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In CP-violating conformal field theories in four dimensions, the Pontryagin density can appear in the
Weyl anomaly. The Pontryagin density in the Weyl anomaly is consistent, but it has a peculiar feature that
the parent three-point function of the energy-momentum tensor can violate CP only (semi)locally. In this
paper, we study the supersymmetric completion of the Pontryagin density in the Weyl anomaly, where the
central charge c effectively becomes a complex number. The supersymmetry suggests that it accompanies
the graviphoton θ term associated with the R-symmetry gauging in the Weyl anomaly. It also accompanies
new CP-violating terms in the R-current anomaly. While there are no conclusive perturbative examples of
CP-violating super Weyl anomaly, we construct explicit supersymmetric dilaton effective action which
generates these anomalies.
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I. INTRODUCTION

Charge-parity (CP) symmetry and its breaking play
fundamental roles in our understanding of our existence.
It is the violation of the CP symmetry in the electroweak
sector that enables us to generate nonzero baryon numbers,
while we mysteriously observe the highly suppressed CP
violation (beyond what we can explain by the anthropic
principle) in the strong interaction sector of the standard
model of particle physics. Within the Lagrangian descrip-
tion of quantum field theories, one can quantify the
violation of the CP symmetry by examining the detailed
structure of coupling constants: The Kobayashi-Maskawa
matrix and θ term are such quantities in the electroweak and
strong interaction sectors in the standard model.
It is more desirable to establish a quantification of

the violation of the CP symmetry beyond the Lagrangian
description, which can be used, for instance, in strongly
coupled conformal field theories. In conformal field theories,
we often use conformal data that are related to anomalies to
quantify nonperturbative characteristics of the theories. For
example, the number of degrees of freedom, naively counted
by a number of fields, is replaced by the central charge that
appears in the Weyl anomaly, for which we can rigorously
prove that it decreases along the renormalization group flow.
Chiral asymmetries in charged objects can be nonperturba-
tively quantified by the ’t Hooft anomaly coefficients that are
invariant under the renormalization group flow.

In Ref. [1], it was pointed out that the Weyl anomaly in
four-dimensional conformal field theories may include a
term that is present only in CP-violating theories. It is the
Pontryagin density. Since the Pontryagin density is CP odd
while the energy-momentum tensor is CP even (in CP-
preserving theories), it can appear only in the CP-violating
theories. Therefore, one hopes that the Pontryagin density
in the Weyl anomaly can measure the violation of CP
symmetry in the strongly coupled conformal field theories.
Most of the anomalies in conformal field theories can be

directly computed from the conformal data, i.e., two-point
functions and three-point functions. In particular, the
CP-even terms in the Weyl anomaly, i.e., the Weyl tensor
squared term (central charge c) and the Euler density (central
charge a), can be read from the three-point functions of the
energy-momentum tensor [2]. The Pontryagin density in
the Weyl anomaly, however, has a peculiar feature that the
parent three-point function of the energy-momentum tensor
canviolateCP only (semi)locally. Such anomalies are called
“impossible anomalies” in Ref. [3] due to the nonexistence
of conformally invariant nonlocal correlation functions.
Recently, there have been active discussions if we may

realize the Pontryagin density in the Weyl anomaly in
concrete field theory examples. In particular, it was claimed
in Ref. [4] that a free massless Weyl fermion in four
dimensions can generate the Pontryagin density in the Weyl
anomaly with an imaginary coefficient (in the Lorentzian
signature). If this is the case, it means that the free Weyl
fermion breaks the CP symmetry and unitarity anoma-
lously. The computation has been scrutinized under various
regularization schemes Refs. [5–14], and the discussions
seem to remain open.
In this paper, we study the supersymmetric completion

of the CP-violating Weyl anomaly in four-dimensional
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superconformal field theories coupled with background
superconformal supergravity. In superconformal field the-
ories, there are various techniques, e.g., supersymmetric
localization, to compute the partition function, which may
eventually help us compute theCP-violatingWeyl anomaly
in the strongly coupled regime. We will show that, with the
CP-violating Weyl anomaly, the central charge c, together
with the Pontryagin density in the Weyl anomaly, is
effectively complexified as the gauge coupling constant
is complexified with the θ term in supersymmetric gauge
theories. On the other hand, we will see that the central
charge a remains real.
As for concrete realizations of the supersymmetric CP-

violating Weyl anomaly, we do not offer any conclusive
perturbative examples, but we will discuss what would be
the supersymmetric extension of the free Weyl fermion
with the putative CP-violating Weyl anomaly. We will also
show the consistency of the CP-violating super-Weyl
anomaly explicitly by constructing the supersymmetric
dilaton effective action. It can be regarded as a concrete
model of the supersymmetric CP-violating Weyl anomaly,
albeit the Weyl symmetry is spontaneously broken.
The organization of the paper is as follows. In Sec. II, we

first review the possibility of the Pontryagin density in the
Weyl anomaly. We show that the Pontryagin density
satisfies the Wess-Zumino consistency condition, and we
can construct the explicit dilaton effective action. Along the
way, we also review how the Seeley-DeWitt coefficient of a
chiral fermion can include the Pontryagin density.
Section III is our main contribution. We show that the
Wess-Zumino consistency condition for the super-Weyl
anomaly allows the complexified c, which gives the
Pontryagin density in the Weyl anomaly in its component
form. We also study the structure of the supersymmetric
Seeley-DeWitt coefficient. Finally, we explicitly construct
the supersymmetric dilaton effective action that gives the
supersymmetric CP-violating Weyl anomaly. In Sec. IV,
we conclude with some discussions.

II. CP-VIOLATING WEYL ANOMALY

A. General structure

When we put a conformal field theory on a nontrivial
four-dimensional manifold, it shows the Weyl anomaly
[15]. Under the infinitesimal Weyl transformation of
the metric δgmn ¼ −2σgmn, the (effective) action shows
the variation of δσS ¼ −

R
d4x

ffiffiffi
g

p
σTm

m with the energy-
momentum tensor Tmn ¼ −2ffiffi

g
p δS

δgmn.
1

Since the scaling dimension of the energy-momentum
tensor is four in four dimensions, the most general
possibility of the Weyl anomaly constructed out of the
metric tensor is

Tm
m ¼ c̃Weyl2− ãEulerþ b̃R2þ d̃□Rþ ẽPontryagin: ð1Þ

Here,

Weyl2 ¼CmnrsCmnrs¼RmnrsRmnrs−2RmnRmnþ
1

3
R2 ð2Þ

is the Weyl tensor (denoted by Cmnrs) squared and

Euler ¼ RmnrsRmnrs − 4RmnRmn þ R2 ð3Þ

is the Euler density. The last term

Pontryagin ¼ RmnrsR̃mnrs ¼
1

2
ϵmnabCmnrsCab

rs ð4Þ

is the Pontryagin density. It is the only term that violates
CP in the Weyl anomaly, and it will be the main focus of
the present paper.
Since the Weyl transformation is Abelian, the Weyl

anomaly must satisfy the simple Wess-Zumino consistency
condition [18]:

0 ¼ ½δσ; δτ�S ¼
Z

d4xðσδτ − τδσÞ
ffiffiffi
g

p
Tm
m: ð5Þ

It is immediate to see that the both Weyl2 and Pontryagin
terms satisfy the condition because they are Weyl invariant
themselves. On the other hand, the □R term is consistent
but trivial, because

δσ

Z
d4x

ffiffiffi
g

p
R2 ¼ 12

Z
d4x

ffiffiffi
g

p
σ□R ð6Þ

and one can always remove it by adding the local counter-
term R2. This also shows that the R2 term (alone) in the
Weyl anomaly does not satisfy the Wess-Zumino consis-
tency condition.
The consistency of the Euler density is more nontrivial.

For our purpose, let us introduce the Fradkin-Tseytlin-
Riegert-Paneitz [19–22] operator

△4 ¼ ∇m

�
∇m∇n þ 2Rmn −

2

3
Rgmn

�
∇n; ð7Þ

which is a Weyl-invariant generalization of the Laplacian
squared in four dimensions. We may now use the identity

δσ
ffiffiffi
g

p �
Euler −

2

3
□R

�
¼ −4

ffiffiffi
g

p
Δ4σ ð8Þ

1In this paper, unless explicitly stated, we work in Euclidean
field theories. The Euclidean action S in our convention is
“negative definite”: S ¼ −

R
d4x

ffiffiffi
g

p ∂mϕ∂mϕ for a free scalar
field so that it appears to be the same in the Lorentzian signature
with the ð−þþþÞ convention. Except that we work in Euclidean
field theories, we follow the convention of Refs. [16,17].
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to show that the Euler density satisfies the Wess-Zumino
consistency condition after the integration by part.
The Weyl anomaly coefficients c and a are related to

nonlocal terms of the two-point function and three-point
function of the energy-momentum tensor of a conformal
field theory [23] in the flat space-time. On the other hand,
the detailed analysis of the conformal Ward identity tells us
that the nonlocal two-point and three-point functions of the
energy-momentum tensor in four dimensions do not con-
tain terms violating CP [24,25] in the flat space-time. This
means that one cannot measure the Pontryagin density in
the Weyl anomaly from the nonlocal correlation functions
of the energy-momentum tensor.
In contrast, the effect of the Pontryagin density in the

Weyl anomaly is, if any, solely contained in the semilocal
or local terms of the correlation functions of the energy-
momentum tensor in the flat space-time. The semilocal
terms are the correlation functions that include at least one
coordinate space delta function. Such anomalies that are
not supported by nonlocal conformal correlation functions
are called an “impossible anomaly” in Ref. [3]. The
Pontryagin density in the Weyl anomaly is such an
example. We will see that the supersymmetric partner of
the Pontryagin density in the Weyl anomaly also generates
impossible anomalies.

B. Seeley-DeWitt coefficient

In free field theories, one may perform the path integral
explicitly to compute the effective action, and one may
associate the Weyl anomaly with the Seeley-DeWitt coef-
ficients [26–28], which we would like to review. Let us
consider an elliptic operator D acting on a collection of
fields ϕðxÞ (of a certain bundle). Using the complete basis

of the eigenvalue equation DϕλðxÞ ¼ λϕλðxÞ, we may
define the heat kernel Kðs; x; yjDÞ as

Kðs; x; yjDÞ ¼ hxje−sDjyi ¼
X

ϕ†
λðxÞe−sλϕλðyÞ: ð9Þ

It is called the heat kernel because it satisfies the heat
equation

� ∂
∂sþD

�
Kðs; x; yjDÞ ¼ 0 ð10Þ

with the initial condition Kðs ¼ 0; x; yjDÞ ¼ δðx − yÞ1.
The trace of this heat kernel has an asymptotic

expansion as

Trðfe−sDÞ ¼
Z

ddx
ffiffiffi
g

p hxjtrfðxÞe−sDjxi

≃
X
n∈N

sðn−dÞ=2anðf;DÞ: ð11Þ

The coefficient an is called the Seeley-DeWitt coefficient
of the heat kernel associated with the elliptic operator D.
For most of our applications, fðxÞ is just a function, and we
often use the local expression bn defined by

anðf;DÞ ¼
Z

ddxfðxÞ ffiffiffi
g

p
bnðDÞ: ð12Þ

There is a general recipe to compute the Seeley-DeWitt
coefficient. Suppose that the elliptic operator D is
expressed as D ¼ −∇m∇m − E, where ∇m is a suitable
covariant derivative acting on a section of ϕ. In such cases,
it is straightforward to compute the lower-order Seeley-
DeWitt coefficients. In particular, b4ðDÞ can be explicitly
computed as

b4ðDÞ¼ 1

ð4πÞ2360trð60□Eþ60REþ180E2þ12□Rþ5R2−2RmnRmnþ2RmnrsRmnrsþ30ΩmnΩmnÞ; ð13Þ

where Ωmn ¼ ½∇m;∇n� is the curvature two-form.
For example, let us consider a conformally coupled complex scalar ϕ with a Uð1Þ charge q. Here, D ¼ −∇m∇m − 1

6
R,

and the covariant derivative includes the Uð1Þ gauge connection Am: ∇mϕ ¼ ∂mϕþ iqAmϕ. The above formula gives

b4

�
−∇2 −

1

6
R

�
¼ 1

ð4πÞ2360 ð−4□Rþ 6Weyl2 − 2Euler − 60q2FmnFmnÞ; ð14Þ

where Fmn ¼ ∂mAn − ∂nAm. Note that a bosonic field
contributes to the Weyl anomaly as Tm

m ¼ b4ðDÞ
from the path integral representation of the effective
action with the zeta function regularization while
a fermionic field contributes to the Weyl anomaly with
Tm
m ¼ −b4ðDÞ.
Let us now consider a Euclidean Weyl fermion ψα in the

ð1=2; 0Þ representation of the Euclidean rotation group

SOð4Þ, which we will call left-handed. The Euclidean
action is given by

S ¼
Z

d4xψ̄ _α∇ _ααψα; ð15Þ

where the spinor covariant derivative ∇ _αα ¼ ðσ̄mÞ _αα∇m

with respect to the spin connection wab
m and the Uð1Þ

gauge connection Am is given by
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∇mψα ¼ ∂mψα þ
1

2
wm

abðσabÞαβψβ þ iqAmψα: ð16Þ

In order to define a meaningful Euclidean action, we also
have to introduce an independent Weyl fermion ψ̄ _α in the
ð0; 1=2Þ representation of SOð4Þ [with the Uð1Þ gauge
charge −q], which we will call right-handed. We stress
that it is mandatory to introduce the fermions with both
chiralities to write down any sensible action for a Euclidean
Weyl fermion.
The classical equations of motion give the left-handed

Weyl equation

∇ _ααψα ¼ 0 ð17Þ

as well as the right-handed Weyl equation

∇ _ααψ̄ _α ¼ 0: ð18Þ

While each of theWeyl equations is independently Euclidean
invariant and not related with each other, the action principle
demands the existence of both simultaneously.

For the left-handed Euclidean Weyl fermion, the natural
second-order differential operator to compute the Seeley-
DeWitt coefficient is given by

Dα
β ¼ ∇α _α∇ _αβ: ð19Þ

This operator can be rewritten in the standard form as

Dα
β¼1

2
ððσmσ̄nþσnσ̄mÞαβþðσmσ̄n−σnσ̄mÞαβÞ∇m∇n ð20Þ

¼ −∇m∇mδ
β
α −

�
−
R
4
δβα þ iqFmnðσmnÞαβ

�
: ð21Þ

To compute the Seeley-DeWitt coefficient, we also need the
curvature two-form

ðΩmnÞαβ ¼
1

2
RmnabðσabÞαβ þ iqFmnδ

β
α: ð22Þ

Substituting these into the general formula (13) and
evaluating the spinor trace, we obtain

−b4ð∇α _α∇ _αβÞ ¼ 1

ð4πÞ2360
�
6□Rþ 9Weyl2 −

11

2
Euler þ 15

2
Pontryagin − 120q2FmnFmn − 180q2FmnF̃mn

�
; ð23Þ

where F̃mn ¼ 1
2
εmnrsFrs as usual. We have put the minus sign explicitly here to emphasize that it is a fermionic field.

Similarly, for the right-handed Euclidean Weyl fermion, the natural second-order differential operator is

D _β
_α ¼ ∇ _βα∇α _α ð24Þ

and the corresponding Seeley-DeWitt coefficient is

−b4ð∇ _βα∇α _αÞ ¼
1

ð4πÞ2360
�
6□Rþ 9Weyl2 −

11

2
Euler −

15

2
Pontryagin−120q2FmnFmn þ 180q2FmnF̃mn

�
: ð25Þ

It is important to realize that the Seeley-DeWitt coefficient itself can be defined without introducing a fermion with the other
chirality.
As already observed in Refs. [1,29,30], if we identified the Seeley-DeWitt coefficient of the EuclideanWeyl fermion of one

chirality as the Weyl anomaly Tm
m ¼? − b4ð∇αα̈∇α̈βÞ, we would obtain the Pontryagin density of the tangent bundle and the

Uð1Þ gauge bundle. On the other hand, the sum of (23) and (25) does not contain theCP-violating terms. Note also that, in the
Lorentzian signature, the Pontryagin density gives an extra factor of i:

−b4ð∇αα̈∇α̈βÞjLorentz ¼
1

ð4πÞ2360
�
6□Rþ 9Weyl2 −

11

2
Euler þ i

15

2
Pontryagin−120q2FmnFmn − i180q2FmnF̃mn

�
; ð26Þ

in the analytically continued Seeley-DeWitt coefficient. If we interpreted it as theWeyl anomaly of a physical theory, it would
imply the violation of unitarity.

C. Effective action

Since the Pontryagin density in the Weyl anomaly satisfies the Wess-Zumino consistency condition, it should be
integrable. Accordingly, it should be possible to construct an effective action that reproduces the Pontryagin density in the
Weyl anomaly as a classical variation. The question of whether this is possible or not is distinct from the origin of the
Pontryagin term in the Weyl anomaly and can be independently studied.
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At the minimal level, the effective action that gives the
Pontryagin term in the Weyl anomaly turns out to be

S ¼
Z

d4x
ffiffiffi
g

p �
1

2
ϕΔ4ϕþQQϕ − ϕPontryagin

�
: ð27Þ

This classical action is also known as the dilaton effective
action, because it could appear as the Nambu-Goldstone
action for the spontaneous breaking of the Weyl (or
conformal) symmetry.
Here, in addition to the Weyl-invariant Fradkin-Tseytlin-

Riegert-Paneitz operator△4, we introduced the so-calledQ
curvature [31]:

Q ¼ −
1

6
□R −

1

2
RmnRmn þ

1

6
R2

¼ 1

4

�
Euler −Weyl2 −

2

3
□R

�
; ð28Þ

which shows a remarkable property under the Weyl
transformation

δσ
ffiffiffi
g

p
Q ¼ −

ffiffiffi
g

p
△4σ: ð29Þ

This results in the classical violation of the Weyl symmetry

Tm
m ¼ þQ△4ϕ ¼ −

Q2

4

�
Euler −Weyl2 −

2

3
□R

�
þQPontryagin; ð30Þ

where we have used the classical equation of motion for ϕ.
We see that the classical variation contains the Pontryagin
density as we claimed.
Alternatively, one may further assign the Weyl trans-

formation of ϕ as ϕ → ϕþQσ. Under this compensated
Weyl transformation,2 the effective action changes as

δS ¼
Z

d4x
ffiffiffi
g

p
σðQ2Q −QPontryaginÞ; ð31Þ

which directly gives the Weyl anomaly including the
Pontryagin density.
One may compute the correlation functions of the

energy-momentum tensor in flat space by using this dilaton
effective action. We first solve ϕ by using the equations of
motion △4ϕcðxÞ ¼ −QQþ Pontryagin from the Green
function △4G4ðx − yÞ ¼ δðx − yÞ. Then we substitute it
back into the action to evaluate the on-shell action. The
three-point function of the energy-momentum tensor in flat
space can be computed as

hTmnðxÞTrsðyÞTabðzÞi ¼
ð−2Þ3ffiffiffi
g

p ffiffiffi
g

p ffiffiffi
g

p δ

δgmnðxÞ
δ

δgrsðyÞ
δ

δgabðzÞ S½g;ϕ ¼ ϕc�
����
gmn¼δmn

: ð32Þ

Since the result is lengthy, we focus on only the CP-violating part, which is our main focus. It is given by

hTmnðxÞTrsðyÞTabðzÞiodd ¼
1

3
Qϵknlbð∂k∂a½∂l∂mδðx − zÞð∂r∂s − δrs□ÞG2ðx − yÞ�

− δma∂k∂t½∂l∂tδðx − zÞð∂r∂s − δrs□ÞG2ðx − yÞ�Þ þ sym: ð33Þ

Here Fmn is the field strength for the R-symmetry gauge field (i.e. graviphoton field strength). See e.g. Appendix A of [32]
for the detailed derivation.3

In particular, its trace gives

hTm
mðxÞTrsðyÞTabðzÞiodd ¼ −2Qεkslbð∂z

r∂y
a − δra∂z

t∂ytÞ∂lδðx − zÞ∂kδðx − yÞ þ sym; ð34Þ

which correctly reproduces the shape of the three-point function expected from the Pontryagin density in the Weyl anomaly.
A couple of comments are now in order. First, we may introduce the additional term ϕWeyl2 to generate the independent

Weyl2 term in Tm
m. Second, as one can directly see, the three-point function computed from the dilaton effective action is

semilocal. It was under active debate if this could serve as the “correct” Wess-Zumino action for the Weyl anomaly

2Due to the linear shift under the Weyl transformation, the Weyl symmetry is spontaneously broken in this model.
3The formula is corrected in [33]. We would like to thank I. Papadimitriou for the correspondence.
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[2,34,35] because of the lack of nonlocal contributions to
the correlation functions.4 As for the Pontryagin density,
however, there is no nonlocal term from the beginning, so
the debate was irrelevant for us. Finally, the dilaton
effective action can be modified in various manners by
adding more Weyl-invariant terms. They give different-
looking effective actions for various purposes. For exam-
ple, Ref. [36] studied a variant with the two-derivative
kinetic term to prove a theorem, while Ref. [37] studied the
quantum nature by adding the Liouville potential.

III. CP-VIOLATING SUPER-WEYL ANOMALY

A. General structure

In order to study the supersymmetric extension of the
Pontryagin density in the Weyl anomaly, we first review
the structure of the super-Weyl anomaly. Let us consider
the supercurrent multiplet with the supersymmetric con-
servation law

D̄ _αTα _α þ
2

3
DαT ¼ 0; ð35Þ

where T is a chiral superfield known as the supertrace
multiplet. See e.g., [38] for a detailed analysis of this
equation in flat space-time. For superconformal field
theories, T ¼ 0 in the trivial supergravity background. In
the nontrivial supergravity background, the supertrace
multiplet shows the super-Weyl anomaly [39,40]:

8π2T ¼ cWαβγWαβγ

− a

�
WαβγWαβγ −

1

4
ðD̄2 − 4RÞðGmGm þ 2RR̄Þ

�

þ 1

16
hðD̄2 − 4RÞD2R: ð36Þ

Here, Wαβγ is the chiral super-Weyl tensor multiplet, and
WαβγWαβγ − 1

4
ðD̄2 − 4RÞðGmGm þ 2RR̄Þ is the chirally

projected super-Euler density (see e.g., [16]). In the
literature, it is usually assumed that a and c are real, but
we will relax the condition soon. The term proportional to
the real parameter h is trivial and can be removed by using
an appropriate supersymmetric local counterterm.
Note that the chiral multiplet T contains the trace of the

energy-momentum tensor and the divergence of the R
current − 1

8
ðTm

m þ 3
2
i∇mJRmÞ in the θ2 component. See e.g.,

[38]. Thus, in component, assuming a and c are real for a
moment, the super-Weyl anomaly (36) implies the Weyl
anomaly (up to trivial terms)

Tm
m ¼ c

16π2
Weyl2 −

a
16π2

Euler −
c
6π2

FmnFmn ð37Þ

as well as the chiral anomaly for the R-current conservation

∇mJRmjLorentz¼
c−a
24π2

RmnrsR̃mnrsþ
5a−3c
27π2

FmnF̃mn: ð38Þ

Here Fmn is the field strength for the R-symmetry gauge
field (i.e. graviphoton field strength). See e.g. Appendix A
of [32] for the detailed derivation.
Alternatively, one may study the variation of the super-

symmetric effective action under the super-Weyl variation
E → e3σE. The anomalous variation shows

δS ¼
Z

d4xd2θEσT þ
Z

d4xd2θ̄ Ē σ̄ T̄; ð39Þ

where σ is a chiral superfield corresponding to the super-
Weyl variation. In component, σ ¼ σ1 þ iσ2 þOðθÞ with
− σ1

2
being the Weyl factor5 and σ2 being the gauge

parameter for the R-symmetry transformation.
It is known that (up to terms that can be removed by local

counterterms) these are the only available super-Weyl
anomaly (see e.g., [41] and older references therein).
However, there is one fine print that has not been discussed
very much in the literature, namely, the reality condition on
a and c (as well as h). One may try to imagine what
happens if a and c are not real but complex numbers.
First of all, the Wess-Zumino consistency condition

demands that a must be real [42] from the coefficients of

ðDασD̄ _ατ̄Gα _αÞ − ðσ ↔ τÞ: ð40Þ

One can also see how this must be the case from the
component analysis. If a were not real, then ∇mJRm would
include the term proportional to the Euler density whose
Weyl variation is nonzero. Then it could not satisfy the
mixed Wess-Zumino consistency condition for the Weyl
transformation and the (gauged) R-symmetry transforma-
tion. Similarly, one can show that h must be real.
However, there is no reality constraint on c from the

Wess-Zumino consistency condition simply because
WαβγWαβγ is super-Weyl invariant. Assuming c is a com-
plex number, we have the CP-violating Weyl anomaly

Tm
mjLorentz ¼

ReðcÞ
16π2

Weyl2 −
a

16π2
Euler −

ReðcÞ
6π2

FmnFmn

−
ImðcÞ
8π2

Pontryaginþ ImðcÞ
6π2

FmnF̃mn ð41Þ

and the corresponding parity-violating chiral anomaly for
the R current

4In two dimensions, the Liouville action or Polyakov action
reproduces the local as well as nonlocal correlation functions of
the energy-momentum tensor.

5In our convention that follows [16], the sign of the Weyl factor
and the super Weyl factor is opposite.
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∇mJRmjLorentz¼
ReðcÞ−a
24π2

RmnrsR̃mnrsþ
5a−3ReðcÞ

27π2
FmnF̃mn

þImðcÞ
24π2

Weyl2−
ImðcÞ
9π2

FmnFmn: ð42Þ

We can check that these satisfy the mixed Wess-Zumino
consistency condition of the Weyl transformation and the
R-symmetry transformation.
One thing to be noted here is that these two expressions

are written in the Lorentzian signature and they are all
real. As a consequence, they are compatible with unitarity.
In the Euclidean signature, we have to put i in front of the
ϵ tensor so that the supersymmetric Pontryagin term in
the Weyl anomaly gives a pure phase in the Euclidean
partition function. Similarly, the CP-violating anomaly in
the R-symmetry transformation is not a phase but an
absolute value in the Euclidean partition function.
Note that it is not feasible to absorb the phase of c into

the definition of the chiral superfield σ that defines the
super-Weyl transformation. This is because a must be real,
and such a redefinition would violate the Wess-Zumino
consistency condition. In this way, having a imaginary part
of c leads to a physically nontrivial effect.
Let us take a closer look at the structure of the super-

symmetric partners of the Pontryagin density in the Weyl
anomaly. We note that these novel anomalies break
parity or at least CP. The Weyl anomaly contains a new
term of the graviphoton θ term FmnF̃mn associated with the
R-symmetry gauging. Its existence would be related to the
renormalization group beta functions for the graviphoton θ
term. The R-current anomaly now contains unfamiliar
CP-violating terms. One is the graviphoton field strength
squared, and the other is the Weyl tensor squared.
Not only do they look unfamiliar, but also all of them are

examples of impossible anomalies. Nonlocal terms in the
three-point functions among the energy-momentum tensor
and R current do not contain any terms that will directly
generate these CP-violating anomalies. Instead, all of
them are supported in the semilocal terms. For example,
the R-current anomaly has the CP-violating semilocal
terms proportional to

hJRμ ðxÞJRν ðyÞJRρ ðzÞi ¼ ∂y
αð∂μG2ðx − yÞδνρ∂αδðy − zÞÞ

− ∂y
νð∂μG2ðx − yÞ∂ρδðy − zÞÞ

þ sym ð43Þ

in a particular regularization scheme.

B. Supersymmetric Seeley-DeWitt coefficient

Similarly to what we have studied in Sec. II C, in free
supersymmetric field theories, the super-Weyl anomaly is
related to the supersymmetric Seeley-DeWitt coefficients.
Here, we would like to study a supersymmetric generali-
zation of the heat kernel computation.

Let us first define the supersymmetric heat kernel for a
chiral operator on the superspace

∂Uc

∂s ¼
�
□þ −

1

4
ðD̄2R̄Þ þ RR̄

�
Uc ð44Þ

with the initial condition

Ucðs ¼ 0; z; z0Þ ¼ δþðz; z0Þ: ð45Þ

Here, δþðz; z0Þ is a covariantly chiral delta function, and the
chiral Laplacian □þ is defined by

□þ ¼ DmDm þ 1

4
RD2 þ iGmDm þ 1

4
ðDαRÞDα: ð46Þ

The supersymmetric Seeley-DeWitt coefficient acn for a
chiral superfield is defined as an asymptotic power-series
solution of its trace:

Ucðs; z; zÞ ¼
1

ð4πsÞ2
X∞
n¼0

acnsn: ð47Þ

The most relevant one for our discussion is ac2 and it is
given by [40,43,44]

ac2 ¼
1

12
WαβγWαβγ þ

1

48
ðD̄2 − 4RÞGmGm

−
1

96
ðD̄2 − 4RÞðD2 − 4R̄ÞR: ð48Þ

Similarly, if we started with the antichiral operator □−,
we would end up with the supersymmetric Seeley-DeWitt
coefficient āan for an antichiral superfield. In particular,

āa2 ¼
1

12
W̄αβγW̄αβγ þ

1

48
ðD2 − 4R̄ÞGmGm

−
1

96
ðD2 − 4R̄ÞðD̄2 − 4RÞR̄: ð49Þ

Suppose we have a supersymmetric massless Wess-
Zumino model coupled with background superconformal
supergravity. It is described by the classical action

S½Φ� ¼
Z

d4xd2θd2θ̄E−1Φ̄Φ; ð50Þ

where Φ and Φ̄ are the chiral and antichiral superfield,
respectively. One can compute the effective action explic-
itly with the supersymmetric zeta function regularization of
the path integral, and then one can relate the super-Weyl
anomaly under the super-Weyl transformation E → e3σE
with the supersymmetric Seeley-DeWitt coefficient:

δS ¼ 1

ð4πÞ2
�Z

d4xd2θEσac2 þ
Z

d4xd2θ̄ Ē σ̄ āa2

�
: ð51Þ
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This is the standard expression for the super Weyl anomaly
of a free chiral multiplet (i.e. one complex scalar and one
Weyl fermion) with the identification T ¼ 1

ð4πÞ2 a
c
2 [40].

In particular, a ¼ 1
48

and c ¼ 1
24

are real numbers.
Consequently, it does not show the Pontryagin density in
the Weyl anomaly.6

What would be the corresponding supersymmetric
Seeley-DeWitt coefficient for a Euclidean left-handed
Weyl fermion (without a right-handed partner)? The idea
is that, in the Euclidean signature, one may take the super-
Weyl parameters σ and σ̄ independently, In particular, we
can set σ̄ ¼ 0 (while σ is nonzero). This corresponds to
considering the Weyl transformation on Φ (that contains
the left-handed Weyl fermion) without the Weyl trans-
formation on Φ̄ (that contains the right-handed Weyl
fermion).
The resultant super-Weyl variation is

Z
d4xd2θEσ

�
1

12
WαβγWαβγ þ

1

48
ðD̄2 − 4RÞGmGm

−
1

96
ðD̄2 − 4RÞðD2 − 4R̄ÞR

�
ð52Þ

without the antichiral part (i.e., the terms with σ̄). Suppose
we would like to study the response to the Weyl trans-
formation of this theory from the coupling to the real part
of σ. Then, in components, we see that the would-be Weyl
anomaly (which is given by the coupling to the real part
of σ) includes the Pontryagin density with a real coefficient
in the Euclidean signature.7

C. Supersymmetric effective action

As we have just seen in the previous subsection, there is
no simple free field computation that will give the super-
symmetric generalization of the Pontryagin density in the
Weyl anomaly. However, one can still construct the super-
symmetric dilaton effective action to incorporate the
Pontryagin density in the super-Weyl anomaly.
For this purpose, we would like to generalize the

N ¼ 1 super-Liouville theory studied in Ref. [45] (see

also [17,46]). The classical action for a chiral superfield Φ
is given by

S½Φ� ¼
Z

d4xd2θEðΦP̂ Φ̄þ 4Q̄ Q̂Φþ CΦWαβγWαβγÞ

þ H:c: ð53Þ

Here the chirally projected supersymmetric Fradkin-
Tseytlin-Riegert-Paneitz operator P̂ [17] is given by

P̂ ¼ −
1

64
ðD̄2 − 4RÞðD2D̄2 þ 8DαðGα _αD̄ _αÞÞ; ð54Þ

and the supersymmetric Q-curvature chiral superfield
[17,45] is given by

Q̂ ¼ −
1

8
ðD̄2 − 4RÞ

�
GmGm þ 2RR̄ −

1

4
D2R

�
. ð55Þ

Note that, in Ref. [45], it is assumed that Q is a real
parameter, but here we would like to regard it as a complex
parameter for the most genericity. We also note that the
parameter C is complex. Under the super-Weyl variation
with the additional shift of Φ

Φ → Φ − 2Qσ;

Φ̄ → Φ̄ − 2Q̄ σ̄; ð56Þ

the supersymmetric dilaton effective action transforms as

S½Φ� → S½Φ� − S½2Qσ�: ð57Þ

The infinitesimal variation is

δS½Φ� ¼ −
Z

d4xd2θEσð8Q̄QQ̂þ 2QCWαβγWαβγÞ

þ H:c:; ð58Þ

which gives the super-Weyl variation studied e.g., in
Refs. [41,42] except that in our case QC can be a complex
number, whose possibility has not been emphasized before.
Note also that the coefficient in front of Q̂ is a real number,
whose necessity is not immediately obvious, but the Wess-
Zumino consistency condition of the super-Weyl anomaly
demands it must be the case [42]. It is a nontrivial check
that our supersymmetric dilaton effective action with a
complex Q consistently generates the real coefficient here.
We now discuss the component form of the super-Weyl

anomaly. The real component of the chiral superfield σ is
the usual Weyl variation, while the pure imaginary com-
ponent of σ is the gauge parameter for the R symmetry.
Expressing the super-Weyl anomaly in the conventional
form

6In order to compare it with the component expression of the
Weyl anomaly, we should note that the superconformal R-charge
q of a conformal scalar is 2=3 and that of a Weyl fermion is −1=3.
The result is given by ð23Þþð25Þ

2
þ ð14Þ (with appropriate q). Thus,

identifying the supersymmetric Seeley-DeWitt coefficient with
the supersymmetric trace anomaly here implies identifying the
left-right average of the Seeley-DeWitt coefficient with the trace
anomaly for a Weyl fermion, which does not generate the
Pontryagin density.

7After continuing to the Lorentzian signature, this would give
an imaginary coefficient in front of the Pontryagin density in the
would-be Weyl anomaly, which is consistent with what we saw in
Sec. II. This is to be contrasted with the manifestly real coefficient
of the Pontryagin density in the Weyl anomaly discussed in
Sec. III A.
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T ¼ c
8π2

WαβγWαβγ

−
a
8π2

�
WαβγWαβγ −

1

4
ðD̄2 − 4RÞðGmGm þ 2RR̄Þ

�

ð59Þ

together with the antichiral part T̄, we have the (classical)
identification

c ¼ 32π2Q̄Q − 16π2QC;

a ¼ 32π2Q̄Q: ð60Þ

When QC is not a real number, we have the classical
Pontryagin density in the Weyl anomaly from the imagi-
nary part of QC as the variation of the supersymmetric
dilaton effective action. We note that a remains real even
for a complex Q as is expected from the Wess-Zumino
consistency condition.

IV. CONCLUSION

In this paper, we have discussed the supersymmetric
completion of the CP-violating Pontryagin density in
the Weyl anomaly. For this purpose, it was crucial to
complexify the central charge c, where the existence of the
imaginary part leads to the Pontryagin density in the Weyl
anomaly as well as other CP-violating terms in the super-
symmetric Weyl anomaly.
The consistency of the complexified c can be seen from

the perspective of the string theory as well. In the Calabi-
Yau compactification of the type-II string theory, the
effective coupling constant for the gravitational F term
(i.e., the Weyl tensor squared and the Pontryagin density
[47]) can be obtained from

S ¼
Z

d4xd2θEF1ðtÞWαβγWαβγ þ H:c:; ð61Þ

where F1ðtÞ is the genus-one topological string amplitude
[48,49]. Note that the gravitational coupling F1ðtÞ is a
“holomorphic” function of the moduli fields t. Its real part
determines the coupling constant for the Weyl tensor
squared, and its imaginary part determines that for the
Pontryagin density.
The supersymmetric Weyl anomaly is nothing but the

renormalization group beta function for F1ðtÞ, and, since
F1ðtÞ is holomorphic, it should be consistent to complexify

the beta function as well. To be more precise, F1ðtÞ has a
holomorphic anomaly that reflects the nonlocality of the
effective action [50]. The holomorphic anomaly equation
that determines the nonholomorphicity is closely related to
the supersymmetric Weyl anomaly, although there is an
extra stringy contribution to it. It would be an interesting
future direction to see why we obtain a “real” beta function
for the complex coupling constant in most examples from
the viewpoint of the string theory. Furthermore, we would
like to pursue if there is any chance to obtain the imaginary
part to induce the Pontryagin density in the super-Weyl
anomaly in the string setup.
We should emphasize that the Pontryagin density obtained

in this way is a real number in the Lorentzian signature and
does not violate unitarity. In Sec. III B,we have addressed the
other possibility that the super-Weyl variation of the effective
action can be only holomorphic with respect to the super-
Weyl parameter σ. This is feasible in the Euclidean signature,
and it would lead to the Pontryagin densitywith an imaginary
coefficient (if we naively analytically continue to the
Lorentzian signature at the sacrifice of unitarity) under the
holomorphic (i.e., chiral) super-Weyl variation.
We have the analogous situation in stringy-inspired

theories of “nonanticommutative” field theories, or N ¼
1=2 supersymmetric field theories [51,52]. They may arise
from the self-dual graviphoton condensate in the Euclidean
string theory. There, the available classical symmetry is the
holomorphic super-Weyl variation of E → e3σE without the
antiholomorphic partner. The absence of the antiholomor-
phic variation (i.e., σ̄Þ is because the theory has no super-
symmetry for the θ̄ translation, giving the name of N ¼
1=2 supersymmetry. Then the natural “supersymmetric
Weyl anomaly” for the N ¼ 1=2 supersymmetric field
theories would be similar to the supersymmetric (chiral)
Seeley-DeWitt coefficient studied in Sec. III B, and it
could lead to the Pontryagin density with an imaginary
coefficient under the holomorphic (or chiral) super-Weyl
variation. The background might be closely related to the
axial gravity studied in Ref. [9], and it may be worthwhile
studying its connection.
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