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In this work, we consider local and nonlocal higher-derivative generalizations of the super-Chern-
Simons theory and four-dimensional supersymmetric QED. In contrast to previous studies, the models
studied here also have higher-derivative terms in the matter sector. For these models, we calculate the one-
loop superfield effective potential.
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I. INTRODUCTION

Historically, higher-derivative theories have been intro-
duced in an attempt to prevent singularities in a classical
field theory [1], and to avoid ultraviolet divergences of a
quantum field theory [2]. In supersymmetric models,
higher-derivative theories have been studied within differ-
ent contexts. For example, the phenomenological implica-
tions of an extension of the minimal supersymmetric
Standard Model with dimension-five and six operators
were investigated in Ref. [3]. In Ref. [4] supersymmetric
versions of cubic and quartic Galileon theories were
proposed. Nonlocal higher-derivative extensions for the
scalar, super Yang-Mills, and supergravity theories were
constructed in Ref. [5]. In Ref. [6], a new mechanism to
construct ghost-free higher-derivative models was formu-
lated. Recently, the higher covariant derivative regulariza-
tion, which was first proposed by Slavnov in Ref. [7], was
successfully applied in the calculation of the β function of
supersymmetric gauge theories [8].
The effective potential is an important theoretical tool for

studying the ground state of a theory and the phenomena
related to it, such as the spontaneous breaking and
restoration of symmetries [9,10]. In the context of
higher-derivative superfield theories, the effective potential
has been investigated for different models [11–13]. In
particular, in Ref. [14], the one-loop effective potential was
explicitly calculated for the simplest higher-derivative

extension of an Abelian gauge superfield theory. In
Refs. [15,16], the effective potential was studied in
higher-derivative gauge superfield theories defined on
the N ¼ 1 and N ¼ 2 three-dimensional superspaces.
More recently, a nonlocal higher-derivative extension of
the supersymmetric gauge theory was proposed and the
one-loop Kählerian effective potential was explicitly cal-
culated for this theory [17].
One important limitation of the higher-derivative gauge

superfield theories studied in Refs. [14–17] is that they do
not include higher derivatives in the matter sector. In
particular, the four-dimensional theories studied in
Refs. [14,17] also do not contain chiral self-interaction
terms. Since these terms give nontrivial contributions to
the one-loop superfield effective potential, there is no
reason (other than convenience for calculating the one-
loop effective potential) to ignore higher-derivative and
chiral self-interaction terms in the matter sector of a
higher-derivative supersymmetric gauge theory. Thus,
the aim of this paper is to formulate higher-derivative
or nonlocal gauge-covariant terms in the matter sector
and to calculate the superfield effective potential at the
one-loop level for local and nonlocal higher-derivative
generalizations of the super-Chern-Simons theory and
supersymmetric QED (SQED) by taking into account
these new terms in the matter sector. In this regard, our
work is a further development of the studies presented in
Refs. [14–17].
This paper is organized as follows. In Sec. II, we

formulate a generic higher-derivative super-Chern-Simons
theory coupled to matter and calculate the one-loop con-
tribution to the superfield effective potential. In Sec. III, we
formulate a generic higher-derivative four-dimensional
SQED and explicitly calculate the one-loop Kählerian
effective potential in it. In Sec. IV, we give a short summary
of the results obtained and suggest a possible continuation
of this study.
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II. HIGHER-DERIVATIVE SUPER-CHERN-
SIMONS THEORY

Our starting point is the followingN ¼ 1, d ¼ 3 higher-
derivative action for the complex scalar multiplet:

SHM ¼ 1

2

Z
d5z½Φ̄ðfð□ÞD2 þmgð□ÞÞΦþ H:c:�

þ
Z

d5zVðΦ̄ΦÞ; ð1Þ

which is invariant under the global transformations δΦ ¼
iKΦ and δΦ̄ ¼ −iKΦ̄. This model was originally proposed
in Ref. [12] and studied only in the context of local theories.
The dimensionless operators fð□Þ and gð□Þ are assumed
to be analytical functions of the d’Alembertian operator.
Additionally, in order to reproduce the standard action for
the complex scalar multiplet, we also suppose that fð□Þ
and gð□Þ coincide with the unit operator in some suit-
able limit.
We are interested in the coupling of the theory (1) to the

Abelian gauge superfield Aα. In order to do this, we will use
the identity □ ¼ ðD2Þ2 and apply the minimal coupling
prescription [18], exchanging the simple covariant deriva-
tive with the gauge covariant one through the rule

DαΦ → ∇αΦ≡DαΦ − iAαΦ: ð2Þ

Thus, Eq. (1) can be rewritten as

SHM ¼ 1

2

Z
d5z½Φ̄ðfð∇4Þ∇2 þmgð∇4ÞÞΦþ H:c:�

þ
Z

d5zVðΦ̄ΦÞ: ð3Þ

Evidently, this gauged model is invariant under the local
transformations

½Φ�0 ¼ eiKΦ; ½Aα�0 ¼ Aα þDαK: ð4Þ

Since Aα is a nondynamical superfield in Eq. (3), to
introduce a consistent dynamics for it we will add to
Eq. (3) the following higher-derivative generalization of the
supersymmetric Chern-Simons theory:

SHCS ¼
1

2e2

Z
d5zAαhð□ÞDβDαAβ; ð5Þ

which is also invariant under the transformations (4).
Finally, the higher-derivative version of the super-Chern-

Simons theory coupled to matter superfields that we will
study in this work has the following action:

S ¼ SHCS þ SHM þ SGF; ð6Þ

where, to perform quantum calculations, we conveniently
added the gauge-fixing functional

SGF ¼
1

2e2α

Z
d5zAαhð□ÞDαDβAβ: ð7Þ

In order to carry out the calculation of the one-loop
superfield effective potential in three dimensions [19],
we employ the background field method [20]. Making
the background-quantum splitting Φ → Φþ ϕ in Eq. (6),
assuming that the background superfield satisfies the
condition DαΦ ¼ 0, and expanding the action to up to
the second order in the quantum superfields, after some
tedious but straightforward manipulations we obtain

S2¼
Z

d5z

�
1

2
AαĤα

βAβþAαF α

�
þ1

2

Z
d5zϕTÔϕ; ð8Þ

where

Ĥβ
α ≡ hð□Þ

e2

�
DβDα þ

1

α
DαDβ

�
þ jΦj2

2
ð−DβDα þ fð□ÞDαDβÞD

2

□
−
mjΦj2
2

½gð□Þ − 1�
□

DαDβ;

F α ≡ i
2

�
Φfð□ÞDαϕ̄ − Φ̄fð□ÞDαϕþmΦ

½gð□Þ − 1�
□

DαD2ϕ̄ −mΦ̄
½gð□Þ − 1�

□
DαD2ϕ

�
; ð9Þ

and

ϕ≡
�
ϕ

ϕ̄

�
; Ô≡

�
VΦΦ fð□ÞD2 þmgð□Þ þ VΦΦ̄

fð□ÞD2 þmgð□Þ þ VΦΦ̄ VΦ̄ Φ̄

�
: ð10Þ

For present purposes, it is useful to diagonalize Eq. (8). To do this, let us consider the following nonlocal change of
variables [21]:

AαðzÞ → AαðzÞ −
Z

d5z0Gα
βðz; z0ÞF βðz0Þ; ð11Þ
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where Gα
βðz; z0Þ is the Green’s function of the operator Ĥα

β defined from the equation

Gα
βðz; z0Þ ¼ ðADβDα þ BDαDβÞδ5ðz − z0Þ; ð12Þ

where the coefficients A and B are written in the Appendix.
Under the nonlocal transformation (11), the functional (8) assumes the diagonalized form

S2 ¼
1

2

Z
d5zAαĤα

βAβ þ
1

2

Z
d5zϕTÔϕ −

Z
d5zd5z0F αðzÞGα

βðz; z0ÞF βðz0Þ: ð13Þ

Since Eq. (11) is merely a shift by a constant, it leaves the integration measure in the path integral invariant. By integrating
out the quantum superfields Aα and ϕ, we get two contributions to the Euclidean one-loop effective action:

Γð1Þ ¼ Γð1Þ
A þ Γð1Þ

ϕ : ð14Þ

The first contribution Γð1Þ
A is given by the trace

Γð1Þ
A ¼ 1

2
Tr ln Ĥβ

α ¼ 1

2
Tr ln

�
hð□Þ
e2

�
DγDα þ

1

α
DαDγ

��
þ 1

2
Tr ln

�
δγ

β −
M

2□hð□ÞD
βDγ

−
αMfð□Þ
2□hð□Þ DγDβ þ αmM½gð□Þ − 1�

2□2hð□Þ DγDβD2

�
; ð15Þ

where we factored out the inverse of the propagator of Aα and defined M≡ 1
2
e2jΦj2.

Since the first trace does not depend on the background superfield, we can drop it. The second trace can be simplified if
we assume the Landau gauge α ¼ 0. Therefore, it follows from Eq. (15) that

Γð1Þ
A

���
α¼0

¼ 1

2
Tr ln

�
δγ

β −
M

2□hð□ÞD
βDγ

�
¼ 1

2

Z
d5z
Z

d3k
ð2πÞ3

1

jkj arctan
�

M
jkjhð−k2Þ

�
: ð16Þ

We now determine the second contribution Γð1Þ
ϕ . If we impose the Landau gauge, then Gα

βðz; z0Þ ¼ ADβDαδ
5ðz − z0Þ and

the last term in Eq. (13) vanishes due to the identity DαDβDα ¼ 0. Therefore, we can write

Γð1Þ
ϕ

���
α¼0

¼ −
1

2
Tr ln Ô ¼ −

1

2
Tr ln

�
0 fð□ÞD2

fð□ÞD2 0

�
−
1

2
Tr ln

�
Î2 þM

D2

□fð□Þ
�
; ð17Þ

where we factored out the inverse of the ϕ propagator and defined

M≡
�
mgð□Þ þ VΦ̄Φ VΦ̄ Φ̄

VΦΦ mgð□Þ þ VΦ̄Φ

�
: ð18Þ

Again, we can drop the first trace and the second one can be evaluated to give

Γð1Þ
ϕ

���
α¼0

¼ 1

2

Z
d5z
Z

d3k
ð2πÞ3

1

jkjTr arctan
�

M
jkjfð−k2Þ

�
: ð19Þ

Finally, substituting Eqs. (16) and (19) into Eq. (14), we can infer that the superfield effective potential is given by the
expression

Kð1ÞðΦ; Φ̄Þ ¼ 1

2

Z
d3k
ð2πÞ3

1

jkj
�
arctan

�
M

jkjhð−k2Þ
�
þ
X
i¼þ;−

arctan

�
λið−k2Þ
jkjfð−k2Þ

��
; ð20Þ

where the λ’s are the eigenvalues of the matrix M:

λ�ð−k2Þ ¼ mgð−k2Þ þ VΦ̄Φ � ðVΦ̄ Φ̄VΦΦÞ12: ð21Þ
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The last step of our calculation is to evaluate the integrals in
Eq. (20). However, to evaluate these integrals one must
specify fð−k2Þ, gð−k2Þ, and hð−k2Þ. In this work, we will
examine two higher-derivative models which lead to an
improved ultraviolet behavior of the theory: one local
model and one nonlocal model.
A simple local higher-derivative model is defined by

fð∇4Þ ¼ gð∇4Þ ¼ 1 −
∇4

Λ2
L
; hð□Þ ¼ 1 −

□

Λ2
L
; ð22Þ

where ΛL is the mass scale at which the higher-derivative
contributions begin to be pertinent. It follows from Eq. (22)
that

fð−k2Þ ¼ gð−k2Þ ¼ hð−k2Þ ¼ 1þ k2

Λ2
L
: ð23Þ

All integrals in this article are evaluated approximately by
employing the strategy of expansion by regions [22].
Therefore, substituting Eq. (23) into Eq. (20) and assuming
that ΛL is large, we find

Kð1Þ
L ðΦ; Φ̄Þ ≈ −

M2

16π

�
1þ 2

M2

Λ2
L
þ 7

M4

Λ4
L
þ 30

M6

Λ6
L

þ � � �
�
−
X
i¼þ;−

ðmþ λ̃iÞ2
16π

�
1þ 2

λ̃iðmþ λ̃iÞ
Λ2
L

þ λ̃iðmþ λ̃iÞ2ð2mþ 7λ̃iÞ
Λ4
L

þ 2
λ̃iðmþ λ̃iÞ3ðm2 þ 9mλ̃i þ 15λ̃2i Þ

Λ6
L

þ � � �
�
; ð24Þ

where λ̃� ¼ VΦ̄Φ � ðVΦ̄ Φ̄VΦΦÞ12.
On the other hand, a simple nonlocal model is defined by

fð∇4Þ ¼ gð∇4Þ ¼ exp

�
−

∇4

Λ2
NL

�
; hð□Þ ¼ exp

�
−

□

Λ2
NL

�
; ð25Þ

where, similar to the local model, ΛNL describes the characteristic energy at which the nonlocal contributions become
important. According to Eq. (25), we have

fð−k2Þ ¼ gð−k2Þ ¼ hð−k2Þ ¼ exp
�

k2

Λ2
NL

�
: ð26Þ

Therefore, substituting Eq. (26) into Eq. (20) and assuming that ΛNL is large, we get

Kð1Þ
NLðΦ; Φ̄Þ ≈ −

M2

16π

�
1þ 2

M2

Λ2
NL

þ 6
M4

Λ4
NL

þ 64

3

M6

Λ6
NL

þ � � �
�

−
X
i¼þ;−

ðmþ λ̃iÞ2
16π

�
1þ 2ðmþ λ̃iÞ

×
λ̃i
Λ2
NL

þ λ̃iðmþ λ̃iÞ2ðmþ 6λ̃iÞ
Λ4
NL

þ 1

3

λ̃iðmþ λ̃iÞ3ðm2 þ 23mλ̃i þ 64λ̃2i Þ
Λ6
NL

þ � � �
�
: ð27Þ

Since ΛL and ΛNL are finite physical parameters, the one-
loop effective potentials (24) and (27) are UV finite. Notice
that this finiteness remains even if we set the parameters to
be infinitely large, ΛL → ∞ and ΛNL → ∞, while many
higher-derivative or nonlocal theories turn out to be
divergent in this limit which is equivalent to removing
the higher-derivative term. Indeed, such one-loop finiteness
is a characteristic feature of the three-dimensional theories.
Moreover, we note that the expressions (24) and (27)
coincide up to the orders Λ−2

L and Λ−2
NL in the approxima-

tions. This coincidence occurs because the operators (22)
and (25) are identical in this particular order.

III. HIGHER-DERIVATIVE SQED

In the present section, we are interested in a more
realistic theory. Thus, let us consider the four-dimensional
matter action

SM ¼
Z

d8zðΦ̄þΦþ þ Φ̄−Φ−Þ

þ
�Z

d6zðmΦ−Φþ þWðΦ−ΦþÞÞ þ H:c:

�
; ð28Þ

which is invariant under the rigid Uð1Þ transformations
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½Φþ�0 ¼ eiλΦþ; ½Φ−�0 ¼ e−iλΦ−; ½Φ̄þ�0 ¼ e−iλΦ̄þ; ½Φ̄−�0 ¼ eiλΦ̄−: ð29Þ

A natural higher-derivative generalization of this model is

SHM ¼ 1

2

Z
d8zðΦ̄þfþð□ÞΦþ þ ðfþð□ÞΦþÞΦþ þ Φ̄−f−ð□ÞΦ−

þ ðf−ð□ÞΦ−ÞΦ−Þ þ
�Z

d6zðmΦ−gð□ÞΦþ þWðΦ−ΦþÞÞ þ H:c:

�
; ð30Þ

where again fþð□Þ, f−ð□Þ, and gð□Þ are dimensionless analytical functions and coincide with the identity in some suitable
limit. This model is essentially a two-superfield version of the one proposed in Ref. [13], which was studied only in the
context of nonlocal theories.
Due to the chirality of the superfields Φ�, we have D̄2D2Φ� ¼ □Φ�. Thus, the action (30) can be rewritten in a more

convenient form,

SHM ¼ 1

2

Z
d8zðΦ̄þfþðD̄2D2ÞΦþ þ ðfþðD̄2D2ÞΦþÞΦþ þ Φ̄−f−ðD̄2D2ÞΦ−

þ ðf−ðD̄2D2ÞΦ−ÞΦ−Þ þ
�Z

d6zðmΦ−gðD̄2D2ÞΦþ þWðΦ−ΦþÞÞ þ H:c:

�
: ð31Þ

In order to extend the transformations (29) to local Uð1Þ transformations, we define

½Φþ�0 ¼ eiΛΦþ; ½Φ−�0 ¼ e−iΛΦ−; ½Φ̄þ�0 ¼ e−iΛ̄Φ̄þ; ½Φ̄−�0 ¼ eiΛ̄Φ̄−; ð32Þ

where the local parameter Λ is chiral.
To extend Eq. (31) up to a form invariant under Eq. (32), we must use the minimal coupling prescription [23]:

DαΦ� → ∇αΦ� ≡DαΦ� ∓ iΓαΦ�; Γα ≡ iDαV;

D̄ _αΦ� → ∇̄ _αΦ� ≡ D̄ _αΦ� ¼ 0; ð33Þ

where the gauge superfield V and the connection Γα transform as

½V�0 ¼ V þ iðΛ̄ − ΛÞ; ½Γα�0 ¼ Γα þDαΛ: ð34Þ
Therefore, Eq. (31) can be rewritten as

SHM ¼ 1

2

Z
d8zðΦ̄þeVfþð∇̄2∇2ÞΦþ þ ðfþð∇̄2∇2ÞΦþÞeVΦþ þ Φ̄−e−Vf−ð∇̄2∇2ÞΦ−

þ ðf−ð∇̄2∇2ÞΦ−Þe−VΦ−Þ þ
�Z

d6zðmΦ−gð∇̄2∇2ÞΦþ þWðΦ−ΦþÞÞ þ H:c:

�
: ð35Þ

This model is invariant under the combined transformations
(32) and (34). Notice that we introduced the factor expðVÞ
to change a Λ representation to a Λ̄ representation of the
group [18].
Since V has no kinetic term in Eq. (35), we will add to

Eq. (35) the following higher-derivative generalization of
the supersymmetric Abelian gauge theory:

SHG ¼ 1

16e2

�Z
d6zWαhð□ÞWα þ

Z
d6z̄W̄ _αhð□ÞW̄ _α

�
;

ð36Þ

where the superfield strengths are expressed in terms of the
gauge superfield as

Wα ¼ iD̄2DαV; W̄ _α ¼ −iD2D̄ _αV: ð37Þ

Finally, the higher-derivative version of the SQED that we
will study in this paper is given by

S ¼ SHG þ SHM: ð38Þ

Here, our goal is to calculate the one-loop correction to the
Kählerian effective potential [24]. Thus, as we have done in
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the last section, we will expand Eq. (38) around back-
ground superfields:

Φþ → Φþ þ ϕþ; Φ− → Φ− þ ϕ−: ð39Þ

We will assume that the background superfields are subject
to the constraintsDαΦþ ¼ 0 andDαΦ− ¼ 0, and keep only
quadratic terms in the quantum fluctuations ϕþ and ϕ−.
Therefore, after some lengthy algebra, we find

S2 ¼ −
1

8e2

Z
d8zV□hð□ÞΠ1

2
V þ 1

2

Z
d8zfjΦþj2V½Π1

2
þ fþð□ÞΠ0�V þ 2Φ̄þVfþð□Þϕþ

þ 2ΦþVfþð□Þϕ̄þ þ 2ϕ̄þfþð□Þϕþg þ
1

2

Z
d8zfjΦ−j2V½Π1

2
þ f−ð□ÞΠ0�V

− 2Φ̄−Vf−ð□Þϕ− − 2Φ−Vf−ð□Þϕ̄− þ 2ϕ−f−ð□Þϕ̄−g

−m
Z

d8z

�
Φ−ΦþV

gð□Þ − 1

□
D2V þΦ−V

gð□Þ − 1

□
D2ϕþ −Φþϕ−

gð□Þ − 1

□
D2V þ H:c:

�

þ
�Z

d6z

�
mϕ−gð□Þϕþ þ 1

2

∂2W
∂Φ2þ

ϕ2þ þ 1

2

∂2W
∂Φ2

−
ϕ2
− þ ∂2W

∂Φþ∂Φ−
ϕþϕ−

�
þ H:c:

�
; ð40Þ

where Π1
2
and Π0 are the transverse and longitudinal projection operators, which are defined as

Π1=2 ¼ −
DαD̄2Dα

□
; Π0þ ¼ D̄2D2

□
; Π0− ¼ D2D̄2

□
; Π0 ¼ Π0þ þ Π0−: ð41Þ

At this step of our calculation, we find it more advantageous to work with unconstrained superfields than chiral superfields.
For this reason, we will write the quantum antichiral and chiral superfields as ϕ� ¼ D̄2ψ� and ϕ̄� ¼ D2ψ̄�, where ψ� and
ψ̄� are free of differential constraints [25]. However, this replacement introduces a new gauge symmetry, namely, δψ� ¼
D̄ _αω̄� _α and δψ̄� ¼ Dαω�α. Therefore, in order to fix this gauge invariance and the one (34), we will add to Eq. (40) the
following gauge-fixing functionals:

SGF1 ¼ −
1

8e2α

Z
d8zV□hð□ÞΠ0V; ð42Þ

SGF2 ¼
Z

d8zψ̄þfþð□ÞðD̄2D2 −DαD̄2DαÞψþ; ð43Þ

SGF3 ¼
Z

d8zψ̄−f−ð□ÞðD̄2D2 −DαD̄2DαÞψ−: ð44Þ

Therefore, it follows from Eqs. (40)–(44) that

S̃2 ≡ S2 þ SGF1 þ SGF2 þ SGF3 ¼
Z

d8z

�
1

2
VĤV þ VF

�
þ 1

2

Z
d8zψTÔψ; ð45Þ

where

Ĥ ≡ −
1

4e2
□hð□Þ

�
Π1

2
þ 1

α
Π0

�
þ ðjΦþj2 þ jΦ−j2ÞΠ1

2
þ ðjΦþj2fþð□Þ

þ jΦ−j2f−ð□ÞÞΠ0 − 2mΦ−Φþ½gð□Þ − 1�D
2

□
− 2mΦ̄−Φ̄þ½gð□Þ − 1� D̄

2

□
; ð46Þ

F ≡ Φ̄þfþð□ÞD̄2ψþ − Φ̄−f−ð□ÞD̄2ψ− −mΦ−½gð□Þ − 1�Π0−ψþ
þmΦþ½gð□Þ − 1�Π0−ψ− þ H:c:; ð47Þ

and
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ψ ≡

0
BBB@

ψþ
ψ−

ψ̄þ
ψ̄−

1
CCCA; Ô≡

�
ŴD̄2

□F̂

□F̂ ˆ̄WD2

�
: ð48Þ

Last, the matrices Ŵ and F̂ are defined as

F̂≡
�
fþð□Þ 0

0 f−ð□Þ

�
; Ŵ ≡

0
B@ ∂2W

∂Φ2
þ

mgð□Þ þ ∂2W
∂Φþ∂Φ−

mgð□Þ þ ∂2W
∂Φþ∂Φ−

∂2W
∂Φ2

−

1
CA: ð49Þ

The mixing terms between the quantum superfields V and ψ can be eliminated by the following nonlocal change of
variables in the path integral:

VðzÞ → VðzÞ −
Z

d8z0Gðz; z0ÞF ðz0Þ; ð50Þ

where Gðz; z0Þ is the Green’s function of the operator Ĥ ¼ ĤðzÞ, namely, ĤGðz; z0Þ ¼ δ8ðz − z0Þ. This equation has the
solution

Gðz; z0Þ ¼ ðXΠ1
2
þ YΠ0 þ ZD2 þ Z̄D̄2Þδ8ðz − z0Þ: ð51Þ

The coefficients X, Y, and Z are written in the Appendix.
Therefore, after the change of variables (50), the S̃2 can be put in the diagonalized form

S̃2 ¼
1

2

Z
d8zVĤV þ 1

2

Z
d8zψTÔψ −

Z
d8zd8z0F ðzÞGðz; z0ÞF ðz0Þ: ð52Þ

From S̃2, we can compute the Euclidean one-loop effective action by formally integrating out the superfields V and ψ.
Therefore, we arrive at

Γð1Þ ¼ Γð1Þ
V þ Γð1Þ

ψ : ð53Þ

The first contribution Γð1Þ
V is given by the trace,

Γð1Þ
V ¼ −

1

2
Tr ln Ĥ ¼ −

1

2
Tr ln

�
−

1

4e2
□hð□Þ

�
Π1

2
þ 1

α
Π0

�
þ 1

4e2
MΠ1

2
þ 1

4e2
f̃ð□ÞΠ0

−
2m
4e2

g̃ð□ÞD
2

□
−
2m
4e2

˜̄gð□Þ D̄
2

□

�
; ð54Þ

where we introduced the definitions

M≡ 4e2ðjΦþj2 þ jΦ−j2Þ; f̃ð□Þ≡ 4e2ðjΦþj2fþð□Þ þ jΦ−j2f−ð□ÞÞ;
g̃ð□Þ≡ 4e2ΦþΦ−½gð□Þ − 1�; ˜̄gð□Þ≡ 4e2Φ̄þΦ̄−½gð□Þ − 1�: ð55Þ

We can factor out the inverse of the V propagator, which is independent of the background superfields, and subsequently
drop it. Therefore, it follows from Eq. (54) that

Γð1Þ
V ¼ −

1

2
Tr ln

�
1 −

M
□hð□ÞΠ1

2
−

αf̃ð□Þ
□hð□ÞΠ0 þ

2mαg̃ð□Þ
□hð□Þ

D2

□
þ 2mα ˜̄gð□Þ

□hð□Þ
D̄2

□

�
: ð56Þ

This trace assumes its simplest form in the Landau gauge α ¼ 0. Therefore, in this particular gauge, we find
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Γð1Þ
V

���
α¼0

¼ −
1

2
Tr ln

�
1 −

M
□hð□ÞΠ1

2

�
¼ −

Z
d8z
Z

d4p
ð2πÞ4

1

p2
ln

�
1þ M

p2hð−p2Þ
�
: ð57Þ

Let us move on to the calculation of the second contribution Γð1Þ
ψ . Notice thatGðz; z0Þ ¼ XΠ1

2
δ8ðz − z0Þ in the Landau gauge.

Since the Green’s function is transversal in this gauge, the last term in Eq. (52) vanishes. Therefore, we can write

Γð1Þ
ψ

���
α¼0

¼ −
1

2
Tr ln Ô ¼ −

1

2
Tr ln

�
ŴD̄2

□F̂

□F̂ ˆ̄WD2

�
: ð58Þ

Again, we can factor out the inverse of the ψ propagator and subsequently drop it from Eq. (58). Thus, we can rewrite
Eq. (58) as

Γð1Þ
ψ

���
α¼0

¼ −
1

2
Tr ln

"
Î4 þ

 
0 F̂−1 ˆ̄W

□
D2

F̂−1Ŵ
□

D̄2 0

!#
: ð59Þ

Only the even powers in the expansion of the logarithm give nonvanishing contributions to the trace. Therefore, we can
show that

Γð1Þ
ψ

���
α¼0

¼ −
1

4
Tr ln

"
Î4 −

 
F̂−1 ˆ̄WF̂−1Ŵ

□
Π0− 0

0 F̂−1ŴF̂−1 ˆ̄W
□

Π0þ

!#

¼ −
1

4
Tr ln

�
Î2 −

F̂−1 ˆ̄WF̂−1Ŵ
□

Π0−

�
−
1

4
Tr ln

�
Î2 −

F̂−1ŴF̂−1 ˆ̄W
□

Π0þ

�
: ð60Þ

These traces can be evaluated to give

Γð1Þ
ψ

���
α¼0

¼ 1

2

Z
d8z
Z

d4p
ð2πÞ4

1

p2
Tr ln

�
Î2 þ

F̂−1 ˆ̄WF̂−1Ŵ
p2

�
: ð61Þ

This integral is rather complicated. In order to obtain clear analytical results, we will assume that m ¼ 0 and

fþð∇̄2∇2Þ ¼ f−ð∇̄2∇2Þ≡ fð∇̄2∇2Þ: ð62Þ

Therefore, it follows that

Γð1Þ
ψ

���
α¼0

¼ 1

2

Z
d8z
Z

d4p
ð2πÞ4

1

p2
Tr ln

�
Î2 þ

ˆ̄W Ŵ jm¼0

p2f2ð−p2Þ
�
: ð63Þ

Finally, substituting Eqs. (57) and (63) into Eq. (53), we can infer that the one-loop correction to the Kähler effective
potential is given by

Kð1ÞðΦ; Φ̄Þ ¼
Z

d4p
ð2πÞ4

1

p2

�
− ln

�
1þ M

p2hð−p2Þ
�
þ 1

2

X
i¼þ;−

ln

�
1þ λi

p2f2ð−p2Þ
��

; ð64Þ

where the λ’s are the eigenvalues of the matrix ˆ̄W Ŵ jm¼0 and they are given by

λ� ¼ 1

2

����� ∂2W
∂Φ2þ

����2 þ 2

���� ∂2W
∂Φþ∂Φ−

����2 þ
���� ∂2W
∂Φ2

−

����2 �
������ ∂2W

∂Φ2þ

����2 þ
���� ∂2W
∂Φ2

−

����2
�

2

þ 4

���� ∂2W
∂Φþ∂Φ−

∂2W̄
∂Φ̄2þ

þ ∂2W̄
∂Φ̄þ∂Φ̄−

∂2W
∂Φ2

−

����2
�1

2

�
: ð65Þ
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In the same manner as in the previous section, it is necessary to specify the functions fð−p2Þ and hð−p2Þ in order to
evaluate the integrals in Eq. (64). Thus, again, we will consider one local and one nonlocal higher-derivative model.
The local higher-derivative model is described by

fð∇̄2∇2Þ ¼ 1 −
∇̄2∇2

Λ2
L

; hð□Þ ¼ 1 −
□

Λ2
L
: ð66Þ

Thus, we can infer that

fð−p2Þ ¼ hð−p2Þ ¼ 1þ p2

Λ2
L
: ð67Þ

Therefore, replacing these functions in Eq. (64) and assuming that ΛL is large, we obtain

Kð1Þ
L ðΦ; Φ̄Þ ≈ M

16π2

�
−1þ ln

�
M
Λ2
L

�
þ M
2Λ2

L

�
1þ 2 ln

�
M
Λ2
L

��
þ M2

6Λ4
L

�
10þ 12 ln

�
M
Λ2
L

��

þ M3

12Λ6
L

�
59þ 60 ln

�
M
Λ2
L

��
þ � � �

�
−
X
i¼þ;−

λi
32π2

�
ln

�
λi
Λ2
L

�
þ λi
6Λ2

L

�
13

þ 12 ln

�
λi
Λ2
L

��
þ λ2i
20Λ4

L

�
193þ 140 ln

�
λi
Λ2
L

��
þ λ3i
84Λ6

L

�
3825þ 2520 ln

�
λi
Λ2
L

��
þ � � �

�
: ð68Þ

On the other hand, the nonlocal higher-derivative model is described by

fð∇̄2∇2Þ ¼ exp

�
−
∇̄2∇2

Λ2
NL

�
; hð□Þ ¼ exp

�
−

□

Λ2
NL

�
: ð69Þ

Evidently, Eq. (69) implies that

fð−p2Þ ¼ hð−p2Þ ¼ exp

�
p2

Λ2
NL

�
: ð70Þ

Therefore, replacing these functions in Eq. (64) and assuming that ΛNL is large, we have

Kð1Þ
NLðΦ; Φ̄Þ ≈ M

16π2

�
ln

�
M

Λ2
NLe

1−γ

�
þ M
Λ2
NL

ln

�
2M

Λ2
NLe

1−γ

�
þ M2

4Λ4
NL

�
−1þ 6 ln

�
3M

Λ2
NLe

1−γ

��

þ 4M3

9Λ6
NL

�
−2þ 6 ln

�
4M

Λ2
NLe

1−γ

��
þ � � �

�
−
X
i¼þ;−

λi
32π2

�
ln

�
2λi

Λ2
NLe

1−γ

�
þ 2λi
Λ2
NL

× ln

�
4λi

Λ2
NLe

1−γ

�
þ λ2i
Λ4
NL

�
−1þ 6 ln

�
6λi

Λ2
NLe

1−γ

��
þ 32λ3i
288Λ6

NL

�
−2þ 6 ln

�
8λi

Λ2
NLe

1−γ

��
þ � � �

�
: ð71Þ

Like the one-loop effective potentials obtained in the previous
section, the Kähler effective potentials (68) and (71) are also
UV finite. However, when we set the parameters to be
infinitely large (ΛL → ∞ and ΛNL → ∞) such finiteness
ceases to exist because of the leading term of the potentials.
We know this must be so because in the limits ΛL → ∞ and
ΛNL → ∞ both potentials (68) and (71) must agree with the
one for the standard SQED.

IV. SUMMARY

We considered the higher-derivative/nonlocal extensions
of supergauge theories where, unlike previous papers on

such theories [14–17], the higher derivatives or nonlocality
are implemented not only in the gauge sector, but also in the
matter sector. It is important to note that within our
approach, these kinds of theories are treated within the
same methodology. Effectively, we introduced a new class
of higher-derivative/nonlocal Abelian supergauge theories
and a new class of gauge-matter couplings.
We performed the one-loop calculations in these theories

with the use of the functional supertrace approach and
explicitly demonstrated that this approach can be applied to
these theories with the same degree of success as that for
other supergauge theories. In the three-dimensional case,
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the one-loop effective potential is finite and it continues to
be so even when the characteristic scaleΛL (orΛNL) goes to
infinity, as it must be, since the one-loop effective action is
finite in three-dimensional theories. This is not so in the
four-dimensional case since the one-loop effective potential
in the usual SQED diverges [25,26], and the higher-
derivative/nonlocal terms in various field theory models
clearly play the role of the regularization.
It is worth pointing out that, in general, the introduction of

higher-derivative terms in a four-dimensional gauge theory
renders all multiloop diagrams convergent at finite Λ, but the
one-loop diagrams are still divergent [27]. Despite this, we
found that the one-loop effective potential (68) is finite, at
finiteΛL. This finiteness can be explained by the fact that the
supergraphs which contribute to the effective potential are
those involving only external matter superfield legs with
vanishing external momentum and, as explicitly shown in
Ref. [28] for a theory similar to Eq. (38), the higher covariant
derivative regularization ensures complete regularization of
such one-loop supergraphs.

The net result of our paper consists in the formulation of
new gauge-matter couplings. Therefore, it is natural to
expect that these couplings can be generalized to other
theories, especially to those that are interesting from the
phenomenological viewpoint, and to various effective
theories. The advantage of such theories consists in the
fact that they have better renormalization properties than
the conventional ones. We plan to study phenomenological
impacts of new couplings in our next papers.
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APPENDIX

Here we list the coefficients of the Green’s functions (12)
and (51):

A ¼ −
e2

2

e2jΦj2D2 þ 2□hð□Þ
e4jΦj4□ − 4□2h2ð□Þ ; ðA1Þ

B ¼ e2α
2

αe2jΦj2fð□ÞD2 − 2□hð□Þ þ αme2jΦj2½gð□Þ − 1�
α2e4jΦj4□f2ð□Þ − f2□hð□Þ − αme2jΦj2½gð□Þ − 1�g2 ; ðA2Þ

X ¼ 4e2

−□hð□Þ þM
; ðA3Þ

Y ¼ 4e2α□½−□hð□Þ þ αf̃ð□Þ�
□½−□hð□Þ þ αf̃ð□Þ�2 − 4α2m2g̃ð□Þ ˜̄gð□Þ ; ðA4Þ

Z ¼ 2mαg̃ð□Þ
□ð−□hð□Þ þ αf̃ð□ÞÞY: ðA5Þ
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