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Given that any communication is communication through quantum fields, we study here the scenario
where a sender, Alice, causes information-carrying disturbances in a quantum field. We track the exact spread
of these disturbances in space and time by using the technique of quantum information capsules (QIC). We
find that the channel capacity between Alice and a receiver, Bob, is enhanced by Bob placing detectors not
only inside but in addition also outside the causal future of Alice’s encoding operation. Intuitively, this type of
superadditivity arises because the field outside the causal future of Alice is entangled with the field inside
Alice’s causal future. Hence, the quantum noise picked up by Bob’s detectors outside Alice’s causal future is
correlated with the noise of Bob’s detectors inside Alice’s causal future. In effect, this correlation allows Bob
to improve the signal-to-noise ratio of those of his detectors which are in the causal future of Alice. Further,
we develop the multimode generalization of the QIC technique. This allows us to extend the analysis to the
case where Alice operates multiple localized and optionally entangled emitters. We apply the new techniques
to the casewhere Alice enhances the channel capacity by operating multiple emitters that are suitably lined up
and pretimed to generate a quantum shockwave in the field.

DOI: 10.1103/PhysRevD.101.105009

I. INTRODUCTION

Given the progress in wireless communication technol-
ogies, it is becoming increasingly important to fully
develop the underlying theory, namely, to fully take into
account that the emitters, the field, and the receivers are
quantum systems. In addition to the prospect of new
technological applications, e.g., for quantum communica-
tion and quantum cryptography, these studies also reveal
fundamental new insights into the relationship between
the flow of information, quantum phenomena, and relativ-
istic effects.
For example, it has been shown to be possible to send

information from a sender to a receiver without transmitting
energy [1]. Since the receiver needs to provide energy to
detect the signal, the protocol may be referred to as
quantum collect calling. Another novel protocol [2] shows
that in a setup of multiple emitters it is possible to shape the
beam that they emit not only through the modulation of
amplitudes and phases of the emitters but also through the
modulation of the initial entanglement of the emitters. It
was shown, in particular, that a suitable array of pretimed
emitters can emit a quantum shockwave that is modulated
by the entanglement of the emitters. The results of Ref. [2]

demonstrate, therefore, that the presently ubiquitously used
multiple input multiple output (MIMO) systems (i.e.,
systems with multiple senders and multiple receivers)
can be improved, in principle, by making use of the
quantum nature of the systems involved. An aspect of
wireless communication that does not change when taking
into account the quantum nature of the emitters, receivers,
and the field is the role of the strong Huygens principle.
Indeed, also when fully quantized [3], communication via a
massless field is still restricted to lightlike separated
senders and receivers in flat spacetimes in ð3þ 1Þ dimen-
sions, [while communication is possible on and in
the future light cone of the emitter in ð1þ 1Þ; ð2þ 1Þ,
and general ð2nþ 1Þ dimensions, as well as in cases of
nonvanishing generic curvature in spacetimes of any
dimension.]
In addition, there exist features of fully quantized wire-

less communication that possess no analog in classical
systems, i.e., that arise only when taking into account the
quantum nature of the emitters, receivers, and field. In
particular, quantum emitters, receivers, and fields can
establish a communication channel that possesses quantum
channel capacity, i.e., that can transmit entanglement.
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Quantum channel capacity has delicate properties with-
out classical analogs. For example, quantum channel
capacity is subject to the no-cloning theorem [4], which
translates here into the constraint that it is generally
impossible to broadcast quantum information to multiple
disjoint receivers. This was originally shown to be the case
for communication protocols via quantum fields in (1þ 1)
dimensions [5], while a further understanding of the
phenomenon in general dimensions was reached in
Ref. [6]. It has also been established, for example, that
in order for an emitter or receiver system to even transmit
quantum channel capacity into or out of a quantum field the
emitter or receiver system should not interact too briefly
with the field, as very short interactions with a quantum
field tend to be entanglement breaking [7]. For a strategy
for maximizing the quantum channel capacity, see Ref. [6].
At the heart of the new phenomena that appear when

taking into account the quantum nature of emitter, receiver,
and fields is the fact that the local degrees of freedom of any
quantum field are generally entangled at timelike, null, and
also spacelike distances [8,9], even if the field is in the
vacuum state. This means that when quantized emitters and
receivers couple to a quantum field then they nontrivially
couple to an extended system which possesses preexisting
entanglement. For example, two localized quantum sys-
tems that briefly couple to the field while at spacelike
separations can become entangled (e.g., among others,
Refs. [10–33]) because they generically swap entanglement
from the field.
For our study of communication through quantum fields

here, we will make use of techniques developed in
Refs. [34,35]. There, it was shown how, when a system
couples to a large entangled system (such as a quantum
field), one can identify the exact degrees of freedom that
pick up information from that coupling. These degrees of
freedom have been named quantum information capsules
(QICs). Concretely, Refs. [34,35] investigated encoding
processes in the form of an interaction Hamiltonian con-
sisting of a single Hermitian operator. It was shown that
there always exists a subsystem characterized by a sub-
algebra such that the subsystem is in a pure state and the
encoding operation is generated by the subalgebra. This
subsystem is called a QIC. The purity of the QIC implies
that no information is shared with its complement sub-
system. Thus, a QIC can be used as a unit of memory of
encoded information. The existence of a QIC has been
shown for multiple-qubit systems [34] and multiple-qudit
systems [35] in a general entangled state. Furthermore, for
continuous-valued systems, i.e., multiple harmonic oscil-
lators and quantum fields, in a Gaussian state, a formula to
identify a QIC mode has been proven [35]. We will refer to
this formula as the single-mode QIC formula.
In the present paper, we use the formalism of QICs to

identify new phenomena that arise when taking into
account the quantum nature of emitters, receivers, and

fields. Concretely, we first investigate the communication
setup where a sender (Alice) encodes information by
using a single Unruh-Dewitt (UDW) particle detector
[36,37] (i.e., a first quantized system, such as a qubit,
or an atom) which instantaneously couples to a scalar
field. In this case, the information carrier is uniquely
identified by the single-mode QIC formula since the
encoding operation is generated by a single Hermitian
operator. We illustrate the utility of the new method by
calculating the Huygens-principle-related difference in
the time evolution of the QIC in (3þ 1)- and (2þ 1)-
dimensional Minkowski spacetimes.
We then investigate the classical channel capacity for

setups in which Alice uses one emitter to message Bob,
who uses multiple detector systems at various locations. It
is clear that Bob can increase the channel capacity from
Alice to him by placing more detectors on or in the future
light cone of Alice’s emission. However, as we show here,
Bob can increase the channel capacity from Alice to him
also by placing detectors outside the future light cone—
where Alice’s signal cannot reach. The reason for the
occurrence of this new type of superadditivity of the
channel capacity is that those of Bob’s detectors that are
outside Alice’s future light cone can record quantum noise
of the field. Due to the entanglement in the quantum field,
this noise is correlated with the quantum noise in the field
that Bob’s detectors in Alice’s causal future are picking up.
Bob can use this fact to better separate the signal from
the noise in those of his detectors that are inside the future
light cone of Alice. We therefore arrive at a novel way to
enhance the channel capacity between Alice and Bob,
namely, by using entanglement-induced nonlocal correla-
tions in the noise at the receivers.
Technically, we will show here that the QIC mode that

Alice creates in the quantum field generally has a tail
through all of space, even if Alice encodes her information
by a local operation. This is because quantum fields possess
entanglement and correspondingly correlated quantum
field fluctuations even across spacelike distances.
We then go beyond this setup and consider the case

where Alice possesses multiple emitters. To this end, we
generalize the single-mode QIC formula of Ref. [35]. We
then show that when Alice makes use of k emitters then (at
most) k modes in a pure state are the information carriers,
which we call a k-mode QIC. Finally, we demonstrate the
utility of the new k-mode QIC technique by applying it to
the scenario of Ref. [2], where Alice uses her emitters to
communicate by creating quantum shockwaves.
Throughout this paper, we adopt natural units,

ℏ ¼ c ¼ 1.

II. INFORMATION PROPAGATION
THROUGH QUANTUM FIELDS

In this section, we investigate the propagation of
information encoded by an Unruh-DeWitt (UDW) detector
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by using the single-mode QIC formula. An UDW detector
is a first quantized system which is linearly coupled to the
quantum field [37]. In particular, we will take the UDW
detector to be a qubit which couples to a free scalar field.
Despite its simplicity, this model provides an accurate
description of the light-matter interaction between atoms
and the electromagnetic field (i.e., a vector field) in cases
where the exchange of angular momentum can be
ignored [20,38].

A. Setup

Consider a scalar field ϕ̂ðt; xÞ and its conjugate momen-
tum Π̂ðt; xÞ in a (dþ 1)-dimensional Minkowski space-
time. They are expanded by using plane wave solutions of
the equation of motion and given by

ϕ̂ðt; xÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2jk

p
j

× ðâke−iðjkjt−k·xÞ þ â†ke
iðjkjt−k·xÞÞ; ð1Þ

Π̂ðt; xÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2jk

p
j ð−ijkjÞ

× ðâke−iðjkjt−k·xÞ − â†ke
iðjkjt−k·xÞÞ; ð2Þ

where the creation and annihilation operators satisfy

½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0; ½âk; â†k0 � ¼ δðdÞðk − k0Þ: ð3Þ

Suppose that Alice wants to encode information of a
qubit in the scalar field by a UDW-type interaction between
the qubit and field. For an inertial qubit, the interaction
Hamiltonian is given by

ĤintðtÞ ¼ λχðtÞμ̂ðtÞ ⊗ ÔðtÞ ð4Þ

in the interaction picture. Here, λ is the coupling constant,
χðtÞ is the switching function, and μ̂ðtÞ and ÔðtÞ are
observables of the qubit and the field, respectively. The
field operator ÔðtÞ is assumed to be given by

ÔðtÞ ¼
Z

ddxðvð1ÞðxÞϕ̂ðt; xÞ þ vð2ÞðxÞΠ̂ðt; xÞÞ; ð5Þ

where vð1ÞðxÞ and vð2ÞðxÞ are called the smearing functions,
which characterize the spatial extent of the detector.
We further assume that the switching function is given by

a delta function, χðtÞ ¼ δðt − t0Þ, which enables a non-
perturbative analysis [39]. In the interaction picture of time
evolution, the encoding process is now expressed by the
unitary operator

Û ¼ e−iλμ̂ðt0Þ⊗Ôðt0Þ: ð6Þ

Since the encoding process is expressed by a single
Hermitian operator Ôðt0Þ, we can uniquely identify the
carrier of information by using the QIC formula [35].
Hereafter, for notational simplicity, Ôðt0Þ is denoted
by Ô. In addition, we assume that the initial state of the
field is in a Gaussian state jΨi with vanishing first
moments: hΨjϕ̂ðt; xÞjΨi ¼ hΨjΠ̂ðt; xÞjΨi ¼ 0.
Now, let us introduce a linear map fΨ, mapping local

field operators to local field operators, defined by

fΨðÔÞ≡ 2

Z
ddxð−ReðhΨjÔ Π̂ðt0; xÞjΨiÞϕ̂ðt0; xÞ

þ ReðhΨjÔ ϕ̂ðt0; xÞjΨiÞΠ̂ðt0; xÞÞ: ð7Þ

It can be shown [35] that

½Ô; fΨðÔÞ� ¼ 2ihΨjÔ2jΨi; ð8Þ

hΨjðfΨðÔÞÞ2jΨi ¼ hΨjÔ2jΨi; ð9Þ

ReðhΨjÔfΨðÔÞjΨiÞ ¼ 0 ð10Þ

hold for pure Gaussian states jΨi. Equation (8) implies that
the set of field operators

�
Ô;

1

2hΨjÔ2jΨi fΨðÔÞ
�

ð11Þ

satisfies the canonical commutation relationship, meaning
that it characterizes a mode as a subsystem of the scalar
field. Since the operators are given by linear combinations
of canonical variables, the mode is also in a Gaussian state.
Equations (9) and (10) show the determinant of covariance
matrix for this mode is 1

4
. This condition holds if and only if

the mode is in a pure state (see, e.g., Ref. [40]). Since the
encoding unitary operation in Eq. (6) is a unitary operation
on this mode, the composite system of qubit and the mode
remains in a pure state after the encoding process.
Therefore, no information is leaked outside the mode,
which is called a quantum information capsule. The QIC
mode is uniquely determined under the assumption that the
operators characterizing the mode are given by linear
combinations of canonical variables [35].
For future convenience, we adopt another convention for

operators characterizing the QIC mode. Introducing a
normalization factor

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hΨjÔ2jΨi

q
; ð12Þ

we define

Q̂≡ 1

α
Ô; P̂≡ 1

α
fΨðÔÞ: ð13Þ
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The QIC mode is characterized by ðQ̂; P̂Þ satisfying
½Q̂; P̂� ¼ i. In this convention, the mode is initially in a
pure Gaussian state in the standard form, i.e.,

hΨjQ̂2jΨi ¼ hΨjP̂2jΨi ¼ 1

2
;

ReðhΨjQ̂ P̂ jΨiÞ ¼ 0: ð14Þ

This implies that the initial Gaussian state is decomposed
into the following form,

jΨi ¼ j0i ⊗ jΨ0i; ð15Þ

where j0i is the “vacuum” state annihilated by 1ffiffi
2

p ðQ̂þ iP̂Þ
and jΨ0i is a Gaussian state for modes orthogonal to the
QIC modes. The encoding unitary operator (6) is now
regarded as an interaction between a qubit and a harmonic
oscillator characterized by ðQ̂; P̂Þ which is nonlocally
embedded in the scalar field.
It should be noted that

fΨðfΨðÔÞÞ ¼ −Ô ð16Þ

holds for any operator Ô given by linear combination of
canonical variables. For a simple proof, let us consider an
operator fΨðP̂Þ. From the uniqueness of QIC operators and
the normalization condition Eq. (14), we get

fΨðP̂Þ ¼ −Q̂; ð17Þ

where the minus sign appears from the fact that ½P̂;−Q̂� ¼ i
holds. Since the map fΨ is linear, Eq. (16) is proven.
Equation (17) will be used to extend the QIC formula for
multiple modes in Sec. IV.
The propagation of information can be visualized by

investigating the time evolution of the QIC mode. The
functions vð1Þðt; xÞ; vð2Þðt; xÞ; uð1Þðt; xÞ; uð2Þðt; xÞ satisfying

Ô ¼
Z

ddxðvð1Þðt; xÞϕ̂ðt; xÞ þ vð2Þðt; xÞΠ̂ðt; xÞÞ; ð18Þ

fΨðÔÞ¼
Z

ddxðuð1Þðt;xÞϕ̂ðt;xÞþuð2Þðt;xÞΠ̂ðt;xÞÞ ð19Þ

can be calculated by

vð1Þðt; xÞ≡ 1

i
hΨj½Ô; Π̂ðt; xÞ�jΨi

¼ −∂tvð2Þðt; xÞ;

vð2Þðt; xÞ≡ −
1

i
hΨj½Ô; ϕ̂ðt; xÞ�jΨi

¼ −2Im
�Z

ddyðvð1ÞðyÞWðt0; y; t; xÞ

þ vð2ÞðyÞ∂t0Wðt0; y; t; xÞÞ
�
;

uð1Þðt; xÞ≡ 1

i
hΨj½fΨðÔÞ; Π̂ðt; xÞ�jΨi

¼ −∂tuð2Þðt; xÞ;

uð2Þðt; xÞ≡ −
1

i
hΨj½fΨðÔÞ; ϕ̂ðt; xÞ�jΨi

¼ −2Im
�Z

ddyðuð1ÞðyÞWðt0; y; t; xÞ

þ uð2ÞðyÞ∂t0Wðt0; y; t; xÞÞ
�
; ð20Þ

whereWðt;x;t0;xÞ≡hΨjϕ̂ðt;xÞϕ̂ðt0;x0ÞjΨi is the Wightman
function and

uð1ÞðxÞ≡ −2ReðhΨjÔ Π̂ðt0; xÞjΨÞiÞ;
uð2ÞðxÞ≡ 2ReðhΨjÔ ϕ̂ðt0; xÞjΨÞiÞ: ð21Þ

The mode carrying information at t > t0 is visualized by
four functions Fð1Þ; Fð2Þ; Gð1Þ; Gð2Þ,

Q̂ ¼
Z

ddxðFð1Þðt; xÞϕ̂ðt; xÞ þ Fð2Þðt; xÞΠ̂ðt; xÞÞ; ð22Þ

P̂ ¼
Z

ddxðGð1Þðt; xÞϕ̂ðt; xÞ þ Gð2Þðt; xÞΠ̂ðt; xÞÞ; ð23Þ

where

FðlÞðt; xÞ ¼ 1

α
vðlÞðt; xÞ; GðlÞðt; xÞ ¼ 1

α
uðlÞðt; xÞ ð24Þ

for l ¼ 1, 2. We call these four functions weighting
functions of the mode. It should be noted that the mass
dimensions of ðFð1Þ; Gð1ÞÞ and ðFð2Þ; Gð2ÞÞ defined here
are given by dþ1

2
and d−1

2
respectively, since Q̂ and P̂ are

dimensionless.
A common and important example is the cases where

the field starts with its vacuum state j0i. The Wightman
function for j0i is given by

Wðt; x; t0; x0Þ ¼
Z

ddk
ð2πÞd2jkj e

−iðjkjðt−t0Þ−k·ðx−x0ÞÞ: ð25Þ

KOJI YAMAGUCHI et al. PHYS. REV. D 101, 105009 (2020)

105009-4



Let us further assume that the detector only couples to the
field ϕ̂ (and not the conjugate momentum field Π̂), i.e., we
set v2ðxÞ ¼ 0. In this case, the operator fΨðÔÞ is simplified
and characterized by

uð1ÞðxÞ ¼ −2
Z

ddxvð1ÞðyÞReðh0jϕ̂ðt0; yÞΠ̂ðt0; xÞj0iÞ ¼ 0;

ð26Þ

uð2ÞðxÞ ¼ 2Re

�Z
ddyvð1ÞðyÞ

Z
ddk

ð2πÞdjkj e
ik·ðy−xÞ

�

¼ 2Re
�Z

ddk
ð2πÞd2jkj e

−ik·xṽð1ÞðkÞ
�
; ð27Þ

where we have defined the Fourier transformation f̃ of a
function f by

f̃ðkÞ≡
Z

ddxfðxÞeik·x: ð28Þ

From Eq. (20), the QIC mode at t > t0 is characterized by
the functions

vð2Þðt; xÞ ¼ −2Im
�Z

ddk
ð2πÞd2jkj e

−ijkjðt0−tÞe−ik·xṽð1ÞðkÞ
�

uð2Þðt; xÞ ¼ 2Re

�Z
ddk

ð2πÞd2jkj e
−ijkjðt0−tÞe−ik·xṽð1ÞðkÞ

�

ð29Þ

and their derivatives with respect to t. On the other hand,
the normalization factor is calculated from

h0jÔ2j0i ¼
Z

ddk
ð2πÞd2jkj jṽ

ð1ÞðkÞj2: ð30Þ

B. Propagation of information in (3 + 1)-dimensional
Minkowski spacetime

Let us investigate the propagation of information in
(3þ 1)-dimensional Minkowski spacetime. We adopt a
Gaussian smearing

vð1ÞðxÞ ¼ e−
jx−x0 j2
2σ2 ; ð31Þ

and vð2ÞðxÞ ¼ 0 for the UDW detector which encodes the
information in the field (i.e., the UDW detector of the
sender). Its Fourier transformation is given by

ṽð1ÞðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πσ2Þ3

q
e−

σ2

2
jkj2eik·x0 : ð32Þ

The integral in Eq. (29) is calculated as

Z
d3k

ð2πÞ32jkj e
−ijkjðt0−tÞe−ik·xṽð1ÞðkÞ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πσ2Þ3

p
ð2πÞ32ijx0 − xj ×

Z
∞

0

dke−ikðt0−tÞe−σ2

2
k2ðeikjx0−xj − e−ikjx0−xjÞ

¼ σ2

4ijx0 − xj ×
�
e−

ððt0−tÞ−jx0−xjÞ2
2σ2

�
1 − Erf

�
i
ððt0 − tÞ − jx0 − xjÞffiffiffiffiffiffiffi

2σ2
p

��

− e−
ððt0−tÞþjx0−xjÞ2

2σ2

�
1 − Erf

�
i
ððt0 − tÞ þ jx0 − xjÞffiffiffiffiffiffiffi

2σ2
p

���
; ð33Þ

where we have used

Z
∞

0

dke−ak
2

eibk ¼
ffiffiffi
π

p
2

ffiffiffi
a

p e−
b2
4a

�
1þ Erf

�
i

b
2

ffiffiffi
a

p
��

ð34Þ

and the error function defined by

ErfðξÞ≡ 2ffiffiffi
π

p
Z

ξ

0

dte−t
2

: ð35Þ

On the other hand, the expectation value of the generator
is evaluated as

h0jÔ2j0i ¼ πσ4: ð36Þ

Therefore, the normalization factor is determined as

α ¼
ffiffiffiffiffiffi
2π

p
σ2: ð37Þ

Figures 1–10 show the time evolution of QIC mode.
In these figures, the weighting functions are made to be
dimensionless by using σ and plotted at z ¼ 0. The
parameters characterizing the detector are fixed as σ ¼
0.2 and ðt0; x0Þ ¼ 0. At t ¼ 0, Fð2Þð0; xÞ ¼ Gð1Þð0; xÞ ¼ 0

as is seen from Eq. (26). The tail of Gð2Þð0; xÞ is broader
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FIG. 2. σGð2Þðt; x; y; 0Þ at t ¼ 0.

FIG. 3. σ2Fð1Þðt; x; y; 0Þ at t ¼ 2.

FIG. 1. σ2Fð1Þðt; x; y; 0Þ at t ¼ 0. FIG. 4. σFð2Þðt; x; y; 0Þ at t ¼ 2.

FIG. 5. σ2Gð1Þðt; x; y; 0Þ at t ¼ 2.

FIG. 6. σGð2Þðt; x; y; 0Þ at t ¼ 2.
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than that of Fð1Þð0; xÞ, which shows that an encoding
operation by Ô affects nonlocal correlations. At t ¼ 2, four
weighting functions are nonvanishing and localized around
the circle with radius 2, reflecting the fact that the massless
scalar field propagates at the speed of light c ¼ 1. At t ¼ 4,
four weighting functions are localized around the circle
with radius 4.

C. Propagation of information in (2 + 1)-dimensional
Minkowski spacetime

We now investigate the time evolution of the QIC in
(2þ 1)-dimensional Minkowski spacetime, where the
strong Huygens principle is violated. We again adopt a
Gaussian smearing,

vð1ÞðxÞ ¼ e−
jx−x0 j2
2σ2 ; ð38Þ

and vð2ÞðxÞ ¼ 0. Its Fourier transformation is given by

ṽð1ÞðkÞ ¼ ð2πσ2Þe−σ2

2
jkj2eik·x0 : ð39Þ

The integral in Eq. (29) is calculated as

Z
d2k

ð2πÞ22jkj e
−ijkjðt0−tÞe−ik·xṽð1ÞðkÞ

¼ 2πσ2

ð2πÞ22
Z

d2k
jkj e

−σ2

2
jkj2e−ijkjðt0−tÞeik·ðx0−xÞ

¼ 2πσ2

ð2πÞ22
Z

∞

0

dke−
σ2

2
k2e−ikðt0−tÞ

Z
2π

0

dθeikjx0−xj cos θ

¼ σ2

2

Z
∞

0

dke−
σ2

2
k2e−ikðt0−tÞJ0ðkjx0 − xjÞ; ð40Þ

FIG. 7. σ2Fð1Þðt; x; y; 0Þ at t ¼ 4.

FIG. 8. σFð2Þðt; x; y; 0Þ at t ¼ 4.

FIG. 9. σ2Gð1Þðt; x; y; 0Þ at t ¼ 4.

FIG. 10. σGð2Þðt; x; y; 0Þ at t ¼ 4.
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where we have used the integral representation of Bessel
function:

J0ðξÞ ¼
1

2π

Z
2π

0

dθeiξ cos θ: ð41Þ

Equation (40) can be numerically evaluated.
On the other hand, the normalization constant α is given

by α ¼ π
3
4σ

3
2 since

h0jÔ2j0i ¼
Z

d2k
ð2πÞ22jkj jṽ

ð1ÞðkÞj2 ¼ π
3
2σ3

2
: ð42Þ

Figures 11–20 show the time evolution of the QIC mode.
In these figures, the weighting function is made to be
dimensionless by using σ. Notice that Fð2Þð0; x; yÞ ¼
Gð1Þð0; x; yÞ ¼ 0. The parameters characterizing the

FIG. 11. σ3=2Fð1Þðt; x; yÞ at t ¼ 0.

FIG. 12. σ1=2Gð2Þðt; x; yÞ at t ¼ 0.

FIG. 13. σ3=2Fð1Þðt; x; yÞ at t ¼ 2.

FIG. 14. σ1=2Fð2Þðt; x; yÞ at t ¼ 2.

FIG. 15. σ3=2Gð1Þðt; x; yÞ at t ¼ 2.
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detector are fixed at σ ¼ 0.2 and x0 ¼ 0. The behavior in
this case seems to be qualitatively same as in (3þ 1)-
dimensional Minkowski spacetime. For example, the
weighting functions are peaked in the region corresponding
to the light cone. In the (2þ 1)-dimensional case, however,
the weighting functions have a broader tail inside the light
cone than those in (3þ 1)-dimensional case, since the
strong Huygens principle is violated in the former case. In
Figs. 21, 8 and 18 are compared at y ¼ 0. For d ¼ 3, the
function is strongly localized around the light cone x ¼ �4,
while it has a tail inside the light cone for d ¼ 2.

III. NOISE REDUCTION BY MEASUREMENTS
OUTSIDE THE CAUSAL FUTURE

From Eq. (7), it can be seen that, even when Ô is strictly
localized in a spatial region, the operator fΨðÔÞ has a

FIG. 17. σ3=2Fð1Þðt; x; yÞ at t ¼ 4.

FIG. 18. σ1=2Fð2Þðt; x; yÞ at t ¼ 4.

FIG. 16. σ1=2Gð2Þðt; x; yÞ at t ¼ 2. FIG. 19. σ3=2Gð1Þðt; x; yÞ at t ¼ 4.

FIG. 20. σ1=2Gð2Þðt; x; yÞ at t ¼ 4.
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broader support, meaning that the QIC is a delocalized
mode. As mentioned in the Introduction, this is because
information is stored in nonlocal correlations due to the
spatial entanglement of the field in its ground state. To
explore the physical implications of this tail in fΨðÔÞ, let us
consider the following information transmission protocol:
(1) Encoding: Alice does nothing to the field when she

wants to encode 0. She turns on the “switch” of her
UDW detector (i.e., she couples to the field) if she
wants to encode 1. We assume that at the initial time
the qubit of Alice’s detector is in the ground state
jgiA and the field is in the vacuum state j0i. For a
delta function switching function, the encoding
process is implemented by the unitary operator

ÛA ≡ e−iλAμ̂Aðtenc:Þ⊗ÔA ; ð43Þ

where tenc: is the time when Alice encodes the
information and μ̂A is a monopole operator of Alice’s
detector expressed by

μAðtÞ ¼ e−iΩAtjgihej þ eiΩAtjeihgj ð44Þ

with the ground state jgi and excited state jei. The
parameter ΩA > 0 denotes the energy gap of Alice’s
qubit. The operator ÔA is given by

ÔA ¼
Z

ddxðvð1ÞA ðxÞϕ̂ðtenc:; xÞ

þ vð2ÞA ðxÞΠ̂ðtenc:; xÞÞ ð45Þ

for real functions vð1ÞA ðxÞ and vð2ÞA ðxÞ which have
finite support. For example, λA ¼ 0 and λA ¼ 1
correspond to the cases where she encodes 0 and
1, respectively.

(2) Decoding: Bob tries to decode information from the
field by using UDW detectors. To investigate the
enhancement of decoding due to correlations, let us
assume that he prepares three detectors B1, B2, and
B3. We assume that the detectors are located inside,

on, and outside the smeared light cone of Alice’s
encoding operation, respectively. For simplicity, we
assume that the detectors are initially in their ground
states jgiBi

and pretimed to interact instantaneously
with the field at t ¼ tdec: > tenc:. The decoding
unitary operation is expressed as

ÛB ¼ e−iλB1 μ̂B1 ðtdec:Þ⊗ÔB1

× e−iλB2 μ̂B2 ðtdec:Þ⊗ÔB2e−iλB3 μ̂B3 ðtdec:Þ⊗ÔB3 ; ð46Þ

where μ̂Bi
is the monopole operator of the detector

Bi. Since the detectors are spatially separated, the
ÔBi

commute with each other. After the interaction,
projective measurements are performed for the
detectors, and Bob gathers the measurement results
to decode the information. The probability distribu-
tion of the measurement results is given by

pB1B2B3
ðb1; b2; b3jλAÞ

≡ hΦjÛ†
AÛB

†Êðz1;z2;z3ÞÛBÛAjΦi; ð47Þ

where jΦi≡ jgiB1
jgiB2

jgiB3
jgiAj0i and Êðb1;b2;b3Þ is

a projection-valued measure defined by

Êðb1;b2;b3Þ

≡ jb1iB1
hb1jB1

⊗ jb2iB2
hb2jB2

⊗ jb3iB3
hb3jB3

ð48Þ

for bi ¼ e, g. Bob tries to recover the bit Alice sent
by using (some of) the detectors’ results. When Bob
uses some of his detectors, the probability distribu-
tion of the bits he receives is calculated as the
marginal distribution. For example, if Bob uses the
detector B2, it is given by

pB2
ðb2jλAÞ≡

X
b1;b3¼e;g

pB1B2B3
ðb1; b2; b3Þ: ð49Þ

When Alice encodes 0 with probability q, the joint
probability distribution is given by

pABða; bÞ ¼
�
qpBðbjλA ¼ 0Þ ðif a ¼ 0Þ
ð1 − qÞpBðbjλA ¼ 1Þ ðif a ¼ 1Þ ; ð50Þ

where B denotes one of fB1; B2; B3; B1B2; B2B3; B1B3;
B1B2B3g depending on the detectors that Bob uses. Let us
adopt the classical channel capacity as a quantifier of the
efficiency of information transmission, which is given by

CB ≡ sup
q
IðA;BÞ; ð51Þ

FIG. 21. Comparison of Figs. 8 and 18 at y ¼ 0.
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where IðA;BÞ is the mutual information defined by

IðA;BÞ ¼
X
a

X
b

pABða; bÞ log
�

pABða; bÞ
pAðaÞpBðbÞ

�
; ð52Þ

where the marginal distributions are given by

pAðaÞ ¼
X
b

pABða; bÞ ¼
�
q ðif a ¼ 0Þ
ð1 − qÞ ðif a ¼ 1Þ ð53Þ

and

pBðbÞ≡
X
a

pABða; bÞ ¼ qpBðbj0Þ þ ð1 − qÞpBðbj1Þ:

ð54Þ

As a simple case where the smearing functions of Alice’s
detector have finite support, let us adopt hard sphere
smearing functions:

vð1ÞA ðxÞ ¼
�
1 ðif jxj < RAÞ
0 ðotherwiseÞ ; vð2ÞA ðxÞ ¼ 0: ð55Þ

For Bob’s detectors, we also adopt compact smearing
functions similar to Alice’s:

vð1ÞBi
ðxÞ¼

�
1 ðif rBi

< jxj<RBi
Þ

0 ðotherwiseÞ ; vð2ÞBi
ðxÞ¼0: ð56Þ

To make sure that detectors B1, B2, and B3 are located
inside, on, and outside the smeared light cone, the radii
have to satisfy

rB1
< RB1

< Δt − RA;

Δt − RA < rB2
< RB2

< RA þ Δt;

RA þ Δt < rB3
< RB3

; ð57Þ

where we have defined Δt≡ tdec: − tenc:. The spatial dis-
tribution of the detectors is summarized in Fig. 22.
The probability distribution can be straightforwardly

calculated, and is given by

pλAðz1; z2; z3Þ ¼
1

2

X
sA¼�

X
s1;s2;s3;s01;s

0
2
;s0
3
¼�

×hgjsiihsijUiðtÞjziihzijUiðtÞ†js0iihs0ijgiÞ × exp

�
−
1

2

X3
i¼1

λBi
ðsi − s0iÞ

X3
j¼1

λBj
ðsj − s0jÞ

×
Z

ddk
ð2πÞd2jkj ṽ

ð1Þ
Bi
ðkÞṽð1ÞBj

ðkÞ�
�
× exp

�
2λAsA

X3
i¼1

λBi
ðsi − s0iÞ

× Im

�Z
ddk

ð2πÞd2jkj e
−ijkjΔtṽð1ÞBi

ðkÞṽð1ÞA ðkÞ�
��

: ð58Þ

Here, we have introduced the eigenvectors of the Pauli x
operator j�i≡ 1ffiffi

2
p ðjei � jgiÞ. The detailed derivation can

be found in Appendix A. It should be noted that the result is
independent of the energy gap of the detectors since the
detectors remains in their ground state before the instanta-
neous interaction with the field.
By using this formula, the classical channel capacity is

numerically evaluated in (3þ 1)- and (2þ 1)-dimensional
Minkowski spacetimes. The results are summarized in
Table I.
First, CB3

vanishes in both cases, reflecting the fact that
there is no superluminal signaling. However, this does not
mean that the detector B3 is useless in decoding the
information. For example,CB2

< CB2B3
holds in both cases.

It means that the measurement result of detector B3

enhances the channel capacity once it is processed with
the result of B2. This can be interpreted as follows:
quantum fields are noisy as media of communication since
they have spatial entanglement. Nevertheless, the noises are

FIG. 22. Schematic figure of the spatial distribution of detec-
tors. For simplicity, we have set rB1

¼ 0. The detectors B1, B2,
and B3 are located inside, on, and outside the smeared light cone
of the region where the detector A is located, respectively.
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nonlocally correlated. This suggests that by using the
measurement result on the detector B3 we can reduce
the noise in the measurement result on the detector B2. As a
consequence, the channel capacity can be enhanced, as we
show to be the case.
Second, note that CB1

vanishes in (3þ 1)-dimensional
Minkowski spacetime, while it does not in the (2þ 1)-
dimensional case. This is an explicit consequence of the
violation of the strong Hyugens principle in (2þ 1)-
dimensional Minkowski spacetime. In both spacetimes,
however, the measurement result on detector B1 is also
useful if it is combined with the one on detector B2, which
can be seen from the fact that in both cases CB2

< CB1B2

holds. Therefore, even when the strong Huygens principle
is valid, the detector inside the light cone is also useful in
communication.
Finally, it should be noted that the QIC identifies the

noises which may be used to enhance the channel capacity.
Suppose that Bob adopts another UDW detector B4 whose
measurement operation commutes with both ÔA and
fΨðÔAÞ. Since the QIC mode is not correlated with the
modes orthogonal to it, no information is gained from B4

even when it is combined with another detector, e.g., B2.

IV. QUANTUM SHOCKWAVE COMMUNICATION
AND MULTI-MODE QIC

So far, we have seen that the notion of a QIC can be used
to identify the information carrier if the encoding operation
is generated by a single Hermitian operator. For example,
this analysis can be used in the case where Alice uses an
UDW detector which instantaneously couples to the field.
However, from the viewpoint of information transmission,
this restriction makes the problem too simple. For example,
it is known that the quantum channel capacity always
vanishes when Alice uses a simple-generated encoding
unitary [6]. Furthermore, quantum shockwave communi-
cation protocols [2] cannot be analyzed by using the single-
mode QIC.
In this section, we first present a general protocol to

identify multiple modes in a pure state which carry
information. For an encoding operation generated by k
generators, (at most) k modes are the information carrier.
We call this a k-mode QIC, as it is a natural extension of the
single-mode QIC.

A. Multimode quantum information capsule

Assume that the encoding process is expressed by
quantum operations generated by a finite number of
operators fÔigNi¼1, each of which is given by

Ôi ¼
Z

ddxðvð1Þi ðxÞϕ̂ðti; xÞ þ vð2Þi ðxÞΠ̂ðti; xÞÞ; ð59Þ

where vð1Þi ðxÞ and vð2Þi ðxÞ are real functions. For example,
this condition is satisfied when Alice adopts k UDW
inertial detectors with interaction Hamiltonians

Ĥi ¼ λiχiðtÞμ̂iðtÞ ⊗ ÔiðtÞ; ð60Þ

χiðtÞ ¼ δðt − tiÞ; ð61Þ

ÔðtÞ ¼
Z

ddxðvð1Þi ðxÞϕ̂ðt; xÞ þ vð2Þi ðxÞΠ̂ðt; xÞÞ ð62Þ

for i ¼ 1;…; k. Here, λi denotes the coupling constant,
μ̂iðtÞ is an observable of the ith detector, and

vð1Þi ðxÞ; vð2Þi ðxÞ are the smearing functions.
When k ¼ 1, the single-mode QIC formula uniquely

identifies the information carrier mode which is charac-
terized by

Q̂1 ≡ 1

α1
Ô1; P̂1 ≡ 1

α1
fΨðÔ1Þ; ð63Þ

where α1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hΨjÔ2

1jΨi
q

is a normalization factor. Since

the QIC mode is in a pure state, the Gaussian state jΨi is
expressed as

jΨi ¼ j0i1 ⊗ jΨ0i1̄; ð64Þ

where jΨ0i1̄ denotes the state for the subsystem 1̄ comple-
ment to the subsystem characterized by ðQ̂1; P̂1Þ. For our
purpose, we do not need to calculate jΨ0i1̄ itself explicitly.
It should be noted that jΨi1̄ is also a Gaussian state.
The key idea to extend this analysis to k ¼ 2 is to

decompose the operator Ô2 into the contributions for the
subsystems 1 and 1̄. Defining

TABLE I. Classical channel capacities. The radii of detectors and the time difference are fixed RA ¼ 1, rB1
¼ 0, RB1

¼ 0.9, rB2
¼ 1.1,

RB2
¼ 2.9, rB3

¼ 3.1, RB3
¼ 4, and Δt ¼ 2 so that Eq. (57) is satisfied. The coupling constants are fixed as λB1

¼ λB2
¼ λB3

¼ 0.2. The
subscripts represent the detectors which the receiver (Bob) adopts. The detectors B1, B2, and B3 are, respectively, located inside, on, and
outside the smeared light cone of the region where the encoding operation has been performed.

CB1
CB2

CB3
CB1B2

CB2B3
CB1B3

CB1B2B3

d ¼ 3 0 0.0000339083 0 0.0000345126 0.0000373605 0 0.0000379689
d ¼ 2 0.00167331 0.00872886 0 0.0102214 0.0140338 0.00167926 0.0154962
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Ô0
2 ≡ Ô2 − ðβ2;1Q̂1 þ γ2;1P̂1Þ; ð65Þ

where

β2;1 ≡ 1

i
hΨj½Ô2; P̂1�jΨi; ð66Þ

γ2;1 ≡ −
1

i
hΨj½Ô2; Q̂1�jΨi; ð67Þ

the operator Ô0
2 commutes with Q̂1 and P̂1. Therefore, it is

an operator on the subsystem 1̄. Since the subsystems 1 and
1̄ share no correlations in jΨi, the operator fΨðÔ0

2Þ must
commute with both Q̂1 and P̂1. See Appendix B for a more
formal proof. Therefore, the mode defined by

Q̂2 ≡ 1

α2
ðÔ2 − ðβ2;1Q̂1 þ γ2;1P̂1ÞÞ ð68Þ

P̂2 ≡ fΨðQ̂2Þ ¼
1

α2
ðfΨðÔ2Þ − ðβ2;1P̂1 − γ2;1Q̂1ÞÞ ð69Þ

is orthogonal to the mode ðQ̂1; P̂1Þ and is initially in a pure
state in the standard form. Here, we have used the linearity
of fΨ and Eq. (16). The factor α2 is fixed so that

hΨjQ̂2
2jΨi ¼

1

2
ð70Þ

is satisfied. Since

hΨjÔ2
2jΨi ¼ α22hΨjQ̂2

2jΨi þ
1

2
ðβ22;1 þ γ22;1Þ ð71Þ

holds, α2 is determined as

α2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hΨjÔ2

2jΨi − ðβ22;1 þ γ22;1Þ
q

: ð72Þ

By repeating this procedure, we obtain the general
protocol to identify the modes in which information would
be encoded. Recursively, we obtain

Q̂i ≡ 1

αi

�
Ôi −

Xi−1
j¼1

ðβi;jQ̂j þ γi;jP̂jÞ
�

P̂i ≡ 1

αi

�
fΨðÔiÞ −

Xi−1
j¼1

ðβi;jP̂j − γi;jQ̂jÞ
�
; ð73Þ

where

βi;j ≡ 1

i
hΨj½Ôi; P̂j�jΨi

¼ 1

αj

�
1

i
hΨj½Ôi; fΨðÔjÞ�jΨi

−
Xj−1
k¼1

ðβj;kβi;k þ γj;kγi;kÞ
�

ð74Þ

γi;j ≡ −
1

i
hΨj½Ôi; Q̂j�jΨi

¼ 1

αj

�
−
1

i
hΨj½Ôi; Ôj�jΨi

−
Xj−1
k¼1

ðβj;kγi;k − γj;kβi;kÞ
�

ð75Þ

αi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hΨjÔ2

i jΨi −
Xi−1
j¼1

ðβ2i;j þ γ2i;jÞ
vuut : ð76Þ

The modes defined here are initially in a pure state carrying
the information encoded by operations generated by
fÔigki¼1. Hence, we call this set of modes a k-mode
QIC. Technically speaking, we have assumed that αi≠0,
which usually holds. In the case where αi ¼ 0 for some i,
it implies that Ôi is written as a linear combination of
fðQ̂j; P̂jÞgi−1j¼1. Therefore, (i − 1) modes play the role of
information carrier for the ith encoding operation, and we
can simply skip the recursion process for this operation. In
this sense, the protocol to identify QIC works without any
exception. Hereafter, we assume that αi ≠ 0 for notational
simplicity.
It should be noted that a k-mode QIC is unique as a

subsystem of the information carrier. By decomposing the
subsystem into k independent modes, it is possible to
visualize the propagation of modes by plotting their
weighting functions. Although the plots will help to get
an intuition about where information propagates, we need
to be careful since they may look different if one adopts
another decomposition. Hereafter, we adopt k modes in
Eq. (73) to visualize the QIC. For this decomposition, the
following properties are satisfied: (i) each mode is initially
in a pure state in the standard form, and (ii) when
information of the jth detector is encoded in the field,
the ið> jÞth mode is independent of the encoded informa-
tion. The QIC operators fðQ̂i; P̂iÞgki¼1 at t can be expressed

by weighting functions Fð1Þ
i ; Fð2Þ

i ; Gð1Þ
i ; Gð2Þ

i satisfying

Q̂i ¼
Z

ddxðFð1Þ
i ðt; xÞϕ̂ðt; xÞ þ Fð2Þðt; xÞΠ̂ðt; xÞÞ; ð77Þ

P̂i ¼
Z

ddxðGð1Þ
i ðt; xÞϕ̂ðt; xÞ þGð2Þðt; xÞΠ̂ðt; xÞÞ: ð78Þ
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From Eq. (73), we get

FðlÞ
i ðt; xÞ

¼ 1

αi

�
vðlÞi ðt; xÞ −

�Xi−1
j¼1

βi;jF
ðlÞ
j ðt; xÞ þ γi;jG

ðlÞ
j ðt; xÞ

��
;

ð79Þ

GðlÞ
i ðt; xÞ

¼ 1

αi

�
uðlÞi ðt; xÞ −

�Xi−1
j¼1

βi;jG
ðlÞ
j ðt; xÞ − γi;jF

ðlÞ
j ðt; xÞ

��
;

ð80Þ

where vðlÞi and uðlÞi are defined by

Ôi ¼
Z

ddxðvð1Þi ðt; xÞϕ̂ðt; xÞ þ vð2Þðt; xÞΠ̂ðt; xÞÞ; ð81Þ

fΨðÔiÞ ¼
Z

ddxðuð1Þi ðt; xÞϕ̂ðt; xÞ þ uð2Þðt; xÞΠ̂ðt; xÞÞ:

ð82Þ

These are the formulas for the k-mode QIC written in terms
of weighting functions.
In the case where vð2ÞðxÞ ¼ 0 holds, the commutators are

simplified and given by

1

i
hΨj½Ôi; Ôj�jΨi

¼ 2Im

�Z
ddk

ð2πÞd2jkj e
−ijkjðti−tjÞṽiðkÞṽjðkÞ�

�

1

i
hΨj½Ôi; f0ðÔjÞ�jΨi

¼ 2Re

�Z
ddk

ð2πÞd2jkj e
−ijkjðti−tjÞṽiðkÞṽjðkÞ�

�
: ð83Þ

B. Quantum shockwave in (3 + 1)- and
(2 + 1)-dimensional Minkowski spacetimes

As is done in Ref. [2], let us investigate the case where
Alice uses three UDW detectors which are located in
spatially separated regions in the (3þ 1)-and (2þ 1)-
dimensional Minkowski spacetimes to create quantum
shockwaves. The three-mode QIC visualizes how a shock-
wave is formed by this encoding process. We adopt the
Gaussian smearing functions

vð1Þi ðxÞ ¼ e−
jx−xi j2
2σ2 ; vð2ÞðxÞ ¼ 0; ð84Þ

where xi denotes the spatial position of the detector. The
integral appearing in Eq. (83) can be evaluated in exactly
the same way as in Sec. II.
Figures 23 and 24 show the weighting functions of

three-mode QIC operators in the (3þ 1)- and (2þ 1)-
dimensional cases at t ¼ 8, where we have fixed σ ¼ 0.2.
The spacetime positions of the detectors are set to be ti ¼ i,

FIG. 23. Quantum shockwave forming in (3þ 1)-dimensional
Minkowski spacetime at z ¼ 0. In this figure, four weighting
functions for three modes are plotted separately.

FIG. 24. Quantum shockwave forming in (2þ 1)-dimensional
Minkowski spacetime. In this figure, four weighting functions for
three modes are plotted separately.
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xi ¼ 5þ 1.5i, and yi ¼ zi ¼ 0 for i ¼ 1, 2, 3. In each
figure, 4 × 3 ¼ 12 weighting functions are plotted and are
made to be dimensionless by using σ. Notice that some
of the weighting functions overlap. We do not specify the
correspondence between waves and weighting functions
here. Each weighting function is separately plotted in
Figs. 26–49 in Appendix C. The wave front of the
shockwave can be easily identified in both cases.
As we have seen in Sec. II, the weighting functions of

QIC mode(s) in the (3þ 1)-dimensional case are sharper
than those in the (2þ 1)-dimensional case since the strong
Huygens principle holds in the former case but not in the
latter [3,41]. To compare the sharpness of the shockwaves

in (3þ 1)- and (2þ 1)-dimensional spacetime, Fð2Þ
i ðt; xÞ is

plotted at y ¼ 0 and z ¼ 0 in Fig. 25. It shows that the
weighting functions in the (3þ 1)-dimensional case
are well localized, while they have a broader tail in the
(2þ 1)-dimensional case.

V. CONCLUSIONS

We applied the method of QICs to study the evolution of
the information that is transferred from a qubit particle
detector operated by Alice into a quantum field, tracking
the information-carrying disturbances seeded by Alice in
the field as they evolve in space and time. When allowing
Bob to place detectors both inside and outside of the future
light cone of Alice’s encoding operation, one obtains two
quantum quantum channels. The first channel is from Alice
to those of Bob’s detectors which are inside the light cone,
and the second channel is from Alice to Bob’s detectors
outside the light cone. While the first channel possesses a
finite channel capacity, the second channel has, of course,
zero capacity due to the spacelike separation. We found that
the channel capacity is superadditive in the sense that the
capacity of the combined channel is enlarged. This is due to
the fact that the vacuum is a spatially entangled state and
that, therefore, the quantum noise in the receivers possesses

correlations that Bob can use in effect to reduce his signal-
to-noise ratio.
It should be very interesting to investigate to what extent

this phenomenon is related to the known phenomenon of the
superadditivity of the classical capacity of quantum channels
in settings outsidequantumfield theory. For the literature, see,
e.g., Refs. [42–45]. There, the superadditivity is normally
associatedwith the use of entanglement in the channel inputs.
In contrast, in our case here, there is only one input while
the superadditivity arises from preexisting entanglement of
quantum noise on the side of the receivers. It will be
interesting to further investigate the relationship of these
twomechanisms also in light of the known relationship, in the
usual settings outside quantum field theory, between the
superadditivity of channel capacity and the subadditivity of
minimum output entropy; see, e.g., Ref. [42].
Further, we generalized the QIC method to the case of

multiple modes. In this generalized setting, Alice and Bob
use NA and NB emitters and receivers, respectively, to
obtain what may be called a quantum MIMO (QMIMO)
setup, that generalizes the currently ubiquitously used
multiple input, multiple output antenna communication
systems. Our calculations were simplified by considering
the limit of ultrafast couplings of the detectors to the field,
described by Dirac delta functions. The new multimode
QIC formula in Eq. (73) then identifies the multimode QIC,
i.e., the ðNA þ NBÞ information-carrying modes of the field
that are in a pure state and that couple to the emitting and
receiving UDW detectors. The encoding and decoding
processes consists of the interactions among the UDW
detectors and the ðNA þ NBÞ-mode oscillators. Each of the
QIC-mode oscillators is initially in the vacuum state, and
the generators of interactions are given by

Ôi ¼ αiQ̂i þ
Xi−1
j¼1

ðβi;jQ̂j þ γi;jP̂jÞ: ð85Þ

The key spatial entanglement of the vacuum state of the
field then enters through the calculation of αi; βi;j; γi;j.
Calculating channel capacities is hard, but one of the
advantages of the QIC method is that it enables one to
separate the analysis of information communication into
two parts: (i) the analysis of the propagation of information-
carrying QIC modes in a quantum field and (ii) the analysis
of encoding and decoding process using detectors.
We demonstrated the new multimode QIC technique for

QMIMO by applying it to the case where Alice uses
suitably lined-up and pretimed emitters to communicate
with Bob via quantum shockwaves (see [2]) in the field. By
modulating the entanglement of the emitters, it is possible
to modulate the shape of the quantum shockwaves.
Indeed, it should be very interesting to study the use of the

multimode QIC technique to investigate the properties of not
only the classical but also the quantum channel capacities of
QMIMO systems, for example, their superadditivity.

FIG. 25. Comparison of fσFð2Þ
i ðt; x; 0; 0Þg3i¼1 for d ¼ 3 and

fσ1=2Fð2Þ
i ðt; x; 0Þg3i¼1 for d ¼ 2 at t ¼ 8.
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A technical point in this regard is the fact that, in order to be
able to perform calculations nonperturbatively, we are work-
ing in the limit of short coupling times. It is known that in this
limit single interactions generated by Hamiltonians of the
form A ⊗ B, such as those that arise in quantum field theory,
are entanglement breaking [7] and therefore lead to vanishing
quantumchannel capacities in the case of singlemodes. Itwas
important, therefore, to generalize to the setting of QMIMO.
InQMIMO, if multiple emitters are entangledwith an ancilla,
then the quantum field can acquire some of that entanglement
and transport it to Bob’s detectors. The QMIMO channels
therefore generally possess a finite quantum channel capacity,
i.e., a finite capacity to transmit preexisting entanglementwith
an ancilla from Alice to Bob.
Apart from enabling the study of classical and quantum

channel capacities through quantum fields, such as their
superadditivity, the new methods should also be useful in
other contexts of relativistic quantum information theory,
such as the harvesting of entanglement from the quantum
vacuum [11,12,14,16–20,22–24,30].
Finally, let us clarify the relationship of the present work to

the notion of purification partner modes. For a given mode, a
modewhich purifies the mode is called its partner. A formula
to identify the partner mode is proven for the vacuum state
[46], for general Gaussian states of a scalar field [47], and it is
generalized for fermionic fields in Ref. [48]. The partner
formulas have been used in the contexts of black hole
information loss [49] and entanglement harvesting [48,50].
From theviewpoint of QICs, the partner modes correspond to
a class of two-modeQICs. Since ourmultimodeQIC formula
can identify a k-modeQICwith arbitrary k, the present results
offer wider opportunities for exploring the entanglement
structure in quantum fields.

ACKNOWLEDGMENTS

The authors are grateful to M. Hotta, T. Tomitsuka,
and A. Chatwin-Davies for valuable discussions. K. Y.
acknowledges the support of JSPS KAKENHI Grant
No. 18J20057 and the Graduate Program on Physics for
the Universe of Tohoku University. P. S. would like to
acknowledge the support of the NSERC CGS-M and
CGS-D scholarships. E. M. M. acknowledges support
through anOntario EarlyResearcherAward.A. K. acknowl-
edges support through a Google Faculty Research Award.
A. K. and E. M.M. acknowledge support from the National
Science and Engineering Research Council of Canada.

APPENDIX A: THE CALCULATION OF THE
JOINT PROBABILITY DISTRIBUTION

Here, we use the following notation:

zi ¼ e; g; si ¼ �; j�i ¼ 1ffiffiffi
2

p ðjei � jgiÞ: ðA1Þ

Since

e−iλσ̂ðtÞ⊗ÔðtÞ

¼ ðeiΩjeihej ⊗ IÞ
�X

s¼�
jsihsj ⊗ e−iλsÔðtÞ

�
ðe−iΩjeihej ⊗ IÞ

ðA2Þ

holds for any operator Ô, we get

pðz1; z2; z3Þ

¼
X

s1;s01;s2;s
0
2
;s3;s03¼�

Y3
i¼1

ðhgjsiihsijUiðtÞjziihzijUiðtÞjs0iihs0ijgiÞ

× hgA;ΨjeiλAσ̂
ðAÞ
x ÔAeiÔBðs1;s2;s3Þ

× e−iÔBðs01;s02;s03Þe−iλAσ̂
ðAÞ
x ÔA jgA;Ψi; ðA3Þ

where we have defined

ÔBðs1; s2; s3Þ≡
X3
i¼1

λBi
siÔBi

: ðA4Þ

A straightforward calculation shows that

hgA;ΨjeiλAσ̂
ðAÞ
x ÔAeiÔBðs1;s2;s3Þ × e−iÔBðs01;s02;s03Þe−iλAσ̂

ðAÞ
x ÔA jgA;Ψi

ðA5Þ

¼
X
sA¼�

hgjsAihsAjgi × hΨjeiλAsAÔAeiÔBðs1;s2;s3Þ

× e−iÔBðs01;s02;s03Þe−iλAsAÔA jΨi

¼ 1

2

X
sA¼�

hΨjeiλAsAÔAeiÔBðs1;s2;s3Þ × e−iÔBðs01;s02;s03Þe−iλAsAÔA jΨi

ðA6Þ

holds.
From the Baker-Campbell-Hausdorff (BCH) formula,

if ½A; B� ∝ I, it holds that

eAeB ¼ eAþBe
1
2
½A;B�; ðA7Þ

implying that

eAeB ¼ eBeAe½A;B�: ðA8Þ

Thus, it holds that
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eiλAsAÔAeiÔBðs1;s2;s3Þe−iÔBðs01;s02;s03Þe−iλAsAÔA

¼ eiÔBðs1;s2;s3Þe−iÔBðs01;s02;s03Þ

× e−λAsA½ÔA;ÔBðs1;s2;s3Þ�e−λAsA½ÔBðs01;s02;s03Þ;ÔA�

¼ eiðÔBðs1;s2;s3Þ−ÔBðs01;s02;s3ÞÞe
1
2
½ÔBðs1;s2;s3Þ;ÔBðs01;s02;s03Þ�

× e−λAsA½ÔA;ÔBðs1;s2;s3Þ�e−λAsA½ÔBðs01;s02;s03Þ;ÔA�: ðA9Þ

Now, from the BCH formula,

hΨjeiÔjΨi

¼ hΨj exp
�
i
Z

ddkðcðkÞâ†k þ cðkÞ�âkÞÞ
�
jΨi

¼ hΨj exp
�
i
Z

ddxcðkÞâ†k
�
exp

�
i
Z

ddxcðkÞ�âk
�
jΨi

× e−
1
2

R
ddkjcðkÞj2

¼ e−
1
2

R
ddkjcðkÞj2 ; ðA10Þ

where we have introduced annihilation operators âk that
annihilate the Gaussian state jΨi, i.e., âkjΨi ¼ 0. On the
other hand,

hΨjÔ2jΨi ¼
Z

ddkjcðkÞj2: ðA11Þ

Thus,

hΨjeiÔjΨi ¼ e−
1
2
hΨjÔ2jΨi: ðA12Þ

So far, we have shown

hΨjeiλAsAÔAeiÔBðs1;s2;s3Þe−iÔBðs01;s02;s03Þe−iλAsAÔA jΨi
¼ e−

1
2
hΨjðÔBðs1;s2;s3Þ−ÔBðs01;s02;s3ÞÞ2jΨi

× e
1
2
hΨj½ÔBðs1;s2;s3Þ;ÔBðs01;s02;s03Þ�jΨi

× e−λAsAhΨj½ÔA;ÔBðs1;s2;s3Þ�jΨi

× e−λAsAhΨj½ÔBðs01;s02;s03Þ;ÔA�jΨi: ðA13Þ

Each element can be evaluated by the same way we have
done in Sec. II for jΨi ¼ j0i. The first factor is calculated as
follows:

h0jðÔBðs1; s2; s3Þ − Ôðs01; s02; s03ÞÞ2j0i

¼
X3
i¼1

λBi
ðsi − s0iÞ

X3
j¼1

λBj
ðsj − s0jÞ

×
Z

ddxddyvð1Þi ðxÞvð1Þj ðyÞ
Z

ddk
ð2πÞd2jkj e

ik·ðx−yÞ

¼
X3
i¼1

λBi
ðsi − s0iÞ

X3
j¼1

λBj
ðsj − s0jÞ

×
Z

ddk
ð2πÞd2jkj ṽ

ð1Þ
i ðkÞṽð1Þj ðkÞ�: ðA14Þ

Since the operators ÔBi
commute with each other,

hΨj½ÔBðs1; s2; s3Þ; ÔBðs01; s02; s03Þ�jΨi ¼ 0 ðA15Þ

holds. Introducing Δt≡ tenc: − tdec:, we get

λAsAhΨj½ÔBðs1; s2; s3Þ; ÔA�jΨi

¼ λAsA
X3
i¼1

λBi
sBi

×
Z

ddxddyvBi
ðxÞvAðyÞ

× 2Im

�Z
ddk

ð2πÞd2jkj e
−ijkjΔteik·ðx−yÞ

�

¼ λAsA
X3
i¼1

λBi
sBi

× 2Im
�Z

ddk
ð2πÞd2jkj e

−ijkjΔtṽBi
ðkÞṽAðkÞ�

�
ðA16Þ

and

e−λAsAhΨj½ÔA;ÔBðs1;s2;s3Þ�jΨi × e−λAsAhΨj½ÔBðs01;s02;s03Þ;ÔA�jΨi

¼ exp

�
2λAsA

X3
i¼1

λBi
ðsBi

− sBi
0Þ

× Im

�Z
ddk

ð2πÞd2jkj e
−ijkjΔtṽBi

ðkÞṽAðkÞ�
��

: ðA17Þ

Thus, we have shown the following formula:
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pλAðz1; z2; z3Þ ¼
1

2

X
sA¼�

X
s1;s2;s3;s01;s

0
2
;s0
3
¼�

×hgjsiihsijUiðtÞjziihzijUiðtÞ†js0iihs0ijgiÞ × exp

�
−
1

2

X3
i¼1

λBi
ðsi − s0iÞ

X3
j¼1

λBj
ðsj − s0jÞ

×
Z

ddk
ð2πÞd2jkj ṽ

ð1Þ
Bi
ðkÞṽð1ÞBj

ðkÞ�
�
× exp

�
2λAsA

X3
i¼1

λBi
ðsi − s0iÞ

× Im

�Z
ddk

ð2πÞd2jkj e
−ijkjΔtṽð1ÞBi

ðkÞṽð1ÞA ðkÞ�
��

: ðA18Þ

The first factor of the summand is given by

hgjsiihsijUiðtÞjziihzijUiðtÞjs0iihs0ijgi

¼
� 1

4
sis0i ðif zi ¼ eÞ

1
4

ðif zi ¼ gÞ : ðA19Þ

APPENDIX B: THE PROOF OF
COMMUTATIVITY OF fΨðÔ2

0Þ AND ðQ̂1;P̂1Þ
Let us first show the following lemma.
Lemma 1.—For any operators Ô and Ô0 which are given

by linear combinations of canonical variables, it holds that

½Ô; fΨðÔ0Þ� ¼ −½fΨðÔÞ; Ô0�: ðB1Þ

Proof.—Let Γ̂ðxÞ≡ ðϕ̂ðt; xÞ; Π̂ðt; xÞÞT be the set of
canonical variables. Let us define

Ωðx; yÞ≡ 1

i
hΨj½Γ̂ðxÞ; Γ̂TðxÞ�jΨi

¼
�

0 δðdÞðx − yÞ
−δðdÞðx − yÞ 0

�
ðB2Þ

Mðx; yÞ≡ ReðhΨjΓ̂ðxÞ; Γ̂TðxÞjΨiÞ: ðB3Þ

We can interpret these functions as a matrix with continu-
ous indices. For example,

Ω2ðx; yÞ≡
Z

ddzΩðx; zÞΩðz; yÞ

¼ −
�
δðdÞðx − yÞ 0

0 δðdÞðx − yÞ

�
: ðB4Þ

In this notation, the operator can be expressed by inner
product

Ô≡ VTΓ̂≡
Z

ddxðvð1Þϕ̂ðt; xÞ þ vð2ÞðxÞÞΠ̂ðt; xÞÞ; ðB5Þ

where VðxÞ≡ ðvð1ÞðxÞ; vð2ÞðxÞÞT. Similarly, the other oper-
ator is expressed as Ô0 ≡ V 0TΓ̂. The map fΨ in Eq. (7) can
be rewritten as

fΨðÔÞ ¼ ð−2ΩMVÞTΓ̂: ðB6Þ

Since ΩT ¼ −Ω, it holds that

1

i
hΨj½Ô; fΨðÔ0Þ�jΨi ¼ VTΩð−2ΩMV 0Þ

¼ 2VTMV 0

¼ −
1

i
hΨj½fΨðÔÞ; Ô0�jΨi; ðB7Þ

which concludes the proof of lemma.
The commutativity follows immediately from the

lemma. Since Ô0
2 commutes with both Q̂1 and P̂1, we get

½fΨðÔ0
2Þ; Q̂1� ¼ −½Ô0

2; fΨðQ̂1Þ� ¼ −½Ô0
2; P̂1� ¼ 0:

ðB8Þ

½fΨðÔ0
2Þ; P̂1� ¼ −½Ô0

2; fΨðP̂1Þ� ¼ ½Ô0
2; Q̂1� ¼ 0: ðB9Þ

APPENDIX C: PLOTS FOR WEIGHTING
FUNCTIONS IN SEC. IV

FIG. 26. σ2Fð1Þ
1 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.
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FIG. 27. σFð2Þ
1 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 28. σ2Gð1Þ
1 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 29. σGð2Þ
1 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 30. σ2Fð1Þ
2 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 31. σFð2Þ
2 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 32. σ2Gð1Þ
2 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.
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FIG. 33. σGð2Þ
2 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 34. σ2Fð1Þ
3 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 35. σFð2Þ
3 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 36. σ2Gð1Þ
3 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 37. σGð2Þ
3 ðt; x; y; 0Þ at t ¼ 8 for d ¼ 3.

FIG. 38. σ3=2Fð1Þ
1 ðt; x; yÞ at t ¼ 8 for d ¼ 2.
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FIG. 39. σ1=2Fð2Þ
1 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 40. σ3=2Gð1Þ
1 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 41. σ1=2Gð2Þ
1 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 42. σ3=2Fð1Þ
2 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 43. σ1=2Fð2Þ
2 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 44. σ3=2Gð1Þ
2 ðt; x; yÞ at t ¼ 8 for d ¼ 2.
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FIG. 45. σ1=2Gð2Þ
2 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 46. σ3=2Fð1Þ
3 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 47. σ1=2Fð2Þ
3 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 48. σ3=2Gð1Þ
3 ðt; x; yÞ at t ¼ 8 for d ¼ 2.

FIG. 49. σ1=2Gð2Þ
3 ðt; x; yÞ at t ¼ 8 for d ¼ 2.
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