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We obtain full moduli parameters for generic nonplanar Bogomol’nyi-Prasad-Sommerfield networks of
domain walls in an extended Abelian-Higgs model with N complex scalar fields and exhaust all exact
solutions in the corresponding CPN−1 model. We develop a convenient description by grid diagrams which
are polytopes determined by mass parameters of the model. To illustrate the validity of our method, we
work out nonplanar domain wall networks for lower N in 3þ 1 dimensions. In general, the networks can
have compact vacuum bubbles, which are finite vacuum regions surrounded by domain walls, when the
polytopes of the grid diagrams have inner vertices, and the size of bubbles can be controlled by moduli
parameters. We also construct domain wall networks with bubbles in the shapes of the Platonic,
Archimedean, Catalan, and Kepler-Poinsot solids.
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I. INTRODUCTION

It sometimes happens that systems have multiple discrete
vacua or ground states, which is inevitable when a discrete
symmetry is spontaneously broken. In such a case, there
appear domain walls (or kinks) in general [1–3] which are
inevitably created during second order phase transitions
[4–7]. They are the simplest topological solitons appearing
in various condensed matter systems such as magnets [8],
graphenes [9], carbon nanotubes, superconductors [10],
atomic Bose-Einstein condensates [11], and helium super-
fluids [6,7,12], as well as high density nuclear matter
[13,14], quark matter [15], and early Universe [4,16].
In cosmology, cosmological domain wall networks are
suggested as a candidate of dark matter and/or dark
energy [17].
As the cases of other topological solitons, domain walls

can become Bogomol’nyi-Prasad-Sommerfield (BPS)
states [18,19], attaining the minimum energy for a fixed
boundary condition and satisfy first order differential

equations called BPS equations. In such cases, one can
often embed the theories to supersymmetric (SUSY)
theories by appropriately adding fermion superpartners,
in which BPS solitons preserve some fractions of SUSY.
Their topological charges are central (or tensorial) charges
of corresponding SUSY algebras. The BPS domain walls
in 3þ 1 dimensions were studied extensively in field
theories with both N ¼ 1 SUSY [20–35] and N ¼ 2

SUSY [36–56]; see Refs. [57–60] as a review. They
preserve a half of SUSY and thereby are called 1

2
BPS

states, accompanied by SUSY central (tensorial) charges
Zm ðm ¼ 1, 2; labeling spatial coordinates xm perpen-
dicular to the domain wall) as domain wall topological
charges [22,24,61]. In general, if several domain walls meet
along a line, it forms a planar domain wall junction. In
SUSY models, the planar domain wall junctions preserve a
quarter SUSY [62–64], therefore are called 1

4
BPS states,

accompanied by a junction topological charge Y in addition
to Zm (m ¼ 1, 2). The 1

4
BPS domain wall junctions have

been studied in theories withN ¼ 1 SUSY [32,65–73] and
N ¼ 2 SUSY [74–83]. In theN ¼ 2 SUSY gauge models,
not only planar domain wall junctions, but also planar
domain wall networks as 1

4
BPS states were constructed

[75,76]. The low-energy effective action for normalizable
modes within the networks was obtained [78] and applied
to study of low-energy dynamics [79]. Non-BPS planer
domain wall networks were also studied in Refs. [84,85].
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Recently, the present authors proposed a model, aDþ 1-
dimensional Uð1Þ gauge theory [86] admitting novel
analytic solutions of the BPS single nonplanar domain
wall junctions. This model cannot be made supersymmetric
but still admits stable BPS states so that we can use the
well-known Bogomol’nyi completion technique to derive
BPS equations. The model consists of N charged complex
scalar fields andN0 neutral scalar fields coupled to theUð1Þ
gauge field. In Ref. [86], we restricted ourself to the special
numbers N − 1 ¼ N0 ¼ D and imposed the invariance
under the symmetric group SDþ1 of the rank Dþ 1, which
are the symmetry groups of the regular D simplex.
In this paper, we investigate generic nonplanar networks

of BPS domain walls inDþ 1 dimensions. We consider the
generic case of N ≥ Dþ 1 imposing no discrete symmetry
and exhaust all exact solutions with full moduli of generic
BPS nonplanar networks of domain walls in the infinite
Uð1Þ gauge coupling limit in which the model reduces to
the CPN−1 model. These are the first exact solutions of
nonplanar domain wall networks inD dimensions (D ≥ 3).
We first derive the BPS equations for generic Abelian
gauge theories in Dþ 1 dimensions. Then, we partially
solve them by the moduli matrix formalism [58] and find all
moduli parameters of the generic domain wall network
solutions. We then demonstrate several concrete nonplanar
networks in the CPN−1 model in D ¼ 3 for N ¼ 4, 5, 6. In
the case of N ¼ 4, the solution has only one junction at
which four vacua meet. Network structures appear for
N > 4. In the case of N ¼ 5, we show two different types
of networks exist in general. The first type has a vacuum
bubble (a compact vacuum domain) surrounded by semi-
infinite vacuum domains. Instead, the second type does not
have any bubbles but all the vacuum domains are semi-
infinitely extended. In the N ¼ 6 case, there are three
different types according to the number of the vacuum
bubbles, two, one, or zero. Finally, we find a connection to
the well-known polyhedra known from ancient times.
Indeed, we find the vacuum bubbles which are congruent
with five Platonic solids. In addition, the Archimedean and
the Catalan solids appear as the vacuum bubbles. We also
construct the Kepler-Poinsot star solids as domain wall
networks.
This paper is organized as follows. In Sec. II, we

introduce our model. In Sec. III, we derive the BPS
equations and clarify the moduli space of the BPS
solutions. In Sec. IV, we first consider the infinite Uð1Þ
gauge coupling limit in which the model reduces to the
massive CPN−1 nonlinear sigma model. We then exhaust
all exact solutions with full moduli parameters for the BPS
equations. We further give several examples of nonplanar
networks in D ¼ 3. In Sec. V, we study relations between
the domain wall networks in D ¼ 3 and the classic solids,
like the Platonic, Archimedean, Catalan, and Kepler-
Poinsot solids. Finally, we summarize our results and give
a discussion in Sec. VI.

II. THE MODEL

We study a Uð1Þ gauge theory with N charged complex
scalar fields HA (A ¼ 1; 2;…; N) and N0 real scalar fields
ΣA0

(A0 ¼ 1; 2;…; N0) in Dþ 1-dimensional spacetime.
The Lagrangian is given by

L ¼ −
1

4e2
FμνFμν þ 1

2e2
XN0

A0¼1

∂μΣA0∂μΣA0

þDμHðDμHÞ† − V ð2:1Þ

V ¼ 1

2e2
Y2 þ

XN0

A0¼1

ðΣA0
H −HMA0 ÞðΣA0

H −HMA0 Þ†;

ð2:2Þ

where H is an N component row vector made of HA,

H ¼ ðH1; H2;…; HNÞ; ð2:3Þ

Y is a scalar quantity defined by

Y ¼ e2ðv2 −HH†Þ; ð2:4Þ

and MA0
(A0 ¼ 1;…; N0) are N by N real diagonal mass

matrices defined by

MA0 ¼ diagðmA0;1; mA0;2;…; mA0;NÞ: ð2:5Þ

The spacetime index μ runs from 0 toD, and Fμν is anUð1Þ
gauge field strength. The coupling constants in the
Lagrangian in Eq. (2.1) are taken to be the so-called
Bogomol’nyi limit. For later use, let us define mA by an
N0 vector whose components are the Ath diagonal elements
of MA0

s, namely,

mA ¼ ðm1;A; m2;A;…; mN0;AÞ: ð2:6Þ

In the following, we will mostly consider generic masses:

mA ≠ mB; if A ≠ B: ð2:7Þ

Since the scalar potential V is positive semidefinite, a
classical vacuum of the theory is determined by V ¼ 0:
HH† ¼ v2, and ΣA0

H −HMA0 ¼ 0. In the generic case of
Eq. (2.7), there are N discrete vacua. The Ath vacua which
we will denote by hAi is given by HB ¼ vδBA, and
ΣB0 ¼ mB0;A. Simply, the vacua can be identified to the
discrete points determined by the mass vectors fmAg in the
Σ space,

hAi∶Σ ¼ mA: ð2:8Þ

The Lagrangian (2.1) is motivated by supersymmetry. In
fact, when N0

F ¼ 2, it is a bosonic part of an N ¼ 2

ETO, KAWAGUCHI, NITTA, and SASAKI PHYS. REV. D 101, 105020 (2020)

105020-2



supersymmetric theory with eight supercharges in four
dimensions.

III. SOLVING BPS EQUATIONS FOR DOMAIN
WALL NETWORKS

A. Derivation of the BPS equations

From now on, we investigate BPS states of L in Eq. (2.1)
in the case that the number N0 of flavors for real adjoint
scalars is equal to the number of the spatial dimensions D.1

In what follows, the Roman indexm stands not only for the
spacial index asm ¼ 1; 2;…; D but also for the index of N0
(m≡ A0). Then, the standard Bogomol’nyi completion for
this system goes as follows:

E ¼ 1

2e2
X
m>n

fF2
mn þ ð∂mΣn − ξmξn∂nΣmÞ2g

þ 1

2e2

�X
m
ξm∂mΣm − Y

�
2

þ
X
m

fDmH þ ξmðΣmH −HMmÞg

× fDmH þ ξmðΣmH −HMmÞg†
þ
X
m

ξmZm þ
X
m>n

ξmξnYmn þ
X
m

∂mJ m; ð3:1Þ

with ξm ¼ �1, and we have defined the domain wall
topological charge density Zm, the domain wall junction
charge density Ymn, and J m by

Zm ¼ v2∂mΣm; ð3:2Þ

Ymn ¼ −
1

e2
det

� ∂mΣm ∂mΣn

∂nΣm ∂nΣn

�
; ð3:3Þ

J m ¼ −ξmðΣmH −HMmÞH†; ð3:4Þ

respectively. The contribution by J m vanishes under the
space integrations since it is asymptotically zero because of
the vacuum condition ΣmH −HMm ¼ 0.
The domain wall tension Zm measured along the xm

direction can be defined from Zm by

Zm ¼
Z

∞

−∞
dxmξmZm ¼ v2ξmðΣmjxm¼þ∞ −Σmjxm¼−∞Þ ≥ 0;

ðno sum overmÞ: ð3:5Þ

Note that Zm is always positive regardless of the choice of
ξm. Hence, the genuine tension measured along the normal

direction to the domain wall interpolating the vacua hAi and
hBi is given by

jZj ¼ v2jmA −mBj: ð3:6Þ

On the other hand, the domain wall junction charge can
be defined from the topological charge density Ymn as

Ymn ¼ ξmξn

Z
dxmdxnYmn ¼ −

ξmξn
e2

Smn ≤ 0; ð3:7Þ

negatively contributing to the BPS energy. Here, we have
defined

Smn ≡
Z

dxmdxn det

� ∂mΣm ∂mΣn

∂nΣm ∂nΣn

�
: ð3:8Þ

The integrand is a Jacobian of a map from thewhole xm − xn

plane to a region in theΣm − Σn plane defined by the function
ðΣmðxm; xnÞ;Σnðxm; xnÞÞ with all other coordinates xk

(k ≠ m, n) fixed. Smn can be either positive or negative,
and its absolute value is the area of the image. Nevertheless,
Ymn is always negative since Smn is accompanied with
ð−ξmξnÞ, and so it should be understood as a sort of binding
energy among domain walls [67–69].
Since the first three terms of Eq. (3.1) are positive

semidefinite, the Bogomol’nyi energy bound is given by

E ≥
X
m

ξmZm þ
X
m>n

ξmξnYmn þ
X
m

∂mJ m; ð3:9Þ

and it is saturated by the BPS states satisfying the BPS
equations,

Fmn ¼ 0; ð3:10Þ

ξn∂mΣn − ξm∂nΣm ¼ 0; ð3:11Þ

ξmDmH þ ΣmH −HMm ¼ 0; ð3:12Þ
X
m

ξm∂mΣm − Y ¼ 0; ð3:13Þ

where m; n ¼ 1; 2;…; D. One can verify that all solutions
of the above BPS equations solve the full equations of
motion. This is the D-dimensional extension of the 1

4
BPS

equations of the planar domain wall junction in D ¼ 2
cases studied in Refs. [74,75,78,79].
In the previous work [86] by the present authors, we

generalized the topological charge densities Zm and Ymn
under the observation thatZm and Ymn are nothing but one-
and two-dimensional Jacobians of maps xm → Σm and
ðxm; xnÞ → ðΣm;ΣnÞ, respectively. For a domain wall
interpolating the hAi and hBi vacua, an integral of Zm
(with an appropriate rescale to make it dimensionless)

1In Ref. [86], we considered the same model with restricted to
a special case in which the flavor number N is also related to the
spatial dimensions, N ¼ Dþ 1. Instead, this work studies the
case with generic Nð≥ Dþ 1Þ.
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measures a covering number of a map from R1ð−∞ <
xm < ∞Þ onto the one-dimensional interval ðmm;A < Σm <
mm;BÞ. The charge is topological and indeed takes values
either þ1, 0, or −1. Similar arguments hold for Ymn, and it
is straightforward to generalize it in D dimensions as

Wdðm1; m2;…; mdÞ

¼ det

0
BBBBB@

∂m1
Σm1

∂m1
Σm2

� � � ∂m1
Σmd

∂m2
Σm1

∂m2
Σm2

� � � ∂m2
Σmd

..

. . .
. ..

.

∂md
Σm1

∂md
Σm2

� � � ∂md
Σmd

1
CCCCCA
; ð3:14Þ

where 1 ≤ d ≤ D, mα ∈ f1; 2;…; Dg (α ¼ 1; 2;…; d),
and mα > mβ if α > β. We have W1ðmÞ ∝ Zm and
W2ðm; nÞ ∝ Ymn. In general, the BPS solutions in D
dimensions have d-dimensional substructures, and Wd
provides us topological numbers associated with the
substructures.

B. The moduli matrix method

Let us solve the BPS equations (3.10)–(3.13). To this
end, we first introduce a complex scalar function SðxmÞ by

Am − iξmΣm ¼ −i∂m log S: ð3:15Þ

Then, Eqs. (3.10) and (3.11) are automatically satisfied.
Plugging this into Eq. (3.12), we have

∂mH þ ð∂m log SÞH − ξmHMm ¼ 0: ð3:16Þ

This can be solved by

H ¼ vS−1H0eξmMmxm; ð3:17Þ

where H0 is an arbitrary complex constant N vector. H0 is
called the moduli matrix because the elements of H0 are
moduli (integration constants) of the BPS solutions.
Finally, we are left with the fourth equation (3.13). To
solve this, let us express the neutral real scalar fields Σm in
terms of S,

Σm ¼ 1

2
ξm∂m logΩ; Ω≡ jSj2; ð3:18Þ

where Ω is the gauge-invariant quantity. Using this, the
fourth BPS equation (3.13) is cast into the following
Poisson equation in D dimensions:

1

2
∇2 logΩ ¼ e2v2ð1 − Ω−1H0e2ξmMmxmH†

0Þ: ð3:19Þ

We call this the master equation for the BPS states.
We note that the original fields Am, Σm, and H are intact

under the following transformation:

ðS;H0Þ → VðS;H0Þ; V ∈ C�; ð3:20Þ

where V is constant. This is called the V transformation
under which any physical information is independent.
To solve the master equation, we first need to fix the

moduli matrix H0. Once H0 is given, the boundary
condition at jxj → ∞ is automatically specified. Namely,
we should solve the master equation with the boundary
condition

lim
jxj→∞

Ω ¼ H0e2ξmMmxmH†
0: ð3:21Þ

As a trivial example, let us consider a homogeneous
vacuum, say the first vacuum h1i. The h1i vacuum
configuration is given by the moduli matrix

H0 ¼ ðh1; 0;…; 0Þ; h1 ∈ C�: ð3:22Þ

The corresponding master equation becomes

1

2
∇2 logΩ ¼ e2v2ð1 −Ω−1jh1j2e2ξmmm;1xmÞ; ð3:23Þ

which can be solved by

Ω ¼ jh1j2e2ξmmm;1xm : ð3:24Þ

Plugging this into Eq. (3.18), we immediately find Σ ¼ m1.
It is also straightforward to verify H ¼ ðv; 0;…; 0Þ. Note
that the constant h1 in the moduli matrix does not play
any role in the above example. This redundancy comes
from the V transformation in Eq. (3.20). Indeed, we could,
from the first point, fix the moduli matrix (3.22) as
H0 ¼ ðh1; 0;…; 0Þ → ð1; 0;…; 0Þ.
Nontrivial inhomogeneous solutions including a single

domain wall connecting the hAi and hBi vacua are gen-
erated by the moduli matrix with the nonzero constants
only in the Ath and Bth entries as

H0 ¼ ð0;…; 0; 1; 0;…; 0; hB; 0;…; 0Þ
∼ ð0;…; 0; hA; 0;…; 0; 1; 0;…; 0Þ: ð3:25Þ

The nonzero moduli parameters hA and hB are related by
the V transformation as hAhB ¼ 1.
Similarly, if we have H0 with three nonzero constants,

we will have a domain wall junction dividing the corre-
sponding three vacua. The moduli matrix is given by

H0¼ð0;…;0;1;0;…;0;hB;0;…;0;hC;0;…;0Þ: ð3:26Þ

Maximally complex solutions dividing N vacuum
domains in D dimensions are, then, obtained by the moduli
matrix which has no zeros in any elements. Such compli-
cated extended objects in D dimensions are not easy for us
to handle without exact solutions. Unfortunately, the master
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equation (3.19) does not seem analytically solvable, except
for the very special cases possessing the highest discrete
symmetry group SDþ1, the symmetric group of the degree
Dþ 1, in the model with the special number of the flavor
N ¼ Dþ 1 and finely tuned parameters g, c, and mA0;A, as
demonstrated in Ref. [86]. Even in the fine-tuned models,
the exact analytic solution were only found for a single
junction of the domain walls since N ¼ Dþ 1 is the
minimum number. However, as we show in the next
section, the solutions include domain wall networks when
N > Dþ 1.
To see shapes of domain wall networks, let us define a

weight for each vacuum by

whAi ¼ em̃A·xþaA ; ðA ¼ 1;…; NÞ: ð3:27Þ

Since the weight is the exponential function of the spatial
coordinate, only one weight dominates the rest N − 1
weights at each point x. Suppose the weight of the hAi
vacuum is dominant in vicinity of a point x0. There, we
have Ω ∼ ðwhAiÞ2, and then Σ reads from Eq. (3.18),

Σjx∼x0 ¼
1

2
∇̃ logðwhAiÞ2 ¼ mA: ð3:28Þ

This implies that the region where the weight whAi is
dominant corresponds to the vacuum hAi.
Let us next consider a situation that the vacua hAi and

hBi are next to each other. We can estimate where the two
vacua transit by comparing the weights of those vacua. The
transition occurs at points on which the two weights are
equal. This condition determines a hyperplane which is a
subspace of codimension 1 in RD,

hA;Bi∶whAi ¼ whBi ⇔ ðm̃A − m̃BÞ · xþ aA − aB ¼ 0:

ð3:29Þ

This is a straightforward generalization of D ¼ 2 [75] to
generic D dimensions. This hyperplane is nothing but a
domain wall interpolating the vacua hAi and hBi, and we
call it a 1-wall.
The three vacua, say hAi, hBi, and hCi, can happen to be

adjacent at a hyperplane of codimension 2, which is
conventionally called the domain wall junction. We call
it a 2-wall. The position of the 2-wall corresponds to the
region where the weights are equal as

hA;B;Ci∶whAi ¼ whBi ¼ whCi: ð3:30Þ

These can be naturally generalized to a d wall which is a
d codimensional intersection dividing dþ 1 vacua. The
position of the d wall is defined by

hA1; A2;…; Adþ1i∶whA1i ¼ whA2i ¼ � � � ¼ whAdþ1i: ð3:31Þ

In the next section, we will see that the position of the d
wall estimated by the weight is related to the generalized
topological charge Wd defined in Eq. (3.14).

IV. EXHAUSTING ALL EXACT SOLUTIONS
OF DOMAIN WALL NETWORKS

IN THE CPN − 1 MODEL

A. General solutions

There is a great simplification allowing us to obtain all
exact solutions for generic domain wall networks in D
dimensions. It is the infinite gauge coupling limit in which
we formally send the gauge coupling e to infinity in the
Lagrangian (2.1). There, the kinetic terms of Aμ and Σm

vanish to become Lagrange multipliers. At the same time,
the first term in the potential (2.2) forces the charged fields
HA to take their values in the restricted region S2N−1

defined by HH† ¼ v2. Furthermore, the overall phase of
HA is gauged. Therefore, the physical target space in the
infinite gauge coupling limit is reduced to the complex
projective space,

CPN−1 ≃
SUðNÞ

SUðN − 1Þ ×Uð1Þ ≃
S2N−1

S1
: ð4:1Þ

Indeed, if we eliminate the gauge field Aμ from Lje→∞, it
reduces to the standard Lagrangian of the nonlinear CPN−1

model. Similarly, if we eliminate the neutral scalar fields
Σm, we get a nontrivial potential which lifts all the points of
the CPN−1 target space leaving N discrete points as vacua.
Here, we do not eliminate the auxiliary fields Aμ and Σm.

The BPS equations in Eqs. (3.10)–(3.13) remain the same,
and the first three equations (3.10)–(3.12) are solved by
Eqs. (3.15) and (3.17). The fourth equation (3.13) rewritten
as Eq. (3.19) reduces to an algebraic equation, easily
solved by

Ωje→∞ ¼ H0e2ξmMmxmH†
0: ð4:2Þ

Thus, we have completely solved the BPS equations for
arbitrary moduli matrix H0 in the infinite gauge coupling
limit. We would like to emphasize that this is the first
solutions of the domain wall networks in D ≥ 3.
For later convenience, let us rewrite this in a more useful

form. First, let us denote H0 as

H0 ¼ ðea1þib1 ; ea2þib2 ;…; eaNþibN Þ; ð4:3Þ

where faAg and fbAg are N real parameters which we
restrict to satisfy the conditions

P
A aA ¼ P

A bA ¼ 0 by
using the V transformation. Furthermore, let us define the
new mass vectors

m̃A ¼ ðξ1m1;A; ξ2m2;A;…; ξDmD;AÞ: ð4:4Þ
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Then, we have

Ωje→∞ ¼
XN
A¼1

e2ðm̃A·xþaAÞ: ð4:5Þ

By using this, the BPS energy density can be simply
expressed by

Eje→∞ ¼ v2∇̃ · Σ ¼ v2

2
∇2 log

�XN
A¼1

e2ðm̃A·xþaAÞ
�
; ð4:6Þ

where we have defined

∇̃ ¼ ðξ1∂1; ξ2∂2;…; ξD∂DÞ; ∇̃2 ¼ ∇2 ð4:7Þ
and used Σ ¼ 1

2
∇̃ logΩ. From this expression, we can see

that the N − 1 real parameters faAg are the moduli which
relate to the shape of the networks in the real space. On the
other hand, the other parameters fbAg are internal moduli
of Uð1ÞN−1 associated with constituent domain walls.
The domain walls for D ¼ 1 and the domain wall

networks for D ¼ 2 have been studied very well in the
literature; therefore, we will concentrate on D ¼ 3 in the
following subsections.

B. N = 4: Tetrahedron: Single domain wall junction

Let us start with a model with N ¼ 4. There are N ¼ 4
vacua which are the minimal numbers for a nonplanar
domain wall junction to exist. For simplicity, let us set the
four mass vectors mA to be four vertices of a regular
tetrahedron as

m1 ¼
�
−

1ffiffiffi
3

p ;−1;−
1ffiffiffi
6

p
�
; ð4:8Þ

m2 ¼
�

2ffiffiffi
3

p ; 0;−
1ffiffiffi
6

p
�
; ð4:9Þ

m3 ¼
�
−

1ffiffiffi
3

p ; 1;−
1ffiffiffi
6

p
�
; ð4:10Þ

m4 ¼
�
0; 0;

ffiffiffi
3

2

r �
: ð4:11Þ

Then, the four vacua correspond to four vertices of the
regular tetrahedron in the Σ1 − Σ2 − Σ3 space, as shown in
Fig. 1. We call polyhedrons drawn in the Σ space as grid
diagrams [75]. Note that we have taken the regular
tetrahedron (4.8)–(4.11) just for simplicity. In general,
the grid diagrams do not have to be congruent with a
regular tetrahedron. The following arguments are valid for
the generic grid diagrams.
As we explained in Eq. (3.25), single domain walls

(1-walls) can be described by the moduli matrix with
nonvanishing elements. For instance, the moduli matrix
H0 ¼ ðeaþib; e−a−ib; 0; 0Þ yields a domain wall h1; 2i con-
necting the h1i and h2i vacua. The corresponding Ω is

Ω ¼ wh1i þ wh2i, and the exact domain wall solution is
given as

Σ1 ¼
m1;1e2ðm̃1·xþaÞ þm1;2e2ðm̃2·x−aÞ

e2ðm̃1·x−aÞ þ e2ðm̃2·x−aÞ ; ð4:12Þ

Σ2 ¼
m2;1e2ðm̃1·xþaÞ þm2;2e2ðm̃2·x−aÞ

e2ðm̃1·x−aÞ þ e2ðm̃2·x−aÞ ; ð4:13Þ

Σ3 ¼
m3;1e2ðm̃1·xþaÞ þm3;2e2ðm̃2·x−aÞ

e2ðm̃1·x−aÞ þ e2ðm̃2·x−aÞ : ð4:14Þ

Note that Σi takes its value in the finite interval Σi ∈
½mi;1; mi;2� (i ¼ 1, 2) when we sweep the real space R3.
Namely, Σ connects the two verticesm1 andm2, as desired.
Thus, the domain wall solution ΣðxÞ can be seen as a
function from the real space R3 to the Σ space, and its
image is the linear segment between m1 and m2,

Σ1 −m1;1

Σ1 −m1;2
¼ Σ2 −m2;1

Σ2 −m2;2
¼ Σ3 −m3;1

Σ3 −m3;2
: ð4:15Þ

The topological charges of 1-walls associated with
Eq. (3.14) are

WðxÞ
1 ðm1;m2Þ ¼

Z
∞

−∞
dx ∂1Σ1 ¼

Z
dΣ1 ¼ jm1;1 −m1;2j;

ð4:16Þ

WðyÞ
1 ðm1;m2Þ ¼

Z
∞

−∞
dy ∂2Σ2 ¼

Z
dΣ2 ¼ jm2;1 −m2;2j;

ð4:17Þ

FIG. 1. The grid diagram (Σ space): the four vacua (red points)
in N ¼ 4 model are shown.
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WðzÞ
1 ðm1;m2Þ ¼

Z
∞

−∞
dz ∂3Σ3 ¼

Z
dΣ3 ¼ jm3;1 −m3;2j:

ð4:18Þ

These are the lengths of segments of the edge connecting
h1i and h2i projected onto the axes Σ1;2;3. It is straightfor-
ward to construct the other domain walls connecting
arbitrary pair of hAi and hBi. They correspond to the
edges of the tetrahedron in Fig. 1.
A domain wall junction (2-wall) connecting three vacua,

say h1i, h2i, and h3i, can be also constructed very easily.
One mere needs to prepare the moduli matrix H0 ¼
ðea1þib1 ; ea2þib2 ; ea3þib3 ; 0Þ with three nonzero elements.
The exact solution is given by

Σ1 ¼
m1;1e2ðm̃1·xþa1Þ þm1;2e2ðm̃2·xþa2Þ þm1;3e2ðm̃3·xþa3Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ ;

ð4:19Þ

Σ2 ¼
m2;1e2ðm̃1·xþa1Þ þm2;2e2ðm̃2·xþa2Þ þm2;3e2ðm̃3·xþa3Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ ;

ð4:20Þ

Σ3 ¼
m3;1e2ðm̃1·xþa1Þ þm3;2e2ðm̃2·xþa2Þ þm3;3e2ðm̃3·xþa3Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ :

ð4:21Þ

These Σ satisfy the equation

fðm3 −m1Þ × ðm2 −m1Þg · ðΣ −m1Þ ¼ 0; ð4:22Þ

representing the two-dimensional plane on which the three
points m1, m2, and m3 are located. The image of the map
ΣðxÞ in this case is the triangle whose vertices are h1i, h2i,
and h3i. The corresponding topological charges are iden-
tical to the areas of the projections of the triangle onto the
three planes (Σ1–Σ2, Σ2–Σ3, and Σ3–Σ1) as

WðxyÞ
2 ðm1;m2;m3Þ ¼

Z
∞

−∞
dxdy ð∂1Σ2∂2Σ1 − ∂1Σ1∂2Σ2Þ

¼
Z

dΣ1dΣ2 ¼
1

2
j½ðm1 −m2Þ × ðm1 −m3Þ�3j; ð4:23Þ

WðyzÞ
2 ðm1;m2;m3Þ ¼

Z
∞

−∞
dydz ð∂2Σ3∂3Σ2 − ∂2Σ2∂3Σ3Þ

¼
Z

dΣ2dΣ3 ¼
1

2
j½ðm1 −m2Þ × ðm1 −m3Þ�1j; ð4:24Þ

WðzxÞ
2 ðm1;m2;m3Þ ¼

Z
∞

−∞
dzdx ð∂3Σ1∂1Σ3 − ∂3Σ3∂1Σ1Þ

¼
Z

dΣ3dΣ1 ¼
1

2
j½ðm1 −m2Þ × ðm1 −m3Þ�2j: ð4:25Þ

Again, it is straightforward to construct the other 2-walls dividing arbitrary set of three vacua. They correspond to the faces
of the tetrahedron in Fig. 1.
Finally, we come to the 3-wall h1; 2; 3; 4i consisting of the four vacua, six 1-walls, and four 2-walls. It is described by the

full moduli matrix H0 ¼ ðea1þib1 ; ea2þib2 ; ea3þib3 ; ea4þib4Þ, and the exact solution is given by

Σ1 ¼
m1;1e2ðm̃1·xþa1Þ þm1;2e2ðm̃2·xþa2Þ þm1;3e2ðm̃3·xþa3Þ þm1;4e2ðm̃4·xþa4Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ þ e2ðm̃4·xþa4Þ ; ð4:26Þ

Σ2 ¼
m2;1e2ðm̃1·xþa1Þ þm2;2e2ðm̃2·xþa2Þ þm2;3e2ðm̃3·xþa3Þ þm2;4e2ðm̃4·xþa4Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ þ e2ðm̃4·xþa4Þ ; ð4:27Þ

Σ3 ¼
m3;1e2ðm̃1·xþa1Þ þm3;2e2ðm̃2·xþa2Þ þm3;3e2ðm̃3·xþa3Þ þm3;4e2ðm̃4·xþa4Þ

e2ðm̃1·xþa1Þ þ e2ðm̃2·xþa2Þ þ e2ðm̃3·xþa3Þ þ e2ðm̃4·xþa4Þ : ð4:28Þ

Note that we can set a1 ¼ a2 ¼ a3 ¼ a4 by using three translational symmetries and V transformation, without loss of
generality. Now, the solution ΣðxÞ maps the real three-dimensional space R3 to the tetrahedron itself in the Σ space. The
corresponding topological charge reads
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WðxyzÞ
3 ðm1;m2;m3;m4Þ ¼

Z
∞

−∞
dxdydz det

0
B@

∂1Σ1 ∂1Σ2 ∂1Σ3

∂2Σ1 ∂2Σ2 ∂2Σ3

∂3Σ1 ∂3Σ2 ∂3Σ3

1
CA ¼

Z
dΣ1dΣ2dΣ3

¼ 1

6
jððm2 −m1Þ × ðm3 −m1ÞÞ · ðm4 −m1ÞÞj: ð4:29Þ

This is nothing but the volume of the tetrahedron.
In Fig. 2, we show the topological charge densities Wd

for the regular tetrahedron given in Fig. 1. The top-left
panel shows the vacuum (0-wall) domains (h1i ¼ green,
h2i ¼ yellow, h3i ¼ cyan, h1i ¼ hidden). At boundaries
between two vacuum (0-wall) domains, there are domain
walls (1-walls), as shown in the top-right panel. The plot
shows an isosurface of the sum of three 1-wall charge

densities WðxÞ
1 þWðyÞ

1 þWðzÞ
1 . Similarly, the bottom-left

panel shows an isosurface of the sum of the three 2-wall

charge densities WðxyÞ
2 þWðyzÞ

2 þWðzxÞ
2 . Finally, the

bottom-right panel shows an isosurface of the 3-wall charge

density WðxyzÞ
3 . The figures clearly show that the general-

ized topological charge defined in Eq. (3.14) is appropriate
to describe the codimension d structure in the solution.
To close this subsection, we again emphasize that we

have chosen the symmetric arrangement of the masses
corresponding to a regular tetrahedron in Fig. 1 just for
simplicity, but the exact solution has been obtained for
arbitrary mass arrangement. In order to make this point
clearer, we show in Fig. 3 four solutions for randomly
chosen tetrahedrons.

C. N = 5: Dipyramid: Minimal domain wall networks

Let us next consider a model admitting a nonplanar
network structure of domain walls. The minimal number
for this is N ¼ 5 for which there is one additional vacuum
h5i compared to the model with N ¼ 4. According to
where we put the fifth vacuum, the resulting network
structures are classified into two types as shown in
Figs. 4(a) and 4(b). The feature of (a) is the presence of
an inner vacuum h5i in the tetrahedron h1; 2; 3; 4i. On the
other hand, Fig. 4(b) is a dipyramid for which the fifth
vacuum h5i is placed outside the tetrahedron h1; 2; 3; 4i It is
a convex polytope and has no inner vacua.
Let us start with the former case of the tetrahedron with

the inner vacuum. We take the same four vacua defined in
Eqs. (4.8)–(4.11) for simplicity, and the fifth one is set as

m5 ¼ ð0; 0; 0Þ: ð4:30Þ

The most generic moduli matrix up to the three translations
in R3 and V transformation (3.20) is given by

H0 ¼ ð1; 1; 1; 1; ea5Þ: ð4:31Þ

Then Ω depends on the one moduli parameter a5 as

Ω ¼
X4
A¼1

e2m̃A·x þ e2a5e2m̃5·x: ð4:32Þ

From this expression, we understand that the factor ea5
controls the strength (the weight) of the fifth vacuum h5i
relative to the rests. When a5 → −∞, the h5i domain
disappears. The h5i domain extends as ea5 increases. This
moduli dependence of the configuration can be seen in
Fig. 5 in which we have shown three examples with
a5 ¼ −∞, 0, and 3. The large distance behaviors are the
same for all these cases. However, a significant difference
emerges around the origin. Reflecting the inner vacuum h5i
inside the tetrahedron, a compact vacuum domain of h5i
emerges by increasing a5. The whole structure of the
solution is as follows. There is one inner vacuum bubble
h5i surrounded by the semi-infinite four vacuum domains
h1i, h2i, h3i, and h4i. There are six semi-infinite 1-walls
corresponding to six outer edges (h1; 2i, h1; 3i, h1; 4i, h2; 3i,
h2; 4i, and h3; 4i) and four compact 1-walls corresponding
to the four inner edges (h1; 5i, h2; 5i, h3; 5i, h4; 5i); see the
third row of Fig. 5. There are four semi-infinite 2-walls

FIG. 2. The real space R3: isosurfaces of the topological charge
densities Wd for d walls (d ¼ 0, 1, 2, 3) are shown. We only
depict the densities within the sphere of the radius 10.
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and the six compact 2-walls corresponding to the four faces
(h1; 2; 3i, h1; 2; 4i, h1; 3; 4i, h2; 3; 4i) and the six inner
triangles (h1; 2; 5i, h2; 3; 5i, h1; 3; 5i, h1; 4; 5i, h2; 4; 5i,
h3; 4; 5i), respectively. Finally, there are four 3-walls which
correspond to the four subtetrahedrons (h1; 2; 4; 5i,
h2; 3; 4; 5i, h1; 3; 4; 5i, h1; 2; 3; 5i). The network structure
in the realR3 space can be best seen in the plot of the 2-walls
as shown in Fig. 5.
Next, let us place the fifth vacuum h5i on the plane

including the bottom triangle h1; 2; 3i, say

m5 ¼
�
0; 0;−

1ffiffiffi
6

p
�
: ð4:33Þ

The moduli matrix is the same as the one in Eq. (4.31).
When ea5 is sufficiently large, the configuration becomes a
mixture of planar and nonplanar structures, as shown in
Fig. 6 for a5 ¼ 3. The planar structure comes from the
bottom triangle h1; 2; 3i which are divided into three
subtriangles h1; 2; 5i, h2; 3; 5i, and h1; 3; 5i. As a conse-
quence, there are six parallel semi-infinite 1-walls corre-
sponding to h1; 2i, h1; 3i, h1; 5i, h2; 3i, h2; 5i, and h3; 5i.
On the other hand, the nonplanar structure is originated
from the vacuum h4i which is placed off the bottom
triangle. In addition to the semi-infinite 1-walls correspond-
ing to the edges h1; 4i, h2; 4i, h3; 4i, there is the compact
1-wall of h4; 5i. Comparing the 2- and 3-wall structures in
Figs. 5 and 6, we see that the lower 3-walls is pushed down

FIG. 3. Four examples of the BPS solutions: the leftmost panel shows the grid diagrams, and the second, third, and fourth from left
show the corresponding Wd d ¼ 0, 1, 2. We only depict the densities within the sphere of the radius 10.
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toward infinity, which corresponds to the fact that the
subtetrahedron h1; 2; 3; 5i gets squashed flat.
Let us next study the second type with the dypyramid

structure as Fig. 4(b), which can be obtained by further
pushing down the vacuum h5i from the last case in Fig. 6.
As before, the first four masses m1, m2, m3, and m4 are

intact. Then the fifth vacuum is placed at opposite to h4i
with respect to the triangle h1; 2; 3i as

m5 ¼
�
0; 0;−

5ffiffiffi
6

p
�
: ð4:34Þ

FIG. 4. The grid diagrams (Σ space): (a),(b) show the two different patterns of five vacua in N ¼ 5.

FIG. 5. Exact solutions in three typical branches for the grid diagram in Fig. 4(a). Isosurfaces of the topological charge densities Wd
for d walls (d ¼ 0, 1, 2, 3) are shown.
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A useful choice of the moduli matrix with one moduli
parameter a45 is given by

H0 ¼ ð1; 1; 1; ea45 ; ea45Þ: ð4:35Þ

The parameter a45 controls the weight of the vacua h4i and
h5i relative to that of h1i, h2i, and h3i. We show three
typical solutions with a45 ¼ −4, 0, 3 in Fig. 7.
The first row corresponds to a45 ¼ −4. The h4i and h5i

domains are relatively weak, whereas the domains of h1i,
h2i, and h3i stick out and directly meet to form a 2-wall
corresponding to the inner triangle h1; 2; 3i: The dypyramid
is divided into the upper and the lower (upside down)
tetrahedrons. Correspondingly, the configurations (1-, 2-,
3-walls) are constructed by joining two tetrahedral
solutions at the z ¼ 0 plane.

The middle row of Fig. 7 corresponds to a45 ¼ 0 where
the strengths of all the vacua are comparable. Namely, all
the vacuum domains meet at the origin. Accordingly,
the inner 2-wall corresponding to the triangle h1; 2; 3i
disappears.
As increasing a45 further, the vacuum domains h4i and

h5i expand and directly meet to create new 1-wall h4; 5i; see
the third row of Fig. 7. In this case, the whole dypyramid can
be thought of as the sum of three subtetrahedrons h1; 2; 4; 5i,
h1; 3; 4; 5i, and h2; 3; 4; 5i. This can be seen in the 2- and
3-walls depicted in the third row of Fig. 7.
Finally, we consider a rare case that the four vacua are

placed on a plane similarly to Fig. 6. We now put the four
points on a plane so that they form a square; see Fig. 8.
Namely, the five vacua form a square pyramid. As an
example, our choice is

FIG. 6. Exact solution for the fine-tuned grid diagram. Isosurfaces of the topological charge densities Wd for d walls (d ¼ 0, 1, 2, 3)
are shown.

FIG. 7. Exact solutions in three typical branches for the grid diagram in Fig. 4(b). Isosurfaces of the topological charge densities Wd
for d walls (d ¼ 0, 1, 2, 3) are shown.
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m1 ¼ ð2; 2; 0Þ; ð4:36Þ

m2 ¼ ð2;−2; 0Þ; ð4:37Þ

m3 ¼ ð−2; 2; 0Þ; ð4:38Þ

m4 ¼ ð−2;−2; 0Þ; ð4:39Þ

m5 ¼ ð0; 0; 4Þ: ð4:40Þ

The moduli matrix useful for this case is

H0 ¼ ðea14 ; ea23 ; ea23 ; ea14 ; 1Þ; ð4:41Þ
where a14 corresponds to the weights of h1i and h4i
whereas a23 corresponds to the weights of h2i and h3i.2
We show three typical solutions with ða14; a23Þ ¼ ð10; 0Þ;
ð0; 0Þ; ð0; 10Þ in Fig. 8.
In the first rowofFig. 8, the first solutionwith ða14; a23Þ ¼

ð10; 0Þ is shown. Since theweights of h1i and h4i are greater
than those of h2i and h3i, the former domains stick out and
directly meet to form the 1-wall h1; 4i.
When ða14; a23Þ ¼ ð0; 0Þ, all the vacua have the same

influences, so that they meet at a point; see the middle row
of Fig. 8.

When ða14; a23Þ ¼ ð0; 10Þ, the influence of h2i
and h3i is the maximum, so that their domains contact
and form the 1-wall h2; 3i, as shown in the third row
of Fig. 8.

FIG. 8. Exact solutions in three typical branches for the fine-tuned grid diagram. Isosurfaces of the topological charge densitiesWd for
d walls (d ¼ 0, 1, 2, 3) are shown.

FIG. 9. Exact solutions of domain wall networks for the model
with N ¼ 6. The first line shows the grid diagrams, and the
second line shows isosurfaces of W2 for the corresponding
solutions. (a) The grid diagram is a tetrahedron and it has two
inner vertices. (b1) and (b2) are two different type of the networks
for the dipyramid-form grid diagram with one inner vertex.
(a) has two vacuum bubbles, and (b1) and (b2) have one vacuum
bubble.

2The parameters a14 and a23 are not physically independent
moduli due to the V transformation (3.20).
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FIG. 10. Exact solutions of domain wall network in the octahedral grid diagram (N ¼ 6) without inner vertices. We superpose the two
kinds of graphs, the one is theW2 in the x space and the other is the grid diagram in the Σ space. There are three orthogonal directions to
deform the network. The figure at the center shows the network where all the six vacua have the same influences. (a1) [(a2)] is obtained
when the weight of h1i and h2i is larger (smaller) than the other vacua. Similarly, (b1) and (b2) [(c1) and (c2)] transit by controlling the
relative influence of h5i and h6i [h3i and h4i].
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A difference of the two cases ða14; a23Þ ¼ ð10; 0Þ and
(0,10) is just the difference of dividing the square pyramid
into two tetrahedrons. If we only look at the square face, it
is a transition between the s and t channels found for a
planar 1-wall network, discussed in Ref. [75]. Therefore,
this sort of cutting the square pyramid into two tetrahedrons
is a three-dimensional analog of the transition between the
s and t channels in two dimensions. One can be convinced
by looking at the 2-wall (but not 1-wall) configurations in
Fig. 8 from above (or bottom).

D. N = 6: Octahedron

Let us further increase the number of vacua, namely,
N ¼ 6. There are six vacua. There are three different cases
according to the convex polyhedra made by connecting the
vacua. The first case is a tetrahedron with two inner
vertices, the second is a dipyramid with a inner vertex,
and the third is a octahedron without inner vertices.
The tetrahedral case is shown in Fig. 9(a). The whole

tetrahedron is divided into eight subtetrahedrons h1;2;3;6i,
h1; 2; 4; 5i, h1; 3; 4; 5i, h2; 3; 4; 6i, h1; 2; 5; 6i, h2; 3; 5; 6i,
h3; 4; 5; 6i, h1; 4; 5; 6i: Correspondingly, there exist eight
3-walls (junctions of four 2-walls). The two inner vertices
give rise to the two vacuum bubbles as shown in the
bottom figure of Fig. 9(a). The concrete moduli matrix for
Fig. 9(a) is

H0 ¼ ð1; 1; 1; 1; ea5 ; ea6Þ; ð4:42Þ

with a5 ¼ a6 ¼ 10. The moduli parameter a5 (a6) controls
the size of the bubble of h5i (h6i).
For the dipyramid type case, there are two branches

according to how to divide it into subtetrahedrons. The first
branch is shown in Fig. 9(b1) in which the whole dipyramid
is divided into five tetrahedrons, h1; 2; 3; 6i, h1; 2; 4; 6i,
h1; 3; 4; 6i, h2; 3; 4; 6i, and h1; 2; 3; 5i. It can be also
regarded as the octahedron made of two tetrahedrons
bonded at the surface h1; 2; 3i: The upper tetrahedron
has the inner vertex, whereas the bottom one has no inner
vertices. The resulting 2-wall wire frame shown in the
lower figure of Fig. 9(b1) can be indeed obtained by
connecting the 2-walls of Fig. 2 and the third row of Fig. 5.
On the other hand, the whole dipyramid is divided into

six subtetrahedrons h1; 2; 4; 6i, h2; 3; 4; 6i, h1; 3; 4; 6i,
h1; 2; 5; 6i, h2; 3; 5; 6i, and h1; 3; 5; 6i in the second branch;
see Fig. 9(b2).
The useful moduli matrix for describing this transition

turns out to be

H0 ¼ ðea123 ; ea123 ; ea123 ; 1; 1; ea6Þ: ð4:43Þ

The moduli parameter a123 controls strength of the vacua
h1i, h2i, and h3i: In other words, it is related to distance
between the 3-walls h1; 2; 3; 5i and h1; 2; 3; 6i. The other a6

controls the size of the bubble h6i. We choose ða123; a6Þ ¼
ð10; 10Þ in Fig. 9(b1) and ða123; a6Þ ¼ ð−2; 4Þ in Fig. 9(b2).
Finally, we show the octahedral case in Fig. 10. For

simplicity, we set the eight masses mA at vertices of a
regular octahedron. This configuration can be understood
as follows. To understand this configuration, we arrange the
six vacua to the following three pairs: h1i-h2i, h3i-h4i, and
h5i-h6i: Then, the appropriate moduli matrix is

H0 ¼ ðea12 ; ea12 ; ea34 ; ea34 ; ea56 ; ea56Þ; ð4:44Þ
where only two among a12, a34, a56 are independent.
When the weight of the vacua h1i and h2i are larger than
the other vacua, the vacua h1i and h2i directly meet to
form the 1-wall h1; 2i. It corresponds to (a1) of Fig. 10 in
which the vertices h1i and h2i are connected by the dashed
segment, and at the same time there is an inner loop of the
2-wall penetrated by the segment. As the weight relatively
decreases, the loop shrinks. When a12 ¼ a34 ¼ a56, all the
vacua are equivalent and there are no 2-wall loops, as
shown in the center panel of Fig. 10. If we further reduce
a12 as a12 < a34 ¼ a56, the four vacua h3i, h4i, h5i, and h6i
stick out and directly meet each other; see Fig. 10(a2). The
same can be said to the other pairs h3i-h4i and h5i-h6i.
When a56 > a12 ¼ a34 (a56 < a12 ¼ a34), we have (b1)
[(b2)] of Fig. 10. When a34 > a12 ¼ a56 (a34 < a12 ¼ a56),
we have (c1) [(c2)] of Fig. 10. We can rephrase these as
follows. The configurations of (a1), (b1), and (c1) corre-
spond to the decomposition of the octahedron into four
subtetrahedrons. On the other hand, (a2), (b2), and (c2)
correspond to the decomposition of the octahedron into two
square pyramids.

V. PLATONIC, ARCHIMEDEAN,
CATALAN, AND KEPLER-POINSOT

VACUUM BUBBLES

In the previous sections, we have seen several examples
in which the configurations have vacuum bubbles; see
Figs. 5 and 9. They can appear when the grid diagrams
which are generally convex polytopes have inner vertices.
The number of the inner vertices is equal to the number of
the vacuum bubbles. The size of a vacuum bubble is
controlled by a modulus. The bubble is sometimes invisibly
small, and we need to take the corresponding moduli
parameter sufficiently large to broaden the bubble.

A. The Platonic vacuum bubbles

Here, we are interested in the shape of the vacuum
bubble. In Fig. 5, we met the bubble which is a regular
tetrahedron. There are two conditions for a regular tetra-
hedral bubble to exist. One is that the grid diagram is a
regular tetrahedron, and the other is that the inner vertex
is located at the center of the regular tetrahedron. If we
relax either or both conditions, the bubble deforms
accordingly.

ETO, KAWAGUCHI, NITTA, and SASAKI PHYS. REV. D 101, 105020 (2020)

105020-14



Now, one notices that the two regular tetrahedrons in the
grid diagrams and in the real space in Fig. 5 are upside
down. This should be so, since each face of the bubble is
perpendicular to the inner edge of the grid diagram. This
can be rephrased as follows. The shape of the vacuum
bubble is equivalent to a shape obtained by exchanging the
outer vertices and faces of the grid diagram. Such a
polyhedron is called dual of the original polyhedron.
Since the regular tetrahedron is known to be self-dual,
the grid diagram and the vacuum bubble are both regular
tetrahedrons. We show the regular tetrahedron as the grid
diagram, the dual tetrahedron as the vacuum bubble, and an
isosurface of the 2-wall density in the leftmost column
in Fig. 11.
To understand the duality better, let us next consider

domain wall network in a shape of the other convex regular
polyhedra: octahedron, cube, icosahedron, and dodecahe-
dron. Namely, we consider the grid diagrams which are
congruent with the Platonic solids and put an inner vertex at
their centers.

For example, we consider N ¼ 6þ 1 for the octahedron
with the inner vertex. Let the first six flavors (A ¼ 1; 2;
…; 6) correspond to the vertices of the octahedron and
the seventh flavor (A ¼ 7) to the inner vertex. To get a
vacuum bubble of a desired shape, we consider the moduli
matrix H0 ¼ ð1; 1; 1; 1; 1; 1; ea7Þ. Then we take a suffi-
ciently large value for ea7 to broaden the vacuum bubble
h7i: The result is shown in the second column from the left
of Fig. 11. We indeed observe that the resultant vacuum
bubble takes a shape of a regular cube, dual to a regular
octahedron.
Similarly, we take N ¼ 8þ 1 for a regular cube plus an

inner vertex, N ¼ 20þ 1 for a regular dodecahedron plus
an inner vertex, and N ¼ 12þ 1 for a regular icosahedron
plus an inner vertex. We find that the shapes of the
vacuum bubbles are a regular octahedron, icosahedron,
and dodecahedron for the regular cube, dodecahedron, and
icosahedron, respectively; see Fig. 11. Thus, putting an
inner vertex at the centers of the Platonic solids and
broadening the corresponding vacuum give us the regular

Platonic solids

Platonic bubbles

Platonic wire frames

FIG. 11. The top row shows five grid diagrams which are congruent with the Platonic solids. The inner vertices at the center are
hidden. The second row shows the vacuum bubbles for each grid diagrams, and the third row shows the 2-wall charge densitiesW2. The
bubble shape and the grid diagram are dual each other.
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bubble polyhedra dual to the Platonic solids as the grid
diagrams.
Here, we equally set all the weights of the outer vertices

to be 1 to have the regular polyhedrons. Of course, if
we choose a generic moduli matrix, the vacuum bubbles
deform accordingly, as mentioned at the beginning of this
subsection.

B. The Archimedean and Catalan
vacuum bubbles

Let us also test the idea to the other classic polyhedra, 13
Archimedean polyhedra and their duals called the Catalan
polyhedra. The Archimedean polyhedra are uniform poly-
hedra which are vertex transitive. Therefore, the Catalan
polyhedra are face transitive.

Figure 12 shows the vacuum bubbles and the 2-wall
charge densities for the Archimedean grid diagrams with an
additional inner vertex at the center. As desired, the bubble
shapes are dual to the grid diagrams, namely, we indeed
have the Catalan bubbles. Let us explain how to construct
these bubbles by taking the truncated tetrahedron (the
solids at the left-top corners in Fig. 12) as an example.
We need N ¼ 12þ 1 flavors and put 12 masses on 12
vertices of the truncated tetrahedron. In addition, we put the
thirteenth mass at the center of the truncated tetrahedron.
Then we take the moduli matrix H0 ¼ ð1; 1;…; 1; ea13Þ
with ea13 being sufficiently large. This way, we get the
triakis tetrahedron as the vacuum bubble, dual to the
truncated tetrahedron. All the rest solids can be obtained
by similar procedures.

Archimedean solids

Catalan bubbles

Catalan wire frames

FIG. 12. The top row shows 13 grid diagrams which are congruent with the Archimedean solids. The inner vertices at the center are
hidden. The second row shows the vacuum bubbles for each grid diagrams, and the third row shows the 2-wall charge densitiesW2. The
bubbles are dual to the grid diagram, so that their shapes are congruent with 13 Catalan solids.
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Figure 13 shows the vacuum bubbles and the 2-wall
charge densities for the Catalan grid diagrams with an
additional inner vertex at the center. As expected, the bubble
shapes are dual to the grid diagrams, namely, we have the
Archimedean bubbles. Let us explain how to construct these
bubbles by taking the triakis tetrahedron (the solids at the
left-top corners in Fig. 13) as an example. We need N ¼
8þ 1 flavors and put eight masses on eight vertices of the
trikias tetrahedron. In addition, we put the ninth mass at the
center of the trikias tetrahedron. Then we take the moduli
matrix H0 ¼ ð1; 1;…; 1; ea9Þ with ea9 being sufficiently
large. This way, we get the truncated tetrahedron as the
vacuum bubble, dual to the trikias tetrahedron. All the rest
solids can be obtained by similar procedures.

C. The Kepler-Poinsot vacuum bubbles

So far, we have only studied the convex polyhedra.
Before closing this section, let us briefly mention star

polyhedra. Here, we take the small and great stellated
dodecahedron. Namely, we consider the grid diagrams
which are congruent with the star polyhedra. Stellating a
dodecahedron to a stellated dodecahedron is a three-
dimensional analog of stellating a pentagon to a pentagram.
In order to obtain an intuitive picture, let us first consider

two-dimensional domain wall network for a grid diagram
which is congruent with a pentagram. The ten vacua are
located on vertices of the pentagram as shown in Fig. 14.
The pentagram consists of large (the red five vertices) and
small (the green five vertices) pentagons. The five vacua
corresponding to the small pentagon lead to five vacuum
bubbles. When we equally broaden them by the moduli
matrix H0 ¼ ð1; 1; 1; 1; 1; ea; ea; ea; ea; eaÞ with suffi-
ciently large ea, the bubbles (h6i, h7i, h8i, h9i, h10i) form
a stellated pentagon as shown in Fig. 14.
We are ready to study three-dimensional domain wall

networks with the grid diagrams congruent with the small

Catalan solids

Archimedean bubbles

Archimedean wire frames

FIG. 13. The top row shows 13 grid diagrams which are congruent with the Catalan solids. The inner vertices at the center are hidden.
The second row shows the vacuum bubbles for each grid diagrams, and the third row shows the 2-wall charge densitiesW2. The bubbles
are dual to the grid diagram, so that their shapes are congruent with 13 Archimedean solids.
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and great stellated dodecahedron shown in Fig. 15. The
former consists of a large icosahedron with 12 red vertices
and a small dodecahedron with 20 green vertices. The ver-
tices of the small dodecahedron are inner vacua. There-
fore, by broadening them with the equal weight, we
have 20 vacuum bubbles which form the great stellated
dodecahedron as shown in the left-bottom panel of
Fig. 15. On the other hand, the latter is made of the
large dodecahedron with the green vertices and the small
icosahedron with the red vertices. Now, the vertices of
the dodecahedron become the inner vacua. So, when we

equally broaden them, we have 12 vacuum bubbles
which form the small stellated dodecahedron as shown
in the right-bottom panel of Fig. 15. In short, when the
grid diagram is the small stellated dodecahedron, the
vacuum bubbles form the great stellated dodecahedron,
and vice versa. Although the small and great stellated
dodecahedrons are not dual to each other (dual of the
small stellated dodecahedron is the great dodecahedron
while that of the great stellated dodecahedron is the great
icosahedron), here, we found they exchange via the
vacuum bubbles.

VI. SUMMARY AND DISCUSSION

In this paper, we have proceeded to the study on the
nonplanar BPS domain wall junctions in the Abelian gauge
theory with the N Higgs fields HA and the D neutral scalar
fields Σm in Dþ 1 dimensions, which were recently
proposed in Ref. [86]. In the previous work [86], we
obtained the new exact BPS solutions of the single domain
wall junctions associated with a particular symmetry
breaking pattern SDþ1 → SD (SD is the symmetric group
of rankD) inDþ 1 dimensions. We also needed to impose
the symmetry SDþ1 in addition to the special relation
between the model parameters (the masses, the gauge
coupling, and the Fayet-Illiopoulos term) for having the
exact solutions in [86].
Generalizing the previous study, the present work has

dealt with the generic network of domain walls including
multiple junctions. We have not imposed any particular
discrete symmetry in this paper. We have succeeded in
solving partially the BPS equations by the moduli matrix
formalism and finding all the moduli parameters of the
generic domain wall network solutions. While the master
equation (3.19) cannot be analytically solved in general,
we focused on the infinite Uð1Þ gauge coupling limit in
which the model reduces to the CPN−1 model and the BPS
equations including the master equation are fully solvable
for any moduli parameters. These are the first analytic
solutions for nonplanar domain wall networks in D
dimensions (D ≥ 3).
As demonstrated on showing how the nonplanar net-

works look like, we have studied the CPN−1 model in D ¼
3 forN ¼ 4, 5, 6 in detail. In the case ofN ¼ 4, the solution
has only one junction. The solution is similar to one found
in [86], but is more generic. The solutions in this paper can
be obtained for any grid diagrams congruent with tetrahe-
dra in contrast to the previous case [86] in which the grid
diagram was limited to the regular tetrahedron. The net-
work structure appears for N > 4. For N ¼ 5, we have
found two different types of networks in general. The first
type has a vacuum bubble (a compact domain) surrounded
by the four semi-infinite vacuum domains. The other type
does not have any bubbles but all the five vacuum domains
are semi-infinitely extended. The corresponding grid dia-
gram is the tetrahedron with an inner vertex for the former

Kepler–Poinsot solids

Kepler–Poinsot bubbles

small stellated dodecahedron great stellated dodecahedron

great stellated dodecahedron small stellated dodecahedron

FIG. 15. The top row: the two regular star solids categorized
into the Keplar-Poinsot solids are used as the grid diagrams. The
bottom row: the corresponding vacuum bubbles. The small
(great) stellated dodecahedron yields the great (small) stellated
dodecahedral bubble.

FIG. 14. The left panel shows the grid diagram congruent with a
pentagram. The right panel shows an exact solution with five
vacuum bubbles which have the same influence. The bubbles
form a stellated pentagon.
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and the dipyramid for the latter. We have shown the
network shape is controlled by one moduli parameter.
We also have studied the special cases in which the four
vertices are on a plane while the fifth vertex is off the plane.
In the N ¼ 6 case, there are three different types in general.
With respect to the grid diagram, they correspond to the
tetrahedron with two inner vertices, the dipyramid with
one inner vertex, and the octahedron without any inner
vertices. Accordingly, there appear two, one, and no
vacuum bubbles in the networks, respectively. As in the
case of N ¼ 5, we have explicitly shown how the network
shape changes according with the moduli parameters. They
are essentially controlled by the two moduli besides the
translations, either the size of the bubble or the distance
between junctions.
Finally, we have constructed the beautiful polyhedra

known from ancient times as domain wall networks. We
have started with the grid diagrams congruent with five
Platonic solids with an inner vertex at the centers. The
network solutions have single vacuum bubbles correspond-
ing to the inner vertices, and we have found that shapes of
the bubble are dual to the grid diagrams. In addition to the
regular polyhedra, we have also investigated the semiregular
polyhedra, the Archimedean solids. The corresponding
vacuum bubbles are again dual to the Archimedean, namely,
the Catalan solids. Conversely, the grid diagrams congruent
with the Catalan solids lead to the bubbles congruent with
the Archimedean solids. Our final examples have been star
polyhedra. We have taken two well-known star polyhedra
from the Kepler-Poinsot solids, the small and great stellated
dodecahedrons. The former (latter) has 20 (twelve) inner
vertices. Accordingly, the same number of the bubbles
appears in the networks. Interestingly, the bubbles in the
former case form the great stellated dodecahedron and those
in the latter case form the small stellated dodecahedron.
Before closing this work, let us make several comments

on future directions. First, although we have established the
generic formulae for the exact solutions of the domain wall
networks in the limit of the CPN−1 model in generic Dþ 1
dimensions, we only have shown concrete configurations in
the D ¼ 3 case. For D ≥ 4, the networks become more
complicated and their deformations by changing moduli
parameters are intricate. We will explain such higher-

dimensional domain wall networks in more details
elsewhere.
Second, we only have studied the Abelian gauge theories

and the massive CPN−1 model as the infinite gauge coupling
limit in this paper. The non-Abelian generalization was
obtained in D ¼ 2 [75,76]. We will study non-Abelian non-
planar domain wall networks in higher dimensions D ≥ 3
elsewhere.
Third, we have met the polyhedra and well-known

mathematical notions like the duality in study of the
domain walls. While the mathematical solids are sharp
objects, the vacuum bubbles found in this work are rounded
off. We expect that the domain wall networks would
mathematically be useful for studying such melting poly-
hedra and polytopes as the case of Amoeba and tropical
geometry discussed in D ¼ 2 [80].
Fourth, the grid diagrams in the Σ space and the

networks in x space seem to be very similar to the
Delaunay diagram and the Voronoi diagram appearing in
vast area of Science.
We expect our exact solutions of the D-dimensional

domain wall networks and the grid diagrams would be
applicable to many areas. Josephson junctions of super-
conductors [87,88] are one of interesting applications.
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