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The study of Yang-Mills theories in three dimensions is an insightful playground to grasp important
features for the four-dimensional case. Additionally, in three dimensions, the Chern-Simons term can be
introduced with a mass parameter of topological nature. Quantizing such a theory in the continuum
demands a gauge fixing which, in general, is plagued by Gribov copies. In this work, Yang-Mills-Chern-
Simons theories are quantized in the maximal Abelian gauge and the existence of infinitesimal Gribov
copies is taken into account. The elimination of copies modifies the (Abelian) gluon propagator leading to
two different phases: one in which all poles are complex and thus interpreted as a confining phase and
another where an excitation which can be part of the physical spectrum is present.
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I. INTRODUCTION

Yang-Mills theories are the main building blocks of the
successful Standard Model of particle physics. The descrip-
tion of fundamental interactions is very well accommo-
dated in the framework of non-Abelian gauge theories.
Despite the great understanding of these theories in the
perturbative regime, many challenging open problems are
present when they become strongly correlated. Due to the
inefficiency of perturbation theory at this regime, non-
perturbative tools are required and a systematic description
of the theory becomes much more challenging. Several
different nonperturbative frameworks are available and the
most fruitful avenue seems to seek for an interplay
between them.
One of the most iconic nonperturbative phenomena

which begs for an analytic consistent description is color
confinement. Although several complementary hints try to
complete the patchwork for a full satisfactory description of
confinement, a comprehensive mechanism still lacks.
Different approaches as functional methods, effective
models, lattice simulations and holographic techniques
[1–12] are used as complementary perspectives on the
problem. Another approach which can provide new insights
toward a mechanism that describes confinement comes

from the fact that, at nonperturbative regimes, the standard
quantization procedure for non-Abelian gauge theories
requires a modification. The reason behind that are the
so-called Gribov copies. The quantization of gauge theories
in continuum space(time) requires a gauge-fixing pro-
cedure, i.e., a selection of a gauge field per gauge orbit.
In principle, this is achieved by imposing a constraint to the
gauge field. However, in the seminal works [13,14], it was
shown that an ideal gauge-fixing condition, i.e., the
selection of only one representative per gauge orbit, does
not exist in non-Abelian gauge theories for continuous and
covariant gauges. The existence of field configurations
which satisfy the same gauge condition and are related by a
gauge transformation is the so-called Gribov problem, see
[15–17] for reviews. Such spurious configurations are
dubbed Gribov copies.
One of the assumptions of the Faddeev-Popov gauge-

fixing procedure is that the gauge-fixing condition is ideal,
i.e., only one representative per gauge orbit satisfies the
gauge condition. Thus, Gribov copies entail a breakdown
of the Faddeev-Popov prescription. Nevertheless, at the
perturbative regime, i.e., quantum fluctuations around the
trivial vacuum Aa

μ ¼ 0, where Aa
μ is the gauge field, such

redundant configurations do not play any role. In fact, one
can show that the Faddeev-Popov procedure is well-
grounded at the perturbative level. However, this is not
true anymore at the nonperturbative regime where fluctua-
tions around the trivial vacuum are not small. Hence, it is
conceivable that Gribov copies must be appropriately taken
into account by modifying the Faddeev-Popov prescription
nonperturbatively. A consistent quantization of Yang-Mills
theories which is valid at the strongly coupled regime
seems to require to deal with Gribov copies. As already
pointed out in [13], a modification in the quantization of

*luigicferreira@gmail.com
†adpjunior@id.uff.br
‡rodrigo_sobreiro@id.uff.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 105022 (2020)

2470-0010=2020=101(10)=105022(12) 105022-1 Published by the American Physical Society

https://orcid.org/0000-0003-1467-4260
https://orcid.org/0000-0002-6952-2961
https://orcid.org/0000-0002-9002-5177
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.105022&domain=pdf&date_stamp=2020-05-29
https://doi.org/10.1103/PhysRevD.101.105022
https://doi.org/10.1103/PhysRevD.101.105022
https://doi.org/10.1103/PhysRevD.101.105022
https://doi.org/10.1103/PhysRevD.101.105022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


non-Abelian gauge theories might be key for the under-
standing of the mechanism behind confinement.
In [13], it was proposed to restrict the path integral

measure gauge-fixed to the Landau gauge to a region, the
Gribov region, which is free of infinitesimal Gribov copies,
i.e., those generated by infinitesimal gauge transformations.
This region features several important properties as, e.g., all
gauge orbits cross it once and thereby the restriction does
not exclude any physical configuration from the configu-
ration space [18]. The restriction can be effectively imple-
mented by the introduction of a nonlocal term, the horizon
function, to the classical action. This was worked out at
leading order in [13] and generalized to all orders in [19]
using a slightly different method. The equivalence of the
prescriptions was proved in [20]. The resulting action can
be localized by the introduction of a suitable set of auxiliary
fields giving rise to the so-called Gribov-Zwanziger action.
It is local, perturbatively renormalizable at all orders and
effectively implements the restriction of the functional
measure to the Gribov region, thus excluding the infini-
tesimal Gribov copies. Large copies are still present within
the Gribov region [21] and a complete elimination of them
requires a further restriction to the fundamental modular
region. A consistent restriction of the functional measure to
this region is not known so far, see for instance [21] and
references therein.
The tree-level gluon propagator derived from the Gribov-

Zwanziger action is suppressed in the infrared (IR) and
attains vanishing value at zero momentum. This implies a
violation of reflection positivity, a fact often interpreted as a
signal of confinement since they cannot be associated with
physical excitations in the spectrum of the theory. The
ghost propagator is enhanced in the IR and diverges as
∝ 1=k4 for low momenta. More recent gauge-fixed lattice
simulations, however, point to a finite gluon propagator at
vanishing momentum and a nonenhanced ghost propagator
in the IR in the Landau gauge [22–24]. In [25–27] it was
realized that the restriction to the Gribov region leads to
further nonperturbative effects that must be taken into
account. In particular, the auxiliary fields introduced to
localize the horizon function acquire their own dynamics
and give rise to the formation of dimension-two conden-
sates. Thence, a renormalizable and local action which
takes into account the restriction to the Gribov region and
further nonperturbative effects as the formation of con-
densates was proposed, the refined Gribov-Zwanziger
action. The resulting gluon propagator attains a finite value
at zero momentum and the ghost propagator is not
enhanced in the IR, in agreement with the most recent
lattice data.
Despite being intrinsically associated with the nontrivial

bundle structure of non-Abelian gauge theories, the (par-
tial) solution of the Gribov problem is intimately related
with the specific choice of gauge-fixing. As an illustration,
the elimination of infinitesimal Gribov copies in the

Landau gauge relies of the fact that the Faddeev-Popov
operator is Hermitian, a property which does not hold in
general gauges. Another popular choice for gauge con-
dition is the so-called maximal Abelian gauge (MAG) [28–
30]. In this gauge, non-Abelian and Abelian components of
the gauge field satisfy different gauge conditions. For
concreteness, we consider the gauge group as being
SUð2Þ and the MAG is defined by

Dab
μ Ab

μ ¼ 0; and ∂μAμ ¼ 0; ð1Þ

where Aa
μ are the non-Abelian components of the gauge

field and Aμ is the Abelian component. The lower-case
Latin indices run from a ¼ 1, 2. The covariant derivative
Dab

μ ≡ δab∂μ − gϵabAμ is taken with respect to the Abelian
field. The coupling constant is denoted by g and ϵab is the
totally antisymmetric Levi-Civita in two dimensions. This
gauge features a Hermitian Faddeev-Popov operator and
the implementation of a solution akin to the Gribov-
Zwanziger one in the Landau gauge is viable. The
implementation of the restriction of the path integral to a
Gribov region for the MAG was investigated in several
works, see, e.g., [31–39]. Remarkably, the effects of the
Gribov copies modify the Abelian gluon propagator giving
rise to the violation of reflection positivity. For the non-
Abelian sector, the formation of dimension-two conden-
sates leads to a Yukawa-like behavior. For a sufficiently
large value for such a mass parameter, we have the
realization of the Abelian dominance mechanism at low
energies, [29,30]. In general, however, the Faddeev-Popov
operator is not Hermitian and the very definition of a
Gribov region becomes unclear. Yet, progress was made in
this direction in recent years for linear covariant gauges,
Landau-MAG interpolating gauge and Curci-Ferrari
gauges, see, e.g., [40–49]. See also [50,51].
A common strategy to gain insights for four-dimensional

Yang-Mills theories is to analyze the theory is three
dimensions. In this case, the theory is sufficiently non-
trivial, i.e., it is confining, but it features simplifications as
it is superrenormalizable. Moreover, its correlation func-
tions in the Landau gauge qualitatively agree with those
computed in four dimensions. See, e.g., [52–56] for some
recent references on three-dimensional Yang-Mills theo-
ries. Moreover, in three dimensions, the gauge field can
acquire a mass of topological nature due to the introduction
of the Chern-Simons term, see [57,58]. The Chern-Simons
term is parity and time-reversal odd and therefore, it is not
generated radiatively in pure Yang-Mills theories. It breaks
large gauge transformations invariance unless a quantiza-
tion rule is assigned to the mass parameter. However, it is
invariant under infinitesimal gauge transformations. Hence,
Yang-Mills-Chern-Simons theories where the Chern-
Simons term is added to the Yang-Mills action provides
a description of massive gauge fields and features, at least,
infinitesimal gauge symmetry. In [59], the path-integral
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quantization of such system was revisited in light of the
existence of Gribov copies in the Landau gauge. The
Gribov parameter and the topological mass compete
showing a transition from a phase where all poles of the
gauge field propagator are not physical and therefore hints
to a confining phase to a deconfining one where physical
excitations are present in the spectrum. Qualitatively, this
emulates the behavior of Yang-Mills theories in the
presence of Higgs fields when Gribov copies are taken
into account as discussed in [60–63]. In [64], Higgs fields
were added to Yang-Mills-Chern-Simons theories in the
Landau gauge.
In this work, we investigate the possibility of existence

of different phases in Yang-Mills-Chern-Simons theories
quantized in the MAG for SUð2Þ gauge group. The main
motivation lies on the fact the nonlinear character of the
MAG induces new interactions between matter fields and
Faddeev-Popov ghosts making the analysis of Yang-Mills-
Higgs systems in this gauge much more nontrivial, [65]. In
the case of Yang-Mills-Chern-Simons theories, we can
explore qualitative features of such phase diagram without
introducing new fields in the MAG. Moreover, this gauge
provides the opportunity to explore the Abelian dominance
mechanism more explicitly. Finally, as a technical moti-
vation, the properties of the Gribov region in the MAG are
well known and we can easily import the already developed
technology for their elimination in four-dimensional Yang-
Mills theories to this system.
The paper is organized as follows: in Sec. II we provide a

short review of the Gribov problem in the Landau gauge. In
Sec. III we set up the conventions of Yang-Mills-Chern-
Simons theories in the MAG and discuss the tree-level
propagators without the elimination of Gribov copies.
Section IV is devoted to the elimination of Gribov copies
in Yang-Mills-Chern-Simons theories in the MAG, which
entails a modification to the gauge-field propagator. In
Sec. V we discuss the analytic properties of the new
propagators and show that there are different phases
(confining and deconfining) for different values of the
underlying mass parameters of the theory. Finally, we
collect some perspectives and conclusions.

II. THE GRIBOV PROBLEM IN A NUTSHELL

The perturbative quantization of Yang-Mills theories in a
continuum setting requires a gauge-fixing procedure. In the
path integral formulation, this is typically achieved by the
so-called Faddeev-Popov procedure. A fundamental
assumption in this method is the existence of a single
representative of the gauge field per gauge orbit that
satisfies the gauge condition, i.e., if Aa

μ and A0a
μ are field

configurations that satisfy the gauge condition Fa½A� ¼ 0,
then they are not related by a gauge transformation, namely

A0
μ ≠ UAμU† þ i

g
U∂μU†; ð2Þ

with U and element of the gauge group1 and g is the gauge
coupling constant. However, as first discussed in [13],
standard gauge-fixing conditions do not satisfy this require-
ment and in [14], it was shown that this is a rather general
issue than a simple pathology in particular gauge
conditions.
As a particular example, consider the Landau gauge

where ∂μAA
μ ¼ 0 where upper case Latin indices run

through 1; 2;…; N2 − 1. If this condition is ideal, i.e.,
picks just one representative per orbit, taking a gauge field
configuration A0A

μ which is related to AA
μ by a gauge

transformation yields ∂μA0A
μ ≠ 0. This can be checked

explicitly, e.g., taking an infinitesimal gauge transforma-
tion, i.e.,

A0A
μ ¼ AA

μ −DAB
μ ξB; ð3Þ

with DAB
μ ¼ δAB∂μ − gfABCAC

μ denoting the covariant
derivative in the adjoint representation of the gauge group,
fABC being the structure constants and ξA, an infinitesimal
gauge parameter. Taking the divergence of (3) and impos-
ing the gauge condition on AA

μ , leads to

∂μA0A
μ ¼ −∂μDAB

μ ξB; ð4Þ

and becomes clear that ∂μA0A
μ ≠ 0 only if the operator

MAB ¼ −∂μDAB
μ , the Faddeev-Popov operator, does not

develop zero modes. It turns out that the Faddeev-Popov
operator has zero modes and, thus, the Landau gauge
condition picks up more than one representative per gauge
orbit. Such spurious configurations are the so-called Gribov
copies and their existence is the well-known Gribov
problem. In fact, this argument is restricted to copies that
are connected to a field configuration by infinitesimal
gauge transformations and should be called “infinitesimal
copies.” It is possible to show that copies are also generated
by finite gauge transformations [13,21,66]. This means that
the standard assumption in the implementation of the
Faddeev-Popov trick of the nonexistence of more than
one representative per gauge orbit is not fulfilled.
To improve the gauge-fixing procedure, Gribov pro-

posed to restrict the configuration space of gauge fields to a
region Ω, the Gribov region, defined by

Ω ¼ fAA
μ ; ∂μAA

μ ¼ 0jMAB > 0g: ð5Þ

Since, in the Landau gauge, MAB is a Hermitian operator,
then imposing the functional integration to a domain where
it is positive becomes a meaningful task. Such a region
features important properties: it is bounded in all directions
in field space, it is convex and all gauge orbits cross it at

1For concreteness, we take the gauge group to be SUðNÞ. Later
on, we shall restrict to SUð2Þ.
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least once, see [18,67]. It is not free of Gribov copies. There
are still those generated by finite gauge transformation. In
order to eliminate all copies, one should restrict the func-
tional integral domain of integration to the so-called
fundamental modular region which is free of copies by
definition and it is a subspace of the Gribov region.
However, a practical implementation of the restriction to
this region is still an open problem.
Formally, the path integral for Yang-Mills theories

restricted to the Gribov region is expressed as

ZYM ¼
Z
Ω
½DμYM�e−SYM−SFP ; ð6Þ

with

SYM ¼ 1

4

Z
x
FA
μνFA

μν; ð7Þ

and

SFP ¼
Z
x
ðbA∂μAA

μ þ c̄A∂μDAB
μ cBÞ; ð8Þ

with
R
x ¼

R
ddx and ½DμYM� ¼ ½DA�½Db�½Dc̄�½Dc�. The

fields bA, c̄A and cA denote, respectively, the Nakanishi-
Lautrup field and Faddeev-Popov ghosts. The field-
strength FA

μν is given by FA
μν ¼ ∂μAA

ν − ∂νAA
μþ

gfABCAB
μAC

ν . The restriction to Ω can be effectively
implemented by a modification of the measure which in
turn can be lifted to the Boltzman factor. This was worked
out at leading order in g by Gribov [13] and extended to all
orders by Zwanziger in [19] using different methods. The
result of these two different approaches is the same [20].
Therefore, the functional integral restricted to the Gribov
region can be expressed as

ZΩ ¼
Z

½DμYM�e−SYM−SFP−γ4HðAÞþγ4dVðN2−1Þ; ð9Þ

where V corresponds to the volume of spacetime and γ is a
mass parameter known as the Gribov parameter. The
function HðAÞ is the so-called horizon function and is
written as

HðAÞ ¼ g2
Z
x;y

fABCAB
μ ðxÞ½M−1ðAÞ�ADx;y fDECAE

μ ðyÞ: ð10Þ

The Gribov parameter γ is not free but fixed by a gap
equation,

hHðAÞi ¼ dVðN2 − 1Þ; ð11Þ

where h…i is computed with respect to the modified
partition function (9). The horizon function is nonlocal
and thereby the resulting action which implements the

restriction to the Gribov region is nonlocal. Such a non-
locality can be cured by the introduction of auxiliary fields.
This procedure leads to

ZGZ ¼
Z

½DμGZ�e−SGZ ; ð12Þ

with

SGZ ¼ SYM þ SFP

−
Z
x
ðφ̄AC

μ MABφBC
μ − ω̄AC

μ MABωBC
μ Þ

þ γ2
Z
x
gfABCAA

μ ðφ̄þ φÞBCμ − γ4
Z
x
dðN2 − 1Þ;

ð13Þ

and

½DμGZ� ¼ ½DA�½Db�½Dc̄�½Dc�½Dφ̄�½Dφ�½Dω̄�½Dω�: ð14Þ

Action (13) is known as the Gribov-Zwanziger action. It
implements the restriction of the path integral measure to Ω
in a local and renormalizable way, see [19].
From the previous discussion, it is clear that the

elimination of (infinitesimal) Gribov copies relied on some
particular properties of the gauge condition. In particular,
the hermiticity of the Faddeev-Popov operator holds for the
Landau gauge, but it is not a general property. There are
other gauges which feature a Hermitian Faddeev-Popov
operator. The MAG is an example and the analogous
analysis a la Gribov and Zwanziger can be repeated.
This was done in [31–39]. Conversely, for gauges where
the Faddeev-Popov operator is not Hermitian, some
progress has been achieved over the last years, see, e.g.,
[40–49]. Another important observation is that the restric-
tion to the Gribov region does not rely on the form of the
gauge-invariant action we want to gauge fix and on the
spacetime dimension d. This means that for three-dimen-
sional Yang-Mills theories, the analysis is exactly the same.
This will be explored in the next sections in the case of
the MAG.

III. YANG-MILLS-CHERN-SIMONS THEORIES IN
THE MAXIMAL ABELIAN GAUGE

The starting point of the present analysis is the Yang-
Mills-Chern-Simons action defined in three Euclidean
dimensions (d ¼ 3) by the action,

SYMCS ¼ SYM þ SCS; ð15Þ

with SYM given by (7) with d ¼ 3 and
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SCS ¼ −iM
Z
x
ϵμρν

�
1

2
AA
μ∂ρAA

ν þ g
3!
fABCAA

μAB
ρAC

ν

�
: ð16Þ

The parameter M is a mass parameter of topological origin
and ϵμρν is the totally antisymmetric Levi-Civita symbol.
The action (15) is invariant under transformations (3). For
concreteness, we restrict from now on the gauge group to
be SUð2Þ. In this work, we are interested to quantize the
theory defined by (15) in the MAG. In order to introduce
the gauge-fixing action and the correspondent Faddeev-
Popov ghosts, we employ the Cartan decomposition, i.e.,
we decompose the gauge field in Abelian and non-Abelian
components,

AA
μTA ¼ Aa

μTa þ A3
μT3 ≡ Aa

μTa þ AμT; ð17Þ

with TA being the generators of SUð2Þ and a ¼ f1; 2g
correspond to the non-Abelian components. The generator
T3 ≡ T commutes with all the others and A3

μ ¼ Aμ is the
Abelian component of the gauge field. When decomposed,
the structure constants fABC are nonvanishing when two
indices are non-Abelian and the third is the Abelian
component. For simplicity, we employ the normalization
fab3 ¼ ϵab. After decomposition (17), the action (15) is
expressed as

SYMCS ¼
1

4

Z
x
ðFa

μνFa
μν þ FμνFμνÞ

− iM
Z
x
ϵμρν

�
1

2
Aa
μ∂ρAa

ν þ
1

2
Aμ∂ρAν

�

− iM
Z
x
ϵμρν

g
2
ϵabAa

μAb
ρAν; ð18Þ

with

Fa
μν ¼ Dab

μ Ab
ν −Dab

ν Ab
μ

Fμν ¼ ∂μAν − ∂νAμ þ gϵabAa
μAb

ν : ð19Þ
The covariant derivative Dab

μ ≡ δab∂μ − gfϵabAμ is defined
in terms of the Abelian component of the gauge field.
In order to implement the MAG condition in (18), we

have to introduce a BRST-exact2 term given by

SMAG
FP ¼ s

Z
x
ðc̄aDab

μ Ab
μ þ c̄∂μAμÞ

¼
Z
x
½ibaDab

μ Ab
μ − c̄aMabcb þ gϵabc̄aðDbc

μ Ac
μÞc

þ ib∂μAμ þ c̄∂μð∂μcþ gϵabAa
μcbÞ�; ð20Þ

where Mab ≡ −Dac
μ Dcb

μ − g2ϵacϵbdAc
μAd

μ is the Faddeev-
Popov operator in the MAG. Hence, the quantization of the

Yang-Mills-Chern-Simons in the MAG is given by the path
integral

ZMAG ¼
Z

½DμYMCS�e−Σ; ð21Þ

with Σ ¼ SYMCS þ SMAG
FP and ½DμYMCS� ¼ ½DA�½Db�½Dc̄�×

½Dc�. The tree-level propagators for the non-Abelian and
diagonal gauge fields are, respectively,

hAa
μðkÞAb

νð−kÞi ¼
δab

k2 þM2

�
δμν −

kμkν
k2

þM
kρ
k2

ϵμρν

�
;

ð22Þ

and

hAμðkÞAνð−kÞi ¼
1

k2 þM2

�
δμν −

kμkν
k2

þM
kρ
k2

ϵμρν

�
:

ð23Þ

Expressions (22) and (23) show that both non-Abelian and
Abelian components of the gauge field acquire the same
nonvanishing topological mass at tree-level. The propaga-
tors are transverse, but such a property should not hold
exactly at higher order to the non-Abelian sector due to the
nonlinear gauge condition (20).
It is a well-known fact that the MAG is plagued by the

Gribov problem see, e.g., [31]. Thanks to the fact that the
Faddeev-Popov operator Mab is Hermitian in this gauge,
the definition of a Gribov region for the MAG is possible,
see [31–39], and thereby the implementation of the
restriction of the functional integral to such a region renders
a partial solution to the Gribov problem. In fact, the Gribov
region is free of infinitesimal Gribov copies and, in the
present case, due to the Chern-Simons term, gauge invari-
ance is verified just for infinitesimal transformations.
Thence, for Yang-Mills-Chern-Simons theory, removing
infinitesimal Gribov copies actually corresponds to deal
with the Gribov problem completely. Invariance under
finite gauge transformation is achieved only if the
mass parameter M is chosen to satisfy a quantization rule
[57,58].

IV. GETTING RID OF GRIBOV COPIES

In four-dimensional Yang-Mills theories, infinitesimal
Gribov copies were eliminated in the MAG by the
restriction of the functional integral to the correspondent
Gribov region in the MAG, see [35]. Such a region is
defined as

ΩMAG ¼ fðAa
μ; AμÞ;Dab

μ Ab
μ ¼ 0; ∂μAμ ¼ 0jMab > 0g:

ð24Þ2See Appendix for more details on the BRST transformations.
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It features important properties to be a good candidate for
the restriction of the functional integral. In particular, the
region is bounded in field space in the non-Abelian
directions while it is unbounded in the diagonal ones.
The referred boundary is again dubbed Gribov horizon.
Furthermore, for every configuration close to the horizon,
there is a copy localized outside the horizon, suggesting
that the Gribov region does not exclude any physical
configuration [35]. As in the Landau gauge, the restriction
of the path integral to ΩMAG can be achieved by the so-
called Gribov no-pole condition. This amounts to impose
that the only pole developed by the ghost propagator is the
trivial p2 ¼ 0 one. In the case of the MAG, the no-pole
condition is imposed to the non-Abelian ghosts. This was
worked out before in pure Yang-Mills theories, see [31].
However, the restriction does not refer to the dynamical
action in the partition function and therefore, the same
procedure can be directly imported to the Yang-Mills-
Chern-Simons path integral with the only difference that
such a theory is defined in three dimensions. The restriction
is a geometric procedure and can be easily worked out for
general spacetime dimension.
Formally, the restriction is given by the modification of

the measure as

ZMAG ¼
Z

½DμYMCS�VðΩMAGÞe−Σ; ð25Þ

where VðΩMAGÞ works as a cutoff at the Gribov horizon,
i.e., the region where the Faddeev-Popov operator hits the
first zero modes. According to the Gribov no-pole pre-
scription, one has to evaluate the connected ghost two-point
function by considering the gluon as an external field. In
the case of the MAG, we concentrate on the non-Abelian
ghost propagator. The restriction is imposed by demanding
that the resulting two-point function does not develop poles
besides p2 ¼ 0. Therefore, at leading order in the coupling
g, the two-point function is

GðpÞ ¼ 1

2V

X
a¼1;2

hc̄aðpÞcað−pÞiA; ð26Þ

where V stands for the spacetime volume and h…iA denotes
that the correlation function is computed by taking A as an
external field. Explicitly, at leading order,

GðpÞ ¼ 1

p2
ð1þ σðp; AÞÞ þ B

p4
; ð27Þ

where

σðp; AÞ ¼ 4g2

3V

Z
d3k
ð2πÞ3

AαðkÞAαð−kÞ
ðp − kÞ2 ; ð28Þ

and B is independent of p and it is positive. Therefore, just
σðp; AÞ can generate a nontrivial pole than p2 ¼ 0 and the

terms containing B are actually not important for our
discussion. Thus, we rewrite (27) as

GðpÞ ≈ 1

p2

1

1 − σðp; AÞ ; ð29Þ

and the nontrivial pole is avoided as long as σðp; AÞ < 1. It
can be shown that σðp; AÞ monotonically decreases with
p2. Hence, a p-independent way of imposing that no
nontrivial poles are generated corresponds to demand,

σð0; AÞ < 1; ð30Þ

which is referred to as the no-pole condition. Thence, the
function VðΩMAGÞ which modifies the path integral mea-
sure can be chosen to be a Heaviside step function of the
form

VðΩMAGÞ ¼ θð1 − σð0; AÞÞ: ð31Þ

At this point, the reader can appreciate that the form of the
modification to the functional measure is completely
independent of the fact the we are dealing with Yang-
Mills-Chern-Simons theory rather than pure Yang-Mills
simply because the same operator, i.e., the Faddeev-Popov
operator, defines the Gribov problem in both cases and
therefore the same set of zero-modes must be removed.
Using the integral representation of the θ-function, i.e.,

θð1 − σð0; AÞÞ ¼
Z

i∞þϵ

−i∞þϵ

dζ
2πiζ

eζð1−σð0;AÞÞ; ð32Þ

it is possible to lift the modification on the path integral
measure to a Boltzmann factor, leading to an effective term
in the action. Such a modification involves the factor
σð0; AÞ which contains the Abelian gauge fields. As a
consequence, it entails a modification to the gluon propa-
gator. Retaining up to quadratic terms in the partition
function and integrating out all fields leads to

Zquad
MAG ¼ lim

α;β→0
N

Z
dζ
2πi

eζ−ln ζdet−1=2Δab
μν × det−1=2Δ̃αβ;

ð33Þ

with N being a normalization factor. The operators Δ and
Δ̃ are

Δab
μν ¼ δab

�
δμνp2 −

�
1þ 1

α

�
pμpν −Mϵμρνpρ

�
; ð34Þ

and
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Δ̃μν ¼ δμν

�
p2 þ 8g2

3V
ζ

p2

�
−
�
1þ 1

β

�
pμpν −Mϵμρνpρ:

ð35Þ

The determinant of the operator Δab
μν can be absorbed in the

normalization factor by defining N 0 ≡N det−1=2Δab
μν .

Following the standard strategy, the remaining integral is
evaluated in a saddle-point approximation,

Zquad
MAG ¼ N 0efðζ�Þ; ð36Þ

with

fðζÞ ¼ ζ − ln ζ −
1

2
Tr ln Δ̃μν; ð37Þ

and ζ� is the solution of

∂fðζÞ
∂ζ

����
ζ¼ζ�

¼ 0: ð38Þ

Therefore,

1 −
1

ζ�
−
1

2
Tr

�∂Δ̃μα

∂ζ Δ̃−1
αν

�����
ζ¼ζ�

¼ 0: ð39Þ

Upon explicit evaluation of the last term and taking the

limits V → ∞ and β → 0 while holding γ4 ≡ 8g2ζ�
3V finite

yields

8g2

3

Z
d3p
ð2πÞ3

p4 þ γ4

M2p6 þ ðp4 þ γ4Þ2 ¼ 1: ð40Þ

This gap equation fixes γ, from now on referred to as the
Gribov parameter. Such a parameter γ is dimensionful and
will set a mass scale to the propagators of the theory. The
gap equation also contains the topological mass M, and
reduces to the standard expression in pure Yang-Mills
theories when M → 0. In three dimensions, the gap
equation can be directly solved by performing the integral
in (40) which is convergent. The explicit expression is not
particularly illuminating and therefore, we do not write
it here.
With the Gribov parameter fixed by the gap equa-

tion (40), we can recompute the tree-level non-Abelian
and Abelian gluon propagators. From Eq. (34) and (35) it is
clear that the Abelian propagator is affected by the presence
of the Gribov horizon. Explicitly, the Abelian propagator is

hAμðpÞAνð−pÞi ¼
p2ðp4 þ γ4Þ

ðp4 þ γ4Þ2 þM2p6

�
δμν −

pμpν

p2

þ p2

p4 þ γ4
Mϵμλνpλ

�
ð41Þ

where there is a clear modification with respect to the tree-
level expression when the restriction to the Gribov horizon
is not taken into account, see Eq. (23). The non-Abelian
propagator, at tree-level, is the same as in Eq. (22). In the
limit M → 0, one recovers the same propagators of Yang-
Mills theories quantized in the MAG and restricted to the
Gribov horizon, see [31]. The effects of the Gribov
parameter to the pole structure of the gluon propagator
will be discussed in the next section.
The restriction of the path integral to the Gribov region

through the no-pole condition was implemented at leading
order here. This follows the original strategy developed by
Gribov [13] in the Landau gauge. In [20], it was shown that,
in the Landau gauge, the no-pole condition, when imple-
mented at all orders in perturbation theory, is equivalent to
Zwanziger’s horizon condition [19]. Although such equiv-
alence was not formally established in the MAG so far, the
restriction to the Gribov horizon in the MAG was imple-
mented using Zwanziger’s method in [39]. The result
agrees with previous studies as in [31,33], where the
choice of the precise form of the horizon function was
constrained by renormalizability and localizability.
Taping on that, we are now able to write the Gribov-

Zwanziger action associated to Yang-Mills-Chern-Simons
theories quantized in the MAG. It is expressed as,

SnlocGZ ¼ Σþ SH þ Vol; ð42Þ

with3

SH ¼ g2γ4
Z
x;y

ϵabAμðxÞ½M−1�acðx; yÞϵcbAμðyÞ; ð43Þ

being the horizon function. As discussed in Sec. II, the
nonlocality introduced by the horizon function can be
localized by the introduction of auxiliary fields. The local
Gribov-Zwanziger action SMAG

GZ associated to Yang-Mills-
Chern-Simons theories in the MAG is written as

SMAG
GZ ¼ Σ −

Z
x
ðφ̄ac

μ Mabφbc
μ − ω̄ab

μ Mabωbc
μ Þ

þ γ2
Z
x
gϵabAμðφ̄þ φÞabμ þ Vol: ð44Þ

In the case where the topological mass is absent (M ¼ 0),
action (44) was shown to be renormalizable at all orders in
perturbation theory in four dimensions, [33]. The renor-
malizability properties of (44) in the presence of the Chern-
Simons term will be reported elsewhere.
At this stage, one can discuss many different formal

aspects regarding action (44). In particular, the introduction

3We have performed a redefinition of the Gribov parameter
γ2 → gγ2 and Vol is a volume term whose explicit form is
irrelevant for the present purposes.
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of the horizon function as described yields a soft breaking
of BRST symmetry. The breaking is soft since in the deep
ultraviolet, the Gribov parameter vanishes and BRST
invariance is restored. Such a breaking was vastly studied
in the literature [44,45,50,51,68–78]. Nevertheless, as
pointed out in [42] in linear covariant gauges and gener-
alized to the MAG in [79], a manifest BRST-invariant
formulation of the horizon function is possible. In this case,
gauge-invariant “dressed” fields replace the gauge fields in
the horizon function. However, instead of elaborating on
that, we will focus on the analytic structure of the gluon
propagator in the next section.

V. NONPERTURBATIVE ABELIAN GLUON
PROPAGATOR: ANALYTIC STRUCTURE

The restriction of the path integral measure to the Gribov
region engendered an effective, nonperturbative modifica-
tion of the Abelian gluon propagator. As such, its analytic
structure is affected and thereby a discussion about the
spectrum of the theory is deserved. In particular, from (41),
one sees that the propagator develops poles due to the
vanishing of the function F ðpÞ, defined as

F ðpÞ≡ ðp4 þ γ4Þ2 þM2p6 ¼ p8 þ γ8 þ 2p4γ4 þM2p6:

ð45Þ

It is convenient to parametrize Eq. (45) as

F ðpÞ ¼ ðp2 þm2
1Þðp2 þm2

2Þðp2 þm2
3Þðp2 þm2

4Þ; ð46Þ

with ðm2
1; m

2
2; m

2
3; m

2
4Þ standing for the roots of (45).

Decomposing the propagator (41) into parity-preserving
and violating pieces as

hAμðpÞAνð−pÞi ¼ Kpres
μν ðpÞ þKviol

μν ðpÞ; ð47Þ

with

Kpres
μν ðpÞ ¼ p2ðp4 þ γ4Þ

ðp4 þ γ4Þ2 þM2p6

�
δμν −

pμpν

p2

�
; ð48Þ

and

Kviol
μν ðpÞ ¼ Mp4

ðp4 þ γ4Þ2 þM2p6
ϵμλνpλ: ð49Þ

Each sector of the propagator is written in a partial-fraction
like decomposition, leading to

Kpres
μν ðpÞ ¼

X4
i¼1

Ei

p2 þm2
i

�
δμν −

pμpν

p2

�
; ð50Þ

where

Ei ¼
m2

i ðm4
i þ γ4ÞQ

4
j¼1;j≠iðm2

i −m2
jÞ
: ð51Þ

For the parity-violating sector, the decomposition is
expressed as

Kviol
μν ðpÞ ¼

X4
i¼1

Bi

p2 þm2
i
ϵμλνpλ; ð52Þ

with

Bi ¼ −
M4m4

iQ
4
j¼1;j≠iðm2

i −m2
jÞ
: ð53Þ

Written as in (50) and (52), the pole and residue structure is
made manifest. Those quantities depend on the coupling
constant g, on the Gribov parameter γ and on the Chern-
Simons massM. Such parameters are correlated by the gap
equation (40). Therefore, a complete analysis of the
analytic structure of the corresponding propagator requires
the solution of the gap equation at some given order in
perturbation theory. In this work, however, similarly to
[59], we treat those parameters as being free and character-
ize the spectrum of the theory for arbitrary values of them.
Although this strategy gives too much freedom for the
allowed values of each parameter, it does not rely on a
specific solution of the gap equation at a given order in
pertubation theory, a fact which might allow us to mimic
more refined results in a perturbative expansion.
In order to characterize the nature of the excitations, we

have to determine the pole structure of the propagator. In
particular, we have to find the roots of F ðpÞ. Redefining
p2 → p̄ we obtain the quartic equation,

p̄4 þM2p̄3 þ 2γ4p̄2 þ γ8 ¼ 0: ð54Þ

By employing the standard definition of the discriminant Δ
for a quartic equation, one gets

Δ ¼ 256M4γ20 − 27M8γ16: ð55Þ

The pole structure depends on the sign of the discriminant
Δ. In Fig. 1 we plot the sign of Δ as a function of γ2 andM.
We now analyze each situation separately. If Δ > 0, it is a
known fact that either the poles are all real or all complex.
This is established by the sign of subsidiary polynomials
defined by

PðM; γÞ ¼ 16γ4 − 3M4; ð56Þ

and

DðM; γÞ ¼ 32M4γ4 − 3M8: ð57Þ
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If PðM; γÞ < 0 and DðM; γÞ < 0, then all roots are real. It
turns out that for the values of γ2 and M that we use in the
parameter space, there is no overlap of regions where all
such conditions are simultaneously satisfied. Hence, no real
roots are found. However if PðM; γÞ > 0 or DðM; γÞ > 0
with Δ > 0, then all roots are complex. The overlapping
region where those conditions are satisfied coincides
with the region where Δ > 0 in Fig. 1. Therefore, for a
wide range of values of ðγ2;MÞ all poles are complex
and therefore, all excitations cannot be part of the
physical spectrum. This can be interpreted as a signal of
confinement.
On the other hand, if Δ < 0 then F has two distinct real

roots and two complex conjugate roots. In Fig. 1, the region
where Δ < 0 is indicated. Having two real roots, it is
conceivable that physical excitations can be generated. This
is determined by the sign of the residues. The poles of the
parity-preserving and violating parts are the same. For
Δ < 0, it is possible to find suitable values of γ2 and M for
which the residues associated to one of the real poles is
positive and therefore can be associated to a physical
excitation. Hence, by changing the values of those “free”
parameters the theory exhibits different regimes: a confin-
ing one, in the sense that all poles are complex and cannot
be associated to physical excitations in the spectrum and a
different one where a physical excitation can show up. For
concreteness, we plot in Fig. 2 and 3 the values of the
residues for the parity-preserving and violating parts of the
propagator. For the other real pole, the residues are negative
and therefore, it cannot be associated to a physical
excitation. The residues for M ¼ −5, as a function of γ2

are plotted in Fig. 4 and 5. Hence, there is a a region in

parameter space where the discriminant Δ is negative and
two real poles are generated. One of them has positive
residues and can be associated to a physical excitation
while the other real pole does not feature positive residues
as shown in Fig. 4 and 5. Then, qualitatively, the theory

FIG. 1. Sign of the discriminant Δ of F ðpÞ as a function of M
and γ2.

FIG. 2. Residue A1—associated to the parity-preserving part of
the propagator—for M ¼ −5.

FIG. 3. Residue B1—associated to the parity-violating part of
the propagator—for M ¼ −5.

FIG. 4. Residue A2—associated to the parity-preserving part of
the propagator—for M ¼ −5.
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displays two different phases in the parameter space: One in
which the discriminant Δ is positive and all poles are
complex being thus interpreted as confined excitations. The
other region where Δ is negative admits two real poles, one
of which with positive residues, being thus interpreted as a
deconfined excitation. Such possibilities arise due to the
interplay of the mass parameters M, which has a topologi-
cal nature and γ2, which arises from the restriction of the
path integral to the Gribov region. A similar behavior was
observed in Yang-Mills-Higgs systems, see [60–63] and
Yang-Mills-Chern-Simons-Higgs [64] in the Landau
gauge. Inhere, such a transition from confined to decon-
fined phases is verified just in the Abelian sector which, as
previously discussed, is the one affected by the restriction
to the Gribov region. In the case of the non-Abelian sector,
the absence of competing mass parameters does not allow
for such a transition from confined to deconfined phases.
Hence, the non-Abelian propagator has a Yukawa-like
behavior. According to the Abelian-dominance hypothesis,
such a mass should be large enough in order to decouple
those degrees of freedom in the infrared.
As it is well-known, a transition from confining to

deconfined phases is well understood in 3d. In particular,
the pioneering work by Polyakov [80] where SUð2Þ Yang-
Mills theories are coupled to Higgs fields in the adjoint
representation of the gauge group were studied. It is
observed that such a theory exhibits a phase where all
components of the gauge field are confined and another
phase where just one component of the gauge field, A3

μ, is
confined. Notice that in this case, the phase transition is
mediated by the interplay of the gauge coupling g and the
vacuum expectation value of the Higgs field. In this setting,
A3
μ is always confined while the other components Aa

μ of the
gauge field can be confined or not depending on the phase
one analyzes the theory. In the model discussed in this
paper, no extra fields are introduced and the phase
transition occurs purely due to the presence of the topo-
logical mass. In particular, the restriction to the Gribov
region entails a Gribov-like propagator to the Abelian

component of the gauge field A3
μ while the off-diagonal

components always have a Yukawa-type behavior. Thus,
the present model shows a behavior which is slightly
different from standard Yang-Mills theories coupled to
Higgs fields in the adjoint representation, since the off-
diagonal components are always deconfined and the
Abelian component of the gauge field can have physical
excitations depending on the value of the topological mass.
Despite of the qualitative difference of these models
regarding which components of the gauge field are con-
fined, they share the same feature of having a phase
transition from confined to deconfined phases. Moreover,
the criterion we have adopted in this work for confinement
relies on the preservation of reflection positivity of the
propagator. The propagator was computed in the MAG
which is not the same gauge adopted by Polyakov. This
forbids a direct comparison with Polyakov’s computation
since propagators are gauge dependent. Nevertheless, the
present model encodes all the rich physics of phase
transitions from confining to deconfined phases without
the introduction of extra fields. A direct extension of the
present results in the presence of a Higgs field is possible
and might shed more light on the comparison with known
results on the phase structure of 3d Yang-Mills theories.

VI. PERSPECTIVES AND CONCLUSIONS

In this work, we quantized the Yang-Mills-Chern-
Simons theory in the MAG and took into account the
existence of infinitesimal Gribov copies. Such a system
features an intrinsic topological mass arising from the
Chern-Simons term and a dynamical mass parameter—the
Gribov parameter—associated to the restriction of the path
integral measure to the Gribov region. As it is known, the
restriction to the Gribov region affects the Abelian gluon
propagator and thereby due to a suitable choice of the mass
parameters, the Abelian gluon propagator displays real
poles or purely complex poles. This is interpreted as a
transition from a confining to a deconfining phase. It is
important to emphasize that the Gribov parameter is not
free, but fixed by a gap equation. In particular, it is
determined in terms of the coupling constant g and the
topological mass M as shown by the leading order con-
tribution to the gap equation in Eq. (40). In this contribu-
tion, we have treated the mass parameters as being free and
concentrated the analysis to the viability of the phase
transition instead of trying to make it quantitative.
The Yang-Mills-Chern-Simons model is invariant just

under infinitesimal transformations for generic values of
the topolofical mass. Hence, in this particular case, elimi-
nating only infinitesimal Gribov copies is in fact equivalent
to remove all the Gribov copies—this is in contrast to
standard Yang-Mills theories where within the Gribov
region there are still large copies [21].
As it is known in the case of pure Yang-Mills theories,

the Gribov-Zwanziger theory suffers from infrared

FIG. 5. Residue B2—associated to the parity-violating part of
the propagator—for M ¼ −5.

FERREIRA, PEREIRA, and SOBREIRO PHYS. REV. D 101, 105022 (2020)

105022-10



instabilities which favors the formation of dimension-two
condensates. This leads to the so-called refined Gribov-
Zwanziger action which takes into account those conden-
sates from the beginning [26,43,79,81]. Such a feature was
investigated in different gauges, including the MAG. In
principle, in the Yang-Mills-Chern-Simons model, the
generation of dimension-two condensates would also
occur. In this case, the mass parameters associated to the
condensates would have their own gap equations fixing
them in terms of g and M. Ultimately, this would affect the
pole structure of the gluon propagator leading to a new
phase diagram. An explicit check of the viability of a
transition from confined to deconfined phases would be
required. This is beyond the scope of this paper.
The introduction of the horizon function as discussed in

Sec. IV breaks in an explicit but soft way the BRST
symmetry, see [34]. However, as discussed in [79,82] in the
MAG, it is possible to provide a manifestly BRST-invariant
formulation of the Gribov-Zwanziger action by introducing
a gauge-invariant field Ah

μ. This has an important conse-
quence of providing a physical meaning for the Gribov
parameter, i.e., it is not akin to a gauge parameter. This is a
formal development that will be reported elsewhere.
Finally, the renormalizability properties of the Yang-
Mills-Chern-Simons theory quantized in the MAG
restricted to the Gribov region will appear in a forthcoming
publication.

ACKNOWLEDGMENTS

The authors are grateful to S. P. Sorella for discussions.
A. D. P. acknowledges Associazione di Fondazioni e di

Casse di Risparmio Spa (ACRI) under the Young
Investigator Program and SISSA for hospitality, CNPq
under the Grant No. PQ-2 (309781/2019-1) and FAPERJ
under the “Jovem Cientista do Nosso Estado” program (E-
26/202.800/2019). The Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) is also acknowl-
edged for financial support.

APPENDIX: BRST TRANSFORMATIONS

For the sake of completeness, we list here the BRST trans-
formations generated by the nilpotent operator s ðs2 ¼ 0Þ for
the non-Abelian and Abelian components of the field content
of Yang-Mills-Chern-Simons theories quantized in theMAG
with gauge group being SUð2Þ. They are,

sAa
μ ¼ −Dab

μ cb − gϵabAb
μc;

sca ¼ gϵabcbc;

sc̄a ¼ iba;

sba ¼ 0;

sAμ ¼ −∂μc − gϵabAa
μcb;

sc ¼¼ g
2
ϵabcacb;

sc̄ ¼ ib;

sb ¼ 0: ðA1Þ
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