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In this paper, we develop studies of the dynamical symmetry breaking in the Horava-Lifshitz four-
fermion model for the specific case z ¼ 3 and explicitly demonstrate that for various space-time
dimensions, one could arrive at the theory displaying both dynamical generation of the Lorentz symmetry
for the kinetic term and arising the positively defined potential at the same time. At the same time, for
D ¼ 3, the Lorentz-invariant Chern-Simons term is generated.
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I. INTRODUCTION

Dynamical symmetry breaking, i.e., spontaneous
breaking of a continuous symmetry generated by quantum
corrections, is an interesting phenomenon occurring in
various field theory models, allowing for many important
effects, for example, mass generation (for reviews and
phenomenological applications, see [1,2]). The paradig-
matic example of a theory displaying such behavior is the
Gross-Neveu model [3]. Dynamical symmetry breaking
played a crucial role within the formulation of a great
unified theory [4,5]. All this justifies the interest and
importance of studying the dynamical symmetry breaking
within various contexts. Among important results, one can
mention the dynamical breaking of gauge symmetry [6],
supersymmetry [7], and Lorentz symmetry [8]. One of the
interesting applications of this methodology includes
studies of theories with space-time anisotropy, also known
as Horava-Lifshitz-like theories [9], interest to which
strongly increased in recent years (various studies of
these theories are presented in [10], see also references
therein). In these theories, the role of the continuous
symmetry is played by rotational symmetry OðdÞ, for a
d-dimensional space.
In our previous paper [11], the dynamical symmetry

breaking has been considered in a z ¼ 2nþ 1 four-fermion
Horava-Lifshitz theory. It has been shown that the effective

potential generated in the one-loop approximation pos-
sesses a set of minima allowing for spontaneous breaking
of rotational symmetry. However, the scheme proposed
in that paper needs some improvements. Indeed, it was
claimed in [11] that, starting from the four-fermion
Lagrangian proposed in the paper, one can arrive at two
possible situations. Within the first case, under a specific
gauge condition ð∂iA0Þ2 ¼ 0, arising of the Maxwell term
and hence dynamical restoring of the Lorentz symmetry in
the low-energy limit takes place, which is reasonable within
the concept of emergent dynamics [12], but the potential of
the vector field is not positive definite and hence does not
display a continuous set of minima necessary for dynamical
symmetry breaking. Within the second case, one arrives at
arising a positively defined potential possessing a set
of minima, whereas the Lorentz-invariant Maxwell-like
kinetic term, whose arising could be very natural to pro-
vide a consistent low-energy effective behavior, cannot
be generated. Clearly, none of these situations can be
treated as a completely satisfactory one from the physical
viewpoint.
Hence, a natural question is whether it is still possible to

have a situation where both Lorentz symmetric Maxwell
kinetic term and the positively defined potential with a
continuous set of minima are generated at the same time? In
this paper, we discuss such a possibility and find a
physically consistent situation where one can conciliate
arising of a potential allowing for spontaneous breaking of
rotational symmetry with arising the usual Maxwell kinetic
term for the vector field.
The structure of the paper is as follows. In Sec. II, we

introduce the action of the z ¼ 3 Lifshitz four-fermion
model and write down the generating functional and the
interaction vertices. In Sec. III, we calculate the one-loop
low-energy effective action, explicitly, the potential and the
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kinetic term. Section IV is a summary where we discuss our
results and perspectives.

II. THE z= 3 LIFSHITZ FOUR-FERMION MODEL

Let us consider the z ¼ 3 Lifshitz four-fermion model,
whose Lagrangian is given by

L0 ¼ ψ̄ði=∂0 þ ði=∂iÞ3 −m3Þψ −
gt
2N

ðψ̄λ0γ0ψÞ2

−
gs
2N

ðψ̄ ∂↔i∂
↔

jγ
ijkψÞ2; ð1Þ

where =∂0 ¼ ∂0γ
0, =∂i ¼ ∂iγ

i, ∂↔i ¼ 1
2
ð∂⃗i − ∂⃖iÞ, and γijk ¼

λ1γ
iγjγk þ λ2γ

iγkγj þ λ3γ
kγiγj, with λi being constants,

which can be either all together real or all together
imaginary, to ensure reality of the Lagrangian. We have
here a set of N spinor fields, so, ψ ≡ fψag and ψ̄ ≡ fψ̄ag,
with a ¼ 1;…; N, where further the index a is suppressed.
The gs and gt are the coupling constants in the theory, and
N will be related with one more coupling e, as N ¼ e−2.
For a more convenient description of the dynamics we can
proceed in a manner similar to [13,14], that is, we introduce
the auxiliary vector fields, A0 and Ai. As a result we arrive
at the new theory characterized by the Lagrangian:

L ¼ L0 þ
1

2gt

�
A0 −

gtffiffiffiffi
N

p ψ̄λ0γ0ψ

�
2

þ 1

2gs

�
Ak þ

gsffiffiffiffi
N

p ψ̄ ∂↔i∂
↔

jγ
ij
kψ

�
2

¼ 1

2gt
A2
0 þ

1

2gs
A2
k þ ψ̄ði=∂0 − i=∂i∂2

j

− eλ0=A0 þ eAk∂
↔

i∂
↔

jγ
ijk −m3Þψ : ð2Þ

Here e ¼ 1ffiffiffi
N

p , A2
0 ¼ A0A0, and so on. It is straightforward to

check that after eliminating the fields A0; Ai through their
equations of motion which are purely algebraic ones, the
theory (2) reduces to the theory (1). As a result, we have a
model where, as we will show, the one-loop contributions
to the two-point function of the A0;i field allow for genera-
ting the effective dynamics for this field. Throughout this
paper, we demonstrate that in this theory, the dynamics of
the Horava-Lifshitz-like vector field arises as an emergent
phenomenon (for a general discussion of emergent dynam-
ics, see [12]).
After integration by parts, we get

L ¼ 1

2gt
A2
0 þ

1

2gs
A2
k

þ ψ̄ði=∂0 − i=∂i∂2
j − eλ0=A0 − eΔijAkγ

ijk −m3Þψ ; ð3Þ

with

ΔijAk ¼ −
1

4
ð∂i∂jAkÞ −

1

2
ð∂iAkÞ∂j −

1

2
ð∂jAkÞ∂i − Ak∂i∂j:

ð4Þ

The corresponding generating functional is given by

Zðη̄; ηÞ ¼
Z

DAμDψDψ̄ei
R

d4xðLþη̄ψþψ̄ηÞ

¼
Z

DAμe
i
R

d4xð 1
2gt
A2
0
þ 1

2gs
A2
i Þ

×
Z

DψDψ̄ei
R

d4xðψ̄S−1ψþη̄ψþψ̄ηÞ; ð5Þ

where S−1 ¼ i=∂0 − i=∂i∂2
j − eλ0=A0 − eΔijAkγ

ijk −m3 is the
operator describing the quadratic action. To integrate over
the fermion fields, we make the shift ψ → ψ − Sη and
ψ̄ → ψ̄ − η̄S, so that we arrive at the transforma-
tion ψ̄S−1ψ þ η̄ψ þ ψ̄η → ψ̄S−1ψ − η̄Sη.
As a result, we obtain

Zðη̄; ηÞ ¼
Z

DAμe
i
R

d4xð 1
2gt
A2
0
þ 1

2gs
A2
i Þ

×
Z

DψDψ̄ei
R

d4xðψ̄S−1ψ−η̄SηÞ: ð6Þ

Finally, integrating over fermions, we find the result for the
generating functional

Zðη̄; ηÞ ¼
Z

DAμ exp

�
iSeff ½A� − i

Z
d4xη̄Sη

�
; ð7Þ

where the one-loop effective action of the vector field is
given by

Seff ½A� ¼
Z

dDx

�
1

2gt
A2
0 þ

1

2gs
A2
i

�
− iTr lnð=p0 þ =pip2

j

− eλ0=A0 − eΔijðpÞAkγ
ijk −m3Þ; ð8Þ

with

ΔijðpÞAk ¼ −
1

4
ð∂i∂jAkÞ þ

i
2
pið∂jAkÞ þ

i
2
pjð∂iAkÞ

þ pipjAk ð9Þ

and the space-time is D-dimensional.
Our aim in the next section will consist in calculating the

fermionic determinant in (8), so that the lower terms of the
derivative expansion of the one-loop effective action will be
obtained explicitly.

III. ONE-LOOP EFFECTIVE ACTION

Let us study the effective action. For this, we can rewrite
(8) as
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Seff ½A� ¼
Z

dDx

�
1

2gt
A2
0 þ

1

2gs
A2
i

�
þ
X∞
n¼1

SðnÞeff ½A�; ð10Þ

with

SðnÞeff ½A� ¼ iN
1

n
Tr½SðpÞeðλ0=A0 þ ΔijðpÞAkγ

ijkÞ�n; ð11Þ
where SðpÞ ¼ ðp0 þ pip2

j −m3Þ−1 is the free propa-
gator of the spinor field, and we have disregarded
−iNTr lnðp0 þ pip2

j −m3Þ, since it is field independent.

For n ¼ 1 and n ¼ 3, trivially, Sð3Þeff ½A� and Sð1Þeff ½A� vanish,
since the trace of the corresponding product of an odd
number of Dirac matrices is zero.
Let us focus our attention on contributions with n ¼ 2

and n ¼ 4, whose analysis is sufficient for the generation of
the kinetic and the lower-order potential terms. For n ¼ 2,
we have

Sð2Þeff ½A� ¼
iN
2
TrSðpÞeðλ0=A0 þ ΔijðpÞAkγ

ijkÞ
× SðpÞeðλ0=A0 þ ΔijðpÞAkγ

ijkÞ

¼ i
2

Z
dDxΠμνAμAν; ð12Þ

where

Πμν ¼ tr
Z

dDp
ð2πÞD SðpÞΓμðpÞSðp − i∂ÞΓνðp − i∂Þ; ð13Þ

with ΓμðpÞ ¼ ðλ0γ0;ΔijðpÞγijkÞ. Therefore, since Sð2Þeff ¼R
d4xLð2Þ

eff , we obtain the following low-energy effective
Lagrangian:

Lð2Þ
eff ¼

1

2
α1AiAi −

1

2
ðα2∂0Ai∂0Ai − α3∂0Ai∂iA0 − α3∂iA0∂0Ai þ α4∂iA0∂iA0Þ

−
1

2
ðα5∂iAj∂iAj − α6∂iAj∂jAiÞ þ 1

2
trγ0γiγjðα7A0∂iAj þ α7Ai∂jA0 − α8Ai∂0AjÞ; ð14Þ

where

α1 ¼ −
2−d−1π−

d
2
−1
2mdþ1Γð1

6
ð−d − 1ÞÞΓðdþ4

6
Þ

9Γðdþ2
2
Þ

× ððd − 2Þλ22 − 2ð2d − 1Þðλ1 þ λ3Þλ2 þ ðd − 2Þðλ1 þ λ3Þ2Þtr1; ð15aÞ

α2 ¼
2−d−1π−

d
2
−1
2md−5Γð5

6
− d

6
ÞΓðdþ4

6
Þ

27Γðdþ2
2
Þ

× ðð2d − 1Þλ22 − ð5d − 7Þðλ1 þ λ3Þλ2 þ ð2d − 1Þðλ1 þ λ3Þ2Þtr1; ð15bÞ

α3 ¼ −
2−d−2π−

d
2
−1
2md−5Γð5

6
− d

6
ÞΓðdþ4

6
Þ

9Γðdþ2
2
Þ λ0ð2ðd − 2Þλ2 − ðdþ 1Þðλ1 þ λ3ÞÞtr1; ð15cÞ

α4 ¼
2−dπ−

d
2
−1
2md−5Γð5

6
− d

6
ÞΓðdþ4

6
Þ

3dΓðd
2
Þ λ20tr1; ð15dÞ

α5 ¼
2−d−3π−

d
2
−1
2md−1Γð1

6
− d

6
ÞΓðdþ8

6
Þ

9Γðd
2
þ 2Þ ððdðdþ 4Þ − 2Þλ21 þ 2λ1ððdðdþ 4Þ − 2Þλ3 ð15eÞ

−ðd − 1Þð2dþ 7Þλ2Þ þ ðdðdþ 4Þ − 8Þλ22 þ ðdðdþ 4Þ − 2Þλ23 − 2ðd − 1Þð2dþ 7Þλ2λ3Þtr1;

α6 ¼
2−d−3π−

d
2
−1
2md−1Γð1

6
− d

6
ÞΓðdþ8

6
Þ

9Γðdþ4
2
Þ ð−4ðd − 1Þ2λ2λ3 þ ððd − 2Þdþ 4Þλ21

þððd − 8Þdþ 4Þλ22 þ ððd − 2Þdþ 4Þλ23 þ 2λ1ðððd − 2Þdþ 4Þλ3 − 2ðd − 1Þ2λ2ÞÞtr1; ð15fÞ

and
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α7 ¼
2−d−2π−

d
2
−1
2md−2Γð5

6
− d

6
ÞΓðdþ4

6
Þ

3Γðd
2
þ 1Þ λ0ðdλ2 − ðdþ 2Þðλ1 þ λ3ÞÞ; ð15gÞ

α8 ¼
2−d−2π−

d
2
−1
2md−2Γð5

6
− d

6
ÞΓðdþ4

6
Þ

3Γðd
2
þ 1Þ ðλ1 − λ2 þ λ3Þðdλ1 − ðd − 4Þλ2 þ dλ3Þ; ð15hÞ

where we have considered D ¼ dþ 1 and 1 is the unit
matrix of the corresponding dimension, i.e., the 2D=2 ×
2D=2 matrix.
Now, it is easy to see that for some special relations

between our αi with various indices i, we can arrive at
the Maxwell-like and Chern-Simons-like gauge-invariant
expressions for the two-derivative and one-derivative
contributions to the kinetic term, respectively, which
explicitly demonstrates that these terms emerge as quantum
corrections. First, to achieve the Maxwell-like form, we
must impose the equalities α2 ¼ α3 ¼ α4 and α5 ¼ α6.
Nevertheless, we note that only the kinetic term but not the
whole result is gauge invariant since the last one involves a
Proca-like term for Ai necessary to form the bumblebee
potential. We note that in usual, Lorentz-invariant bumble-
bee models, the Lagrangian is always given by a sum of
the gauge-invariant kinetic term and the positive definite
bumblebee potential [8]; also, by analogy with these
theories, one can conclude that the gauge invariance of
the kinetic term implies the absence of the propagating
ghost modes and the positive definiteness for the
Hamiltonian [15]. Thus, we get λ0 ¼ λ2 and λ3 ¼
2λ2 − λ1, which implies α7 ¼ α8, that is, the relation
necessary to ensure the gauge-invariant Chern-Simons
term, so that we obtain

Lð2Þ
eff ¼

1

2
α1AiAi −

1

2
α3F0iF0i −

1

4
α5FijFij þ i

2
α7tr=A=∂=A;

ð16Þ

where

α1 ¼
2−dðdþ 2Þπ1

2
ð−d−1Þλ22m

dþ1Γð1
6
ð−d − 1ÞÞΓðdþ4

6
Þ

3dΓðd
2
Þ ;

ð17aÞ

α3 ¼
2−dπ

1
2
ð−d−1Þλ22m

d−5Γð5
6
− d

6
ÞΓðdþ4

6
Þ

3dΓðd
2
Þ ; ð17bÞ

α5 ¼ −
2−d−2ðd − 2Þπ1

2
ð−d−1Þλ22m

d−1Γð1−d
6
ÞΓðdþ8

6
Þ

3Γðd
2
þ 1Þ ; ð17cÞ

α7 ¼
2−dπ

1
2
ð−d−1Þλ22m

d−2Γð5
6
− d

6
ÞΓðdþ10

6
Þ

dΓðd
2
Þ : ð17dÞ

Note that now all coefficients αi are written in terms
of λ22.
Let us finally consider n ¼ 4, by writing the effective

action as

Sð4Þeff ½A� ¼
iN
4
TrSðpÞeðλ0=A0 þ ΔijðpÞAkγ

ijkÞSðpÞeðλ0=A0 þ ΔijðpÞAkγ
ijkÞ

× SðpÞeðλ0=A0 þ ΔijðpÞAkγ
ijkÞSðpÞeðλ0=A0 þ ΔijðpÞAkγ

ijkÞ

¼ ie2

4

Z
d4ΠκλμνAκAλAμAν; ð18Þ

where

Πκλμν ¼ tr
Z

d4p
ð2πÞ4 SðpÞΓ

κðpÞSðpÞΓλðpÞΓμðpÞSðpÞΓνðpÞ þOð∂4Þ: ð19Þ

Then, we obtain

Lð4Þ
eff ¼ −

e2

4
βAiAiAjAj; ð20Þ

with

β ¼ 2−d−1ðd − 1Þπ1
2
ð−d−1Þmd−1Γð1

6
− d

6
ÞΓðdþ8

6
Þ

27Γðdþ4
2
Þ ððd − 4Þλ42 − 4ð2dþ 1Þðλ1 þ λ3Þλ32

þ18ðdþ 2Þðλ1 þ λ3Þ2λ22 − 4ð2dþ 1Þðλ1 þ λ3Þ3λ2 þ ðd − 4Þðλ1 þ λ3Þ4Þtr1; ð21Þ
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so that, when λ3 ¼ 2λ2 − λ1, we get

β ¼ −
2−dðdþ 4Þπ1

2
ð−d−1Þλ42m

d−1Γð7
6
− d

6
ÞΓðdþ8

6
Þ

Γðd
2
þ 2Þ : ð22Þ

It should be noted that surprisingly β depends only on λ2, as
well as the coefficients (17).
Therefore, considering Eq. (10), the effective potential is

Veff ¼ −
1

2gt
A2
0 −

1

2gs
A2
i −

1

2
α1A2

i þ
e2

4
βA4

i : ð23Þ

Thus, we have the gap equations

dVeff

dA0

����
Aμ¼aμ

¼ −
1

gt
a0 ¼ 0; ð24Þ

dVeff

dAi

����
Aμ¼aμ

¼
�
−

1

gs
− α1 þ e2βa2j

�
ai ¼ 0; ð25Þ

i.e., for a0 ≠ 0 and ai ≠ 0, we obtain the conditions gt →
∞ and 1

gs
¼ −α1 þ e2βa2j . With this, we can rewrite (23) as

Veff ¼
e2

4
βðA2

i − a2i Þ2 −
e2

4
βa4i : ð26Þ

Then, from (10), we get the effective Lagrangian

Leff ¼ −
1

2
α3F0iF0i −

1

4
α5FijFij þ i

2
α7tr=A=∂=A

−
e2

4
βðA2

i − a2i Þ2; ð27Þ

where we have dropped away the constant term − e2
4
βa4i .

For D ¼ 3 (or d ¼ 2), α5 ¼ 0 and β < 0, so that we
obtain

Leff ¼ −
1

2
α3F0iF0i −

1

2
α7ϵ

λμνAλ∂μAν −
e2

4
βðA2

i − a2i Þ2;
ð28Þ

i.e., in this case the Chern-Simons term is Lorentz invariant,
but there is no Lorentz-invariant Maxwell term. As β < 0,
we cannot have potential with spontaneous symmetry
breaking at D ¼ 3. Besides this, the D ¼ 3 result is not
satisfactory for us since we have no Maxwell term arisen,
and hence the complete dynamical generation of the
Lorentz symmetry cannot occur in this case. However,
we see that in this case the Maxwell-like term is described
by the electric field only and in the limit N → ∞, that is,
e2 → 0, the potential term vanishes. Thus, we arrive at a
particular Maxwell-Chern-Simons-like theory.
Let us now suggest the dimension D to be arbitrary and

even, so, the Chern-Simons term proportional to the trace of
the product of three Dirac matrices will vanish. Then, we
rewrite Eq. (27) as follows:

Leff ¼ −
1

2
α3F0iF0i −

1

4
α5FijFij −

e2

4
βðA2

i − a2i Þ2; ð29Þ

which, for D ¼ 4, we have β < 0, i.e., there is no sponta-
neous symmetry breaking potential as well. The interesting
case is D ¼ 10, where we have either α3;5 < 0 and β > 0

(for λ2 ¼ 1) or α3;5 > 0 and β > 0 (for λ2 ¼ i), which
means that the Lagrangian (14) now has a positively
defined potential and Lorentz violating kinetic term, when
we choose λ2 ¼ i. We note that in both these cases α3 and
α5 have the same sign which allows for a rescaling of fields
and derivatives in order to get the Maxwell-like term
αFμνFμν, with the overall sign of this term being positive
for λ2 ¼ 1, and negative, matching thus the standard form,
for λ2 ¼ i.
In order to rewrite the kinetic term of (14) in the

Maxwell-like form, we carry out the rescaling of fields
and constant parameters just as in [16]. Explicitly, rewriting
(17) and (21) as α3 ¼ λ22m

d−5α̃3, α5 ¼ λ22m
d−1α̃5, α7 ¼

λ22m
d−2α̃7, and β ¼ λ42m

d−1β̃, and considering the rescaling

A0 →
m2α̃1=45

α̃1=23

A0; ð30aÞ

Ai →
1

α̃1=45

Ai; ð30bÞ

∂0 →
m2α̃1=45

α̃1=23

∂0; ð30cÞ

∂i →
1

α̃1=45

∂i; ð30dÞ

the effective Lagrangian (14) can be rewritten as

Leff ¼ −
1

4
md−1FμνFμν −

e2λ22β̃
4α̃5

md−1ðA2
i − a2i Þ2: ð31Þ

It is straightforward to see that the factor

e2λ22β̃
4α̃5

¼ −
ðd − 1Þðdþ 4Þe2λ22
ðd − 2Þðdþ 2Þ ð32Þ

is positive for all dimensions, including D ¼ dþ 1 odd, as
λ2 ¼ i. Actually, we found that, after the rescaling (30), the
potential is always positively defined, in contrast of the
situation before (14), where its positivity only occurs
for D ¼ 10.
We note nevertheless that the case λ2 ¼ i, necessary to

guarantee the positivity of our effective potential, does not
break the Hermiticity of the initial Lagrangian (1) since
actually it implies that the fields Ai; A0 are purely imagi-
nary, which, in its part, implies that A2

i < 0 [indeed, the
terms like ψ̄γiγjγkψ are essentially real, and for the term

ðAk þ gsffiffiffi
N

p ψ̄ ∂↔i∂
↔

jγ
ij
kψÞ

2

to be real, as is required by the

reality of the Lagrangian, in the case of the imaginary λ2,
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one must have Ai to be purely imaginary, the same is valid
for A0]. Therefore, to have minima, one should have a2i < 0
in (31). Let us verify the consistency of this requirement.
As we have noted after (24), the ai, that is, the value of our
vector field corresponding to the minimum of the potential,
satisfies the equation a2j ¼ 1

e2β ð 1gs þ α1Þ. Clearly, since Aj is

imaginary, the aj should be imaginary as well, i.e., a2j < 0.
Straightforward checking shows that for gs > 0, the restric-
tion a2j < 0 can be consistent with the equation above for
d ¼ 3, where β < 0, for gs small enough. For d ¼ 9, where
β > 0, vice versa, this restriction is valid if gs < 0 also with
its absolute value small enough. Nevertheless, we note that
there is no fundamental restriction on the sign of gs from
the basic reasons, hence the requirement a2j < 0 can be
satisfied, and the set of desired minima of the potential
indeed can exist.

IV. SUMMARY

We considered the theory where a dynamical vector field
arises as a Lagrange multiplier in the z ¼ 3 Lifshitz four-
fermion model. For this field, we introduced the one-loop
effective action in terms of the fermionic determinant and
explicitly found the lowest terms in its derivative expansion
in various spatial dimensions. We found that in three dim-
ensions, the Lorentz-invariant Chern-Simons term arises,
which is an advantage of our scheme in comparison with
[17], where the Chern-Simons-like one-derivative term
displayed neither Lorentz nor gauge symmetry. However,
a Lorentz-invariant Maxwell term is not generated at

D ¼ 3, i.e., only − 1
2
α3F0iF0i is present. In other dimen-

sions, nevertheless, the trace of the product of three Dirac
matrices accompanying the one-derivative term clearly
vanishes.
The results we achieved in this paper represent them-

selves as a further development of the concept of the
emergent dynamics [12], but the advantage of our result
consists in the fact that, while in [12] the initial theory
was Lorentz invariant itself, we presented a mechanism
allowing one to obtain a Lorentz-invariant kinetic term on
the basis of a non-Lorentz-invariant theory, which allows
treating the Lorentz symmetry as an emergent phenomenon
without its suggestion from the very beginning. Therefore,
we provided a more realistic mechanism for a dynamical
generation of the electromagnetic field.
The most interesting result of our paper is the possibility

to arrive at the positively defined bumblebee-like potential
in any space-time dimension, see Eq. (31). We note that
higher space-time dimensions were not considered earlier
within the context of Horava-Lifshitz-like theories, to the
best of our knowledge. Thus, in principle, our study opens
new horizons for application of the Horava-Lifshitz
methodology within the context of the extra dimensions
problem.
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