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In this work, we consider local and nonlocal higher-derivative generalizations of the super-Chern-
Simons theory and four-dimensional supersymmetric QED. In contrast to previous studies, the models
studied here also have higher-derivative terms in the matter sector. For these models, we calculate the one-

loop superfield effective potential.
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I. INTRODUCTION

Historically, higher-derivative theories have been intro-
duced in an attempt to prevent singularities in a classical
field theory [1], and to avoid ultraviolet divergences of a
quantum field theory [2]. In supersymmetric models,
higher-derivative theories have been studied within differ-
ent contexts. For example, the phenomenological implica-
tions of an extension of the minimal supersymmetric
Standard Model with dimension-five and six operators
were investigated in Ref. [3]. In Ref. [4] supersymmetric
versions of cubic and quartic Galileon theories were
proposed. Nonlocal higher-derivative extensions for the
scalar, super Yang-Mills, and supergravity theories were
constructed in Ref. [5]. In Ref. [6], a new mechanism to
construct ghost-free higher-derivative models was formu-
lated. Recently, the higher covariant derivative regulariza-
tion, which was first proposed by Slavnov in Ref. [7], was
successfully applied in the calculation of the f function of
supersymmetric gauge theories [8].

The effective potential is an important theoretical tool for
studying the ground state of a theory and the phenomena
related to it, such as the spontaneous breaking and
restoration of symmetries [9,10]. In the context of
higher-derivative superfield theories, the effective potential
has been investigated for different models [11-13]. In
particular, in Ref. [14], the one-loop effective potential was
explicitly calculated for the simplest higher-derivative
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extension of an Abelian gauge superfield theory. In
Refs. [15,16], the effective potential was studied in
higher-derivative gauge superfield theories defined on
the V=1 and N =2 three-dimensional superspaces.
More recently, a nonlocal higher-derivative extension of
the supersymmetric gauge theory was proposed and the
one-loop Kihlerian effective potential was explicitly cal-
culated for this theory [17].

One important limitation of the higher-derivative gauge
superfield theories studied in Refs. [14—17] is that they do
not include higher derivatives in the matter sector. In
particular, the four-dimensional theories studied in
Refs. [14,17] also do not contain chiral self-interaction
terms. Since these terms give nontrivial contributions to
the one-loop superfield effective potential, there is no
reason (other than convenience for calculating the one-
loop effective potential) to ignore higher-derivative and
chiral self-interaction terms in the matter sector of a
higher-derivative supersymmetric gauge theory. Thus,
the aim of this paper is to formulate higher-derivative
or nonlocal gauge-covariant terms in the matter sector
and to calculate the superfield effective potential at the
one-loop level for local and nonlocal higher-derivative
generalizations of the super-Chern-Simons theory and
supersymmetric QED (SQED) by taking into account
these new terms in the matter sector. In this regard, our
work is a further development of the studies presented in
Refs. [14-17].

This paper is organized as follows. In Sec. II, we
formulate a generic higher-derivative super-Chern-Simons
theory coupled to matter and calculate the one-loop con-
tribution to the superfield effective potential. In Sec. III, we
formulate a generic higher-derivative four-dimensional
SQED and explicitly calculate the one-loop Kihlerian
effective potential in it. In Sec. IV, we give a short summary
of the results obtained and suggest a possible continuation
of this study.

Published by the American Physical Society
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II. HIGHER-DERIVATIVE SUPER-CHERN-
SIMONS THEORY

Our starting point is the following N’ = 1, d = 3 higher-
derivative action for the complex scalar multiplet:

Sum = %/ &z[®(f(0)D* + mg(0))P + H.c.]
+/d5zv(ci>c1>), (1)

which is invariant under the global transformations 6@ =
iK® and 6® = —iK®. This model was originally proposed
in Ref. [12] and studied only in the context of local theories.
The dimensionless operators f([J) and g([J) are assumed
to be analytical functions of the d’Alembertian operator.
Additionally, in order to reproduce the standard action for
the complex scalar multiplet, we also suppose that f([J)
and ¢g(OJ) coincide with the unit operator in some suit-
able limit.

We are interested in the coupling of the theory (1) to the
Abelian gauge superfield A,,. In order to do this, we will use
the identity (1 = (D?)? and apply the minimal coupling
prescription [18], exchanging the simple covariant deriva-
tive with the gauge covariant one through the rule

D,® -V, »=D,®—iA,D. (2)
Thus, Eq. (1) can be rewritten as
1 5T 4\\72 4
+ / &7V (D). (3)

Evidently, this gauged model is invariant under the local
transformations

[@]) = KD, [A) =A,+ D,K. (4)
Since A, is a nondynamical superfield in Eq. (3), to
introduce a consistent dynamics for it we will add to
Eq. (3) the following higher-derivative generalization of the
supersymmetric Chern-Simons theory:

1
SHCS = ?/ dSZAah(D)DﬂDaAﬁ, (5)

which is also invariant under the transformations (4).

Finally, the higher-derivative version of the super-Chern-
Simons theory coupled to matter superfields that we will
study in this work has the following action:

S = Sucs + Sum + S, (6)

where, to perform quantum calculations, we conveniently
added the gauge-fixing functional

1
Sgr = =—=— | d’zA*h(0)D,DPA,. 7
ot =y | FABODD A (1)

In order to carry out the calculation of the one-loop
superfield effective potential in three dimensions [19],
we employ the background field method [20]. Making
the background-quantum splitting ® — ® + ¢ in Eq. (6),
assuming that the background superfield satisfies the
condition D,® = 0, and expanding the action to up to
the second order in the quantum superfields, after some
tedious but straightforward manipulations we obtain

1 A 1 A
S, = / d5z<§A”HaﬁAﬁ+A".7:,,> +3 / PzpTOp, (8)

where

., h(O 1 |2 D? O [¢(O) -1
b= (e2) <DﬂDa +&DGD/3) +u(—D/’Da + F(O)DDP) = m|2 Lot é Ip,pr.
Fp= é {d)f(D)DacZ) —®f(O)D,¢p + m(b[g(Lg_l]DaD% - m&)@Daquﬁ}, (9)

and

o=(8)0= (o
$) F(@O)D* + mg(O) + Voo

f(O)D* + mg(0) + Ves > _ (10)

Voo

For present purposes, it is useful to diagonalize Eq. (8). To do this, let us consider the following nonlocal change of

variables [21]:

A,(2) = A(z) — / BLCL (2. )F5(2), (11)
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where G,”(z,7') is the Green’s function of the operator H,/ defined from the equation
G/ (z.7) = (AD’D, + BD,D")&(z - 2'), (12)

where the coefficients A and B are written in the Appendix.
Under the nonlocal transformation (11), the functional (8) assumes the diagonalized form

1 N 1 A
S, —5/dSZAaHa/jAﬂ—I—E/dSZd)TO(ﬁ—/dSZdSZ'fG(Z)Gaﬂ(Z,Z/)]:/}(Z'). (13)

Since Eq. (11) is merely a shift by a constant, it leaves the integration measure in the path integral invariant. By integrating
out the quantum superfields A, and ¢, we get two contributions to the Euclidean one-loop effective action:

rt) =r{ 4y (14)

(1)

The first contribution I'* is given by the trace

o L s 1 (h(O) 1 1 s, M
) = Trin A% = ~Trl D'Dy+~-D,D" | b +-Trlnd 6,/ ——— DD
A T e Ty rn{ ¢ Ta M Tam@m Y
AMf() ., amMlg(0) 1
S0 p,pp o 9 A p phpe 15
20n@) Y T T @y (15)

where we factored out the inverse of the propagator of A, and defined M = %e2|d>|2.
Since the first trace does not depend on the background superfield, we can drop it. The second trace can be simplified if
we assume the Landau gauge a = 0. Therefore, it follows from Eq. (15) that

oot 0, =5 [ 2 [ pamn| ] 1ol

We now determine the second contribution F(E;). If we impose the Landau gauge, then G,/ (z,7') = AD’D,5(z — 7') and

ri)

the last term in Eq. (13) vanishes due to the identity D*DyD,, = 0. Therefore, we can write

0 f(O)D?

)
f(O)D? 0

1 ~ 1
b |0 = —ETran = —zTrln<

)—%Trln Pz—i—/\/l%], (17)

where we factored out the inverse of the ¢p propagator and defined

<m9(D) + Voo Voo >

M=
Voo mg(0) + Vo

(18)

Again, we can drop the first trace and the second one can be evaluated to give

/ /2)3WTrarCtan[|k|f/(v—lk2)} (19)

Finally, substituting Eqgs. (16) and (19) into Eq. (14), we can infer that the superfield effective potential is given by the
expression

KD (D, @) = %/ <d3]; |]1<| {arctan {W} + Z arctan [%} } (20)

I=+,—

where the A’s are the eigenvalues of the matrix M:

/L:(_kz) = mg(—kz) + Voo £ (Véévqxb)%- (21)
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The last step of our calculation is to evaluate the integrals in
Eq. (20). However, to evaluate these integrals one must
specify f(—k?), g(—=k?), and h(—k?). In this work, we will
examine two higher-derivative models which lead to an
improved ultraviolet behavior of the theory: one local
model and one nonlocal model.

A simple local higher-derivative model is defined by

A O

f(V“):g(V“):l—A—%, h(D):l—A—%’ (22)

1)/ = M? Mm*  _M* M
K (D,®)~ — 1+2F+7F+30F+m
L L L

167

where A; is the mass scale at which the higher-derivative
contributions begin to be pertinent. It follows from Eq. (22)
that
k2
F=R) = g(=k2) = h(=k*) = 1+ 55 (23)
L
All integrals in this article are evaluated approximately by
employing the strategy of expansion by regions [22].
Therefore, substituting Eq. (23) into Eq. (20) and assuming
that Ay is large, we find

=S (m+4;)? [1 +2;1i(m+;1i)

2
S 16z Af

Ailm+21)2Cm+7%) | di(m+ 1) (m? + 9ml; + 1527
(il 4 (2m 4 Th) | Al )+ Omd, + l>+m]7 (24)
A A
L L
where Zi = V(T)KI) + (V(T)&)V(D(D)%
On the other hand, a simple nonlocal model is defined by
A (]
199 = o9 =exp (=) HO) =exp (~ ) (25)
NL NL

where, similar to the local model, Ay, describes the characteristic energy at which the nonlocal contributions become

important. According to Eq. (25), we have

2
F(—k2) = g(—k?) = h(—k2) = exp( : ) (26)

2
ANL

Therefore, substituting Eq. (26) into Eq. (20) and assuming that Ay is large, we get

_ M? M*
1
K (@.®) ~

1o\ AR AN

- Z M[Hz(mm,-)

X

M2
<1+2—+6—+

;’{i I jl(m + ;1,')2(m + 6;11>

64 M° )
3 A

1 2;(m + ;)% (m? + 23mJ; + 647)

2 4
ANL ANL

Since A; and Ay are finite physical parameters, the one-
loop effective potentials (24) and (27) are UV finite. Notice
that this finiteness remains even if we set the parameters to
be infinitely large, A; — oo and Ay — oo, while many
higher-derivative or nonlocal theories turn out to be
divergent in this limit which is equivalent to removing
the higher-derivative term. Indeed, such one-loop finiteness
is a characteristic feature of the three-dimensional theories.
Moreover, we note that the expressions (24) and (27)
coincide up to the orders A;? and Ay} in the approxima-
tions. This coincidence occurs because the operators (22)
and (25) are identical in this particular order.

s +o (27)

6
ANL

III. HIGHER-DERIVATIVE SQED

In the present section, we are interested in a more
realistic theory. Thus, let us consider the four-dimensional
matter action

Su = /dgz(‘i)+‘b+ +P_0.)
+ { / B2 (m®_ O, + W(D_D,)) +He|,  (28)

which is invariant under the rigid U(1) transformations
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@] =D, [0 =c 0., [B,) =D, [B.)=cid_. (29)

A natural higher-derivative generalization of this model is
1 - - -
S =3 [ 28,1 (OO, + T D20, +b_f- D).
HT@0e) + | [ e g, + We.,) + He (30)

where again f, ((J), f_(0J), and g(0J) are dimensionless analytical functions and coincide with the identity in some suitable
limit. This model is essentially a two-superfield version of the one proposed in Ref. [13], which was studied only in the
context of nonlocal theories.

Due to the chirality of the superfields @, we have D>?D?®, = [1®_ . Thus, the action (30) can be rewritten in a more

convenient form,

Suv = [ @@, 1 (DD)0, + (F{DDNG 0, + b_f (D).

+ (f_(D*D?)D_)D_) + U d®z(m®_g(D*D*)®, + W(®d_d,)) + H.c.|. (31)

In order to extend the transformations (29) to local U(1) transformations, we define

[@,] =", [@_ ) =e D,

where the local parameter A is chiral.

[@,] = e M, [B_] = erD_, (32)

To extend Eq. (31) up to a form invariant under Eq. (32), we must use the minimal coupling prescription [23]:

D, o, -V, 0. =D, 0, Fil, O, r,=iD,V,
Dy®; — V@, =D;®. =0, (33)
where the gauge superfield V and the connection I', transform as
VI =V+i(A=A). [ =T, + D,A. (34)

Therefore, Eq. (31) can be rewritten as

Stm = % / Bz( B, [ (VPV2)D, + (f(VIV)D,)e" D, + D™V f_(VV2) D

+ (f_(VPV2)D_)e " D_) + { / doz(m®_g(V>V?)®, + W(D_®,)) +He.|. (35)

This model is invariant under the combined transformations
(32) and (34). Notice that we introduced the factor exp(V)
to change a A representation to a A representation of the
group [18].

Since V has no kinetic term in Eq. (35), we will add to
Eq. (35) the following higher-derivative generalization of
the supersymmetric Abelian gauge theory:

1 — . —
T [ / dzWeh(D)W,, + / dﬁzW“h(D)W{,}

(36)

where the superfield strengths are expressed in terms of the
gauge superfield as

W, =iD?D,V, W, = —iD*D,V. (37)

Finally, the higher-derivative version of the SQED that we
will study in this paper is given by

S = SHG + SHM‘ (38)

Here, our goal is to calculate the one-loop correction to the
Kihlerian effective potential [24]. Thus, as we have done in
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the last section, we will expand Eq. (38) around back- ~ We will assume that the background superfields are subject
ground superfields: to the constraints D,®, = 0 and D,®_ = 0, and keep only
quadratic terms in the quantum fluctuations ¢, and ¢_.

O, - D, ¢, O_->D_+¢_. (39) Therefore, after some lengthy algebra, we find

1 1 _
S, = _@/ d*zVOh(O)I,V +§/ & {| @, PV + £ (D)) + 28, VS, (D).

F20VF (DD + 2O} + [ 0PI+ £ O]y
—20_Vf_(O)p_ - 20_Vf_(O)p_ +24_f_(O)p_}

—m/dgz{©_®+V%D2V+d) V%qufy+ —¢+¢_&D_102V+H.c.}
10*°W 10*°W ’*w
+ {/d6z [m(ﬁ_g( V. + 2007 ¢2 28<I>2 ¢2 8d>+8d> ¢+¢_] +H.c.}, (40)

where I and II, are the transverse and longitudinal projection operators, which are defined as

D“D*D, _ D*D? _ D*D?
l:‘ ) 04+ — l:‘ ) 00— — l:‘ 5

I, = — Iy = Iy, + I, (41)
At this step of our calculation, we find it more advantageous to work with unconstrained superfields than chiral superfields.
For this reason, we will write the quantum antichiral and chiral superfields as ¢, = D*y, and ¢, = Dy, where . and
4 are free of differential constraints [25]. However, this replacement introduces a new gauge symmetry, namely, oy, =

D%, and &, = D%w.,. Therefore, in order to fix this gauge invariance and the one (34), we will add to Eq. (40) the
following gauge-fixing functionals:

1
Sgr1 = ~ 34 da®zVOr(O)TT, (42)
Sm—/fWJﬂWWW—mW%Ww (43)
Sars = [ - f @)D = DDD,y-. (44)
Therefore, it follows from Eqgs. (40)—(44) that
s (1o 1 8y, T/
8, = 58,4 Scr1 + Sar + Sers = [ dz EVHV +VF )+ 2 d°zy” Oy, (45)
where
N 1 1 ) ) )
i = =5 Oh() [T+ T | + (. + (@), + (0. 7. ()
D2 - 2
+O_PF(O))y = 2m_ [o(0) = 1) 2 = 2mb_b. [o(00) — 1) = (46)
F= . f (O)D, —@_f (O)Dw_ —m®_[g(0) - 1]y,
+ m®_[¢g(O) — 1]Iy_w_ + H.c., (47)
and
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Vi
_ . wD?* OF
y=|""| o= ( . ) (48)
7 OF WD?
W_
Last, the matrices W and F are defined as
PwW W
A O 0 R 00> mg(D) + 5 o~ 9D, 0D_
F= <f+(() | O ) W= A _ow_ 2w (49)
£-0) mg(0) + 55 o= prs)

The mixing terms between the quantum superfields V and y can be eliminated by the following nonlocal change of
variables in the path integral:

V(z) = V(z) - / d7G(z,7)F (), (50)

where G(z,7') is the Green’s function of the operator 4 = H(z), namely, HG(z,7') = 6%(z — Z'). This equation has the
solution

G(z,7') = (XTI + YTy + ZD? + ZD?)8%(z - 2). (51)

The coefficients X, Y, and Z are written in the Appendix.
Therefore, after the change of variables (50), the S, can be put in the diagonalized form

-1 - 1 A
$2=3 / VAV + 5 / &2y Oy — / d*2d*7 F(2)G(z,2)F(2). (52)

From S,, we can compute the Euclidean one-loop effective action by formally integrating out the superfields V and .
Therefore, we arrive at

r =ry +1y). (53)

The first contribution F&,l) is given by the trace,

1
4e 1,2

1

1 1 1 1 -
F&,l) = —ETrlnH = —ETrln{ Ohr(0O) {H% +5HO] —I—@MH% —I—Ef(D)HO

2 D? 2m. D?
- O) G~ IO & (54)
where we introduced the definitions
M =4e*(|0, ] + [@_), f(O) = 4e*(|@ > (O) + [@_|*f_(D)),
90) =420, 0 [g(O) 1], §(0) =42, d_[g(0) - 1], (55)

We can factor out the inverse of the V propagator, which is independent of the background superfields, and subsequently
drop it. Therefore, it follows from Eq. (54) that

m_ 1 M l_af(D)
Tvi= 2Trln{1 Oh(C) ™~ ThO)

I1, +

2nal0) | 2nail0) ) 5

Oh(@d) O Or@) O

This trace assumes its simplest form in the Landau gauge a = 0. Therefore, in this particular gauge, we find
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d
Fi,l) =—-Trln p

1
a=0 2 I:lh 1

Let us move on to the calculation of the second contribution F,(,,l). Notice that G(z,7') = XII 8%(z — 7') in the Landau gauge.

N._.

{ + %] . (57)

Since the Green’s function is transversal in this gauge, the last term in Eq. (52) vanishes. Therefore, we can write

1 A 1
F,(,,]) :—ETran:—ETrln( (58)

a=0

WD? DF)
OF  WD?

Again, we can factor out the inverse of the y propagator and subsequently drop it from Eq. (58). Thus, we can rewrite

Eq. (58) as
0 I:"IVQVD2
1, + . =
D? 0

Only the even powers in the expansion of the logarithm give nonvanishing contributions to the trace. Therefore, we can

show that
ot g
! R FEWE W 0
r¥]  =— Trin lu—( e o
a—0 4 0 wn0+

1
F,S,U = _ETI In (59)

a=

§>

O
1 . FYWE'W 1 . FWEW
= —ZTrln (IZ—THO_> —ZTrln (Iz— O H0+> (60)
These traces can be evaluated to give
i) l/dS / P 1o (1, + FwEW (61)
Vie=o 2 ¢ (27)* p? : p? '

This integral is rather complicated. In order to obtain clear analytical results, we will assume that m = 0 and
FAPV2) = f(PV2) = f(VV2), (62)

Therefore, it follows that

)

Finally, substituting Eqs. (57) and (63) into Eq. (53), we can infer that the one-loop correction to the Kihler effective
potential is given by

KD(®, D) :/é‘:&#{—ln {1+$} +%Z In {1+%ﬂ, (64)

i=+,—

where the A’s are the eigenvalues of the matrix W W l,.—o and they are given by
82W 2 ‘ 82W 2 82W 2 ‘ aZW 2)2

4, = Lf|owp L[(|2W)F | oW
=2 002 0P, OD_ D2 D% D2
PW PW W WS
e : (65)
D, OD_ D2 ' 9D, dD_ OD2

+4
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In the same manner as in the previous section, it is necessary to specify the functions f(—

p?) and h(—p?) in order to

evaluate the integrals in Eq. (64). Thus, again, we will consider one local and one nonlocal higher-derivative model.

The local higher-derivative model is described by

V2v?

FPV) = 1=
L

Thus, we can infer that

Therefore, replacing these functions in Eq. (64) and assuming that A is large, we obtain

= M

-1+1 M M
— n
1677 A2 2/\2

M3 M A W\ A
59 + 601 - " |in( &
g 2o of - S e () e

A; 2
+ 121n<A2>} +20 4

193 4 1401n i + i
A 84A$

On the other hand, the nonlocal higher-derivative model is described by

F(99) = exp (—

Evidently, Eq. (69) implies that

Ly — ) — oxn[ P
f=7) = =) = exo( ).

h(O) =1- /@. (66)
[’i—; (67)
{1+21 (f)} gﬁ [mmm(@]
{13
[3825 +25201n ( iL)] +-- } . (68)
%Vj) () = exp <_A%L>' (69)
(70)

Therefore, replacing these functions in Eq. (64) and assuming that Ay is large, we have

2M

L
K (@, ®) »

aMm3

aM
— |24+ 6In| ———F—
- 9L [ - n<A12\IL€l_y)] -

M ) M n M 1
n ——1In
1672 AI%ILel_V A2NL A%\ILel_V

6/,

>+ e [ 1+61< S )]
— n S —
ANY Ae'™

4i
' } - i;_ 3217

N
n
A el

A
3243

4. 2
xln(%) /14’ [—1+6ln< i
Ajre™ AL AxLe

Like the one-loop effective potentials obtained in the previous
section, the Kéhler effective potentials (68) and (71) are also
UV finite. However, when we set the parameters to be
infinitely large (A; — oo and Ayp — o0) such finiteness
ceases to exist because of the leading term of the potentials.
We know this must be so because in the limits A, — oo and
Anp, — oo both potentials (68) and (71) must agree with the
one for the standard SQED.

IV. SUMMARY

We considered the higher-derivative/nonlocal extensions
of supergauge theories where, unlike previous papers on

. 81
! -2 +61 d S 71
_y)] - 288A%; { - n<A§Lel_y)] " ] )

such theories [14—17], the higher derivatives or nonlocality
are implemented not only in the gauge sector, but also in the
matter sector. It is important to note that within our
approach, these kinds of theories are treated within the
same methodology. Effectively, we introduced a new class
of higher-derivative/nonlocal Abelian supergauge theories
and a new class of gauge-matter couplings.

We performed the one-loop calculations in these theories
with the use of the functional supertrace approach and
explicitly demonstrated that this approach can be applied to
these theories with the same degree of success as that for
other supergauge theories. In the three-dimensional case,
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the one-loop effective potential is finite and it continues to
be so even when the characteristic scale A; (or Ay; ) goes to
infinity, as it must be, since the one-loop effective action is
finite in three-dimensional theories. This is not so in the
four-dimensional case since the one-loop effective potential
in the usual SQED diverges [25,26], and the higher-
derivative/nonlocal terms in various field theory models
clearly play the role of the regularization.

It is worth pointing out that, in general, the introduction of
higher-derivative terms in a four-dimensional gauge theory
renders all multiloop diagrams convergent at finite A, but the
one-loop diagrams are still divergent [27]. Despite this, we
found that the one-loop effective potential (68) is finite, at
finite Ay . This finiteness can be explained by the fact that the
supergraphs which contribute to the effective potential are
those involving only external matter superfield legs with
vanishing external momentum and, as explicitly shown in
Ref. [28] for a theory similar to Eq. (38), the higher covariant
derivative regularization ensures complete regularization of
such one-loop supergraphs.

|

e? &2|®|*D? + 20A(0)

The net result of our paper consists in the formulation of
new gauge-matter couplings. Therefore, it is natural to
expect that these couplings can be generalized to other
theories, especially to those that are interesting from the
phenomenological viewpoint, and to various effective
theories. The advantage of such theories consists in the
fact that they have better renormalization properties than
the conventional ones. We plan to study phenomenological
impacts of new couplings in our next papers.
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APPENDIX

Here we list the coefficients of the Green’s functions (12)
and (51):

T T2 Ao O-42r(0)’ (D)
B_ e’a a’|®Pf(0)D* = 204(0) + ame?|®@|*[g(0) - 1] (A2)
2 MO OA(D) - {204(0) - ame?|@P[g(0) — 1]}
4e?
X=moyem (A3)
B 4e?a0[-0h(0) + af (O)]
" " OLOHO) + FOF - 4050 )
2mag(0) (AS)

~ O(-0n(0) + af (O))
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