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We consider purely topological 2D Yang-Mills theory on a torus with the second Stiefel-Whitney class
added to the Lagrangian in the form of a θ term. It will be shown that at θ ¼ π there exists a class of
SUð2NÞ=Z2 (N > 1) gauge theories with a twofold degenerate vacuum, which spontaneously breaks the
time reversal and charge conjugation symmetries. The corresponding order parameter is given by the
generator O of the ZN one-form symmetry.
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I. INTRODUCTION

The possibility of having a number of degenerate vacua
called θ-vacua in two dimensional gauge theories was
studied in the 1970s by a number of authors [1–6]. Both
Abelian and non-Abelian theories were considered, and the
existence of the multiple vacua was shown to be indepen-
dent of the spontaneous symmetry breaking of the gauge
symmetry. Instead, the presence of some matter fields,
either fermionic or scalar, was required.
In this paper we consider purely topological 2D Yang-

Mills theory on a torus with the second Stiefel-Whitney
class added to the Lagrangian in the form of a θ term. It will
be shown that at θ ¼ π there exists a class of SUð2NÞ=Z2

(N > 1) gauge theories with a twofold degenerate vacuum.
These two vacuum states are related by the time reversal or
the charge conjugation and thus indicate the spontaneous
symmetry breaking. The corresponding order parameter is
given by the generator O of the ZN one-form symmetry
with the following action of the charge conjugation on it:

COC−1 ¼ O−1: ð1:1Þ

The motivation to consider such theories comes from the
recent developments in generalized global symmetries and
‘t Hooft anomalies [7–27]. In particular, authors of [16]
considered SUðNÞ gauge theory in four dimensions and
showed that at θ ¼ π there is the discrete ‘t Hooft anomaly
involving time reversal and the center symmetry. As a
consequence of this anomaly, the vacuum at θ ¼ π cannot

be a trivial nondegenerate gapped state. Another example
of the ‘t Hooft anomaly constraining the vacuum of the
theory is related to the 2D CPn−1 model [15], where for
n > 2 the mixed anomaly between time reversal symmetry
and the global PSUðnÞ symmetry at θ ¼ π leads to the
spontaneous breaking of time reversal symmetry with a
twofold degeneracy of the vacuum [28]. The list of
examples could be longer, but we will conclude by
mentioning the works [12,13], where the ‘t Hooft anoma-
lies for discrete global symmetries in bosonic theories were
studied in two, three, and four dimensions. Although, in
this paper, we are not going to discuss the possible relation
of the spontaneous symmetry breaking to the anomaly, one
could hypothesize the existence of the mixed anomaly
between ð−1Þ-form symmetry and the charge conjugation
in the theories under consideration.1

Recently, we became aware of the paper by Kapec,
Mahajan, and Stanford [25], which has partial overlap with
our results for the partition functions of PSUðNÞ gauge
theories. In [25] the higher genus partition functions were
computed and utilized in the context of random matrix
ensembles. As we will show in the main text of the paper,
there is no spontaneous symmetry breaking for the case of
PSUðNÞ gauge theories, and thus, the main results of our
study are not covered in [25]. Also, the paper by Sharpe
[29] discussing one-form symmetries in the various 2D
theories appeared recently. This paper studies the connec-
tion with the cluster decomposition and is based on a
number of previous results (to name a few [30–32]).
The paper is organized as follows. In Sec. II, we review

the Hamiltonian approach for computing the partition
functions of the pure gauge theories in two dimensions.
This method originates from the work of Migdal [33] and
was extensively developed in the 1980s and 1990s along-
side other approaches for studying the 2D Yang-Mills
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theories [34–46]. We would also like to mention the path
integral approach by Blau and Thompson [47–49], which
leads to the same results but requires more involved
mathematical structures. In Sec. III we use ‘t Hooft’s
twisted boundary conditions [50] to compute the partition
function of the SUð2Þ=Z2 gauge theory. This computation
is equivalent to the approach used by Witten [40] to
compute the SOð3Þ partition function starting from the
SUð2Þ gauge theory. We conclude Sec. III by introducing
the θ term to the Lagrangian and computing the partition
function at θ ¼ π, which repeats one of the results of
[51,32]. In Sec. IV we extend all of the previous arguments
to the case of SUðNÞ=ZN theory. However, since there is no
spontaneous symmetry breaking in PSUðNÞ theory for any
N, in Sec. V we focus on the more general case of
SUðNÞ=Γ, where Γ is the subgroup of the center of
SUðNÞ. Indeed, we find out that there exists a class of
SUð2NÞ=Z2, N > 1 theories with two vacuum states given
by the fundamental and antifundamental representations of
SUð2NÞ. Additionally, we argue that there exists a broader
class of SUð2NmÞ=Z2m theories with degenerate vacuum.
Finally, in Sec. VI we relate the twofold degeneracy of the
vacuum to the spontaneous breaking of C and T
symmetries.

II. REVIEW: SU(2) GAUGE THEORY

To derive the answer for the partition function on the
torus, we consider the canonical quantization of the theory
on a cylinder (see Fig. 1). The corresponding propagator
[33,40,45] is given by

Zða; U1; U2Þ ¼
X
R

χRðU1ÞχRðU2Þe−aC2ðRÞ; ð2:1Þ

where a ¼ e2LT=2 is proportional to the surface area of the
cylinder. The final answer for the partition function on the
torus comes from gluing together the opposite sides of the
cylinder:

Z ¼
Z

dU1Zða;U1; U−1
1 Þ

¼
X
R

e−aC2ðRÞ
Z

dU1χRðU1ÞχRðU−1
1 Þ: ð2:2Þ

Using the identity

Z
dUχRðVUÞχRðU−1WÞ ¼ χRðVWÞ

dimR
; ð2:3Þ

we get

Z ¼
X
R

e−aC2ðRÞ: ð2:4Þ

For SUð2Þ, we have C2ðRÞ ¼ jðjþ 1Þ with half-integer j
and hence

Z ¼
X∞
m¼0

e−amðmþ2Þ=4: ð2:5Þ

III. SU(2)=Z2 GAUGE THEORY

Now we consider the cylinder as a rectangular plaquette
with one pair of opposite sides being glued together.
According to [50] we can introduce the following boundary
conditions for the vector potential Aμðx; tÞ:

�
AμðL; tÞ ¼ Ω̃1ðtÞAμð0; tÞ;
Aμðx; TÞ ¼ Ω̃2ðxÞAμðx; 0Þ;

ð3:1Þ

with the notation ΩAμ ¼ ΩAμΩ−1 þ {
gΩ∂μΩ−1. However,

since we are using the A0 ¼ 0 gauge, we are left with time
independent gauge transformations:

Ω̃1ðtÞ ¼ Ω̃1ð0Þ: ð3:2Þ

Now making a constant gauge transformation Aμ → Ω̃Aμ

with

Ω̃Ω̃1Ω̃−1 ¼ Id; ΩðxÞ≡ Ω̃Ω̃2ðxÞΩ̃−1; ð3:3Þ

we arrive at

�
A1ðL; tÞ ¼ A1ð0; tÞ;
A1ðx; TÞ ¼ ΩðxÞA1ðx; 0Þ;

ð3:4Þ

and the consistency condition for Ω is

Ωð0Þ ¼ ΩðLÞz; z ∈ Z2: ð3:5ÞFIG. 1. Holonomies on the cylinder.
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Now we should be more accurate with the definition of the
holonomy around the boundary (see Fig. 2). For each Ui,
we have

U1 ¼ Pexp

�Z
L

0

A1ðx; 0Þdx
�
; ð3:6Þ

U ¼ Pexp
�Z

T

0

A1ðL; tÞdt
�
; ð3:7Þ

U2 ¼ Pexp

�Z
1

0

A1ðx; TÞ
dx
dσ2

dσ2

�

with xðσ2 ¼ 0Þ ¼ L; xðσ2 ¼ 1Þ ¼ 0: ð3:8Þ

Since we have two kinds of vector potentials defined
by the boundary conditions with Ω0ð0Þ ¼ Ω0ðLÞ and
Ω1ð0Þ ¼ Ω1ðLÞz1, z1 ≠ Id, the total partition function
can be represented as the following sum:

Z ¼ 1

2
ðZ0 þ Z1Þ; ð3:9Þ

where the factor 1=2 comes from the normalization of the
Haar measure to give volume one. Now Z0 corresponds to
the periodic boundary conditions, as in the case of pure
SUð2Þ, and we already know the answer:

Z0 ¼
X∞
m¼0

e−amðmþ2Þ=4: ð3:10Þ

To compute Z1, we use the boundary conditions to derive

U2 ¼ Ω1ð0ÞPexp
�Z

1

0

A1ðx; 0Þ
dx
dσ2

dσ2

�
Ω−1

1 ðLÞ

¼ Ω1ð0ÞU−1
1 Ω−1

1 ðLÞ: ð3:11Þ

Then the partition function for the cylinder is

Z1ða;U1; U2Þ ¼
X
R

e−aC2ðRÞχRðU1ÞχRðU2Þ: ð3:12Þ

Applying the gluing procedure and integrating over U1, we
arrive at

Z1 ¼
X
R

e−aC2ðRÞ
Z

dU1χRðU1ÞχRðz1U−1
1 Þ

¼
X
R

e−aC2ðRÞ χRðz1Þ
dimR

: ð3:13Þ

Using the Weyl character formula for the SUð2Þ case

χR

��
e{ϕ 0

0 e−{ϕ

��
¼ sinðnϕÞ

sinðϕÞ ; n ¼ dimR; ð3:14Þ

we get χRðz1Þ ¼ nð−1Þnþ1 and

Z1 ¼
X∞
m¼0

ð−1Þme−amðmþ2Þ=4: ð3:15Þ

Thus, the answer for the total partition function is

Z ¼
X∞
k¼0

e−akðkþ1Þ; ð3:16Þ

which coincides with the general answer (2.4) for the
group SOð3Þ.

A. Adding w2 to SU(2)=Z2

Following [40,51], we use a topological approach to the
calculation of the partition function with the second Stiefel-
Whitney class w2 added to the Lagrangian:

ZSW ¼
Z

DAe{SYMþ{θw2 ; ð3:17Þ

where the dependence on θ is 2π-periodic and different
possible values of theta in the SUð2Þ case are θ ¼ 0; π.
Since w2 only depends on the topological type of the
bundle, the path integral splits into two parts, correspond-
ing to the trivial and nontrivial SOð3Þ-bundles over the
torus. The trivial bundle is defined by the boundary
conditions (3.4) with Ω0ð0Þ ¼ Ω0ðLÞ, and the value of
w2 is 0. The nontrivial bundle is defined by the boundary
conditions (3.4) with Ω1ð0Þ ¼ Ω1ðLÞz1, and the value of
w2 is 1. In this way we get the following answer:

ZSWðθ ¼ πÞ ¼ 1

2
ðZ0 þ e{πZ1Þ ¼

X∞
k¼0

e−að2kþ1Þð2kþ3Þ=4;

ð3:18Þ

where SW stands for Stiefel-Whitney.

IV. SU(N)=ZN GAUGE THEORY

For the group SUðNÞ=ZN , we have N nonequivalent
periodic boundary conditions (3.4) with

FIG. 2. Holonomy around the boundary of the plaquette.
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Ωkð0Þ ¼ ΩkðLÞzk; zk ∈ ZN; k ¼ 0; 1;…; N − 1:

ð4:1Þ

Repeating the steps from the previous section, we write the
partition function as

Z ¼ 1

N

XN−1

k¼0

Zk; ð4:2Þ

where

Zk ¼
X
R

e−aC2ðRÞ χRðzkÞ
dimR

: ð4:3Þ

We can add the θ term to the Lagrangian as in (3.17)
with w2 replaced by an invariant of PSUðNÞ bundles u2 ∈
H2ðT2;ZNÞ [18]. Allowing theta to take more values inside
the ½0; 2πÞ interval and labeling these values by κ, we get

θκ ¼
2πκ

N
; κ ¼ 0;…; N − 1: ð4:4Þ

Thus, each Zk acquires the factor of e{θκk, and the
corresponding partition function is

ZSW
κ ≡ ZSWðθ ¼ θκÞ ¼

1

N

XN−1

k¼0

e2π{κk=NZk: ð4:5Þ

A. Example: SU(3)=Z3

Irreducible representations of SUð3Þ can be labeled by
the Dynkin coefficients ðn;mÞ. The two fundamental
weights of SUð3Þ are

μ1 ¼
�
1

2
;

1

2
ffiffiffi
3

p
�
; μ2 ¼

�
0;

1ffiffiffi
3

p
�
: ð4:6Þ

For the characters of zk in the representation ðn;mÞ, this
gives

χðn;mÞðzkÞ ¼ dimRðn;mÞe2π{kðnþ2mÞ=3; k ¼ 0; 1; 2: ð4:7Þ

Since

X2
k¼0

e2π{kðnþ2mÞ=3 ¼ 3δð½nþ 2m�mod 3Þ; δðnÞ≡ δn;0

ð4:8Þ

and

C2ðRðn;mÞÞ ¼ ðn2 þm2 þ nmþ 3nþ 3mÞ=3; ð4:9Þ

we derive for the partition function

Z ¼
X∞
n;m¼0

e−aðn2þm2þnmþ3nþ3mÞ=3δð½nþ 2m�mod 3Þ;

ð4:10Þ

where due to the Kronecker delta function the only nonzero
terms are those that have nþ 2m≡ 0ðmod 3Þ.
Adding u2 with θ ¼ θκ changes the argument of the delta

function by κ, and we get

ZSW
κ ¼

X∞
n;m¼0

e−aðn2þm2þnmþ3nþ3mÞ=3δð½κ þ nþ 2m�mod 3Þ:

ð4:11Þ

B. General case: SU(N)=ZN

Labeling representations of SUðNÞ by the Dynkin
coefficients ðq1;…; qN−1Þ≡ q and using the fundamental
weights, we derive for the characters of zk in the repre-
sentation ðq1;…; qN−1Þ,

χqðzkÞ ¼ dimRqe2π{kðq1þ2q2þ���þðN−1ÞqN−1Þ=N;

k ¼ 0; 1;…; N − 1: ð4:12Þ

Then with the help of the simple identity

XN−1

k¼0

e2π{kn=N ¼ NδðnmodNÞ; ð4:13Þ

we get for the partition function

Z ¼
X∞

q1;…;qN−1¼0

e−aC2ðRqÞδ
��XN−1

j¼1

jqj

�
modN

�
; ð4:14Þ

where the only nonzero terms are those that haveP
N−1
j¼1 jqj ≡ 0ðmodNÞ. The eigenvalues of the quadratic

Casimir operator in (4.14) are given by [52]

C2ðRqÞ ¼
XN−1

j;k¼1

qjðqk þ 2ÞGkj; ð4:15Þ

where Gij is the inverse of the symmetrized Cartan matrix
Gij [53],

Gij ≡ 8ðαi; αjÞ
ðαi; αiÞðαj; αjÞ

ð4:16Þ

and we are using the normalization, which provides the
Killing metric of the form gab ¼ 1

2
δab and ðαi; αiÞ ¼ 2.
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Adding the usual θ term with θ ¼ θκ, we obtain

ZSW
κ ¼

X∞
q1;…;qN−1¼0

e−aC2ðRqÞδ
��

κ þ
XN−1

j¼1

jqj

�
modN

�
;

κ ¼ 1;…; N − 1: ð4:17Þ

V. LOOKING FOR TWO VACUA IN SU(N)=Γ,
Γ ⊂ ZN GAUGE THEORY

In this section we will consider the more general case
when the factor group is taken with respect to the subgroup
Γ of the center of SUðNÞ. By this point, we have gone
through several derivations of the partition functions, and it
is clear what the generalization is of (4.17) for Γ ≠ ZN. If
the order of Γ is n, then we have n nonequivalent periodic
boundary conditions (3.4), and the corresponding partition
function is

ZSW
κ ¼

X∞
q1;…;qN−1¼0

e−aC2ðRqÞδ
��

κ þ
XN−1

j¼1

jqj

�
mod n

�
;

κ ¼ 1;…; n − 1: ð5:1Þ

A. N = 4

We start with the explicit answer for the case of
SUð4Þ=Z4:

ZSW
κ jΓ¼Z4

¼
X∞

q1;q2;q3¼0

e−aC2ðRðq1 ;q2 ;q3ÞÞ

× δ

��
κ þ

X3
j¼1

jqj

�
mod 4

�
; κ ¼ 1;…; 3;

ð5:2Þ
where

C2ðRðq1;q2;q3ÞÞ ¼
1

8
ð3q21 þ 4q22 þ 3q23 þ 4q1q2

þ 2q1q3 þ 4q2q3 þ 12q1 þ 16q2 þ 12q3Þ:
ð5:3Þ

As it can be checked directly, there is no such value of κ that
would produce two vacua. However, we can also consider
the case of SUð4Þ=Z2 with κ ¼ 1 and the following
partition function:

ZSW
1 jΓ¼Z2

¼
X∞

q1;q2;q3¼0

e−aC2ðRðq1 ;q2 ;q3ÞÞ

δ

��
1þ

X3
j¼1

jqj

�
mod 2

�
: ð5:4Þ

In this case the two vacua contributions are given by q ¼
ð1; 0; 0Þ and q ¼ ð0; 0; 1Þ.

B. General case of SU(2N)=Z2 with N > 1

It is easy to show that the first nontrivial example of 2D
theory with two vacua discussed earlier is just one of the
infinite series of SUð2NÞ=Z2 theories with N > 1. We
again consider the partition function ZSW

κ jΓ¼Z2
with κ ¼ 1

or, equivalently, θ ¼ π:

ZSW
1 jΓ¼Z2

¼
X∞

q1;…;q2N−1¼0

e−aC2ðRqÞδ
��

1þ
X2N−1

j¼1

jqj

�
mod 2

�
:

ð5:5Þ

To show that these theories have two vacua, we need the
following facts about the inverse Cartan matrix Gij. The
first fact is that all elements of this matrix are strictly
positive:

∀ i; j∶Gij > 0: ð5:6Þ

Second, the diagonal elements Gii are given by [53,54]

Gii ¼ ið2N − iÞ
4N

; i ≤ 2N − 1: ð5:7Þ

And finally, the following relations hold:

∀ j ¼ 2;…; N∶
X2N−1

i¼1

Gi1 <
X2N−1

i¼1

Gij; ð5:8Þ

∀ j ¼ 1;…; N − 1∶
X2N−1

i¼1

Gi;N−j ¼
X2N−1

i¼1

Gi;Nþj: ð5:9Þ

Thus, the two vacua contributions are coming from

q ¼ ð1; 0;…; 0Þ and q ¼ ð0;…; 0; 1Þ: ð5:10Þ

Notice that due to the superselection rules

hR2jR1i ¼
Z

dUχR1
ðUÞχR2

ðU−1Þ ¼ δR1;R2; ð5:11Þ

we indeed have two different ground states that indicate
spontaneous symmetry breaking.

C. Γ ≠ Z2

By studying some particular examples with low enough
values of N, one can check that the following theories
with Γ ≠ Z2 have two vacuum states: SUð8Þ=Z4 with
κ ¼ 2, SUð12Þ=Z4 with κ ¼ 2, SUð12Þ=Z6 with κ ¼ 3,
SUð16Þ=Z4 with κ ¼ 2, and SUð16Þ=Z8 with κ ¼ 4.
Basically, any SUð2NmÞ=Z2m theory with κ ¼ m and
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N > 1, m > 1 is a candidate for having a twofold degen-
erate vacuum. The only obstacle to making this statement
true, in general, is that for higher values of N and m there
could be, in principle, states with energies lower than the
energy of the following two states:

qm ¼ 1; ∀ j ≠ m∶qj ¼ 0 and qð2N−1Þm ¼ 1;

∀ j ≠ ð2N − 1Þm∶qj ¼ 0: ð5:12Þ

However, explicit computations for a number of different
values of N and m suggest that the above states are always
the lowest energy states of the theory with κ ¼ m. If we
assume that there are states with even lower energies, then
they will also come in pairs. This allows us to conclude that
the vacuum of the SUð2NmÞ=Z2m theory with κ ¼ m is at
least twofold degenerate. Moreover, the lack of discrete
symmetries with orders higher than 2 hints that the twofold
degeneracy is the only option.

VI. SPONTANEOUS SYMMETRY BREAKING IN
SUð2NÞ=Z2 THEORIES WITH θ= π, N > 1

If we look at the Dynkin coefficients corresponding to
the two vacuum states, we see that these states are given by
the fundamental and antifundamental representations of
SUð2NÞ. Hence, the question is what transformation brings
us from one representation to its complex conjugate. Since
the wave functions in the propagator (2.1) are given by

hUjRi ¼ χRðUÞ ¼ TrRðUÞ;

U ¼ Pexp

�Z
L

0

A1ðx; tÞdx
�
; ð6:1Þ

the transformation A1 → −AT
1 yields U → ðU−1ÞT ¼ U�

and χRðUÞ → χR� ðUÞ. From the Gauss law constraint, one
could derive the following transformation rules for the C,
P, and T operators:

C∶e → −e; A1 → −AT
1 ; ð6:2Þ

P∶x → −x; A1 → −A1; ð6:3Þ

T∶t → −t; A1 → −AT
1 : ð6:4Þ

Thus, the C-symmetry (as well as T) is spontaneously
broken, and the overall CPT-symmetry is conserved since
both CT and P act trivially on the wave functions χRðUÞ.
Spontaneously broken C- and T-symmetries lead to the

domain wall between the two vacuum states χFðUÞ and
χF̄ðUÞ. In the theories under consideration there is a
discrete one-form symmetry ZN, generated by a local
unitary operator O [8,55]. This local operator picks up a
phase when crossing the domain wall. To figure out the
phase, we consider the Z2N subgroup before factoring out
Z2. As before, the corresponding characters are given by

χqðzkÞ ¼ dimRqe2π{kðq1þ2q2þ���þð2N−1Þq2N−1Þ=ð2NÞ;

k ¼ 0; 1;…; 2N − 1: ð6:5Þ

After factoring out Z2, the generator of ZN corresponds to
z1, and its action on the wave functions is simply

OjFi ¼ eπ{=N jFi; OjF̄i ¼ e−π{=N jF̄i; ð6:6Þ

where ON ¼ 1 due to the fact that ð−1Þ ∈ Z2 in funda-
mental and antifundamental representations. Here, we also
assume that adding a second Stiefel-Whitney class only
affects the Z2-charges of the states and ZN-charges remain
the same. In this way the relation between the two
expectation values reads

hOiF ¼ e2π{=NhOiF̄; ð6:7Þ

which fixes the phase factor picked byO upon crossing the
domain wall to be e2π{=N . Then the action of charge
conjugation on O can be inferred from

COC−1jFi ¼ e−π{=N jFi; COC−1jF̄i ¼ eπ{=N jF̄i:
ð6:8Þ

The latter implies

COC−1 ¼ O−1: ð6:9Þ

VII. CONCLUSION

In this paper we described a new mechanism of sponta-
neous symmetry breaking in pure two dimensional Yang-
Mills theories. Using the well-developed methods for
computing the 2D partition functions on compact mani-
folds [33,40,45] and ‘t Hooft’s idea of twisted boundary
conditions [50], we analyzed the wide range of systems and
presented the corresponding partition functions. We
observed that there is no spontaneous symmetry breaking
in PSUðNÞ theories for any N, which led us to consider a
more general case of SUðNÞ=Γ theories with Γ being the
subgroup of the center of SUðNÞ. Within this class of
systems we found many examples of theories with a
degenerate vacuum state, and in the particular case of
SUð2NÞ=Z2, N > 1, we proved that spontaneous sym-
metry breaking occurs. Additionally, we argued that the
corresponding order parameter is given by the generator O
of the ZN one-form symmetry. There are still a number of
questions left to answer. In particular, it will be interesting
to prove that the same mechanism of spontaneous sym-
metry breaking takes place in SUð2NmÞ=Z2m theories. As
we mentioned in the introduction, the spontaneous sym-
metry breaking could also imply the existence of the mixed
anomaly, which may be a topic of a separate study.

G. AMINOV PHYS. REV. D 101, 105017 (2020)

105017-6



Another interesting question is how to perturb the
theories under consideration so that the vacuum is no
longer degenerate. As we discussed earlier, the two vacuum
states are given by the fundamental and antifundamental
representations. The reason is that the energy of the states is
proportional to the eigenvalue of the quadratic Casimir
operator, which does not distinguish between any given
representation and its complex conjugate. However, if we
find a way to modify the theory such that the Hamiltonian
will include higher order Casimir operators, we will lift the
degeneracy. Indeed, such modifications exist and were
discussed in [40,45]. Below we will briefly repeat the
arguments from [40,45] and show how to perturb the
Hamiltonian by the cubic Casimir operator.
In 2D it is possible to define the Lie algebra valued scalar

f ¼ �F. Thus, we can add an irrelevant operator TrðfkÞ
with any k > 2 as a perturbation to the original theory. This
perturbation will affect the Hamiltonian by introducing new
Casimirs of order less than or equal to k [45]. Since our goal
is to distinguish between the fundamental and antifunda-
mental representations of SUðNÞ, it is enough to consider
k ¼ 3. Then the Hamiltonian is a linear combination of the
quadratic and cubic Casimirs (in the representation basis).
For example, consider the case of the SUð4Þ=Z2 theory.
Without the perturbation the energy is proportional to
C2ðRqÞ (5.3) and symmetric under the permutation of q1

and q3. In the perturbed system the energy acquires
nonzero contributions proportional to

C3ðRqÞ ¼
3

16
ðq1 − q3Þðq1 þ q3 þ 2Þðq1 þ 2q2 þ q3 þ 4Þ;

which is clearly antisymmetric in q1 and q3. Hence, the
energies of the two original vacuum states with q ¼
ð1; 0; 0Þ and q ¼ ð0; 0; 1Þ will get different corrections,
and the resulting system will have a single vacuum state. So
far, we described one possible approach to lifting the
degeneracy in the SUð2NÞ=Z2 theories with θ ¼ π and
N > 1. The existence of any other approaches and detailed
calculations for the case of general N are left for
future work.
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