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In recent years, many examples appeared in the literature where the configuration entropy (CE),
introduced by Gleiser and Stamatopoulos, plays the role of an indicator of stability of physical systems.
It was observed that, comparing states of the same system, the lower is the value of the CE, the more stable
is the state. In this work, we investigate the behavior of the differential configuration entropy (DCE), that is
appropriate for systems with continuous degrees of freedom, in a new context. We consider quasistates of
quarkonium (a vector meson made of a heavy quark antiquark pair) inside a plasma at finite density. It is
known that the density increases the dissociation effect for quasiparticles inside a plasma. So, increasing the
density of a thermal medium corresponds to reducing the stability of the quasiparticles. In order to
investigate how this situation is translated in the configuration entropy context, we use a recently developed
holographic anti–de Sitter/QCD model for heavy vector mesons. The quasinormal modes describing the
quasistates are obtained and the corresponding DCE is calculated. We find, for bottomonium and
charmonium 1S quasi-states, that the DCE increases with the quark density, or quark chemical potential, of
the medium. This result shows that the DCE works again as an indicator of stability, represented in this case
by the dissociation effect associated with the density.

DOI: 10.1103/PhysRevD.101.105016

I. INTRODUCTION

An interesting tool to investigate the stability of physical
systems is the configuration entropy (CE), introduced by
Gleiser and Stamatopoulos in Refs. [1,2] (see also [3]). An
increase in thevalue of theCE is associatedwith a decrease in
the stability. Such a behavior was observed inmany different
physical systems, such as compact astrophysical objects [4]
and holographic anti–de Sitter/QCD models [5–10]. There
are other many interesting applications of configuration
entropy in the literature, as, for example, [11–30].
The purpose of the present paper is to investigate the

application of the configuration entropy to a physical
system of great interest currently: heavy mesons inside a
quark gluon plasma with finite density. The interest in such
a system comes from the quark gluon plasma (QGP). This
very short-lived state of matter, where quarks and gluons
are not confined, is produced in heavy ion collisions and
consists of a strongly interacting thermal medium. It is a
highly nontrivial task to build up a picture of the QGP from
the particles that reach the detectors. For reviews about

QGP, see, for example, [31–34]. One of the important
available sources of information is the abundance of heavy
vector mesons, made of cc̄ or bb̄ quarks in the final
products of heavy ion collisions. These particles are
partially dissociated in the plasma and their degree of
dissociation depends on the temperature and density of the
plasma. So, it is possible to relate their relative abundance
with the properties of the preexisting medium.
It is possible to describe the thermal behavior of heavy

vector mesons inside a plasma using holographic models
[35–39]. The dissociation of charmonium and bottomo-
nium is represented in these references as the decrease in
the peaks of the thermal spectral functions, that represent
the amplitude of finding a particle with a given energy
inside the medium. This dissociation process can alter-
natively be analyzed through the quasinormal modes, that
are normalizable solutions, with complex frequencies, for
the fields that describe the mesons. The real parts of the
frequencies are related to the masses and the imaginary
parts to the widths of the quasistates. In Refs. [40–42],
quasinormal modes for heavy vector mesons were studied
using the holographic model of [38,39].
The configuration entropy [3] was motivated by the well-

known information entropy of Shannon [43] that is defined
for a discrete variable x that may have the values xn with
probabilities pn as

−
X
n

pn logpn ð1Þ
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and measures the amount of information one gains in
getting to know the value of x. Note that the probabilities
satisfy the normalization condition

P
n pn ¼ 1.

The continuous version of Eq. (1), in position space,
reads

S ¼ −
Z

ddrϵðr⃗Þ log ϵðr⃗Þ; ð2Þ

where

ϵðr⃗Þ ¼ jρðr⃗Þj2R
ddrjρðr⃗Þj2 ð3Þ

is a normalized funtion
R
ddrϵðr⃗Þ ¼ 1, called (spatial)

modal fraction. In order to introduce the configuration
entropy, one considers the momentum space version, by
Fourier transforming

ρ̃ðk⃗Þ ¼ 1

ð2πÞd=2
Z

ddrρðr⃗Þ expð−ik⃗ · r⃗Þ: ð4Þ

The CE is defined as

S̃ ¼ −
Z

ddk ϵ̃ðk⃗Þ log ϵ̃ðk⃗Þ; ð5Þ

where

ϵ̃ðk⃗Þ ¼ jρ̃ðk⃗Þj2R
ddkjρ̃ðk⃗Þj2

ð6Þ

is the (momentum space) modal fraction, that is also
normalized:

R
ddkϵ̃ðk⃗Þ ¼ 1.

Information entropies like S and S̃, based in conjugate
variables in the sense of Eq. (4), satisfy the so-called entropic
uncertainty relation [44,45] that, for this d-dimensional case
takes the form

Sþ S̃ ≥ dð1þ logðπÞÞ: ð7Þ

So, one could guess that a variation of the configuration
entropy, defined in momentum space, S̃ could be associated
with a particular variation of the conjugate quantity, S,
defined in position space. Such a conjecture was inves-
tigated recently in Ref. [45], where it was found that, for the
case of an anti–de Sitter black hole, when the temperature
varies, both S̃ and S vary but their sum remains constant.
For continuum systems, like field theories, it was pointed

out in Ref. [22] that a different kind of configuration
entropy should be used. In order to avoid negative values,
or singularities in the entropy, one should replace the
(momentum) modal fraction of Eq. (6) by

fDϵðk⃗Þ ¼ jρ̃ðk⃗Þj2
jρ̃ðk⃗Þj2max

; ð8Þ

where jρ̃ðk⃗Þj2max is the maximum value of jρ̃ðk⃗Þj2. Then one
introduces the differential configuration entropy (DCE) as

S̃ ¼ −
Z

ddk fDϵðk⃗Þ log fDϵðk⃗Þ: ð9Þ

This is the entropy that we will calculate in this paper.
For the dual entropy, one can follow the same idea and
define

Dϵðr⃗Þ ¼ jρðr⃗Þj2
jρðr⃗Þj2max

ð10Þ

and a corresponding quantity

S ¼ −
Z

ddrDϵðr⃗Þ logDϵðr⃗Þ: ð11Þ

We will look at this dual quantity in order to see if a
behavior similar to the black hole case [45] is found.
However, it is important to remark that the DCE of Eq. (9)
and the dual quantity of Eq. (11) are not subject to the
relation (7) since jρ̃ðk⃗Þj2 and jρðr⃗Þj2max are not constants.
This paper is organized in the following way: in Sec. II,

we review the holographic model for heavy vector mesons
in a plasma. In Sec. III, we develop the calculation of DCE
for charmonium and bottomonium 1S states. Then, in
Sec. IV, we present and analyze the results obtained, and
finally, in Sec. V, we present our summary and conclusions.

II. HOLOGRAPHIC HEAVY VECTOR MESONS
AT FINITE DENSITY

Heavy vector mesons are described holographically
[38,39] by a vector field Vm ¼ ðVμ; VzÞ (μ ¼ 0, 1, 2, 3),
living in a five-dimensional curved space, that is assumed
to be dual to the four-dimensional gauge theory current
Jμ ¼ ψ̄γμψ . The curved five-dimensional space is just an
anti–de Sitter space for the case when the mesons are in the
vacuum (vanishing temperature and density). Additionally,
there is a scalar background. The action reads

I ¼
Z

d4xdz
ffiffiffiffiffiffi
−g

p
e−ϕðzÞ

�
−

1

4g25
FmnFmn

�
; ð12Þ

where Fmn ¼ ∂mVn − ∂nVm. The background scalar field
ϕðzÞ has the form

ϕðzÞ ¼ κ2z2 þMzþ tanh

�
1

Mz
−

κffiffiffi
σ

p
�
: ð13Þ

The parameter σ, with dimension of energy squared,
represents effectively the string tension of the strong quark
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antiquark interaction. The mass of the heavy quarks is
represented by κ. The third parameter,M, has a more subtle
interpretation. Heavy vector mesons undergo nonhadronic
decay processes, when the final state consists of light
leptons, like an eþe− pair. In such transitions, there is a very
large mass change of the order of the meson mass.
The parameter M represents effectively the mass scale of
such a transition, characterized by a matrix element
h0jJμð0Þjni ¼ ϵμfnmn, where fn is the decay constant,
jni is a meson state at radial excitation level n with mass
mn, j0i is the hadronic vacuum, and Jμ the hadronic
current. The values that provide the best fit to charmonium
and bottomonium spectra of masses and decay constants at
zero temperature are, respectively,

κc ¼ 1.2;
ffiffiffiffiffi
σc

p ¼ 0.55; Mc ¼ 2.2;

κb ¼ 2.45;
ffiffiffiffiffi
σb

p ¼ 1.55; Mb ¼ 6.2; ð14Þ

where all quantities are expressed inGeV. The geometry dual
to a finite temperature medium is in general a black hole one.
For the case when the medium additionally has a finite
chemical potential μ, the black hole has charge [46–48]. In
particular, it is a five-dimensional anti–de Sitter charged
black hole space with metric

ds2 ¼ R2

z2

�
−fðzÞdt2 þ dx⃗ · dx⃗þ dz2

fðzÞ
�
; ð15Þ

where

fðzÞ ¼ 1 −
z4

z4h
− q2z2hz

4 þ q2z6 ð16Þ

and fðzhÞ ¼ 0. The relation between the horizon position
zh and the temperature T of the black hole is obtained
requiring that there is no conical singularity at the horizon,

T ¼ jf0ðzÞjðz¼zhÞ
4π

¼ 1

πzh
−
q2z5h
2π

: ð17Þ

The parameter q, proportional to the black hole charge, is
related to the density of the medium, or quark chemical
potential, μ of the gauge theory. The quantity μworks as the
source of correlators of the quark density operator ψ̄γ0ψ.
So, it should appear in the Lagrangian multiplying the
quark density. In the holographic description, the time
component V0 of the vector field plays this role. So, one
considers a particular solution for the vector field Vm with
only one nonvanishing component V0 ¼ A0ðzÞ (Vz ¼ 0,
Vi ¼ 0). Assuming that the relation between q and μ is the
same as in the case of no background, that means ϕðzÞ ¼ 0,
the solution for the time component of the vector field
is A0ðzÞ ¼ c − qz2, where c is a a constant. Imposing
A0ð0Þ ¼ μ and A0ðzhÞ ¼ 0, one finds

μ ¼ qz2h: ð18Þ

So, specifying both zh and q, the values of the temperature
and the chemical potential are fixed and contained into the
metric (15).
It is interesting to mention that there are many interesting

previous studies using holography to describe thermal
effects and heavy flavors like, for example, [49–64].

III. CONFIGURATION ENTROPY OF THE
HEAVY MESONS

A. Energy density

The quantity that is relevant for the determination of the
configuration entropy of heavy mesons is the energy
density, that is the T00 component of the energy momentum
tensor. We assume that in this phenomenological model
Tmn is obtained from the action in the same way as in
general relativity. That means writing the action asR
d4xdz

ffiffiffiffiffiffi−gp
L the energy momentum tensor has the form

TmnðzÞ ¼
2ffiffiffiffiffiffi−gp

�∂ð ffiffiffiffiffiffi−gp
LÞ

∂gmn −
∂
∂xp

∂ð ffiffiffiffiffiffi−gp
LÞ

∂ð∂gmn

∂xp Þ

�
: ð19Þ

So, for the action (12), the energy density for the vector
field is

ρðzÞ¼e−ϕðzÞ

g25

�
g00

�
1

4
gmpgnqFmnFpq

�
−gmnF0nF0m

�
: ð20Þ

Considering the metric (15) and a solution corresponding to
a meson at rest in the xμ directions Vμ ¼ ημvðp; zÞe−iωt,
with ημ ¼ ð0; 1; 0; 0Þ, the energy density takes the form

ρðzÞ ¼ z2e−ϕðzÞ

2R2g25
½jωj2jvj2 þ f2j∂zvj2�: ð21Þ

In order to obtain the energy density for a meson inside the
plasma, one has to find the solution for the field v
representing the corresponding quasistate and plug it into
Eq. (21). At zero temperature, states are represented holo-
graphically by normalizable solutions of the gravity field
equations. These types of solutions are called normal
modes and satisfy trivial boundary conditions. On the
other hand, at finite temperature, the solutions that re-
present the quasistates are the so-called quasinormal
modes, that are also normalizable solutions of the field v
but satisfy nontrivial boundary conditions. At finite T, there
is an event horizon at z ¼ zh where one has to impose
infalling boundary conditions. Additionally, the normal-
izability condition requires that the fields vanish at the
boundary z ¼ 0. Satisfying both conditions requires, in
general, solutions corresponding to complex frequencies ω.
The real part, ReðωÞ, is related to the thermal mass and the
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imaginary part, ImðωÞ, is related to the thermal width. We
will see in the next section how to obtain these solutions.

B. Quasinormal modes

As in the previous section, we consider Vz ¼ 0 and
Vμ ¼ ημvðp; zÞe−iωt, with ημ ¼ ð0; 1; 0; 0Þ. Introducing the
electric field component E ¼ ωV1, the equations of motion
coming from action (12) with the metric (15) take the form

E00 þ
�
f0

f
−
1

z
− ϕ0

�
E0 þ ω2

f2
E ¼ 0; ð22Þ

where (’) represents derivative with respect to the radial z
coordinate.
One has to impose the normalizability condition at z ¼ 0

and the infalling condition at z ¼ zh. It is convenient, in
order to impose the boundary conditions at the horizon,
to rewrite the field equations in such a way that they
separate into a combination of infalling and outgoing
waves. One introduces the coordinate r�, implicitly defined
by the relation ∂r� ¼ −fðzÞ∂z with r�ð0Þ ¼ 0 for z in the
0 ≤ z ≤ zh. In addition, let us introduce the field

ψ ¼ e−
BðzÞ
2 E; ð23Þ

with BðzÞ ¼ logðz=RÞ þ ϕ. Then, Eq. (22) reduces to the
form

∂2
r�ψ þ ω2ψ ¼ Uψ : ð24Þ

The potential UðzÞ, obtained this way, diverge at z ¼ 0
so one must impose ψðz ¼ 0Þ ¼ 0. At the horizon
Uðz ¼ zhÞ ¼ 0, so one expects to find infalling ψ ¼
e−iωr� and outgoing ψ ¼ eþiωr� wave solutions for
Eq. (24). Only the first kind of solutions are physically
allowed. The Schödinger-like equation can be expanded
near the horizon leading to the following expansion the
field solution:

ψ ¼ e−iωr�ðzÞ½1það1Þðz−zhÞþað2Þðz− zhÞ2þ…�: ð25Þ

One can solve recursively for aðnÞ. The first coefficient
obtained is

að1Þ ¼
ð2−q2z6hÞ

	
zh
	

k2

2−q2z6h
þ2κ2



−

sech2ð κffiffi
σ

p − 1
Mzh

Þ
Mz2h

þ 1
zh
þM



2ðq2z6hþ iωzh−2Þ :

ð26Þ

This expansion leads to the following form for the
infalling boundary conditions for the field and its derivative
at the horizon:

EðzhÞ ¼ e−iωr�ðzhÞþ
BðzhÞ
2 ; ð27Þ

E0ðzhÞ ¼
�
−iωr0�ðzhÞ þ

B0ðzhÞ
2

þ að1Þj

�
EðzhÞ: ð28Þ

Then one solves Eq. (22) numerically integrating from the
horizon, using a method that consists of imposing these
infalling boundary conditions and search for complex
frequencies that provide solutions vanishing on the boun-
dary Eðz ¼ 0Þ ¼ 0. The results are the quasinormal
frequencies and the corresponding solutions are the qua-
sinormal modes, that represent the heavy meson quasistates
in the thermal medium.

C. Entropy

The solutions for the gravity fields that holographically
describe the heavy vector mesons are complex. So, the
actual form of the Lagrangian density is F�

mnFmn. The
configuration entropy is calculated from the solutions
vðp; zÞ corresponding to the quasinormal modes vnðzÞ,
described in the previous section. One considers the Fourier
transform of the energy density ρðzÞ in coordinate z: ρ̃ðkÞ.
It is convenient, for the computation of the CE, to split
ρ̃ðkÞ ¼ ðCðkÞ − iSðkÞÞ= ffiffiffiffiffiffi

2π
p

, where

CðkÞ ¼
Z

zh

0

ρðzÞ cosðkzÞdz; ð29Þ

SðkÞ ¼
Z

zh

0

ρðzÞ sinðkzÞdz: ð30Þ

In terms of these components, the modal fraction reads

fDϵðkÞ ¼ S2ðkÞ þ C2ðkÞ
½S2ðkÞ þ C2ðkÞ�max

: ð31Þ

For this one-dimensional case, the CE (5) reads

S̃ ¼ −
Z

∞

−∞
fDϵðkÞ log ½fDϵðkÞ�dk: ð32Þ

IV. RESULTS

We calculated the DCE for bottomonium and charmo-
nium 1S states, considering four representative temper-
atures. The dissociation occurs in different temperatures for
these two heavy mesons. Charmonium 1S state, the J=ψ ,
dissociates at lower values of T, so we chose temperatures
ranging from 200 to 500 MeV, while for bottomonium 1S
state, the ϒ, that dissociates at higher temperatures, we
chose a range from 300 to 600 MeV. In Fig. 1, we show
plots for the DCE for the bottomonium 1S state. Then, in
Fig. 2, we present similar plots for the charmonium 1S
state. In both cases, one clearly sees that the DCE increases
with the temperature and the density. The variation with the
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FIG. 1. Differential configuration entropy S̃ as a function of the
chemical potential for bottomonium ϒ at temperatures: T ¼ 300
(blue solid line), 400 (brown slashed line), 500 (green dotted
line), and 600 MeV (red dash-dotted line).
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FIG. 2. Differential configuration entropy S̃ as a function of the
chemical potential for charmonium S̃ at temperatures: T ¼ 200
(blue solid line), 300 (brown slashed line), 400 (green dotted
line), and 500 MeV (red dash-dotted line).
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FIG. 3. Dual entropy S as a function of the chemical potential
for bottomonium ϒ at temperatures: T ¼ 300 (blue solid line),
400 (brown slashed line), 500 (green dotted line), and 600 MeV
(red dash-dotted line).

T=0.2 GeV

T=0.3 GeV

T=0.4 GeV

T=0.5 GeV

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.01

0.02

0.03

0.04

0.05

µ(GeV)

S

FIG. 4. Dual entropy S as a function of the chemical potential
for charmonium S̃ at temperatures: T ¼ 200 (blue solid line), 300
(brown slashed line), 400 (green dotted line), and 500 MeV (red
dash-dotted line).
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FIG. 5. Logarithm of the differential configuration entropy as a
function of μ for ϒ at temperature 600 MeV. The dots are the
values for logðS̃Þ obtained from the model, and the continuous
line is the second order polynomial adjust.
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FIG. 6. Logarithm of the differential configuration entropy as a
function of μ for J=ψ at temperature 500 MeV. The dots are the
values for logðS̃Þ obtained from the model, and the continuous
line is the second order polynomial adjust.
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temperature was analyzed before in Ref. [8], where the
same behavior was found. It is known that the dissociation
effect of vector mesons inside the plasma is enhanced by
the temperature and the density. As the density and (or) the
temperature of the plasma increase, the dissociation degree
of heavy mesons increases. So, they become more unstable
in the sense of their tendency to “melt” in the plasma.
So, the results shown in Figs. 1 and 2 for the DCE are
consistent with the interpretation that instability corre-
sponds to an increase in the value of this quantity.
We also calculated the dual quantity SðμÞ from Eq. (11),

that is the position space conjugate of the DCE; we found a
result that is similar to the one obtained in [45]. That means
SðμÞ has the opposite behavior, decreasing with μ. We show
in Figs. 3 and 4 the value of SðμÞ for bottomonium and
charmonium, respectively, for the same temperature ranges.
It is interesting to investigate if the dependence of the

DCE on the density μ can be expressed in the form of a
scaling law. As an illustration, we plot in Figs. 5 and 6 the
logarithm of the DCE as a function of the density for ϒ at
T ¼ 600 MeV and for J=ψ at T ¼ 500 MeV, respectively.
From the analysis of this kind of plot, for different temper-
atures, one finds that there is an approximate scaling law of
the form

logðS̃Þ ¼ c0 þ c1μþ c2μ2; ð33Þ

where the coefficients c0, c1, c2 depend on the temperature.
We show in Tables I and II the values obtained for these

parameters at different temperatures and R2
Adj for the

polynomial approximation for J=ψ and ϒ, respectively.

V. CONCLUSIONS

We studied in this paper the variation of the DCE for
the 1S states of charmonium (the J=ψ) and bottomonium
(the ϒ) as a function of the quark density of the medium,
for different temperatures. The results obtained show that
the entropy increases with the temperature and the density.
This behavior is consistent with the expectation that an
increase in the instability of a physical system should
correspond to an increase in the DCE. The higher are the
values of temperature and (or) density, the higher is the
probability that the heavy vector meson will dissociate in
the thermal medium. So, increasing the temperature or the
density, the quasistates become more unstable against
melting in the plasma. This analysis provides one more
example of how the DCE characterizes the stability of
physical systems.
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TABLE I. Coefficients c0, c1, and c2 of Eq. (33) for J=ψ meson at different temperatures.

Scaling coefficients for J=ψ differential configurational entropy adjust

T (GeV) c0 c1 ðGeVÞ−1 c2 ðGeVÞ−2 R2
Adj

0.2 2.586� 0.022 0.66� 0.11 5.41� 0.13 0.999923
0.3 4.0044� 0.0042 0.319� 0.024 4.011� 0.033 0.999986
0.4 4.7831� 0.0015 0.1284� 0.0097 3.136� 0.014 0.999996
0.5 5.7135� 0.0026 0.279� 0.017 1.906� 0.025 0.9999988

TABLE II. Coefficients c0, c1, and c2 of Eq. (33) for ϒ meson at different temperatures.

Scaling coefficients for ϒ differential configurational entropy adjust

T (GeV) c0 c1 ðGeVÞ−1 c2 ðGeVÞ−2 R2
Adj

0.3 1.5697� 0.0015 0.184� 0.0010 2.562� 0.015 0.999995
0.4 3.2928� 0.0030 0.130� 0.021 1.437� 0.031 0.999975
0.5 3.9967� 0.0022 0.002� 0.015 0.006� 0.024 0.999986
0.6 4.50002� 0.00055 0.00018� 0.0040 0.8691� 0.0062 0.999999
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