq�½q̄ q̄� [2]. If
so, then the string rearrangement may occur in the same
way as it does in the case of the meson mode.
The presence of baryonic medium adds a crucial twist

to the story, as light quarks are now not only due to pair
creation but also due to the medium. This is the reason for
which a decay mode with three light quarks is allowed,

QQ̄ → Qqqþ Q̄q: ð1:3Þ

We will call it the meson-baryon mode. From the string
theory viewpoint, it can be thought of as a string rear-
rangement between the heavy quarks and light quarks from
the medium: QQ̄þ q½qq� → Q½qq� þ Q̄q. In that case, a
baryon is regarded as a two-body system composed of a
quark and a diquark [2].
Apart from the string models, the string breaking

phenomenon has been studied by lattice gauge theory
simulations [3]. This provides reliable results, but limited
to the results for the meson mode at zero temperature and
zero chemical potential. For our purposes, what we need to
know from this approach can be summarized as follows.
One particularly useful model is that of Ref. [4], which
includes a mixing analysis based on a correlation matrix
whose elements give rise to a model Hamiltonian,

HðlÞ ¼
�
EQQ̄ðlÞ g

g 2EQq̄

�
: ð1:4Þ

Here, EQQ̄ðlÞ is the energy of two static heavy quark
sources separated by distance l and connected by a string,
2EQq̄ is the energy of a noninteracting pair of heavy-light
mesons, and the off-diagonal matrix element g describes
the mixing between these two states. The eigenvalues of
this model Hamiltonian correspond to the energy levels
of a system containing a static quark-antiquark pair. In this
way, the lattice data are well described by a few fit
parameters [5,6].
For what follows, it is convenient to introduce a

characteristic scale of string breaking. Like in Refs. [4,6],
we will take

EQQ̄ðlðmÞ
c Þ ¼ 2EQq̄ ð1:5Þ
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as a definition and call lc the string breaking distance.
Notice that such a definition differs from that of Ref. [5].
However, it has a clear meaning in the dual formulation [7].
Certainly, the original model of Ref. [4] can be

extended in several ways, for instance, by adding new

light flavors, by considering baryon modes, or by extending
to finite temperature and nonzero chemical potential. In
particular, the free energy matrix containing the decay
modes (1.1)–(1.3) is that

F ðlÞ ¼

0
BBBBB@

FQQ̄ðlÞ f1 f2 f3
f1 FQq̄ þ FqQ̄ f12 f13
f2 f12 FQqq þ FqQ̄ f23
f3 f13 f23 FQqq þ FQ̄ q̄ q̄

1
CCCCCA; ð1:6Þ

where FQQ̄ðlÞ is the free energy of two static heavy quark
sources separated by distance l and connected by a string
in the medium. All the remaining diagonal elements are the
free energies of noninteracting heavy-light mesons and
baryons. The off-diagonal elements describe the mixing
between the states. The lowest eigenvalue of this matrix
gives the minimal free energy of a system containing a
static quark-antiquark pair in the medium. Of course, the
above form ofF is suggestive enough, without more details
on specific situations. If the baryon chemical potential is
quite small, the F matrix becomes

F ðlÞ ¼

0
BB@

FQQ̄ðlÞ f1 f3
f1 FQq̄ þ FqQ̄ f13
f3 f13 FQqq þ FQ̄ q̄ q̄

1
CCA;

ð1:7Þ

because the meson-baryon decay mode has no physical
meaning in this case.
In analogy with what was done above, we introduce

several scales by equating FQQ̄ with the other diagonal
elements of the F matrix,

FQQ̄ðlðmÞ
c Þ ¼ FQq̄ þ FqQ̄; FQQ̄ðlðb0Þ

c Þ ¼ FQqq þ FqQ̄;

FQQ̄ðlðbÞ
c Þ ¼ FQqq þ FQ̄ q̄ q̄: ð1:8Þ

The so-defined lc’s depend on temperature and chemical
potential.
The purpose of the present paper is to further advance the

use of effective string theories in QCD. Here, we continue
our study of the string breaking phenomenon using the
gauge/string duality. This is a detailed and extended version
of Ref. [7]. The rest of the paper is organized as follows.
We begin in Sec. II by setting the framework and recalling
some preliminary results. Then, we consider the correlator
of two oppositely oriented Polyakov loops and describe
static string configurations which make the leading con-
tributions to it in the hadronic phase. In addition, we also

comment on some subleading configurations and point
out those whose relevance increases when approaching
the critical line. In Sec. III, a simple but phenomeno-
logically rather successful model is used to illustrate this.
We present our estimates of the string breaking distances
at nonzero temperature and chemical potential. Finally,
we conclude in Sec. IV with a discussion of some open
problems. Additional technical details are included in the
Appendixes.

II. GAUGE/STRING DUALITY
AND STRING BREAKING

Now, we will explain how to analyze some aspects of
the phenomenon of string breaking in QCD using the
gauge/string duality. There have been several papers on this
subject in the literature.1 However, here, we go another way
to describe disconnected string configurations that is a real
alternative to probe flavor branes.

A. Preliminaries

We start with some preliminary results. We will consider
a class of five-dimensional geometries, which is an exten-
sion of that of Ref. [9] to finite temperature and baryon
chemical potential in the presence of light quarks. All of
those represent a charged black hole in an asymptotically
anti-de Sitter ðAdSÞ space. The phenomenon of QCD string
breaking is modeled by turning on an open string tachyon
background, which is responsible for light quarks at string
end points.2 Thus strings can terminate on them in the
interior of five-dimensional space. With this, the general
form of the background is

1See, for example, the book of Ref. [8] and references therein.
2This motivates the usage of the term “tachyon.” In the present

context, its role is, however, different from that in string theory in
ten dimensions, where the open string tachyon is usually
associated with instabilities of non-Bogomolny-Prasad-Sommer-
field branes rather than fundamental strings.
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ds2 ¼ esr
2 R2

r2
ðfðrÞdt2 þ dx⃗2 þ f−1ðrÞdr2Þ;

A ¼ ðA0ðrÞ; 0;…; 0Þ; T ¼ TðrÞ: ð2:1Þ

Here, fðrÞ is a blackening factor. It is a decreasing function
of r such that fð0Þ ¼ 1 and fðrhÞ ¼ 0. The Hawking
temperature, which is identified with the temperature of a
dual gauge theory, is T ¼ 1

4π j∂rfjr¼rh . The Uð1Þ gauge
field associated with the baryon charge of quarks obeys the
boundary conditions A0ð0Þ ¼ μ and A0ðrhÞ ¼ 0, with μ a
baryon chemical potential. T is a tachyon field.3

The above form has limiting cases, which are note-
worthy. In the absence of the tachyon field, it reduces to a
one-parameter deformation of the Reissner-Nordström
solution in Euclidean AdS5 [10], with s a deformation
parameter. In the context of AdS/QCD, this type of
deformation was first discussed in relation to cold quark
matter in Ref. [11].4 To further reduce it to a Schwarzschild
black hole in a deformed AdS space, it is enough to turn the
gauge field off. The resulting geometry turns out to be of
interest, especially for calculating the expectation value of
the Polyakov loop [15]. And in the end, letting T ¼ 0, one
arrives at the form which was originally used to success-
fully model the heavy quark potential [9].
To construct string configurations, we need three basic

ingredients. The first is a Nambu-Goto string governed by
the action

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
; ð2:2Þ

where γ is an induced metric, α0 is a string parameter, and ξi

are world sheet coordinates.
The second is a baryon vertex. In the context of

AdS=CFT correspondence, it is a 5-brane [16]. At leading
order in α0, the brane dynamics is determined by its world
volume. So, the action is

Svert ¼ T 5

Z
d6ξ

ffiffiffiffiffiffiffi
γð6Þ

q
; ð2:3Þ

where T 5 is a brane tension and ξi are world volume
coordinates. Since the brane is wrapped on an internal
space X, from the five-dimensional point of view, the
vertex looks pointlike. We assume that the same holds in
respect of AdS/QCD models. If we place all objects at the
same fixed point in the internal space, then its detailed
structure is not important, except a possible warp factor
depending on the radial direction. In Ref. [17], it was
observed that an overall warp factor e−sr2 is useful for

modeling the equation of state which is a kind of the fuzzy
bag model [18]. Later, it turned out that this warp factor
also yields very satisfactory results, when compared to the
lattice calculations of the three-quark potential [19]. For our
purposes, we pick a static gauge ξ0 ¼ t and ξa ¼ θa, with
θa coordinates on X. The action is then

Svert ¼ τv

Z
dt

ffiffiffi
f

p e−2sr
2

r
: ð2:4Þ

Here, τv is a dimensionless parameter such that
τv ¼ T 5RvolðXÞ, where volðXÞ is a volume of X.
The third ingredient which takes account of light quarks

at string end points is a tachyon field. So, we add to the
world sheet action

Sq ¼
Z

dτeT; ð2:5Þ

which is the usual sigma-model action for strings propa-
gating in a tachyon background. The integral is over a
world sheet boundary parametrized by τ, and e is a
boundary metric. In what follows, we consider only the
case of a constant tachyon T0 and world sheets whose
boundaries are lines in the t direction. In this case, the
action written in the static gauge is

Sq ¼ m

Z
dt

e
s
2
r2

r

ffiffiffi
f

p
; ð2:6Þ

where m ¼ RT0. One immediately recognizes it as the
action of a point particle of mass T0 at rest.5

Finally, it remains to mention that in the presence of a
background gauge field the string end points with attached
quarks couple to it. So, the world sheet action includes
boundary terms which in the case of interest are given by

SA ¼∓ 1

3

Z
dtA0: ð2:7Þ

The minus and plus signs correspond to a quark and an
antiquark. The numerical factor comes from the relation
between the chemical potentials of quarks and baryons
at Nc ¼ 3.

B. String breaking

Now, consider the correlator of two oppositely
oriented Polyakov loops. On the string theory side, its
expectation value is given by the world sheet path integral
so that a string world sheet has the loops for its boundary.

3We introduce a single scalar field (tachyon), since in what
follows we consider only the case of two light quarks of equal
mass.

4For more recent work, see Refs. [12–14].

5Many aspects of strings with quarks at the ends have been
discussed in the literature for years. See, e.g., Refs. [20,21] and
references therein.
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In principle, the integral can be evaluated semiclassically
with the result

hLð0ÞL†ðlÞi ¼
X
n

ωne−Sn : ð2:8Þ

Here, Sn is the world sheet action evaluated on a classical
solution (string configuration), n labels the solutions, and
ωn is a relative weight factor. For static configurations, each
Sn reduces to Fn=T, where Fn is a free energy of the
configuration. Importantly for what follows, the Fn’s are
the diagonal elements of the F matrix. Thus, in this
formalism, the string breaking distances have a simple
meaning, namely that two exponents are equal to each other
at l ¼ lc.
The correlator reduces to an expectation value of a semi-

infinite rectangular Wilson loop at T ¼ μ ¼ 0. So, the
above expression becomes

hWðCÞi ¼
X
n

wne−Sn ; ð2:9Þ

where Sn is expressed in terms of an energy of the
configuration En and a time interval T by Sn ¼ EnT .
The En’s are the diagonal elements of the model
Hamiltonian; in particular, EQQ̄ and EQq̄ are the diagonal
elements of (1.4).

1. Deeply inside the hadronic phase

For ðT; μÞ far from the critical values, it is natural to
assume that the leading contributions to the correlator come
from string configurations associated with colorless states
and arranged in number of light quarks. In our discussion,
we will restrict this number to 4. For this case, the
configurations are shown in Fig. 1, and more details are

contained in Appendix B. Here, it holds that rh ≫ rw and
rq̄ > rq > rv. The first is the necessary condition for the
model to be in the hadronic phase far from the critical line,
where the free energy of configuration (1) behaves linearly
as a function of l for large l. The second is the condition of
existence of the configurations for the parameter values we
use below.
We begin our discussion with the connected configura-

tion (1), which represents a string stretched between two
heavy quark sources. It is clear that it dominates the
Polyakov loop correlator at short distances, where the
correlator can be expressed in terms of a single exponential
function. However, this comes to naught at larger distances,
where the correlator is dominated by disconnected con-
figurations. As a result, the free energy of the pair becomes
independent of separation distance (flattened). This is the
essence of string breaking.
An important fact, explained in Appendix B, is that

for large l the free energy of this configuration is well
approximated by a linear function,6

FQQ̄ðlÞ ¼ σl − 2g
ffiffi
s

p
I þ Cþ oð1Þ; ð2:10Þ

where the string tension σ is given by (B5) and I by (B9).
C is a normalization constant which is equal to a constant
term in the formal expansion of FQQ̄ near l ¼ 0.
To get further, consider configuration (2). We interpret it

as a pair of noninteracting heavy-light mesons. The free
energy of the configuration can be directly read off from
Eqs. (B26) and (B28). So, it is

FIG. 1. The leading string configurations contributing to the Polyakov loop correlator. Heavy (light) quarks are denoted by QðqÞ, and
baryon vertices are denoted by V. All the strings are in the ground state. The boundary of space is at r ¼ 0, and the horizon is at r ¼ rh. A
soft wall responsible for a linear behavior of the free energy of configuration (1) at a large quark separation l is located at r ¼ rw.
Because the potential A0 gives the electric field in the r direction, the light quarks are shifted toward the boundary.

6Importantly, for the parameter values we use, this is the case
for l≳ 0.5 fm, whereas the string breaking distance is of order
1 fm.
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FQq̄ þ FqQ̄ ¼ ffiffi
s

p �
gQðq̄Þ þ mV

�
f;
1

2
; q̄

�
þ ðq̄ → qÞ

�

þ 1

3
ðA0ðq̄Þ − A0ðqÞÞ þ C; ð2:11Þ

where the functions Q and V are defined in Appendix A.
The positions of the light quarks (q̄ and q) are determined
from Eqs. (B22) and (B27).
Using this expression, we find the string breaking

distance,

lðmÞ
c ¼

ffiffi
s

p
σ

�
gQðq̄Þ þ mV

�
f;
1

2
; q̄

�
þ ðq̄ → qÞ

þ 1

3
ffiffi
s

p ðA0ðq̄Þ − A0ðqÞÞ þ 2gI

�
; ð2:12Þ

that gives a characteristic scale of string breaking when it
occurs due to a pair of light quarks. It is noteworthy that

the dependence on C cancels out. As a result, lðmÞ
c is a

renormalization scheme independent quantity, and there-
fore is physically meaningful.
Now, we consider configuration (3), which represents a

noninteracting meson-baryon pair. Since it does not include
light antiquarks at the string end points, one might think
that this configuration is forbidden by baryon number
conservation. This is true, except for the baryonic medium,
where the light quarks come from the medium and no
problem occurs with net baryon number conservation.
Thus, this configuration is only meaningful at large enough
baryon density (chemical potential).
Using Eqs. (B28) and (B33), the free energy of the

configuration is

FQqq þ FqQ̄ ¼ 3
ffiffi
s

p �
gQðqÞ − 1

3
gQðvÞ þ mV

�
f;
1

2
; q

�

þ gkVðf;−2; vÞ
�
− A0ðqÞ þ C; ð2:13Þ

where v and q are determined, respectively, from (B16)
and (B27). The corresponding string breaking distance is

lðb0Þ
c ¼

ffiffi
s

p
σ

�
3gQðqÞ − gQðvÞ þ 3mV

�
f;
1

2
; q

�

þ 3gkVðf;−2; vÞ − 1ffiffi
s

p A0ðqÞ þ 2gI

�
; ð2:14Þ

that sets a scale of string breaking for the decay into a
meson-baryon pair.
Unlike configuration (3), another configuration consist-

ing of heavy-light baryons is always meaningful. It is
configuration (4). For this configuration, the free energy
can be read off from (B33) and (B34),

FQqq þ FQ̄ q̄ q̄ ¼ 2
ffiffi
s

p �
gQðqÞ þ mV

�
f;
1

2
; q

�

þ ðq → q̄Þ − gQðvÞ þ 3gkVðf;−2; vÞ
�

þ 2

3
ðA0ðq̄Þ − A0ðqÞÞ þ C: ð2:15Þ

As before, v, q̄, and q are the solutions of the equations of
Appendix B. The string breaking distance is then

lðbÞ
c ¼ 2

ffiffi
s

p
σ

�
gQðqÞ þ mV

�
f;
1

2
; q

�
þ ðq → q̄Þ − gQðvÞ

þ 3gkVðf;−2; vÞ þ 1

3
ffiffi
s

p ðA0ðq̄Þ − A0ðqÞÞ þ gI

�
:

ð2:16Þ

It gives a characteristic scale when a string is broken by two
quark-antiquark pairs, which, in the final state, look like a
pair of diquarks.7

FIG. 2. Sketched here are the possible subleading configurations. Configuration (5), unlike all the others, includes an excited string.
The small circles placed on the soft wall represent bound states of light quarks.

7As seen from the figure, a diquark is a one-dimensional object
extended along the fifth dimension and constructed from two
light quarks and a baryon vertex.
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We conclude our discussion with a few remarks on
subleading string configurations. Some of those are
sketched in Fig. 2. The point is that they might be important
in understanding free energies of excited states, but have
negligible effect on the ground state free energy.
The connected configuration represents an excited string

stretched between the heavy quarks. At zero temperature
and chemical potential, such a configuration becomes
relevant for describing the hybrid quark potentials [22].
The first disconnected configuration consists of two parts:
one is a string stretched between two heavy quarks, and the
other is a bound state of two light quarks, say, a pion. Thus,
its free energy differs from that of configuration (1) by a
pion free energy Fπ, which reduces to the pion mass at zero
temperature and chemical potential. The other disconnected
configuration is a generalization of what we have just
discussed. Here, the pion is replaced by a four-quark state,
say, a sigma meson,8 and therefore Fπ is replaced by Fσ in
the expression for the free energy.

2. Near the critical line

It is easy to admit that near the critical line the hadronic
phase contains not only color singlets but, in addition, some
amount of color objects.9 The simplest of those are quarks
that corresponds to a decay,

QQ̄ → Qþ Q̄: ð2:17Þ

It makes sense to explore this in the present context.
As usual in AdS=CFT-like dualities, a static heavy quark

is described by a configuration in which a string attached to
the quark on the boundary terminates on the horizon (see
Appendix B). This means that there are contributions to the
Polyakov loop correlator from similar configurations, in
particular from those of Fig. 3. In general, it is expected that
a phase transition occurs when the horizon approaches the
soft wall [23] so that temperature and chemical potential
reach their critical values. With this in mind, it is intuitively
clear that in that case contributions from the configurations
of Fig. 3 may not be completely negligible with respect to
those of Fig. 1.
We consider the first configuration (8). Combining the

expressions (B13) and (B14), the free energy of this
configuration is simply

FQ þ FQ̄ ¼ 2g
ffiffi
s

p
QðhÞ þ C: ð2:18Þ

Given the free energy, the corresponding string breaking

distance can be defined as before, FQQ̄ðlðQÞ
c Þ ¼ FQ þ FQ̄.

Or more explicitly,

lðQÞ
c ¼ 2g

ffiffi
s

p
σ

ðQðhÞ þ IÞ: ð2:19Þ

Similarly, for configuration (9), we have

FQ0 þ FQ̄0 ¼ 2g
ffiffi
s

p ð2QðhÞ −QðvÞ þ 3kVðf;−2; vÞÞ þ C;

ð2:20Þ

as it follows from the expressions (B17) and (B18). Here, v
is a solution of Eq. (B16). The string breaking distance is
then

lðQ0Þ
c ¼ 2g

ffiffi
s

p
σ

ð2QðhÞ −QðvÞ þ 3kVðf;−2; vÞ þ IÞ:
ð2:21Þ

The above expressions for the breaking distances give
characteristic scales when string breaking results in free
quarks. In the case of a pure gauge theory, these, however,
make no sense because the free energies are infrared
divergent in the confined (hadronic) phase.

III. EXAMPLE

To illustrate the above ideas, we consider now a specific
model. The good reasons for choosing this model are as
follows: (1) A string theory dual to QCD is still unknown.
It would seem very reasonable to gain experience and
intuition by solving problems which can be solved with the
effective string model already at our disposal. (2) The
estimates provided by this model are in agreement with the
lattice calculations and QCD phenomenology [9,15,19,23].
(3) Many estimates can be made analytically. (4) Our goal
is to make predictions which may then be tested by means
of other nonperturbative methods.

FIG. 3. The disconnected configurations describing single
heavy quarks. They can be interpreted as follows. In the first
case, the quarks belong to the triplet representation of SUð3Þ,
while in the second case, they correspond to the antitriplet one,
which is an antisymmetric two-index representation [24].

8For the present discussion, it does not matter how one
interprets it, either as a tetraquark or as a molecule.

9In other words, it becomes a mixed phase.
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A. Model

Following Ref. [12], we take the blackening factor and
gauge field to be of the form

fðrÞ ¼ 1 − ð1þ 2p2Þ
�
r
rh

�
4

þ 2p2

�
r
rh

�
6

;

A0ðrÞ ¼ μ − rp
r2

r3h
: ð3:1Þ

Here, p is a parameter associated with a black hole charge.
It takes values on the interval [0, 1]. r is a free parameter of
the model. Clearly, this background geometry is a simple
one-parameter deformation of the Reissner-Nordström
charged black hole in Euclidean AdS5 [10], with a
deformation parameter s.
Given this, the Hawking temperature and baryon chemi-

cal potential, as functions of p and h, are

T ¼ 1

π
ð1 − p2Þ

ffiffiffi
s

h

r
; μ ¼ rp

ffiffiffi
s

h

r
: ð3:2Þ

For future convenience, we invert these expressions to find

h ¼ sr2

μ2
p2; p ¼ −

πr

2

T
μ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
πr

2

T
μ

�
2

s
: ð3:3Þ

B. More details

In QCD with two light flavors, the phase structure is
determined by the chiral condensate. In the dual formu-
lation, what is usually regarded as a chiral condensate
appears as a coefficient of the subleading term in the
expansion of a scalar field near r ¼ 0 [25]. Setting
T ¼ const is equivalent to a truncation of TðrÞ to its
leading term. Therefore, we need to assume a working
definition which will give us at least a qualitative picture of
the phase diagram. Following Ref. [26], we treat FQQ̄ as an
“order parameter.” Such a definition is to some extent
model dependent and motivated by the examples from
AdS/QCD [12,26]. The question now is how accurate it is.
As we will see below, the answer to this question is that
it is quite good as long as T and μ are not close to their
critical values.10

It follows from the analysis in Appendix C that there are
two regimes of behavior for FQQ̄: one at small values of T
and μ and one at large values. In the former case, FQQ̄ is a
linear function of l for large l, while in the latter case, it is
not. Therefore, we call them a hadronic phase and a quark-
gluon phase, respectively. The phase diagram of the model

is shown in Fig. 4. The phases are separated by the (pseudo)
critical line, which is determined by Eq. (C2). We have also
introduced the naturally defined pseudocritical temperature
and chemical potential

Tpc ¼
1

π

ffiffiffiffiffi
s

h0

r
; μpc ¼ r

ffiffiffiffiffi
s

h1

r
; ð3:4Þ

where h0 and h1 are given by (C7) and (C11).
For practical use, it is convenient to write the formulas of

Sec. II more explicitly by taking into account the expres-
sions (3.1). This can be done with the help of a little
algebra. So, the force balance equations (B22) and (B27)
take the form

geq þ me
1
2
q

�
1 − ð1þ 2p2Þ

�
q
h

�
2

þ 2p2

�
q
h

�
3
�1

2

×

�
q − 1þ 2

�
q
h

�
2 3p2 q

h − 1 − 2p2

1 − ð1þ 2p2ÞðqhÞ2 þ 2p2ðqhÞ3
�

¼∓ 2

3
rp

�
q
h

�3
2

: ð3:5Þ

Here, the minus sign refers to quarks, and the plus sign
refers to antiquarks, where q is replaced by q̄. At the same
time, the equation for the force balance at the baryon vertex
becomes

1þ 3ke−3v
�
1 − ð1þ 2p2Þ

�
v
h

�
2

þ 2p2

�
v
h

�
3
�1

2

×

�
1þ 4vþ 2

�
v
h

�
2 1þ 2p2 − 3p2 v

h

1 − ð1þ 2p2ÞðvhÞ2 þ 2p2ðvhÞ3
�

¼ 0;

ð3:6Þ

as follows from (B16).

FIG. 4. The model’s phase diagram in the plane of the
temperature and baryon chemical potential.

10It is worth noting that a full understanding of the critical
behavior of QCD with two light quarks is still not in hand for
small enough quark masses (in the chiral limit) [27].
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One can do a similar calculation for the string breaking
distances, with the result11

lðmÞ
c ¼

ffiffi
s

p
σ

�
gQðq̄Þ þ mV

�
p;

q̄
h
;
1

2
; q̄

�
þ ðq̄ → qÞ

þ 1

3
rph−

3
2ðq − q̄Þ þ 2gI

�
; ð3:7Þ

lðb0Þ
c ¼

ffiffi
s

p
σ

�
3gQðqÞ − gQðvÞ þ 3mV

�
p;

q
h
;
1

2
; q

�

þ 3gkV
�
p;

v
h
;−2; v

�
þ rph−

3
2q −

μffiffi
s

p þ 2gI

�
;

ð3:8Þ

lðbÞ
c ¼ 2

ffiffi
s

p
σ

�
gQðqÞ þ mV

�
p;

q
h
;
1

2
; q

�
þ ðq → q̄Þ

− gQðvÞ þ 3gkV
�
p;

v
h
;−2; v

�

þ 1

3
rph−

3
2ðq − q̄Þ þ gI

�
; ð3:9Þ

lðQ0Þ
c ¼ 2g

ffiffi
s

p
σ

�
2QðhÞ−QðvÞ þ 3kV

�
p;

v
h
;−2; v

�
þ I

�
:

ð3:10Þ

The light quark and vertex positions are determined from
(3.5) and (3.6), and therefore these expressions depend only
on the parameters p and h. The last, in turn, are expressed
in terms of T and μ by means of (3.3).

C. Numerics

It is of great interest to see how the string breaking
distances behave as temperature and chemical potential are
varied. To this end, we first need to fix the free parameters
of the model.12 This can be done in two different ways [7].
The first way is to mainly use the results of lattice QCD
available at zero temperature and baryon chemical poten-
tial. In doing so, the value of s is fixed from the slope of the
Regge trajectory of ρðnÞmesons in the soft wall model with
the geometry (2.1). This gives s ¼ 0.450 GeV2 [28]. Then,
using (B11), we obtain g ¼ 0.176 by fitting the value of the
string tension σ0 to its value in Ref. [6]. The parameter m is
adjusted to reproduce the lattice result for the string

breaking distance lðmÞ
c . With lðmÞ

c ¼ 1.22 fm [6], this gives
m ¼ 0.538. In Ref. [19], the value of k is adjusted to fit the
three-quark potential to the lattice data for pure SUð3Þ

gauge theory. So far, there are no such data available for
QCD with two dynamical quarks. We take k ¼ − 1

4
e
1
4

simply because it yields an exact solution to Eq. (3.6),
namely, v ¼ 1

12
.13 For a shorthand, we denote this set of

parameter values by L.
We are now in a position to present some simple

estimates obtained for the parameter set L. At zero temper-
ature and chemical potential, we get [7]

lðbÞ
c ¼ 2.35 fm: ð3:11Þ

Thus, the baryon mode is subdominant, as expected. Note

that for the allowed values of k, lðbÞ
c is a slowly varying

function of k, which can take values from 2.23 to 2.35 fm.
So, the error associated with our choice of k is, in fact,
less than 5%. As for the pseudocritical temperature and
chemical potential (3.4), their values are given by Tpc ¼
132 MeV and μpc ¼ 538 MeV.
In Ref. [6], the numerical calculations were done at

unphysical pion mass mπ ¼ 280 MeV. In this light and in
view of possible applications to phenomenology, we now
consider the second way of fixing the parameters. In this
way, the values of s and g are extracted from the
quarkonium spectrum obtained by using the heavy quark
potential derived from the model [9]. This is self-consistent
and gives s ¼ 0.15 GeV2 and g ¼ 0.44 at T ¼ μ ¼ 0 [29].
The value of k is set to − 1

4
e
1
4, as before. We determine m

from the condition EQqq − EQq̄ ¼ MΛþ
c
−MD0 ≈ 420 MeV

[30]. This results in m ¼ 0.699. We denote this set by P.
Using it, we find that

lðmÞ
c ¼ 1.07 fm; lðbÞ

c ¼ 1.99 fm ð3:12Þ

at T ¼ μ ¼ 0. These values are smaller than those above,
which could correspond to a more physical situation, with a
lighter pion. In this case, the pseudocritical temperature and
chemical potential turn out to be about 76 and 621 MeV,
respectively.
In each of these cases, we still need a value of r to

actually make the estimates of the string breaking distances
at nonzero chemical potential. As before, one way would be
to use lattice results, but now with the caveat that those are
available only at small baryon chemical potential. On the
other hand, the estimates of the Debye screening mass,
which are qualitatively consistent with the lattice, point
out that r is somewhere between 2 and 6 [14]. In Fig. 5,
we present our results. We see that the baryon mode is
always subdominant, as one could expect. Its string break-
ing distance is roughly twice the distance for the meson

mode. Both lðmÞ
c and lðbÞ

c are slowly increasing functions of
11The expression for lðQÞ

c remains unchanged.
12In fact, we need to fix only one parameter, which is m. All

the others have already been fixed in previous studies conducted
in the context of this model.

13If T ¼ μ ¼ 0, then a simple analysis shows that on the
interval [0, 0.566], with the upper limit being a solution of (3.5) at
m ¼ 0.538, equation (3.6) has solutions if −0.558≲ k ≤ − 1

4
e
1
4.
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temperature and chemical potential. By contrast, the string

breaking distance lðb0Þ
c is slowly increasing with temper-

ature but noticeably decreasing with chemical potential.
Thus, the energetic preference of the meson decay mode
over the meson-baryon one decreases with the increase of
baryon chemical potential (baryonic density). Moreover,
the meson-baryon mode might even become dominant for
some values of the parameters, as seen from the right panel
in the figure above.
There is certainly something to be said about the sub-

leading string configurations of Fig. 2, but we will leave this
for future work. We just conclude with a few comments on
the disconnected configurations shown in Fig. 3. In the
context of AdS/QCD, these describe single quarks. In Fig. 6,

we present the results for the string breaking distance lðQÞ
c

and their comparison with those for lðmÞ
c . Obviously, lðQÞ

c

shows a steep fall between the origin, where it is singular,
and the critical line, where it becomes comparable with the

distance lðmÞ
c . The physical meaning of such behavior is

easily understood by recalling that the free energy of a single
quark is IR divergent at T ¼ μ ¼ 0 and a number of free
quarks vastly grows as T and μ tend to the critical values.
To simplify the figure, we do not explicitly show the results

for the string breaking distance lðQ0Þ
c . The reason is that,

although the function lðQ0Þ
c behaves similarly to lðQÞ

c , it takes
larger values. Thus, it turns out that the string configuration
(9) is subleading to (8).14

FIG. 6. The string breaking distances lðmÞ
c and lðQÞ

c (shown in light cyan). As above, the left panel refers to the parameter set L with
r ¼ 1.5, and the right panel refers to the set P with r ¼ 3.

FIG. 5. The string breaking distances lðmÞ
c , lðb0Þ

c , and lðbÞ
c (shown from bottom to top). For lðb0Þ

c , the chemical potential runs from
0.2μpc to μpc because this distance is meaningful only if the chemical potential is different enough from zero. The left panel corresponds
to the set L with r ¼ 1.5, and the right panel corresponds to the set P with r ¼ 3.

14A caveat here is that this conclusion is valid at least for the
parameter sets we use. The difference between the free energies
FQ0 and FQ might be small, as it was observed in Ref. [24].
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IV. CONCLUSIONS

One of the main purposes of the AdS/QCD approach is
to make predictions on the strongly coupled regimes of
QCD that would be otherwise impossible or difficult to
explore using the standard tools. In this regard, the two
main conclusions we have drawn in Ref. [7] can be
summarized as follows. First, the energetic preference of
the meson decay mode over the meson-baryon one
decreases with chemical potential (baryon density).15

Combining this with the natural assumption that the
probability for a string rearrangement between the heavy
quarks and light quarks coming from the medium also
increases with an increase of baryon density, it is natural to
expect the enhancement of heavy-light baryon production
in strong decays of heavy mesons in the dense baryon
medium. Second, in the process of hadronization, the Λ
baryons and D mesons are formed from c-quark coales-
cence with light quarks and antiquarks. Assuming that the
hadrons are at rest in the plasma frame, we can estimate the
difference between the free energies of heavy-light mesons
and baryons. Since it decreases with chemical potential,
meson formation becomes less and less favorable. This
could be one of the reasons for the enhancedΛþ

c production
in PbPb collisions (with respect to pp collisions) measured
with the ALICE detector at CERN [31]. Clearly, the same
argument that we gave applies to the b quark, too. The
results of this paper show that in the hadronic phase
temperature effects do not alter these conclusions.16

We have discussed the phenomenon of string breaking
within the effective string model in the background fields
defined by Eq. (2.1). For an important illustration of these
ideas, we gave the example for the specific background.
The model we are pursuing has its own limitations and
shortcomings, as any model does. Apparently, there
are many things which deserve to be further clarified
and improved. For instance, one of those is a role playing
by the open tachyon field and its possible implications on
the structure of phase diagram. In another direction, there is
a circle of questions related to the string breaking phe-
nomenon, which can be addressed using the model already
at our disposal. In this regard, it would be particularly
interesting to see what happens in the case of triply heavy
baryons.
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APPENDIX A: SOME USEFUL FORMULAS

For convenience, we present here a couple of integrals
appearing in the calculations. Using integration by parts,
the integrals can be simplified and expressed in terms of the
imaginary error function, erfiðzÞ ¼ 2ffiffi

π
p

R
z
0 dxe

x2 . So,

Z
a

0

dx
x2

ðecx2 − 1Þ ¼ ffiffiffiffiffi
πc

p
erfiða ffiffiffi

c
p Þ þ 1

a
ð1 − eca

2Þ ðA1Þ

and

Z
b

a

dx
x2

ecx
2 ¼ ffiffiffiffiffi

πc
p ðerfiðb ffiffiffi

c
p Þ − erfiða ffiffiffi

c
p ÞÞ − ecb

2

b
þ eca

2

a
;

ðA2Þ

where a, b, and c are positive numbers.
For what follows, it is also convenient to define a

function,

QðxÞ ¼ ffiffiffi
π

p
erfið ffiffiffi

x
p Þ − exffiffiffi

x
p ; ðA3Þ

which allows one to write the results in a simpler form.
The peculiar forms of the actions (2.4) and (2.6) motivate

the definition

Vðf; b; yÞ ¼
ffiffiffi
f
y

s
eby: ðA4Þ

In particular, it takes the form

Vða; x; b; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ 2a2Þx2 þ 2a2x3

q ebyffiffiffi
y

p ðA5Þ

for the background geometry (3.1). Here, ða; xÞ belong to
the interval [0, 1].

APPENDIX B: BASIC STRING
CONFIGURATIONS

In this Appendix, we consider the static string configu-
rations sketched in Fig. 7. This is a basic set which provides
a proper framework for evaluating the configurations of
Sec. II. We arrange the configurations according to increas-
ing number of light quarks at string end points.

1. Configurations without light quarks

We begin by briefly summarizing the results on con-
figurations ðaÞ − ðc0Þ. In the case of zero chemical potential
or vanishing baryon density, these configurations were

15The latter might even become energetically favorable, as
seen from the right panel in Fig. 5. In this case, a simple estimate
gives 435 MeV for the transition value of μ.

16The point is that the shorter the breaking distance, the smaller
the free energy.
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widely discussed in the literature.17 For standard explan-
ations, see Refs. [14,15,24], whose conventions we gen-
erally follow. In the case of finite chemical potential, just a
few minor modifications are needed.

a. Connected configuration

In the gauge/string duality, configuration (a) describes a
kind of bound state. It includes two quark sources placed
on the boundary of space and a string stretching between
them. A gravitational force bends the string by pulling it
toward the bulk. This is a crucial difference with a straight
string in four-dimensional models in flat space. Usually,
one uses this configuration to compute a contribution to the
singlet free energy of the quark-antiquark pair. For the
background geometry (2.1), it can be written in parametric
form as [14]

lðr0Þ ¼ 2

Z
r0

0

drffiffiffi
f

p
�
σ2eff
I2

− 1

�
−1
2

;

FQQ̄ðr0Þ ¼ 2g

Z
r0

0

dr
r2

�
esr

2

�
1 −

I2

σ2eff

�
−1
2

− 1

�
−
2g

r0
þ C:

ðB1Þ

Here, l is a separation distance, and r0 is a parameter
defined by r0 ¼ max r. It runs from 0 to rw. The multipli-
cative factor g is given by g ¼ R2

2πα0, and C is a normalization
constant resulting from the subtraction of a linear diver-
gence (infinite quark mass). The effective string tension σeff
is defined by

σeffðrÞ ¼
ffiffiffi
f

p esr
2

r2
: ðB2Þ

I is a first integral, which is set to σeffðr0Þ.
A simple analysis shows that lðr0Þ is a monotonically

increasing function on the interval ½0; rw� and that it tends to
zero as r0 → 0 and to infinity as r0 → rw. In the first

limiting case, the asymptotic behavior of the free energy is
that

FQQ̄ðlÞ ¼ −
α

l
þ Cþ oð1Þ; ðB3Þ

with α ¼ gð2πÞ3Γ−4ð1
4
Þ. In the second case, the behavior of

l and FQQ̄ near r0 ¼ rw is

lðr0Þ ¼ −k lnðrw − r0Þ þOð1Þ;
FQQ̄ðr0Þ ¼ −kσ lnðrw − r0Þ þOð1Þ; ðB4Þ

where

k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σeff=fσ00eff

q
ðrwÞ; σ ¼ gσeffðrwÞ: ðB5Þ

From this, it follows that FQQ̄ðlÞ ¼ σlþOð1Þ, with the
string tension σ.
To find the constant term in the asymptotic expansion for

large l, consider

FQQ̄−σl¼2g

Z
r0

0

dr
r2

�
esr

2

�
1−

I2

σ2eff

�
−1
2

�
1−

IσeffðrwÞ
σ2eff

�
−1

�

−
2g

r0
þC: ðB6Þ

Taking the limit r0 → rw, we find

FQQ̄ − σl ¼ 2g

Z
rw

0

dr
r2

�
esr

2

�
1 −

I2
w

σ2eff

�1
2

− 1

�
−
2g

rw
þ C;

ðB7Þ

where Iw ¼ σeffðrwÞ. Therefore, the asymptotic behavior
for large separations takes the form

FQQ̄ðlÞ ¼ σl − 2g
ffiffi
s

p
I þ Cþ oð1Þ; ðB8Þ

with a dimensionless coefficient,

(a) (b) (c) (d)(b′) (c′) (e) (e′)(d′)

FIG. 7. Basic string configurations. Here, notation is the same as in Fig. 1.

17So, the only new result presented here is that constant terms
in the expansions of a free energy of configuration (a) are
different for small and large quark separations.
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I ¼ 1ffiffi
s

p
Z

rw

0

dr
r2

�
1 − esr

2

�
1 −

I2
w

σ2eff

�1
2

�
þ 1ffiffi

s
p

rw
: ðB9Þ

We conclude our discussion of the connected configu-
ration with some remarks. First, although the world sheet
action includes the two SA’s associated with the string end
points, they cancel each other out because the quark and
antiquark have opposite Uð1Þ charge. Second, it is worth
noting that the constant terms in the expansions of FQQ̄ are
different for small and large l. Each of those is scheme
dependent, but their difference is not. This makes the model
distinct from the simple phenomenological laws like the
Cornell model [32]. Third, when T ¼ μ ¼ 0, FQQ̄ reduces
to the corresponding contribution to the energy of the heavy
quark pair.18 It behaves for large interquark separations as

EQQ̄ðlÞ ¼ σ0l − 2g
ffiffi
s

p
I0 þ Cþ oð1Þ; ðB10Þ

where

σ0 ¼ σjT¼μ¼0 ¼ egs;

I0 ¼ IjT¼μ¼0 ¼
Z

1

0

dx
x2

ð1þ x2 − ex
2 ½1 − x4e2ð1−x2Þ�12Þ:

ðB11Þ

The above integral is not solvable analytically, whereas a
simple numerical calculation gives I0 ≈ 0.751.

b. Disconnected configurations

The string configurations ðbÞ − ðc0Þ provide a descrip-
tion of single heavy quarks and antiquarks in the medium.
In these cases, the strings are stretched between the horizon
and quark sources located on the boundary. Such configu-
rations matter for the computation of the free energies of
single particles [15,24].19

First, let us consider configuration (b). It is straightfor-
ward to generalize the analysis of Ref. [15] to the case of
finite chemical potential. The only modifications of the
formulas are the obvious μ-dependent terms coming from
the boundary action SAjr¼0. Indeed, in static gauge, the total
action is simply

S ¼ SNG −
μq
T
; ðB12Þ

with μq ¼ μ
3
, and the analysis then proceeds in the sameway

as in Ref. [15]. As a result, the free energy is given by

FQ ¼ g
ffiffi
s

p
QðhÞ − μq þ

1

2
C; ðB13Þ

where h ¼ sr2h and the function Q is defined by Eq. (A3).
Similarly, for configuration ðb0Þ, it is

FQ̄ ¼ g
ffiffi
s

p
QðhÞ þ μq þ

1

2
C: ðB14Þ

This is so because the only modification is due to the
sign reversal of SA. It is perhaps noteworthy that for the
background geometry (2.1) the free energies can be
computed analytically and the results are independent of
the form of the blackening factor f.
Something similar happens in the two remaining cases.

For configuration (c), the total action reduces to

S ¼
X3
i¼1

SNG þ Svert −
μq
T

ðB15Þ

so that the rest of the analysis proceeds along the lines of
Ref. [24]. Varying the action with respect to rv gives

1þ 3k

�
1þ 4v − v

_f
f

� ffiffiffi
f

p
e−3v ¼ 0; ðB16Þ

with k ¼ τv
3g

and v ¼ sr2v. A dot denotes a derivative with
respect to v. This is a force balance equation at the baryon
vertex that determines its position. The expression for the
free energy can be written as

FQ0 ¼ g
ffiffi
s

p ð2QðhÞ −QðvÞ þ 3kVðf;−2; vÞÞ − μq þ
1

2
C;

ðB17Þ

upon performing the integrals over r. The function V is
defined by (A4).
A similar treatment can be given for configuration ðc0Þ,

which is obtained by replacing Q by Q̄. So, we have

FQ̄0 ¼ g
ffiffi
s

p ð2QðhÞ −QðvÞ þ 3kVðf;−2; vÞÞ þ μq þ
1

2
C:

ðB18Þ

We are unable to solve Eq. (B16) analytically even for the
simplest choice of f. This significantly complicates the use
of the formulas for FQ0 and FQ̄0 . However, the correspond-
ing analysis can still be done numerically.

2. Configurations with light quarks

Here, we consider in more detail the basic configurations
ðdÞ − ðe0Þ. In the context of the gauge/string duality,
these describe heavy-light mesons and baryons. Unlike
in Ref. [33], we do not introduce probe flavor branes

18It reduces to the energy of the pair only in the absence of
dynamical quarks.

19Although at zero temperature and chemical potential the free
energies are infinite, at nonzero temperature and chemical
potential, they are finite, as it is in QCD with light flavors.
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associated with light dynamical quarks; instead, we model
the disconnected string configurations by assuming the
constant tachyon background. Such a background can be
interpreted as a source of pointlike objects attached to string
end points in the bulk.

a. Configurations without baryon vertices

First, let us consider configuration (d). Since we are
interested in static configurations, we choose the static
gauge ξ1 ¼ t and ξ2 ¼ r. For the geometry (2.1), the
Nambu-Goto action is then

SNG ¼ g

T

Z
dr

esr
2

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð∂rxiÞ2

q
: ðB19Þ

From this, it follows that xi ¼ const, which represents a
straight string stretched along the r axis, is a solution to the
equations of motion. Taking account also of the boundary
terms (2.6) and (2.7), the total action

S ¼ SNG þ ðSq þ SAÞjr¼rq̄ þ SAjr¼0; ðB20Þ

evaluated on this solution, takes the form

S ¼ 1

T

�
g

Z
rq̄

0

dr
r2

esr
2 þ m

e
s
2
r2q̄

rq̄

ffiffiffi
f

p
þ 1

3
A0ðrq̄Þ − μq

�
:

ðB21Þ

Next, we extremize the action with respect to the position
of the light antiquark. The evaluation of the derivatives
just gives

geq̄ þ m

�
q̄ − 1þ q̄

f0

f

� ffiffiffi
f

p
e
1
2
q̄ þ 2

3

ffiffiffiffiffi
q̄3

s

r
A0
0 ¼ 0; ðB22Þ

where q̄ ¼ sr2q̄. A prime stands for a derivative with respect
to q̄. The physical interpretation of (B22) is clear. This is an
equation of force balance at the string end point r ¼ rq̄. It
determines q̄ and can be solved numerically for a particular
set of parameters.
From (B21), we can read off the free energy of the

configuration

FQq̄¼ g

Z
rq̄

0

dr
r2
esr

2 þm
e

s
2
r2q̄

rq̄

ffiffiffi
f

p
þ1

3
A0ðrq̄Þ−μq: ðB23Þ

The first term is singular, and therefore it requires regu-
larization. As usual, we implement this by imposing a
cutoff ϵ on the lower limit of integration,

Z
rq̄

ϵ

dr
r2

esr
2 ¼ 1

ϵ
−

1

rq̄
þ
Z

rq̄

ϵ

dr
r2

ðesr2 − 1Þ: ðB24Þ

Then, subtracting the 1
ϵ term and letting ϵ ¼ 0, we get a

renormalized free energy,

FQq̄ ¼ g

Z
rq̄

0

dr
r2

ðesr2 − 1Þ − g

rq̄
þ 1

2
Cþ m

e
s
2
r2q̄

rq̄

ffiffiffi
f

p
þ 1

3
A0ðrq̄Þ − μq: ðB25Þ

Here, the normalization constant C is the same as in the
previous examples. The integral is easily evaluated (see
Appendix A), with the result

FQq̄¼
ffiffi
s

p �
gQðq̄ÞþmV

�
f;
1

2
;q̄

��
þ1

3
A0ðq̄Þ−μqþ

1

2
C:

ðB26Þ

Thus, the free energy is determined from two equations:
(B22) and (B26).
It is straightforward to extend the above analysis to

configuration ðd0Þ. The only modification arises from
the sign reversal in the SA’s. In this case, Eq. (B22) is
replaced by

geq þ m

�
q − 1þ q

f0

f

� ffiffiffi
f

p
e
1
2
q −

2

3

ffiffiffiffiffi
q3

s

r
A0
0 ¼ 0; ðB27Þ

and Eq. (B26) is replaced by

FqQ̄¼ ffiffi
s

p �
gQðqÞþmV

�
f;
1

2
;q

��
−
1

3
A0ðqÞþμqþ

1

2
C;

ðB28Þ

with q ¼ sr2q. As a result, the free energy of this configu-
ration is determined by Eqs. (B27) and (B28). Again, the
nonlinear equation which determines the position of the
string end point in the radial direction can be solved only
numerically.

b. Configurations with baryon vertices

The description of configurations (e) and ðe0Þ differs
only in one way from what we have just described. The new
feature is an inclusion of the baryon vertices.
We begin with configuration (e). It is governed by the

following action:

S¼
X3
i¼1

SNGþ
X2
i¼1

ðSqþSAÞjr¼rq þSAjr¼0þSvert: ðB29Þ

In static gauge, when evaluated on the solutions xi ¼ const,
S takes the form
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S ¼ 1

T

�
g

Z
rv

0

dr
r2

esr
2 þ 2g

Z
rq

rv

dr
r2

esr
2 þ 2m

ffiffiffi
f

p e
s
2
r2q

rq

−
2

3
A0ðrqÞ − μq þ τv

ffiffiffi
f

p e−2sr
2
v

rv

�
: ðB30Þ

Now, it is easy to see that varying S with respect to rv gives
rise to Eq. (B16), whereas varying it with respect to rq gives
rise to Eq. (B27). Those equations determine v and q,
respectively.
From (B30), it follows that the free energy of the

configuration is

FQqq ¼ g

Z
rv

0

dr
r2

esr
2 þ 2g

Z
rq

rv

dr
r2

esr
2 þ 2m

ffiffiffi
f

p e
s
2
r2q

rq

−
2

3
A0ðrqÞ − μq þ τv

ffiffiffi
f

p e−2sr
2
v

rv
: ðB31Þ

The first term here is singular. A proper treatment of
singularity proceeds in the same way as before and gives

FQqq ¼ g

Z
rv

0

dr
r2

ðesr2 − 1Þ − g

rv
þ 1

2
Cþ 2g

Z
rq

rv

dr
r2

esr
2

þ 2m
ffiffiffi
f

p e
s
2
r2q

rq
−
2

3
A0ðrqÞ − μq þ τv

ffiffiffi
f

p e−2sr
2
v

rv
:

ðB32Þ

After evaluating the integrals with the help of the formulas
listed in Appendix A, one finds that

FQqq ¼
ffiffi
s

p �
2gQðqÞ− gQðvÞþ 2mV

�
f;
1

2
;q

�

þ 3gkVðf;−2; vÞ
�
−
2

3
A0ðqÞ−μqþ

1

2
C; ðB33Þ

with k defined by (B16). Thus, the free energy of con-
figuration (e) is determined by Eqs. (B16), (B27),
and (B33).
It is clear how to get from the above expression to that for

the free energy of configuration ðe0Þ. All that really matters
is the sign reversal in the SA’s. So, we have

FQ̄ q̄ q̄ ¼
ffiffi
s

p �
2gQðq̄Þ − gQðvÞ þ 2mV

�
f;
1

2
; q̄

�

þ 3gkVðf;−2; vÞ
�
þ 2

3
A0ðq̄Þ þ μq þ

1

2
C:

ðB34Þ

Here, v and q̄ are determined from Eqs. (B16) and (B22),
respectively.

APPENDIX C: SOME DETAILS ON THE
MODEL OF SEC. III

In the model we are considering, the free energy FQQ̄ðlÞ
shows a linear behavior at large quark separations for some
temperatures and chemical potentials. Following Ref. [26],
we will explain how to analyze this properly. An important
fact is that the effective string tension (B2), as a function of
r, could have a local minimum at r ¼ r− in the interval
ð0; rhÞ. If so, then the minimum determines the so-called
soft wall, which gives rise to the linear behavior. In the
opposite situation, the linear behavior does not arise. This is
illustrated in Fig. 8.
We now explore this question for the background (3.1).

In this case, the extrema of σeffðrÞ are determined by
solving a quartic equation,

2p2ht4 þ ½p2 − ð1þ 2p2Þh�t3 þ ht − 1 ¼ 0; ðC1Þ

where t ¼ r2

r2h
. For given p, this equation has two roots in the

interval (0,1), if h > hp, where hp is a solution to an
algebraic equation in the variable h,

12p4f21

�
f2
f3

þ f3
12p4h2

�
2

þ 8p4

�
f2
f3

þ f3
12p4h2

�
3

− 4p2f31 þ 1 ¼ 0: ðC2Þ

Here,

f1¼
1

4p2h
ðð1þ2p2Þh−p2Þ; f2¼ð1þ2p2Þh2−9p2h;

f3¼6

ffiffiffiffiffiffiffiffiffiffi
p8h5

3

q �
h−8p2f21þ

�
ðh−8p2f21Þ2−

f32
27p4h4

�1
2

�1
3

:

ðC3Þ

FIG. 8. Schematic representation of the effective string tension
in two different regimes, which we call the hadronic phase (upper
curve) and the quark-gluon phase (lower curve). Here, r runs
from 0 to rh, and σeffðrhÞ ¼ 0.
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In this case, the smaller and larger roots, which, respectively, correspond to the minimum and maximum of σeff ,
are given by20

t∓ ¼ 1

2

2
64f1 ∓

�
f21 þ

f2
f3

þ f3
12p4h2

�1
2 �

0
B@2f21 −

f2
f3

−
f3

12p4h2
� 1 − 2p2f31

p2
�
f21 þ f2

f3
þ f3

12p4h2

�1
2

1
CA

1
2

3
75: ðC4Þ

Note that in the limit h → ∞ the smaller root r− goes to 1=
ffiffi
s

p
, as expected [9].

There are two special cases: p ¼ 0 and p ¼ 1, which represent the cases of zero chemical potential and
temperature, respectively. First, let us specialize to the case p ¼ 0. It is easy to see that in this case Eq. (C1) reduces
to a cubic equation,

ht3 − htþ 1 ¼ 0: ðC5Þ

In the interval (0,1), this equation has two roots [26],

t− ¼ 2ffiffiffi
3

p sin

�
1

3
arcsin

h0
h

�
; tþ ¼ 2ffiffiffi

3
p sin

�
π

3
−
1

3
arcsin

h0
h

�
; ðC6Þ

if h > h0, where

h0 ¼
3

ffiffiffi
3

p

2
≈ 2.60: ðC7Þ

Now, let us move on to the second case. At p ¼ 1, the left-hand side of Eq. (C1) is factorized,

ðt − 1Þð2ht3 þ ð1 − hÞtðtþ 1Þ þ 1Þ ¼ 0: ðC8Þ

We may omit the first factor, since we are only interested in the interval (0,1). Thus, the original equation simplifies and
becomes a cubic one,

2ht3 þ ð1 − hÞt2 þ ð1 − hÞtþ 1 ¼ 0: ðC9Þ

In the interval (0,1), it has two roots

t− ¼ h − 1

6h
þ 1

3h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7h2 − 8hþ 1

p
sin

�
1

3
arcsin

10h3 − 75h2 þ 12h − 1

ð7h2 − 8hþ 1Þ32
�
;

tþ ¼ h − 1

6h
þ 1

3h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7h2 − 8hþ 1

p
cos

�
1

3
arccos

10h3 − 75h2 þ 12h − 1

ð7h2 − 8hþ 1Þ32
�
; ðC10Þ

if h > h1, where

h1 ¼
1

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
84 − Δþ 110Δ−1

2

q
− 1 − Δ1

2

�
; Δ ¼ 28 − 57

�
169 − 15

ffiffiffi
5

p

2

�
−1
3

− 3

�
169 − 15

ffiffiffi
5

p

2

�1
3

: ðC11Þ

The value of h1 is approximately 3.50.

20At h ¼ hp, the roots are equal to each other.
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