
 

Schwinger effect in near-extremal charged black holes in high dimensions

Rong-Gen Cai*

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

and School of Physical Sciences, University of Chinese Academy of Sciences,
No.19A Yuquan Road, Beijing 100049, China

Chiang-Mei Chen †

Department of Physics, National Central University, Chungli 32001, Taiwan
and Center for High Energy and High Field Physics (CHiP), National Central University,

Chungli 32001, Taiwan

Sang Pyo Kim ‡

Department of Physics, Kunsan National University, Kunsan 54150, Korea
and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Jia-Rui Sun§

School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275, China

(Received 14 April 2020; accepted 13 May 2020; published 26 May 2020)

We study the Schwinger effect in near-extremal nonrotating black holes in an arbitrary Dð≥4Þ-
dimensional asymptotically flat and (A)dS space. Using the near-horizon geometry AdS2 × SD−2 of near-
extremal black holes with Myers-Perry metric, we find a universal expression of the emission formula for
charges that is a multiplication of the Schwinger effects in an AdS2 space and in a two-dimensional Rindler
space. The effective temperature of an accelerated charge for the Schwinger effect is determined by the radii
of the effective AdS2 space and SD−2 as well as the mass, charge, angular momentum of the charge, and the
radius of the (A)dS space. The Schwinger effect in the asymptotically flat space is more efficient and
persistent for a wide range of large black holes for dimensions higher than four. The AdS (dS) boundary
enhances (suppresses) the Schwinger effect than the asymptotically flat space. The Schwinger effect
persists for a wide range of black holes in the AdS space and has an upper bound in the dS space.
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I. INTRODUCTION

The charged black hole provides an interesting model to
explore quantum nature of black holes because of Hawking
radiation [1] and the Schwinger pair production of charges
from the electric field of the black hole. The extremal
charged black hole, in particular, has the zero-Hawking
temperature but its electric field can create charged particles
through the Schwinger effect of pair production [2].

The near-horizon geometry of AdS2 × S2 of four-dimen-
sional (near-) extremal Reissner-Nordström (RN) black
holes has allowed one to obtain an explicit formula for the
Schwinger effect [3,4]. Near-extremal Kerr-Newman black
holes with electric and/or magnetic charges have a warped
AdS geometry, whose emission formula is also found [5,6].
The Schwinger effect in the AdS2 sector is governed by the
effective temperature for accelerated charges by the electric
field on the horizon [7]. One interesting aspect is that the
Hawking radiation and the Schwinger effect are intertwined
for near-extremal black holes, which may shed a light
on understanding radiation from charged black holes
beyond the Hawking radiation. (For review and references,
see Ref. [8].)
In this paper we study the Schwinger effect in

(near-) extremal nonrotating charged black holes in an
arbitrary Dð≥4Þ-dimensional, asymptotically flat, AdS
or dS spacetime. The Einstein-Maxwell theory in a
D-dimensional spacetime has charged black holes with
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the Myers-Perry (MP) metric [9]. The near-extremal black
holes have the near-horizon geometry of AdS2 × SD−2, in
which a probe charged field can be solved in terms of
hypergeometric or Whittaker functions. In contrast to the
four-dimensional RN black hole, the charge differently
feels the effective radii for the AdS2 and SD−2 in higher
dimensions. The Schwinger effect exhibits this property in
the four-dimensional (A)dS space [10]. Recently the holo-
graphic description of the Schwinger effect in five-
dimensional RN brane in the AdS space has been given
in Ref. [11].
It is shown that the Schwinger pair production from near-

extremal charged black holes, regardless of the asymptoti-
cally flat or (A)dS spacetime, has a universal formula which
is factorized into the Schwinger formula governed by an
effective temperature for accelerated charge by an electric
field in AdS2 and another Schwinger formula for accel-
erated charge in the two-dimensional Rindler space with
the Hawking temperature. Remarkably, this factorization
seems to be universal and the Schwinger effect and the
Hawking radiation cannot be separated, though one effect
may dominate the other depending on the ratio of charge to
mass of the black hole. The effect of the dimensionality and
the (A)dS radius on the Schwinger effect is investigated. An
enhancement of the Schwinger effect due to high dimen-
sions is observed in the asymptotically flat spacetime and
the (A)dS boundary effect on the Schwinger pair produc-
tion persists for a wide range of black hole radius.
The organization of this paper as follows. In Sec. II, the

near-horizon geometry of MP metric is shown to have
AdS2 × SD−2. We find the solutions of charged scalar field
in the near-horizon region. In Sec. III, we find the mean
number of emitted charges and show the universality of the
formula in near-extremal charged black holes. In Sec. IV,
we study the effect of the asymptotic boundary of (A)dS on
the Schwinger effect. In D ¼ 5 dimensions, the event
horizon and charge of the black hole are explicitly found
in terms of the mass and the (A)dS radius. In any Dð≥4Þ
dimensions the general relations for black hole radius, mass
and charge are used to explore the Schwinger effect. In
Sec. V, we summarize the results and discuss the physical
implications.

II. (NEAR-) EXTREMAL NONROTATING
CHARGED BLACK HOLES

The Einstein-Maxwell theory with a cosmological con-
stant (� for AdS/dS) in a D ¼ nþ 3 dimensional space-
time (in unit of c ¼ ℏ ¼ 1)

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

16πGD

�
R� ðD − 1ÞðD − 2Þ

L2

�

−
1

4
FμνFμν

�
; ð1Þ

has the asymptotically flat (L → ∞) Myers-Perry black
hole [9]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
nþ1;

fðrÞ ¼ 1 −
16πGDM

ðnþ 1ÞAnþ1

1

rn
þ 8πGDQ2

nðnþ 1Þ
1

r2n
;

A ¼ Q
n
1

rn
dt: ð2Þ

Here, M and Q are the mass and charge of the black
hole and Anþ1 ¼ 2πðnþ2Þ=2=Γðnþ2

2
Þ is the area of nþ 1-

dimensional unit sphere. The MP black hole has two real
positive roots of fðrÞ ¼ 0, rþ for the event horizon and r−
the causal (Cauchy) horizon:

rn� ¼ 8πGDM
ðnþ 1ÞAnþ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

8πGDM
ðnþ 1ÞAnþ1

�
2

−
8πGDQ2

nðnþ 1Þ

s
: ð3Þ

The Hawking temperature is

TH ¼ nðrnþ − rn−Þ
4πrnþ1

þ
: ð4Þ

In the extremal limit, two horizons degenerate

M¼M0≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ1

8πnGD

s
Anþ1Q→ rnþ¼ rn−¼ rn0≡ 8πGDM0

ðnþ1ÞAnþ1

:

ð5Þ

For the near-extremal black holes

r� ¼ r0 � ϵB; M ¼ M0 þ ϵ2B2
n2M0

2r20
; ð6Þ

the near-horizon geometry is obtained by taking ϵ → 0 of
the transformation

r ¼ r0 þ ϵρ; t ¼ τ

ϵ
: ð7Þ

The extremal black hole corresponds to B ¼ 0. Then, the
Myers-Perry metric takes the geometry of AdS2 × Snþ1

ds2 ¼ −
ρ2 − B2

R2
A

dτ2 þ R2
A

ρ2 − B2
dρ2 þ R2

SdΩ2
nþ1; ð8Þ

and the gauge potential

A ¼ −
Qρ

Rnþ1
S

dτ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
8πGD

s
ρ

RS
dτ; ð9Þ
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where

RS ¼ r0; RA ¼ r0=n: ð10Þ

In the near-horizon geometry the Hawking temperature and
chemical potential become

TH ¼ B
2πR2

A
; ΦH ¼ QB

Rnþ1
S

: ð11Þ

A probe charged scalar with mass m and charge q obeys
the Klein-Gordon equation

ð∇μ − iqAμÞð∇μ − iqAμÞΦ −m2Φ ¼ 0: ð12Þ

Separating the energy and angular momentum conserved
by the metric (8)

Φðτ; ρ;ΩÞ ¼ e−iωτHlðΩÞRðρÞ; ð13Þ

where HlðΩÞ is the surface harmonic of degree l on Snþ1

with ∇2⊥HlðΩÞ ¼ −lðlþ nÞHlðΩÞ [12], the radial equation
becomes

�
∂ρðρ2 − B2Þ∂ρ þ R4

A
ðω − qESρÞ2

ρ2 − B2

− R2
A

�
m2 þ lðlþ nÞ

R2
S

��
RðρÞ ¼ 0: ð14Þ

Here ES is the (constant) electric field at RS:

ES ¼
Q

Rnþ1
S

: ð15Þ

The solutions for the near-extremal black hole are given by
the hypergeometric function as

RðρÞ¼c1ðρ−BÞia−ðρþBÞiaþF
�
1

2
þ iðaþþa−þbÞ;

1

2
þ iðaþþa−−bÞ;1þ i2a−;z

�

þc2ðρ−BÞ−ia−ðρþBÞiaþF
�
1

2
þ iðaþ−a−þbÞ;

1

2
þ iðaþ−a−−bÞ;1− i2a−;z

�
; ð16Þ

where

a� ¼ ω� qESB
2B

R2
A;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqESR2

AÞ2 −
�
m2 þ lðlþ nÞ

R2
S

þ 1

4R2
A

�
R2
A

s
;

z ¼ −
ρ − B
2B

: ð17Þ

The extremal black hole (B ¼ 0) has the solutions in terms
of the Whittaker functions as

RðρÞ ¼ c1M

�
iðaþ − a−Þ; ib; 2i

ωR2
A

ρ

�

þ c2W

�
iðaþ − a−Þ; ib; 2i

ωR2
A

ρ

�
: ð18Þ

III. SCHWINGER EFFECT IN ASYMPTOTICALLY
FLAT SPACE

Following Refs. [3,4,10], we find the mean number for
pair production

N ¼ sinhð2πμÞ sinhðπκ̃ − πκÞ
coshðπκ þ πμÞ coshðπκ̃ − πμÞ

¼ e−2πðκ−μÞ − e−2πðκþμÞ

1þ e−2πðκþμÞ ×
1 − e−2πðκ̃−κÞ

1þ e−2πðκ̃−μÞ
; ð19Þ

where

κ ¼ aþ − a− ¼ qESR2
A ¼ qΦH

2πTH
;

κ̃ ¼ aþ þ a− ¼ ωR2
A

B
¼ ω

2πTH
ð20Þ

and

μ2¼b2¼ κ2−m̄2R2
A; m̄2¼m2þðlþn=2Þ2

R2
S

: ð21Þ

Note that m̄ plays the role of an effective mass; the s-wave
(l ¼ 0) in D ¼ 4 dimensions, for instance, has m̄ in the
AdS2 space [7]. Then, the mean number has a universal
formula for a thermal interpretation [13]

N ¼
�
e−m̄=TS − e−m̄=T̄S

1þ e−m̄=T̄S

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Schwinger effect in AdS2

×

�
em̄=TS

�
e−m̄=TS

1 − e−ðω−qΦHÞ=TH

1þ e−m̄=TSe−ðω−qΦHÞ=TH

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Schwinger effect in Rindler2

	
; ð22Þ
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where

TS ¼ m̄
2πðκ − μÞ ¼ TU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
U −

1

4π2R2
A

s
; TU ¼ qES

2πm̄
;

T̄S ¼ m̄
2πðκ þ μÞ ¼ TU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
U −

1

4π2R2
A

s
: ð23Þ

Here, TU has the meaning of the Unruh temperature for
accelerated charge on the spherical surface RS and the square
root is the Unruh temperature in the AdS2 space [14].
A few comments are in order. First, the first parenthesis

is the Schwinger effect for an extremal black hole, which is
the Schwinger effect in the AdS2 space [7], while the
second curly bracket is the additional Schwinger for a near-
extremal black hole. The universal form (22) has been
shown for RN black holes [3,4], KN black holes [5,6], and

RN-(A)dS black holes [10] in four dimensions. Second, the
Hawking radiation and the Schwinger effect are intertwined
for near-extremal black holes. The surface gravity of the
event horizon gives the acceleration of the two-dimensional
Rindler space, and the effective temperature TS and the
Hawking temperature TH determine the QED effect in the
electric field of charged black hole. The pair production in
extremal RN black holes is the limit of B ¼ 0 and thereby
TH ¼ 0 and the second factor of curly bracket becomes
unity. Third, pairs are produced when the Breitenlohner-
Freedman (BF) bound [15,16] is violated, TU ≥ 1=2πRA,
which leads to

q ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnGD

nþ 1

r
m̄: ð24Þ

A passing remark is that the mean number (19) is related
to the absorption cross section ratio of the field RðρÞ via
N ¼ −σabsðμ → −μÞ [5,6,11] and the CFT scalar operator
with a complex conformal weight dual to RðρÞ gives the
holographic description of RN black holes in arbitrary
Dð≥4Þ-dimensional asymptotically flat or (A)dS space.
Figures 1 and 2 show the dimensionality of the horizon

radius RS and the effective temperature TS in Eq. (23). As
shown in Fig. 1, all radii RS increase asM0 and for large D
dimensions, RS increases as a power-law for large M0. The
larger the D dimensions are, the smaller the radius RS is.
The Unruh temperature in Eq. (23) can be written as

TU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
32π3GD

s
×

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRSÞ2 þ ðlþ n=2Þ2

p : ð25Þ

For a given large M0 the effective temperature TS for high
dimensions is higher than that for low dimensions since

10 100 1000 104 105 106
M0

0.1

10

1000

105

RS

FIG. 1. The radius RSðM0; nÞ in the range of ½1; 106� of M0 for
various dimensions (unit of GD ¼ 1): D ¼ 4 (blue), D ¼ 5
(yellow), D ¼ 6 (green), D ¼ 10 (red), and D ¼ 26 (purple).

FIG. 2. [Left panel] The effective temperature TS in the range of ½1; 109� of M0 for an accelerated charge with charge q ¼ 1, mass
m ¼ 0.01 and angular momentum l ¼ 0 for dimensions D ¼ 4 (blue), D ¼ 5 (yellow), and D ¼ 6 (green). [Right panel] The TS’s in
D ¼ 4 with l ¼ 0 (blue), D ¼ 5 with l ¼ 0 (yellow), D ¼ 6 with l ¼ 0 (green) are compared with those in D ¼ 4 with angular
momentum l ¼ 1 (red), D ¼ 4 with l ¼ 2 (purple), D ¼ 4 with l ¼ 3 (brown).
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the radius RS for the charge acceleration by electric field
rapidly increase for D ¼ 4 dimensions while it slowly
increases for D ≥ 5 dimensions, which is illustrated in
Fig. 2. Note that the BF bound, below which the effective
temperature is not defined and pairs are not produced,
increases asM0 by order of magnitude for high dimensions
as shown in the left panel of Fig. 2. The TS has the
maximum, which depends on the dimensionality. Larger
angular momenta suppress TS for small mass black holes
but they approaches the same temperature for large mass
black holes, as shown in the right panel of Fig. 2. The
leading Boltzmann factor of pair production is N ≈ e−m̄=TS

and the exponent is 0.01=TS in Fig. 2. This implies that in
D ¼ 4 dimensions the Schwinger effect is the most
efficient for small (Planck scale) (near-) extremal RN black
holes while it is exponentially suppressed for large black
holes. On the other hand, the BF bound is order of 103 for
D ¼ 5 dimensions and 105 for D ¼ 6 dimensions, beyond
which the Schwinger effect is profound and produces a
cornucopia of pairs near the event horizon. Note that any
black hole within the BF bound is stable against Schwinger
pair production, not to mention the Hawking radiation,
and that the BF bound increases for high dimensions by
order of magnitude.

IV. (anti–) de sitter SPACE

For the asymptotical (A)dS black holes, the function
fðrÞ in the metric has the form [17]

fðrÞ ¼ 1 −
16πGDM

ðnþ 1ÞAnþ1

1

rn
þ 8πGDQ2

nðnþ 1Þ
1

r2n
� r2

L2
: ð26Þ

The extremal condition requires a constraint on mass and
charge implicitly via the radius of the degenerate horizon r0
by coinciding the event and causal horizons

M0 ¼
ðnþ 1ÞAnþ1

8πGD
rn0

�
1� nþ 1

n
r20
L2

�
;

Q2 ¼ nðnþ 1Þ
8πGD

r2n0

�
1� nþ 2

n
r20
L2

�
: ð27Þ

The other extremal black holes in the dS space are Nariai
black holes, which are obtained by coinciding the event
and cosmological horizons [18]. In D ¼ 4 dimensions, the
degenerate event horizon and mass can be explicitly
expressed in terms of chargeQ and the radius L as discussed
inRef. [10]. Similarly, the event and cosmological horizons of
extremalRN-ðAÞdS5 are explicitly found in termsofmassM0

r20 ¼
L2

3
δ; r2C ¼∓L2

�
1� 2

3
δ

�
;

δ ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8G5M0

πL2

r
− 1

�
; ð28Þ

and the charge is

Q2 ¼ L4

36πG5

δ2ð3� 2δÞ; ð29Þ

where the upper (lower) sign is for the AdS (dS) space. Note
that the cosmological horizon does not exist in the AdS space
since r2C < 0, as expected.
In any Dð≥4Þ dimensions for the mass slightly larger

than M0

M ¼ M0 þ ϵ2B2
ðnþ 1ÞAnþ1

16πGD

Rn
S

R2
A
; ð30Þ

we have the near horizon geometry (8) with

RS ¼ r0; RA ¼ RSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ðnþ 1Þðnþ 2ÞR2

S=L
2

p : ð31Þ

The results for asymptotically flat case apply to the
(A)dS space by using modified ratio of RA=RS, namely
replacing ðlþn=2Þ2→ ðlþn=2Þ2�ðnþ1Þðnþ2ÞR2

S=L
2 in

Eqs. (21), (24), and (25):

q ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnGD

nþ 1

r
m̄ ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðnþ1Þðnþ2Þ

n2
R2
S

L2

1� nþ2
n

R2
S

L2

vuut ;

TU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ
32π3GD

s
×

q
m̄RS

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ 2

n
R2
S

L2

r
; ð32Þ

where

m̄2 ¼ m2 þ ðlþ n=2Þ2
R2
S

� ðnþ 1Þðnþ 2Þ
4L2

: ð33Þ

The BF bounds are discussed in the AdS2 space [19] and in
the ðAÞdS2 space [7,20].
For dimensions higher than D ¼ 5, the explicit expres-

sion for RS cannot be found. However, using the implicit
relation (27), we can draw figures of the effective temper-
ature TS for an accelerated charge as functions of RS for
various dimensions. The event horizon is explicitly found
as a function of M0 for D ¼ 5 dimensions in Eq. (28)
while one can implicitly find a general relation (27) for any
Dð≥4Þ dimensions. In Fig. 3 we numerically calculate the
effective temperature, TS, for (near-) extremal RN black
holes in D ¼ 5 dimensions for the asymptotically (A)dS
space and compare them between the dS5 and AdS5 spaces.
First, the (near-) extremal five-dimensional RN black

holes in the asymptotically dS space have the lower
bound (32) and another bound from the existence of event
horizon for pair production
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L ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8G5M0

π

r
: ð34Þ

For numerical purpose, we assume that the cosmological
horizon is far beyond the event horizon and that the
Schwinger effect from the cosmological horizon is negli-
gible. As shown in Fig. 3, the effective temperature in the
ðAÞdS5 space rapidly increases beginning from the BF
bound, reaches an almost plateau region for a wide range of
M0 and then decreases. The effective temperature for dS
space rapidly decreases near the dS bound (34) while that
for AdS space decreases slowly for large M0. For a given

mass parameter M0 and the (A)dS radius L, the effective
temperature for the dS5 space is higher than that for the
AdS5 space until theM0 reaches the dS bound (34), and the
effective temperature and the Schwinger pair production for
a charge in lð≥1Þ states are suppressed for both AdS and
dS space, as shown in the left panel of Fig. 3. And the right
panel of Fig. 3 shows that the difference of the effect of the
(A)dS radius is negligible for small M0 but the larger AdS
radius L suppresses the effective temperature for large M0.
Second, the (near-) extremal RN black holes in the

asymptotically AdS space have the BF bound (32) but does
not have a cosmological horizon and the dS bound (34), as
shown in Fig. 4, in which the AdS radius is fixed to

FIG. 3. [Left panel] The TS in D ¼ 5 (A)dS space in the range of ½1; 109� of M0 for a charge with q ¼ 1, m ¼ 0.01 and the (A)dS
radius L ¼ 103 for AdS space with l ¼ 0 (blue), dS space with l ¼ 0 (yellow), AdS space with l ¼ 1 (green), dS space with l ¼ 1 (red),
AdS space with l ¼ 2 (purple), and dS space with l ¼ 2 (brown). [Right panel] The TS in D ¼ 5 (A)dS space for a charge in l ¼ 0

for AdS space with L ¼ 103 (blue), dS space with L ¼ 103 (yellow), AdS space with L ¼ 104 (green), dS space with L ¼ 104 (red),
AdS space with L ¼ 105 (purple), and dS space with L ¼ 105 (brown).

FIG. 4. [Left panel] The TS in AdS space in the range of ½1; 106� of RS for a charge with q ¼ 1, m ¼ 0.01, l ¼ 0 and the AdS radius
L ¼ 103 for dimensions D ¼ 4 (blue), D ¼ 5 (yellow), D ¼ 6 (green), D ¼ 10 and D ¼ 26. [Right panel] The TS in AdS space for
dimensionsD ¼ 4with l ¼ 0 (blue),D ¼ 5with l ¼ 0 (yellow), andD ¼ 6with l ¼ 0 (green), andD ¼ 4with l ¼ 1 (red),D ¼ 4with
l ¼ 2 (purple), D ¼ 4 with l ¼ 3 (brown).
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L ¼ 103. Figure 4 is the effective temperature, TS, for RS

up to 106 in unit of GD ¼ 1. The peak values of TS ’s for
low dimensions are slightly higher than those for high
dimensions but TS’s for low dimensions decrease after
reaching their peaks and cross those for higher dimensions.
Interestingly, all TS’s approach plateaus for large RS. As
shown in the right panel, the quantum states for charge with
l ≥ 1 are more suppressed than the s-wave and l affects
more than the dimensionality. This implies that even very
large (near-) extremal RN black holes in the AdS space
efficiently produce pairs dominantly in s-wave and become
instantaneously unstable due to the Schwinger effect.
Third, Fig. 5 shows the effective temperature TS for

the dS space. The dS space has two bounds for the

Schwinger effect: the BF bound and the dS bound. The
RN-dS black holes can emit charged particles only within
these two bounds. The BF bound gives small black holes
an upper bound for the stability against the Schwinger
effect while the dS bound gives large black holes a lower
bound for the stability. The dS bound strongly contrasts
to the no-bound for large black holes in the asymptoti-
cally flat or AdS space. The higher the spacetime
dimensions are, the larger the BF and dS bounds are.
The Schwinger effect is also an efficient mechanism for a
wide range of black holes in all dimensional spacetime
since TS keeps almost the same order up to the dS bound.
The emission of charges in high angular momentum is
exponentially suppressed.

FIG. 5. [Left panel] The TS in dS space in the range of ½1; 106� of RS for a charge with q ¼ 1, m ¼ 0.01, l ¼ 0 and the dS radius
L ¼ 103 for dimensions D ¼ 4 (blue), D ¼ 5 (yellow), D ¼ 6 (green), D ¼ 10 (red) and D ¼ 26 (purple). [Right panel] The TS in dS
space for dimensions D ¼ 4 with l ¼ 0 (blue), D ¼ 5 with l ¼ 0 (yellow), D ¼ 6 with l ¼ 0 (green), D ¼ 4 with l ¼ 1 (red), D ¼ 4
with l ¼ 2 (purple) and D ¼ 4 with l ¼ 3 (brown).

FIG. 6. [Left panel] The TS in (A)dS space in the range of ½1; 103� of RS for a charge with q ¼ 1,m ¼ 0.01, l ¼ 0 and the (A)dS radius
L ¼ 103 for D ¼ 4 AdS space (blue), D ¼ 4 dS space (yellow), D ¼ 5 AdS space (green), D ¼ 5 dS space (red), D ¼ 6 AdS space
(purple) and D ¼ 6 dS space (brown). [Right panel] The TS in D ¼ 5 in the range of ½1; 106� for AdS space with L ¼ 103 (blue),
dS space with L ¼ 103 (yellow), AdS space with L ¼ 104 (green), dS space with L ¼ 104 (red) and AdS space with L ¼ 108 (purple),
dS space with L ¼ 108 (purple).
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Finally, we compare the effective temperature TS’s for a
charge as functions of the black hole radius between the
AdS and dS spaces. Compared to the ðAÞdS4 space in
Ref. [10] and ðAÞdS5 space in Sec. IV, the radius RS of
black holes can be expressed implicitly through the relation
(27). In fact, the radius RS is a function of M0, Q and L.
Figure 6 compares TS’s for an accelerated charge on the
event horizon for fixed (A)dS radius L. It is numerically
shown that TS for AdS space is higher than that for dS
space for given dimensions, which is analytically shown in
ðAÞdS4 space [10]. For small black holes the Schwinger
effect from AdS space does not differ from that from dS
space, but the difference gets larger for large black holes,
in particular, near the dS bound. The higher dimensional
(A)dS space has higher TS, which implies that the higher
dimensional (A)dS space is more unstable against the
Schwinger effect than lower dimensional (A)dS space.
The (A)dS radius L does not affect TS much for small black
holes but large L decreases TS for large black holes, which
has been observed in Ref. [10]. Contrary to a prejudice that
the Gibbons-Hawking radiation in dS space may cooperate
to enhance the Schwinger effect, the dS radius L in the
asymptotic space increases the horizon radius of black
holes while the AdS radius L decreases the black hole
radius. In fact, as shown in the right panel of Fig. 6 the AdS
space has higher effective temperature than the asymptoti-
cally flat space, which is numerically realized by taking a
very large (A)dS radius and has higher effective temper-
ature than the dS space.

V. CONCLUSION

We have studied the Schwinger effect from (near-)
extremal RN black holes in asymptotically flat and
(A)dS spacetime in high (D ≥ 4) dimensions. The near-
extremal RN black holes have a vanishingly small Hawking
temperature and suppress the emission of charges through
the Hawking radiation. It has been argued since the
discovery of Hawking radiation that Schwinger pair pro-
duction of charged pairs operates even for (near-) extremal
black holes. The near-horizon geometry of AdS2 and
warped AdS3 for near-extremal RN and KN black holes,
respectively, in four-dimensional asymptotically flat space-
time allows one to find the analytical formulae for the
emission of electric and/or magnetic charges [3–6]. In this
paper, we have extended the Schwinger effect to RN black
holes in high dimensions with/without the asymptotic
(A)dS boundary, which have been motivated by string
theory and extradimensional physics.
In the asymptotically flat spacetime, D-dimensional

(near-) extremal RN black holes have the AdS2 × SD−2

geometry in the near-horizon region. Interestingly, those
black holes in D ≥ 5 dimensions have a different AdS2
radius RA from the event horizon RS, in strong contrast to
four-dimensional RN black holes with the same radius
RA ¼ RS. Recently it has been observed that the asymptotic

(A)dS boundary makes AdS2 radius smaller (larger) for
the AdS (dS) space than that in asymptotically flat
spacetime [10]. The enhanced symmetry of AdS2 × SD−2

allows us to find solutions of a charged scalar field and
thereby the mean number of charged pairs from the
horizon. There is a minimum radius of black hole horizon
for each dimensions, above which the near-extremal RN
black holes emit charges and whose radius increases by
order of magnitude in higher dimensions. The BF bound,
below the minimum horizon radius for pair production, is
the parameter region of charge and mass of black holes to
remain stable against the Schwinger effect as well as the
Hawking radiation. Except the Planck scale BF bound in
D ¼ 4 dimensions, the BF bound in D ≥ 5 dimensions is
much larger than the Planck scale in the given dimensions.
The effect of dimensionality is more significant than the
effect of the excited states of the charge.
In the asymptotic (A)dS space, the event horizon of RN

black hole are explicitly found in terms of the mass and
charge of the black hole in D ¼ 4 and D ¼ 5 dimensions.
The implicit relation between the mass, charge and the
event horizon still characterizes the Schwinger effect in
D ≥ 6 dimensions. The near-extremal RN black holes
have the same near-horizon geometry of AdS2 × SD−2,
whose AdS2 radius and the horizon radius have compli-
cated dependence on the (A)dS radius as well as the
dimensionality. The asymptotic AdS boundary enhances
the Schwinger effect of large RN black holes in D ≥ 5
dimensions and extends the range of black hole radius for
efficient emission than asymptotically flat spacetime, while
asymptotic dS boundary suppresses the Schwinger effect of
large RN black holes than asymptotically flat spacetime.
The reason is that the AdS boundary decreases the black
hole radius compared to the asymptotic flat spacetime
while the dS boundary increases the black hole radius. Thus
the AdS boundary strengthens the electric field near the
black hole horizon while the dS boundary weakens the
electric field. For given dimensions the effective temper-
ature in asymptotic (A)dS and flat spacetime approaches
each other for small RN black holes. The BF bound for the
AdS space is slightly larger than that for the dS space and
those BF bounds do not differ much from the BF bound in
the asymptotically flat spacetime. The dS space has the dS
bound from a requirement that the near-extremal black hole
should be within the cosmological horizon. The consid-
erable effective temperature for the accelerated charge
around the black hole horizon warrants the Schwinger
effect for a wide range of black hole radius in D ≥ 5
dimensions.
Finally, the Schwinger effect from near-extremal RN

black holes in Dð≥4Þ-dimensional (A)dS space has many
physical implications. In D ¼ 4 dimensions, the dS boun-
dary gives the dS bound, beyond which near-extremal RN
black holes remain stable against the Schwinger effect as
well as the Hawking radiation, in strong contrast to the
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Planck scale black holes due to the BF bound in the
asymptotically flat space. Further, the quantum field theory
for charges may be justified for these large black holes.
This opens a possibility for near-extremal, large RN black
holes in dS4 as remnants from the inflationary universe. Not
discussed in this paper are the (near-) extremal charged
black holes as dark matter [21] or primordial black holes
[22,23]. In Dð≥5Þ dimensions, the Schwinger effect is
more efficient than that in D ¼ 4 dimensions. It would be
worth to generalize the Schwinger effect to the cosmo-
logical horizon [24] and Nariai black holes in high
dimensions [18]. The enhanced Schwinger effect in the
AdS boundary makes the AdS space unstable in any gauge
field of electric-type, such as electric fields in the Maxwell
theory and chromo-electric fields in the Yang-Mills theory.
These issues will be addressed in future publications.
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