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In this work, we show that one can select different types of hypergeometric approximants for the
resummation of divergent series with different large-order growth factors. Being of n! growth factor, the
divergent series for the ε expansion of the critical exponents of theOðNÞ-symmetric model is approximated
by the hypergeometric functions kþ1Fk−1. The divergent kþ1Fk−1 functions are then resummed using their

equivalent Meijer-G function representation. The convergence of the resummation results for the exponents
ν, η, and ω has been shown to improve systematically in going from low order to the highest known six-
loop order. Our six-loop resummation results are very competitive to the recent six-loop Borel with
conformal mapping predictions and to recent Monte Carlo simulation results. To show that precise results
extend for high N values, we listed the five-loop results for ν which are very accurate as well. The recent
seven-loop order (g series) for the renormalization group functions β; γϕ2 , and γm2 has been resummed too.

Accurate predictions for the critical coupling and the exponents ν, η, and ω have been extracted from β, γϕ2 ,

and γm2 approximants.

DOI: 10.1103/PhysRevD.101.105006

I. INTRODUCTION

Quantum field theory (QFT) represents an important tool
to study critical phenomena for different physical systems.
A critical phenomenon is thus offering an indirect exper-
imental test to the validity of QFT. The idea stems from the
universal phenomenon where a number of different systems
can show up the same critical behavior in spite of their
different microscopic details. A very clear example is the
Ising model from magnetism and the one-component ϕ4

model from QFT [1–5]. The more general example of the
ϕ4 scalar field theory withOðNÞ symmetry can describe the
critical phenomena in many physical systems that share
the same respective symmetry. Regarding the N ¼ 0, for
example, the theory lies in the same universality class with
polymers [6] while N ¼ 1 case describes the critical
behavior of Ising-like models. For N ¼ 2, the model
describes a preferred orientation of a magnet in a plane
while the case N ¼ 3 can describe a rotationally invariant
ferromagnet. Besides, the N ¼ 4 case can mimic the phase

transition in QCD at finite temperature with two light
flavors [7].
The study of critical phenomena within quantum field

theory has been reinforced by Wilson’s introduction of the
famous ε expansion [8,9]. Wilson ideas made the renorm-
alization group functions to take a place in the heart of
predicting critical exponents from the study of QFT models
[1,3,4]. However, the series generated by the ε expansion is
well known to be divergent [10], and thus resummation
techniques are indispensable to extract reliable results from
that series. In Ref. [11] (for instance), Borel transformation
with conformal mapping technique has been used to resum
divergent series of the critical exponents of the OðNÞ-
symmetric model. Also, in Ref. [12], the five-loop ε
expansion of the perturbation series for the critical expo-
nents has been resummed using a strong-coupling resum-
mation technique.
Resummation of the series generated by ε expansion has

been shown to be slightly less precise than the resummation
of renormalization group functions at fixed dimensions
[11]. This fact motivated the authors of the recent work in
Ref. [13] to move one step forward toward the improve-
ment of resummation predictions of the critical exponents
from ε expansion. In that reference, the six-loop perturba-
tion series of the ε expansion for the renormalization group
functions of the O(N) model have been obtained and
resummed using Borel with conformal mapping resumma-
tion algorithm. They obtained accurate results for the
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exponents ν, η, and ω. However, this algorithm has three
free parameters where their variations add to the uncer-
tainty in the calculations. We will show in this work that a
simple hypergeometric-Meijer resummation algorithm
[14], which has no free parameters, can result in competi-
tive approximations for the critical exponents from the ε
expansion.
Methods that are using different approach (other than

resummation) have been used in literature to extract
accurate critical exponents of the OðNÞ model. Among
these successful methods is Monte Carlo simulation which
has been used to obtain accurate critical exponents of the
OðNÞ model [15–22]. Besides, in recent years, researchers
were able to extend the applicability of conformal bootstrap
methods to three dimensions which in turn resulted in very
accurate predictions for the critical exponents of the OðNÞ
model too [23–27]. The results of these techniques besides
the recent Borel resummation results will be used for
comparison with our predictions from hypergeometric-
Meijer resummation of divergent series representing the
critical exponents.
The divergence of perturbation series in QFT has been

argued for the first time by Dyson [28]. From a math-
ematical point of view, singularities in the complex plane
are responsible for series divergence even for a small
argument [29]. The manifestation of divergence in a
perturbation series appears in the form of large-order
growth factors like n!, ð2nÞ! and ð3nÞ! (for instance).
The appearance of such large-order behaviors stimulates
the need for resummation of such type of perturbation
series [30,31]. The most popular resummation technique is
Borel and its different versions. In fact, the knowledge of
the large-order behavior of a divergent series is needed not
only to accelerate the convergence of resummation results
but also to determine the type of the Borel transformation to
be used. In our work, we will show that the large-order
behavior is also important for our resummation (hyper-
geometric-Meijer) algorithm [14] in order to select the
suitable relation between the number of numerator and
denominator parameters of the used hypergeometric
approximant.
Borel resummation and the hypergeometric-Meijer

algorithms share the need of the large-order behavior
of a divergent series to select the suitable Borel transform
and the hypergeometric approximant, respectively. There
exist, however, different features for both algorithms. One
can get sufficient idea about the features of Borel
resummation algorithm by going to its extensive use in
literature. For the resummation of divergent series in
QFT, one can visit some of past and recent successful
studies that dealt with resummation of the divergent
series of the renormalization group functions of the
OðNÞ-symmetric model [1,4,11,13,32–36]. Although

resummation techniques used in literature like Borel
and Borel-Padé can give reasonable results for the critical
exponents of the OðNÞ model, these algorithms need a
relatively high order of loop calculations which is not an
easy task. To get an idea about how hard to have high
orders of loops calculations, we assert that it took the
researchers like 25 years to move forward from five-loop
to six-loop calculations [13,37]. Even at the level of more
simpler theories like the PT -symmetric iϕ3 field theory,
the four-loop renormalization group functions have been
just recently obtained [33]. In going to more complicated
theories that have fermionic as well as gauge boson
sectors, the calculation of a relatively high loop orders is
not an easy task. The hypergeometric-Meijer algorithm,
on the other hand, can give reasonable results even in
using few orders from a perturbation series as input. It is
thus very suitable for the study of nonperturbative
features of a quantum field theory.
In Borel algorithms, results are always achieved via

numerical calculations. This feature leads to the resum-
mation of individual physical amplitudes one by one. The
existence of a resummation algorithm that avoids this
feature might help in getting other amplitudes without
further resummation steps. Instead, we can obtain them
from simple calculus. For instance, the vacuum energy or
equivalently the effective potential is known to be the
generating functional of the one-particle-irreducible
amplitudes. Accordingly, getting a closed form resum-
mation function for the effective potential enables one to
get other amplitudes via functional differentiation [38,39].
The hypergeometric-Meijer resummation as we will
see can give accurate results as well as being simple
and of closed form. Besides, it does not have any free
parameters to fix like other resummation algorithms
which use optimization tools to fix the introduced free
parameters.
The hypergeometric-Meijer resummation algorithm we

use in this work is a development of the recently introduced
simple hypergeometric resummation algorithm [40]. In the
hypergeometric algorithm, the hypergeometric approxim-
ant 2F1ða; b; c; σzÞ has been suggested for the resummation
of a divergent series. The four parameters a, b, c, and σ are
obtained by comparing the first four orders of the expan-
sion of 2F1ða; b; c; σzÞ in the variable z with the four
available orders of the divergent series under consideration.
To illustrate this more, consider a series representing a
physical quantity QðzÞ as

QðzÞ ¼
X4
0

cizi þOðz5Þ: ð1Þ

We have also the series expansion of c0 2F1ða; b; c; σzÞ as
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c0 2F1ða; b; c; σzÞ ¼ c0 þ c0
abσ
c

zþ c0
aðaþ 1Þbðbþ 1Þσ2

2cðcþ 1Þ z2 þ c0
aðaþ 1Þðaþ 2Þbðbþ 1Þðbþ 2Þσ3

6cðcþ 1Þðcþ 2Þ z3

þ c0
aðaþ 1Þðaþ 2Þðaþ 3Þbðbþ 1Þðbþ 2Þðbþ 3Þσ4

24cðcþ 1Þðcþ 2Þðcþ 3Þ z4 þ � � � � � � � � � � � � ð2Þ

For c0 2F1ða; b; c; σzÞ to serve as an approximant for QðxÞ, we have to set

c1 ¼ c0
abσ
c

c2 ¼ c0
aðaþ 1Þbðbþ 1Þcσ2

2cðcþ 1Þ c3 ¼ c0
aðaþ 1Þðaþ 2Þbðbþ 1Þðbþ 2Þσ3

6cðcþ 1Þðcþ 2Þ

c4 ¼ c0
aðaþ 1Þðaþ 2Þðaþ 3Þbðbþ 1Þðbþ 2Þðbþ 3Þσ4

24cðcþ 1Þðcþ 2Þðcþ 3Þ ; ð3Þ

which can be solved to determine the unknown parameters
a, b, c, σ in terms of the known coefficients c1, c2, c3,
and c4.
To accelerate the convergence of the algorithm, we

suggested the employment of parameters from the asymp-
totic behavior of the perturbation series at large values of
the argument z [41] or equivalently the strong-coupling
data. Our suggestion is based on the realization that when
a − b is not an integer, the hypergeometric function has the
following asymptotic form [42]:

2F1ða; b; c; gÞ ∼ λ1g−a þ λ2g−b; jgj ≫ 1:

Also, the method has been generalized to accommodate
higher orders from the perturbation series by using the
generalized hypergeometric function pFp−1ða1;…ap;
b1…:bp−1; σzÞ, where ai parameters are extracted from
the asymptotic behavior of the perturbation series at large
z value.
The hypergeometric algorithm either the version in

Ref. [40] or [41] cannot accommodate the large-order data
available for many perturbation series in physics. The point
is that the series expansion of the hypergeometric function

2F1ða; b; c; σzÞ has a finite radius of convergence while it
has been used for the resummation of a divergent
series with zero radius of convergence. This means that
the large-order behavior of the expansion of the function

2F1ða; b; c; σzÞ cannot account explicitly for the n! growth
factor characterizing a perturbation series with zero radius
of convergence. In fact, in the hypergeometric algorithm,
the parameter σ ought to take large values to compensate
for that [43,44] but itself cannot be considered as a large-
order parameter. Indeed, employing parameters from large-
order behavior is well known to accelerate the convergence
of resummation algorithms (Borel, for instance). Moreover,
one cannot apply the suitable Borel transform (divide by n!
for instance) unless we know the large-order behavior of
the perturbation series. These facts led us to develop the
hypergeometric algorithm [14] by using the approximants

pFp−2ða1; a2;…:; ap; b1; b2;…:bp−2; σzÞ instead of 2F1ða;
b; c; σzÞ. The hypergeometric functions pFp−2ða1; a2;…:;
ap;b1; b2;…:bp−2; σzÞ are all sharing the same analytic
properties (with respect to z) and all have expansions of
zero radius of convergence as well as having an n! growth
factor. Possessing the main features of the divergent
series under consideration, the hypergeometric function
pFp−2ða1; a2;…:; ap; b1; b2;…:bp−2; σzÞ is thus an ideal
candidate for the resummation of that series.
The structure of the paper is as follows. In Sec. II, we

introduce the generalized hypergeometric-Meijer algorithm
for the resummation of a divergent series with a growth
factor of the form ððp − q − 1ÞnÞ!. In Sec. III, we use the
algorithm to resum the ε expansions of the exponents
νðν−1Þ; η, and ω and the critical coupling up to five loops of
the OðNÞ-symmetric model. The resummation results for
the recent six-loop order is presented for the exponents
νðν−1Þ; η, and ω in Sec. IV. Resummation of the seven
loops of the g expansion of the renormalization group
functions, which have no resummation trials in literature so
far, is presented in Sec. V. Summary and conclusions will
follow in Sec. VI.

II. THE GENERALIZED HYPERGEOMETRIC-
MEIJER RESUMMATION ALGORITHM

Consider a divergent series that represents a physical
amplitude QðzÞ as

QðzÞ ¼
XM
n¼0

cnzn þOðzMþ1Þ; ð4Þ

where the first M þ 1 orders are known. Assume that the
large-order behavior of that series takes the from

cn ∼ αn!ð−σÞnnb
�
1þO

�
1

n

��
; n → ∞: ð5Þ

In Ref. [14], we showed that when p ¼ qþ 2, the
perturbative expansion of the hypergeometric function
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pFqða1;…ap; b1…:bq;−σzÞ which has a zero radius
of convergence can be parametrized to give the same
large-order behavior of the above perturbation
series. Accordingly, one sets the constraint

Pp
i¼1 ai−Pp−2

i¼1 bi − 2 ¼ b, besides the constraints set by matching

the perturbation expansion of pFqða1;…ap; b1…:bq;−σzÞ
with the available orders of the divergent series. Then the
parametrized divergent series of pFqða1;…ap;b1…:bq;σzÞ
is resummed using its representation in terms of Meijer-G
function as follows [42]:

pFqða1;…ap; b1…:bq; zÞ ¼
Qq

k¼1 ΓðbkÞQp
k¼1 ΓðakÞ

G1;p
p;qþ1

� 1 − a1;…; 1 − ap
0; 1 − b1;…; 1 − bq

����z
�
: ð6Þ

Note that the authors in Ref. [44] used a Borel-Padé
algorithm that leads to Meijer-G approximants parame-
trized by weak-coupling information.
One can generalize the idea of our previous work in

Ref. [14] to other types of divergent series with growth
factors other than n!. For instance, the divergent series of
the ground state energy of the sextic anharmonic oscillator
has a zero radius of convergence, but the growth factor is
ð2nÞ! while it is ð3nÞ! for the octic anharmonic oscillator
[45]. Knowing that the asymptotic form of the ratio of two
Γ functions is given by [46]

Γðnþ αÞ
Γðnþ βÞ ¼ nα−β

�
1þ ðα − βÞð−1þ αþ βÞ

n
þO

�
1

n2

��
;

ð7Þ

one can easily conclude that either the hypergeo-
metric approximants pFp−1ða1;…ap; b1…:bp−1; σzÞ used
in Ref. [41] or pFp−2ða1;…ap; b1…:bp−2; σzÞ used in
Ref. [14] cannot account for the growth factors of the
sextic or octic ground state energies. Accordingly, one can
accept that there exists more than one type of hyper-
geometric functions (different S ¼ p − q) that are needed
to approximate different divergent series in physics with
different large-order growth factors.
Based on the idea that the large-order asymptotic

behavior is responsible for the selection of the suitable
hypergeometric approximant for a perturbation series, one
can list different pFqða1;…ap; b1…:bq;−σzÞ approxi-
mants for different growth factors as follows:

(1) For divergent series that has the large-order behavior
in Eq. (5) (n! growth factor), the suitable resumma-
tion function is pFp−2ða1;…ap; b1…:bp−2; σzÞ.

(2) For a series that has a large-order behavior like
γΓð2nþ 1

2
Þð−σÞnnb, n → ∞, the suitable one is

pFp−3ða1;…ap;b1…:bp−3;−σzÞ. This is because
one can easily show that for p ¼ qþ 3, one can
get a similar large-order behavior. An example of
such divergent series is the ground state energy of
the sextic anharmonic oscillator [45].

(3) For the ground state energy of the octic anharmonic
oscillator, the large-order behavior is given by
∼δΓð3nþ 1

2
Þð−σÞnnb, n → ∞, which can be repro-

duced by the generalized hypergeometric func-
tion pFp−4ða1;…ap; b1…:bp−4;−σzÞ.

(4) For a divergent series that has a finite radius of
convergence, the suitable resummation function is
pFp−1ða1;…ap;b1…:bp−1; σzÞ. An example of
such series is the ground state energy of the
Yang-Lee model (Eq. (86) in Ref. [2]).

Based on this classification, knowing the large-order
behavior of a divergent series is essential not only to
accelerate the convergence of the resummation algorithm
but also to determine the suitable hypergeometric approx-
imant. A note to be mentioned is that, for p ≥ qþ 2, the
hypergeometric function pFqða1;…ap; b1…:bq; σzÞ has a
zero radius of convergence, but it can be resumed using the
closely related Meijer-G function [see Eq. (6)] which has
the integral form [42]

Gm;n
p;q

�
c1;…; cp
d1;…; dq

����z
�

¼ 1

2πi

Z
C

Q
n
k¼1 Γðs − ck þ 1ÞQm

k¼1 Γðdk − sÞQp
k¼nþ1 Γð−sþ ckÞ

Qq
k¼mþ1 Γðs − dk þ 1Þ z

sds: ð8Þ

The hypergeometric-Meijer algorithm which will be used
in this work to resum the divergent series representing the
critical exponents of the OðNÞ vector model can be thus
summarized in two simple steps [14]:

(1) Parametrize the hypergeometric function
pFp−2ða1;…ap;b1…:bp−2; σzÞ using both weak-
coupling and large-order data of the series under
consideration (for ε expansion, the strong-coupling
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data represented by the numerator parameters ai are
not known yet).

(2) Resum the divergent pFp−2ða1;…ap; b1…:bp−2;
σzÞ function using the representation in terms of
the Meijer-G function in Eq. (6).

There exist some technical issues when applying the
algorithm. The first issue is that for high orders, computer
can take a relatively long time to solve the set of equations
like the one in Eq. (3). To overcome this problem, we

generated the ratio Rn ¼ cn
cn−1

and then solve the following
set of equations:

Rn ¼
1

n

Qp
i¼1 ðai þ n − 1ÞQq
j¼1 ðbj þ n − 1Þ σ: ð9Þ

For example, the approximant pFqða1;…ap; b1…:bq; σzÞ
generates the following set of equations:

R1 ¼
a1a2…………ap
b1b2…………bq

σ

R2 ¼
ða1 þ 1Þða2 þ 1Þ…………ðap þ 1Þ

2ðb1 þ 1Þ…………ðbq þ 1Þ σ

:

:

:

Rpþq ¼
ða1 þ pþ q − 1Þ…………ðap þ pþ q − 1Þ

ðpþ qÞðb1 þ pþ q − 1Þ…………ðbq þ pþ q − 1Þ σ: ð10Þ

This trick decreases the degree of nonlinearity in the set of
equations and thus saves the computational time.
The other issue regarding the application of the hyper-

geometric-Meijer algorithm is that at some orders one
might find no solution for the set of equations defining the
parameters in the hypergeometric function. In this case, one
resorts to successive subtractions of the perturbation series.
This trick is well known in resummation algorithms [4,44].
However, the subtracted series will have a different large-
order b parameter where it increases by one per each
subtraction (see, for instance, Sec. 16.6 in Ref. [4]).

III. HYPERGEOMETRIC-MEIJER
RESUMMATION FOR THE ε EXPANSION

OF CRITICAL EXPONENTS AND
COUPLING UP TO FIVE LOOPS

The Lagrangian density of the OðNÞ-vector model is
given by

L ¼ 1

2
ð∂ΦÞ2 þm2

2
Φ2 þ λ

4!
Φ4; ð11Þ

where Φ ¼ ðϕ1;ϕ2;ϕ3;………::ϕNÞ is an N-component
field with OðNÞ symmetry such that Φ4 ¼ ðϕ2

1 þ ϕ2
2þ

ϕ2
3 þ………::ϕ2

NÞ2. At the fixed point, the β function is
zero which sets a critical coupling as a function of
ε ¼ 4 − d. Accordingly, one can obtain the renormalization
group functions as power series in ε. In the following parts
of this section, we list the resummation results (up to five
loops) for the exponents ν, η, and ω as well as the critical
coupling of that model.

A. Two-, three-, four-, and five-loop
resummation for the exponent ν

Up to five loops, the power series for the reciprocal of the
critical exponent ν is given by [4]

ν−1 ≈ 2þ
X5
i¼1

ciεi; ð12Þ

where

c1 ¼
N þ 2

N þ 8
c2 ¼ −

ðN þ 2Þð13N þ 44Þ
2ðN þ 8Þ3

c3 ¼
ðN þ 2Þ
8ðN þ 8Þ5 f3N

3 − 452N2 þ 96ðN þ 8Þð5N þ 22Þζð3Þ − 2672N − 5312g
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c4 ¼
ðN þ 2Þ

32ðN þ 8Þ7 f3N
5 þ 398N4 − 12900N3 − 1280ðN þ 8Þ2ð2N2 þ 55N þ 186Þζð5Þ

þ 16ðN þ 8Þð3N4 − 194N3 þ 148N2 þ 9472N þ 19488Þζð3Þ

− 81552N2 − 219968N þ 16

5
π4ðN þ 8Þ3ð5N þ 22Þ − 357120g

c5 ¼
ðN þ 2Þ

128ðN þ 8Þ9 f3N
7 − 1198N6 − 27484N5 − 1055344N4 − 5242112N3

− 5256704N2 þ 56448ðN þ 8Þ3ð14N2 þ 189N þ 526Þζð7Þ

þ 6999040N − 626688 −
1280

189
π6ðN þ 8Þ4ð2N2 þ 55N þ 186Þ

þ 256ðN þ 8Þ2ζð5Þð155N4 þ 3026N3 þ 989N2 − 66018N − 130608Þ
− 1024ðN þ 8Þ2ð2N4 þ 18N3 þ 981N2 þ 6994N þ 11688Þζð3Þ2

þ 8

15
π4ðN þ 8Þ3ð3N4 − 194N3 þ 148N2 þ 9472N þ 19488Þ

− 16ðN þ 8Þζð3Þ½13N6 − 310N5 þ 19004N4 þ 102400N3 − 381536N2 − 2792576N − 4240640�g: ð13Þ

The large-order parameters take the form in Eq. (5)
where [4]

σ ¼ 3

N þ 8
and b ¼ 4þ N

2
:

The suitable hypergeometric approximant is thus
pFp−2ða1;…ap; b1…:bp−2;−σzÞ where it can reproduce
the large-order behavior in Eq. (5). The number of
unknown parameters in pFp−2ða1;…ap; b1…:bp−2;−σzÞ
is 2p − 2, and thus we need an even number of equations to
determine the unknown parameters. So, we have the
following two options:
(1) Even number of loops as input: In this case, we

incorporate an even number (2p − 2) of terms from
the perturbation series to match with corresponding
terms from the expansion of pFp−2ða1;…ap;
b1…:bp−2;−σzÞ.

(2) Odd number of loops as input: In this case, we take
an odd number (2p − 1) of loops to build the odd
number of equations and one equation from the
large-order constraint,

Xp
i¼1

ai −
Xp−2
i¼1

bi − 2 ¼ b;

to determine the unknown numerator and denomi-
nator parameters.

So, we list resummation results that involve odd or even
number of perturbative terms separately.

1. Two-loop resummation for ν

For p ¼ qþ 2, the lowest order hypergeometric approx-
imant for ν−1 is thus

22F0

�
a1; a2; ;−

3

N þ 8
ε

�
¼ 2

Γða1ÞΓða2Þ
G1;2

2;1

�
1 − a1; 1 − a2

0

����− 3

N þ 8
ε

�
: ð14Þ

For this resummation function, one needs to determine the two parameters a1 and a2 by matching the perturbative
expansion of 22F0ða1; a2; ;− 3

Nþ8
εÞ with the first two terms in the perturbation series in Eq. (12). In this case, we get

−
6a1a2
N þ 8

¼ −
N þ 2

N þ 8

9a1ða1 þ 1Þa2ða2 þ 1Þ
ðN þ 8Þ2 ¼ −

ðN þ 2Þð13N þ 44Þ
2ðN þ 8Þ3 ; ð15Þ

from which we obtain the results,

a1 ¼
−N2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4 þ 60N3 þ 1636N2 þ 10464N þ 20032

p
− 42N − 152

12ðN þ 8Þ ; ð16Þ
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a2 ¼
1

12ðN þ 8Þ

0
B@

N3

Nþ8
þ 50N2

Nþ8
− 2N2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4þ60N3þ1636N2þ10464Nþ20032

p
N

Nþ8

þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4þ60N3þ1636N2þ10464Nþ20032

p
Nþ8

þ 488N
Nþ8

− 84N þ 1216
Nþ8

− 304

1
CA: ð17Þ

To test the accuracy of this two-loop resummation function,
let us note that for N ¼ 1, the recent Monte Carlo
calculation [15] gives υ ¼ 0.63002ð10Þ. Our two-loop
hypergeometric-Meijer resummation gives the result
υ ¼ 0.66209. This result is very reasonable in taking into
account that the algorithm is fed with only the first two
orders from the perturbation series as input. For N ¼ 0, a
recent accurate prediction is listed in Ref. [18] as ν ¼
0.5875970ð4Þ while our two-loop resummation gives
ν ¼ 0.60890. For N ¼ 2, Monte Carlo calculations give
υ ¼ 0.6690 [15] while the two loops give ν ¼ 0.711526.
So, it seems that the simple hypergeometric-Meijer re-
summation algorithm we follow in this work gives rea-
sonable results even with very low orders of perturbation
series as input. It is expected that the resummation of higher
orders will improve the accuracy of the results which we
will do in the following subsections.

2. Three-loop resummation for ν

For more accurate results, one can go to the higher three-
loop order of hypergeometric-Meijer approximants

3F1ða1; a2; a3; b1;− 3
Nþ8

εÞ. Although it is parametrized
by four parameters (a1; a2; a3, and b1), the use of the
large-order constraint [14]

Xp
i¼1

ai −
Xp−2
i¼1

bi − 2 ¼ b

leads to the need of three terms only from perturbation
series to determine the parameters. So, to determine them
(a1; a2; a3 and b1), we solve the following set of equations:

c1 ¼
2a1a2a3

b1
σ c2 ¼

a1ða1 þ 1Þa2ða2 þ 1Þa3ða3 þ 1Þ
b1ðb1 þ 1Þ σ2

c3 ¼
a1ða1 þ 1Þða1 þ 2Þa2ða2 þ 1Þða2 þ 2Þa3ða3 þ 1Þða3 þ 2Þ

3b1ðb1 þ 1Þðb1 þ 2Þ σ3

b ¼ a1 þ a2 þ a3 − b1 − 2: ð18Þ

The predictions of this order are given in Table I for
different N values and compared to two-, four-, and
five-loop resummation results and to the Janke-Kleinert
resummation (up to five loops) in Ref. [4] and the Borel-
with conformal mapping in Refs. [11,13]. One can

easily realize that the convergence has been greatly
improved when moved from two-loop to the three-loop
resummation.
The obvious acceleration of the convergence of the algo-

rithm from two to three loops is strongly recommending the

TABLE I. The two-, three-, four-, and five-loop (ε expansion) hypergeometric-Meijer resummation for the critical exponent ν for the
OðNÞ model compared to the ε5 Janke-Kleinert (JK) resummation results (sixth column) from Ref. [4] and the Borel with conformal
mapping (BCM) resummation (seventh column) from Ref. [11] (first row) and recent results from Ref. [13] (second row).

This work JK½4� BCM½12;14�

N
2F0: ε

2
3F1: ε

3
3F1: ε

4
4F2: ε

5 ε5 ε5

0 0.60890 0.58609 0.58705 0.58714 0.5865(13)
0.5875� 0.0018
0.5873(13)

1 0.66209 0.62502 0.62699 0.62818 0.6268(22)
0.6293� 0.0026
0.6290(20)

2 0.71153 0.66062 0.66103 0.667225 0.6642(111)
0.6685� 0.0040
0.6687(13)

3 0.75615 0.69282 0.69303 0.70364 0.6987(51)
0.7050� 0.0055
0.7056(16)

4 0.79557 0.72175 0.72176 0.73692 …
0.737� 0.008
0.7389(24)
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hypergeometric-Meijer resummation algorithm to take a
place among the preferred algorithms to resum divergent
series with large-order behavior of the form in Eq. (5).
Other features that recommend it for resummation of
divergent series is that it does not include any free
parameters and of closed form as well.

3. Four-loop resummation for ν

The hypergeometric approximants 3F1ða1; a2; a3; b1;
− 3

Nþ8
εÞ can also be used to resum the perturbation series

up to four loops, but in this case, we have to solve the
following set of equations:

c1 ¼
2a1a2a3

b1
σ c2 ¼

a1ða1 þ 1Þa2ða2 þ 1Þa3ða3 þ 1Þ
b1ðb1 þ 1Þ σ2

c3 ¼
a1ða1 þ 1Þða1 þ 2Þa2ða2 þ 1Þða2 þ 2Þa3ða3 þ 1Þða3 þ 2Þ

3b1ðb1 þ 1Þðb1 þ 2Þ σ3

c4 ¼
a1ða1 þ 1Þða1 þ 2Þða1 þ 3Þa2ða2 þ 1Þða2 þ 2Þða2 þ 3Þa3ða3 þ 1Þða3 þ 2Þða3 þ 3Þ

12b1ðb1 þ 1Þðb1 þ 2Þðb1 þ 3Þ σ4: ð19Þ

The prediction of this order of resummation is also listed in Table I where it shows that the accuracy is improving in a
systematic way when moving to higher orders.

4. Five-loop resummation for ν

In this case, we use the approximants 4F2ða1;…; a4; b1…b4;− 3
Nþ8

εÞ where the unknown parameters are determined
from the following set of equations:

c1 ¼
2a1a2a3a4σ

b1b2
c2 ¼

2a1ða1 þ 1Þa2ða2 þ 1Þa3a4ða3a4 þ 1Þσ2
b1ðb1 þ 1Þb2ðb2 þ 1Þ

c3 ¼
a1ða1 þ 1Þða1 þ 2Þa2ða2 þ 1Þða2 þ 2Þa3a4ða3a4 þ 1Þða3a4 þ 2Þσ3

3b1ðb1 þ 1Þðb1 þ 2Þb2ðb2 þ 1Þðb2 þ 2Þ

c4 ¼
a1ða1 þ 1Þða1 þ 2Þða1 þ 3Þ……a4ða4 þ 1Þða4 þ 2Þða4 þ 3Þσ4
12b1ðb1 þ 1Þðb1 þ 2Þðb1 þ 3Þb2ðb2 þ 1Þðb2 þ 2Þðb2 þ 3Þ ;

c5 ¼
a1ða1 þ 1Þða1 þ 2Þða1 þ 3Þða1 þ 4Þ……a4ða4 þ 1Þða4 þ 2Þða4 þ 3Þða4 þ 4Þσ5
60b1ðb1 þ 1Þðb1 þ 2Þðb1 þ 3Þðb1 þ 4Þb2ðb2 þ 1Þðb2 þ 2Þðb2 þ 3Þðb2 þ 4Þ

b ¼ a1 þ a2 þ a3 þ a4 − b1 − b2 − 2: ð20Þ

For this order, we get even more precise results for the ν
exponent which are also presented in Table I and compared
to the five-loop resummation from other algorithms in
Refs. [4,11]. Also, to compare with other recent theoretical
predictions, for N ¼ 0, we get the result ν ¼ 0.587142
compared to the recent accurate Monte Carlo simulation
prediction from Ref. [18] as ν ¼ 0.5875970ð4Þ. For N ¼ 1,

our five-loop result gives ν ¼ 0.62818 that can be com-
pared to Monte Carlo calculation that gives υ ¼
0.63002ð10Þ [15]. The N ¼ 2 five-loop resummation in
this work gives ν ¼ 0.667225 which is competitive to
Monte Carlo calculations of υ ¼ 0.6690 in Ref. [15].
Also, for N ¼ 3, our five-loop resummation gives
ν ¼ 0.703644, while the recent Monte Carlo prediction

TABLE II. The five-loop hypergeometric-Meijer resummation (4F2 approximant) of the critical exponent ν for the OðNÞ model for
N ¼ 6, 8, 10, and 12 compared to other theoretical predictions. Reference [47] used the strong-coupling resummation, and Ref. [23] is a
conformal bootstrap calculation where we used Δs ¼ 2 − 3=ν to get the listed results. In Ref. [48], numerical calculations are used to
predict the critical exponents and in Ref. [49] the optimally truncated direct summation of pseudo-ϵ expansion (τ, OTDS) has been used
where we obtained the listed result via the relation α ¼ 2 −Dν.

N 6 8 10 12

This work 4F2: ε
5 0.79331 0.83692 0.88809 0.89472

Other calculations
0.790½50� 0.829½50� 0.866½50� 0.890½50�

0.78431þ0.032
−0.033

½24� 0.818½48� 0.88417þ0.000
−0.0008

½24� 0.93279½49�
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gives ν ¼ 0.7116ð10Þ [16]. These results show clearly that
our five-loop resummation results are competitive either to
five-loop resummation from other algorithms or to recent
numerical methods.
To get an impression about the stability of the algorithm

predictions for higher N values, we list in Table II our five-
loop resummation (4F2ða1; a2; a3; a4;b1; b2;−σzÞ) results
for N ¼ 6, 8, 10, 12 and compare them to other theoretical
predictions.

B. Resummation of four- and five-loop
series for η exponent

For the critical exponent η of the OðNÞ model, the ε
expansion up to five loops is given by [4]

η ¼ ε2ðd2 þ d3εþ d4ε2 þ d5ε3Þ þOðε6Þ; ð21Þ

where

d2 ¼
ðN þ 2Þ
2ðN þ 8Þ2 d3 ¼

ðN þ 2Þð−N2 þ 56N þ 272Þ
8ðN þ 8Þ4

d4 ¼
ðN þ 2Þ

32ðN þ 8Þ6 f−5N
4 − 230N3 þ 1124N2 − 384ðN þ 8Þð5N þ 22Þζð3Þ þ 17920N þ 46144g

d5 ¼ −
ðN þ 2Þ

128ðN þ 8Þ8 f13N
6 þ 946N5 þ 27620N4 þ 121472N3 − 262528N2 − 2912768N

− 5120ðN þ 8Þ2ð2N2 þ 55N þ 186Þζð5Þ 64
5
π4ðN þ 8Þ3ð5N þ 22Þ − 5655552

− 16ðN þ 8ÞðN5 þ 10N4 þ 1220N3 − 1136N2 − 68672N − 171264Þζð3Þ − 5655552g; ð22Þ

and the large order for η of this model takes the form in
Eq. (5) where [4]

σ ¼ 3

N þ 8
and b ¼ 3þ N

2
:

Note that the factored series ðd2 þ d3εþ d4ε2 þ d5ε3Þ þ
Oðε6Þ has the large-order parameters [4],

σ ¼ 3

N þ 8
and b ¼ 5þ N

2
:

The lowest order approximant is thus 2F0 which in this case
is a four-loop approximant.

1. Four-loop resummation for η

The hypergeometric-Meijer approximant is then

η ¼ d2ðNÞε22F0ða1; a2; ;−σεÞ

¼ d2ðNÞε2
Γða1ÞΓða2Þ

G1;2
2;1

�
1 − a1; 1 − a2

0

���� − 3

N þ 8
ε

�
: ð23Þ

The resummation results of that order are shown in
Table III. The results are reasonable, but since the hyper-
geometric approximant 2F0 has few number of parameters,
it is expected that the improvement of the results needs
higher loops to be incorporated.

TABLE III. The four- and five-loop (ε expansion) hypergeometric-Meijer resummation for the critical exponent η
for the OðNÞ model. We compared the results to Janke-Kleinert resummation for five-loop ε expansion in Ref. [4]
and the Borel with conformal mapping resummation from Refs. [11] (first) and [13] (second).

This work JK½4� BCM½12;14�

N
2F0: ε

4
3F1: ε

5 ε5 ε5

0 0.02804 0.03111 0.0344(42)
0.0300� 0.0060
0.0314(11)

1 0.03286 0.03615 0.0395(43)
0.0360� 0.0060
0.0366(11)

2 0.03475 0.03791 0.0412(41)
0.0385� 0.0065
0.0384(10)

3 0.03498 0.03781 0.0366(20)
0.0380� 0.0060
0.0382(10)

4 0.034274 0.03668 …
0.036� 0.004
0.0370(9)
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2. The η five-loop resummation

In this case, the hypergeometric approximant is

η ¼ d2ðNÞε23F1ða1; a2; a3; b1;−σεÞ: ð24Þ

To determine the four unknown parameters, we use the following equations:

d3 ¼ d2
a1a2a3
b1

σ d4 ¼ d2
a1ð1þ a1Þa2ð1þ a2Þa3ð1þ a3Þ

b1ð1þ b1Þ
σ

d5 ¼ d2
a1ð1þ a1Þð2þ a1Þa2ð1þ a2Þð2þ a2Þa3ð1þ a3Þð2þ a3Þ

b1ð1þ b1Þð2þ b1Þ
σ

5þ N
2
¼ a1 þ a2 þ a3 − b1 − 2: ð25Þ

Accordingly, the hypergeometric-Meijer approximant for this order is given by

η ¼ d2ðNÞε23F1ða1; a2; a3; b1;−σεÞ ¼ d2ðNÞε2 Γðb1Þ
Γða1ÞΓða2ÞΓða3Þ

G1;3
3;2

�
1 − a1; 1 − a2; 1 − a3

0; 1 − b1

���� − 3

N þ 8
ε

�
: ð26Þ

Our predictions that incorporate the fourth and fifth orders
of divergent series of the η exponent are listed in Table III.
It is very clear that the simple algorithm we follow gives
accurate results for few terms from the perturbation series
as input. This can be more elaborated by looking at the
large number of estimates for critical exponents in Ref. [50]
too. In fact, for the same order of perturbation series
involved, the precision of resummation results for η is
always less than that in ν or ω because the lowest
order in the perturbation series of η is ε2 and thus always

approximated by hypergeometric approximants of fewer
parameters than that for ν or ω.

C. Resummation of the exponent ω

For the exponent ω, we have the five-loop perturbation
series as

ω ¼ εþ e2ε2 þ e3ε3 þ e4ε4 þ e5ε5 þOðε6Þ; ð27Þ

where [4]

e2 ¼ −
3ð3N þ 14Þ
ðN þ 8Þ2 ; e3 ¼

ð33N3 þ 538N2 þ 4288N þ 9568þ ζ½3�ðN þ 8Þ96ð5N þ 22ÞÞ
4ðN þ 8Þ4 ;

e4 ¼
1

16ðN þ 8Þ6 f5N
5 − 1488N4 − 46616N3 − 1920ðN þ 8Þ2ð2N2 þ 55N þ 186Þζð5Þ

− 419528N2 − 96ðN þ 8Þð63N3 þ 548N2 þ 1916N þ 3872Þζð3Þ − 1750080N

þ 16

5
π4ðN þ 8Þ3ð5N þ 22Þ − 2599552g;

e5 ¼
1

64ðN þ 8Þ8 f13N
7 þ 7196N6 þ 240328N5 þ 3760776N4 þ 38877056N3

þ 112896ðN þ 8Þ3ð14N2 þ 189N þ 526Þζð7Þ þ 223778048N2 þ 660389888N þ 752420864

−
640

63
π6ðN þ 8Þ4ð2N2 þ 55N þ 186Þ − 16

5
π4ðN þ 8Þ3ð63N3 þ 548N2 þ 1916N þ 3872Þ

þ 256ðN þ 8Þ2ζð5Þð305N4 þ 7386N3 þ 45654N2 þ 143212N þ 226992Þ
− 768ðN þ 8Þ2ð6N4 þ 107N3 þ 1826N2 þ 9008N þ 8736Þζð3Þ2
− 16ðN þ 8Þζð3Þ½9N6 − 1104N5 − 11648N4 − 243864N3 − 2413248N2 − 9603328N − 14734080�g; ð28Þ

ABOUZEID M. SHALABY PHYS. REV. D 101, 105006 (2020)

105006-10



and the large-order parameters for that exponent are

σ ¼ −3
N þ 8

and b ¼ 5þ N
2
:

The two-loop resummation gives reasonable but not precise results, so in the following, we shall list the resummation of
three, four, and five loops.

1. Three-loop resummation for ω

The three-loop hypergeometric approximant is

ω ≈ 3F1ða1; a2; a3; b1;−σεÞ − 1; ð29Þ
where

1 ¼ a1a2a3σ
b1b2

; e2 ¼
a1ða1 þ 1Þa2ða2 þ 1Þa3ða4 þ 1Þσ2

2b1ðb1 þ 1Þb2ðb2 þ 1Þ ;

e3 ¼
a1ða1 þ 1Þða1 þ 2Þa2ða2 þ 1Þða2 þ 2Þa3ða3 þ 1Þða3 þ 2Þσ3

6b1ðb1 þ 1Þðb1 þ 2Þ ; b ¼ a1 þ a2 þ a3 − b1 − b2 − 2: ð30Þ

The solutions of these equations are then substituted in the following Meijer-G function:

ω ≈
Γðb1Þ

Γða1ÞΓða2ÞΓða3Þ
G1;3

3;2

�
1 − a1; 1 − a2; 1 − a3

0; 1 − b1

���� − 3

N þ 8
ε

�
− 1: ð31Þ

2. The ω four-loop resummation

In this case also, we use the approximant 3F1ða1; a2; a3; b1;−σεÞ, but we replace the fourth equation in the set in
Eq. (30) by

e4 ¼
aðaþ 1Þðaþ 2Þðaþ 3Þbðbþ 1Þðbþ 2Þðbþ 3Þcðcþ 1Þðcþ 2Þðcþ 3Þ

12dðdþ 1Þðdþ 2Þðdþ 3Þ σ4: ð32Þ

3. ω five-loop approximant

The hypergeometric function that can accommodate five loops is 4F2ða1; a2; a3; a4; b1; b2;−σεÞ where we use the
constraint on the large-order parameters,

b ¼ a1 þ a2 þ a3 þ a4 − b1 − b2 − 2:

Accordingly, the fifth order resummation for ω is

TABLE IV. The three-, four-, and five-loop hypergeometric-Meijer resummation for the critical exponent ω compared to five-loop
resummation from Ref. [4] (fifth column) and the Borel with conformal mapping resummation (sixth column) from Refs. [11,13].

N
3F1 This work: ε3 3F1 This work: ε4 4F2 This work: ε5 JK½4�: ε5 BCM½12;14�: ε5

0 0.86128 0.80054 0.85086 0.817(21)
0.828� 0.023
0.835(11)

1 0.85628 0.79559 0.83178 0.806(13)
0.814� 0.018

0.818(8)

2 0.85233 0.79290 0.81329 0.800(13)
0.802� 0.018

0.803(6)

3 0.84979 0.79258 0.79928 0.796(11)
0.794� 0.018

0.797(7)

4 0.910678 0.79416 0.79249 …
0.795� 0.030

0.795(6)
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ω ≈
�

Γðb1ÞΓðb2Þ
Γða1ÞΓða2ÞΓða3ÞΓða4Þ

G1;4
4;3

�
1 − a1; 1 − a2; 1 − a3; 1 − a4

0; 1 − b1; 1 − b2

����− 3

N þ 8

�
ε − 1

�
: ð33Þ

In Table IV, we compared our results to predictions from
the Janke-Kleinert Resummation for five-loop ε expansion
in Ref. [4] and Borel with conformal mapping in
Refs. [11,13] for N ¼ 0, 1, 2, 3, and 4. Again, the
comparison shows that the algorithm we follow gives very
accurate results from few orders of the perturbation series
as input.

D. Resummation of the ε expansion
for the critical coupling

In the way to get the ε expansion for the critical
exponents, one has to obtain the dependence of the critical
coupling on ε first. The expansion for the critical coupling
gc up to fifth order is given by [4]

For N ¼ 0 ⇒ gcðεÞ ≈ 0.375εþ 0.246ε2 − 0.180ε3 þ 0.368ε4 − 1.258ε5;

For N ¼ 1 ⇒ gcðεÞ ≈ 0.333εþ 0.210ε2 − 0.138ε3 þ 0.269ε4 − 0.8445ε5;

For N ¼ 2 ⇒ gcðεÞ ≈ 0.3εþ 0.18ε2 − 0.108ε3 þ 0.205ε4 − 0.591ε5;

For N ¼ 3 ⇒ gcðεÞ ≈ 0.273εþ 0.156ε2 − 0.086ε3 þ 0.162ε4 − 0.430ε5;

For N ¼ 4 ⇒ gcðεÞ ≈
1

4
εþ 13

96
ε2 − 0.0707ε3 þ 0.130ε4 − 0.322ε5; ð34Þ

while the large-order parameters are σ ¼ 3
Nþ8

and
b ¼ 4þ N

2
. The third order approximation takes the form

3F1ða1; a2; a3; b1;−σεÞ − 1, while the fourth order takes
the same form except in the equations determining the
parameters we use the large-order constraint a1 þ a2 þ
a3 − b1 − 2 ¼ b. For the five-loop resummation, we
resummed the series

gcðεÞ
ε

¼ f1 þ f2εþ f3ε2 þ f4ε3 þ f5ε4 ð35Þ

for N ¼ 1, 2, 3, and 4 using the hypergeometric approx-
imant f1 3F1ða1; a2; a3; b1; σεÞ. For N ¼ 0, however, we

resummed the subtracted series gcðεÞ−f1ε
f2ε2

¼ 1þ f3εþ
f4ε2 þ f5ε3 using the hypergeometric approximant

gcðεÞ ¼ f1εþ f2ε23F1ða1; a2; a3; b1; σεÞ; ð36Þ

with the constraint a1 þ a2 þ a3 − b1 − 2 ¼ bþ 2. Such
technical steps are well known in resummation techni-
ques [4,44], which can be used in case no solution has
been found for the equations defining the parameters.
The prediction of these orders is shown in Table V
and compared with other resummation results from
Refs. [4,11,35,47].

IV. SIX-LOOP HYPERGEOMETRIC-MEIJER
RESUMMATION OF THE CRITICAL

EXPONENTS ν, η, AND ω

In Ref. [13], the six-loop order of the renormalization
group functions has been obtained and resummed using
Borel with conformal mapping algorithm. The work led to
the improvement of the previous resummation predictions
of the five-loop order in Refs. [4,11]. This six-loop order of
perturbation series represents a good test for the accuracy
and stability of our resummation algorithm. We shall thus

TABLE V. The three-, four-, and five-loop hypergeometric-Meijer resummation of the critical coupling gc for the OðNÞ model with
N ¼ 0, 1, 2, 3, and 4. The result from Ref. [11] in the last column (scaled by a factor 3

Nþ8
because of different normalizations) and SC

refers to strong-coupling resummation algorithm.

N
3F1 This work: ε3 3F1 This work: ε4 3F1 This work: ε5 JK\SC BCM½12�

0 0.54035 0.54684 0.49007 0.5408(83), JK½4� 0.52988� 0.00225
1 0.47883 0.48475 0.48462 0.4810(91), JK½4� 0.47033� 0.001
2 0.42779 0.43322 0.43429 0.5032(239), JK½4� 0.4209� 0.001
3 0.36955 0.39006 0.39214 0.3895(71), JK½4� 0.37936� 0.001
4 0.34921 0.35187 0.35638 0.34375, SC½50� 0.34425� 0.00125
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extend our work in the previous section to incorporate the
six-loop weak-coupling data to compare with the recent
results of Borel resummation and numerical predictions.
A different ε has been used in Ref. [13] as the space-time

dimension has been set as d − 2ε. Accordingly, the nth
coefficients in each perturbation series has to be divided by
2n to keep the definition used in our work (d − ε). For the
critical exponent ν, we then have

ν−1 ¼ 2þ
X6
i¼1

ciεi þOðε7Þ; ð37Þ

where the first five coefficients (ci) are given by Eq. (13)
while the sixth coefficient is given in Table VII.
Accordingly, we use the approximant 24F2ða1; a2; a3; a4;
b1; b2;−σεÞ for the resummation of the ν−1 series above. In
Table VI, one can realize that our six-loop resummation for
the critical exponent ν is very competitive either to the six-
loop Borel with conformal mapping algorithm in Ref. [13]
or Monte Carlo calculations (ours are closer to numerical
results).
For the critical exponent η, we have the series up to fifth

order in Eq. (21) and we add the sixth coefficient from
Ref. [13] as shown in Table VII. The hypergeometric
approximant 3F1 has been used for the resummation of the
six-loop perturbation series of η and its resummation results
are presented in Table VI too.
For the critical exponent ω, the sixth coefficients e6 are

listed in Table VII. In this case, we use the approximant

4F2ða1; a2; a3; a4; b1; b2;−σεÞ − 1 which in turn results in
the last column in Table VI. Note that when there exist no
solution for the set of equations determining the

parameters, we resort to successive subtraction of the
perturbation series [4,44].

V. RESUMMATION OF THE SEVEN-LOOP
COUPLING SERIES FOR β, γm2 , AND γϕ

RENORMALIZATION GROUP FUNCTIONS

In the minimal subtraction scheme, Schnetz obtained the
seven-loop order of the renormalization group functions β,
γm2 , and γϕ for theOðNÞ-symmetric model [51]. Here γm2 is
the mass anomalous dimension, while γϕ represents the
field anomalous dimension. In the following, we list our
resummation results for N ¼ 0, 1, 2, 3, and 4 while the
results are compared to recent calculations from different
techniques in Tables VIII–XII. Note that for the g series, the
large-order parameters for the OðNÞ-symmetric model are
σ ¼ 1 and bβ ¼ 3þ N=2, bω ¼ 4þ N=2, bγϕ ¼ 2þ N=2,
and bγm2

¼ 3þ N=2 [4], where ω ¼ β0g.

A. Resummation results for self-avoiding walks (N = 0)

For N ¼ 0 and in three dimensions, the seven-loop order
for the β function is given by

β ≈ −gþ 2.667g2 − 4.667g3 þ 25.46g4 − 200.9g5

þ 2004g6 − 23315g7 þ 303869g8: ð38Þ

TABLE VI. The six-loop Hypergeometric-Meijer resummation
(first) for the critical exponent ν, η, and ω for OðNÞ model with
N ¼ 0, 1, 2, 3, and 4. The results are compared to recent Borel
with conformal mapping (second) resummation in Ref. [13] and
also recent Monte Carlo simulations methods (third).

N ν η ω Reference

0
0.58744 0.03034 0.85559 This work
0.5874(3) 0.0310(7) 0.841(13) [13]
0.5875970(4) 0.031043(3) 0.904(5) [18]

1
0.62937 0.03545 0.82929 This work
0.6292(5) 0.0362(6) 0.820(7) [13]
0.63002(10) 0.03627(10) 0.832(6) [15]

2
0.66962 0.03733 0.80580 This work
0.6690(10) 0.0380(6) 0.804(3) [13]
0.6717(1) 0.0381(2) 0.785(20) [19]

3
0.70722 0.037301 0.79272 This work
0.7059(20) 0.0378(5) 0.795(7) [13]
0.7116(10) 0.0378(3) 0.791(22) [16]

4
0.74151 0.03621 0.76793 This work
0.7397(35) 0.0366(4) 0.794(9) [13]
0.750(2) 0.0360(3) 0.817 (30) [16]

TABLE VII. The coefficients of the sixth order in the ε
expansion from Ref. [13] but scaled properly to match with
the choice d − ε of the space-time dimension in our work, while
in Ref. [13] the choice was d − 2ε. In this table, c6 for ν−1, d6 for
η, and e6 for ω series, respectively.

N 0 1 2 3 4

c6 −3.856 −3.573 −3.103 −2.639 −2.234
d6 −0.0907 −0.0813 −0.0686 −0.0570 −0.0474
e6 −130.00 −93.111 −68.777 −52.205 −40.567

TABLE VIII. The seven-loop (7L) hypergeometric-Meijer
resummation for the critical exponents ν, η, and ω of the self-
avoiding walks model (N ¼ 0). Here we compare with our results
from the previous section (ε6), conformal bootstrap (CB) calcu-
lations [52], Monte Carlo (MC) simulation for ν from
Refs. [13,17] and η from Ref. [18]. The six-loop Borel with
conformal mapping (BCM) resummation (ε6) from Ref. [13] and
five loops (ε5) from the same reference.

Method ν η ω

7L: This work 0.58723 0.03129 0.85650
ε6: This work 0.58744 0.03034 0.85559
CB 0.5877(12) 0.0282(4) …
MC 0.5875970(4) 0.031043(3) 0.899(12)
ε6: BCM 0.5874(3) 0.0310(7) 0.841(13)
ε5: BCM 0.5873(13) 0.0314(11) 0.835(11)
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We resummed this series using the approximant ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ which resulted in the Meijer-G
approximant of the form

β ¼ Γðb1ÞΓðb2ÞΓðb3Þ
Γða1ÞΓða2ÞΓða3ÞΓða4ÞΓða5Þ

G1;5
5;4

�
1 − a1; 1 − a2; 1 − a3; 1 − a4; 1 − a5

0; 1 − b1; 1 − b2; 1 − b3

���� − g

�
− 1: ð39Þ

The critical coupling is obtained from the zero of the β function where we found gc ¼ 0.53430. The series for correction to
scaling critical exponent ω is obtained from differentiating the above series with respect to g, and it has been resummed
using the approximant ð−5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gcÞÞ where the large-order constraint

P
ai −

P
bi − 2 ¼ bω

has been employed and we found the result ω ¼ 0.85650. This result can be compared with the recent Monte Carlo
simulations calculations in Ref. [18] that predict the result ω ¼ Δ1

ν ¼ 0.899ð12Þ (see Table VIII for comparison with
different methods).
The field anomalous dimension is also given by

γϕ ≈ 0.05556g2 − 0.03704g3 þ 0.1929g4 − 1.006g5 þ 7.095g6 − −57.74g7: ð40Þ

TABLE IX. The seven-loop hypergeometric-Meijer resumma-
tion for the critical exponents ν, η, and ω of the Oð1Þ-symmetric
model. Here we compare with our results from the previous
section (ε6), conformal bootstrap calculations from Ref. [25], and
Monte Carlo (MC) simulation from Ref. [15]. The six-loop Borel
with conformal mapping (BCM) resummation (ε6) from Ref. [13]
and five loops (ε5) from the same reference. The very recent
calculations of critical exponents using nonperturbative renorm-
alization group (NPRG) [53] are listed last where results for ν and
η are up to Oð∂6Þ while for ω is up to Oð∂4Þ.
Method ν η ω

7L: This work 0.62934 0.03684 0.82790
ε6: This work 0.62937 0.03545 0.82929
CB 0.62999(5) 0.03631(3) 0.8303(18)
MC 0.63002(10) 0.03627(10) 0.832(6)
ε6: BCM 0.6292(5) 0.0362(6) 0.820(7)
ε5: BCM 0.6290(20) 0.0366(11) 0.818(8)
NPRG 0.63012(16) 0.0361(11) 0.832(14)

TABLE X. The seven-loop hypergeometric-Meijer resumma-
tion for the critical exponents ν, η, and ω of the Oð2Þ-symmetric
model. For comparison, other predictions are listed from the
previous section (ε6), conformal bootstrap calculations [27] for ν
and η, while ω from Refs. [13,26]. MC calculations from
Ref. [54]. The six-loop BCM resummation (ε6) from Ref. [13]
and five loops (ε5) from the same reference while NPRG results
up to Oð∂4Þ [53] are listed last.

Method ν η ω

7L: This work 0.66953 0.03824 0.80233
ε6: This work 0.66962 0.03733 0.80580
CB 0.6719(11) 0.03852(64) 0.811(10)
MC 0.67183(18) 0.03853(48) 0.789
ε6: BCM 0.6690(10) 0.0380(6) 0.804(3)
ε5: BCM 0.6687(13) 0.0384(10) 0.803(6)
NPRG 0.6716(6) 0.0380(13) 0.791(8)

TABLE XI. The seven-loop hypergeometric-Meijer resumma-
tion for the critical exponents ν, η, and ω of the Oð3Þ-symmetric
model. The results are compared with our results from the
previous section (ε6), conformal bootstrap calculations from
Ref. [27] for ν and η, while ω from Refs. [13,26]. For MC
simulations, ω is taken from Ref. [20], while ν and η are taken
from Ref. [16]. The six-loop BCM resummation is taken from
Ref. [13] and five loops from the same reference. The very recent
calculations using NPRG [53] are listed last and up to Oð∂4Þ.
Method ν η ω

7L: This work 0.70810 0.03795 0.78683
ε6: This work 0.70722 0.037301 0.79272
CB 0.7121(28) 0.0386(12) 0.791(22)
MC 0.7116(10) 0.0378(3) 0.773
ε6: BCM 0.7059(20) 0.0378(5) 0.795(7)
ε5: BCM 0.7056(16) 0.0382(10) 0.797(7)
NPRG 0.7114(9) 0.0376(13) 0.769(11)

TABLE XII. The seven-loop hypergeometric-Meijer resumma-
tion for the critical exponents ν, η, and ω of the Oð4Þ-symmetric
model. Here we compare with our results from the previous
section (ε6), conformal bootstrap calculations [13,26] for ν and ω,
while η from Ref. [24]. MC simulations for ω is taken from
Ref. [20], while ν and η are from Ref. [16]. The six-loop BCM
resummation (ε6) is taken from Ref. [13] and five loops (ε5) from
the same reference. NPRG results up to Oð∂4Þ [53] are shown in
the last row.

Method ν η ω

7L: This work 0.750935 0.03740 0.80325
ε6: This work 0.74151 0.03621 0.76793
CB 0.751(3) 0.0378(32) 0.817(30)
MC 0.750(2) 0.0360(3) 0.765 (30)
ε6: BCM 0.7397(35) 0.0366(4) 0.794(9)
ε5: BCM 0.7389(24) 0.0370(9) 0.795(6)
NPRG 0.7478(9) 0.0360(12) 0.761(12)
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The suitable hypergeometric approximant used is

γϕ ¼ 4F2ða1; a2; a3; a4; b1; b2;−1Þ −
�
1þ g

a1a2a3a4
b1b2

�
: ð41Þ

The critical exponent η is obtained from the relation η ¼ 2γϕðgcÞwhere we get the result η ¼ 0.03129. In a recent conformal
bootstrap calculation, the result η ¼ 2Δϕ − 1 ¼ 0.0282ð4Þ has been obtained [52] while the Monte Carlo result is η ¼
0.031043ð3Þ in Refs. [13,17].
For the mass anomalous dimension γm2 , the series up to seven-loop order is given by

γm2 ≈ −0.6667gþ 0.5556g2 − 2.056g3 þ 10.76g4 − 75.70g5 þ 636.7g6 − 6080g7:

The hypergeometric approximant used is ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ which corresponds to the following
Meijer-G function:

γm2 ¼
�

Γðb1ÞΓðb2ÞΓðb3Þ
Γða1ÞΓða2ÞΓða3ÞΓða4ÞΓða5Þ

G1;5
5;4

�
1 − a1; 1 − a2; 1 − a3; 1 − a4; 1 − a5

0; 1 − b1; 1 − b2; 1 − b3

���� − g

��
− 1: ð42Þ

The critical exponent ν is then obtained as ν ¼ ð2þ γm2ðgcÞÞ−1 which yields the result ν ¼ 0.58723. This result can be
compared with conformal bootstrap prediction ν ¼ 0.5877ð12Þ in Ref. [52] and the Monte Carlo result ν ¼ 0.5875970ð4Þ
in Ref. [18].

B. Resummation results for Ising universality class (N = 1)

For N ¼ 1, the seven-loop β function that has been recently obtained [51] is given by

β ≈ −εgþ 3.000g2 − 5.667g3 þ 32.55g4 − 271.6g5 þ 2849g6 − 34776g7 þ 474651g8: ð43Þ

The suitable approximant for this series is ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ which we used to obtain the critical
coupling gc at which β ¼ 0. In three dimensions (ε ¼ 1), the predicted critical coupling is gc ¼ 0.47947. This value can be
compared with the five-loop resummation in Table V. The critical exponent ω also predicted to have the value 0.82790. The
conformal bootstrap calculation gives the result ω ¼ 0.8303ð18Þ in Ref. [25] while Monte Carlo simulations result is
ω ¼ 0.832ð6Þ [15].
The seven-loop perturbation series for the anomalous mass dimension γm2 has been obtained in the same reference [51],

where

γm2 ≈ −gþ 0.8333g2 − 3.500g3 þ 19.96g4 − 150.8g5 þ 1355g6 − 13760g7: ð44Þ

We used ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ too for the resummation of this series. The ν exponent is then

ν ¼ ð2þ γm2ðgcÞÞ−1 ¼ 0.62934:

The recent Monte Carlo prediction gives the value ν ¼ 0.63002ð10Þ in Ref. [15], while in Ref. [25] one can find the result
ν ¼ 0.62999ð5Þ using conformal bootstrap calculations.
The seven-loop order of the perturbation series for the field anomalous dimension γϕ is also obtained in Ref. [51] as

γϕ ≈ 0.08333g2 − 0.06250g3 þ 0.3385g4 − 1.926g5 þ 14.38g6 − 124.2g7: ð45Þ

We used the “hypergeometric approximant”,

γ ≈ 4F2ða1; a2; a3; a4;b1; b2; ð−gÞÞ −
�
1 −

a1a2a3a4
b1b2

ð−gÞ
�
; ð46Þ

to resum that series and the exponent η is obtained from the relation η ¼ 2γðgcÞ. We get the result η ¼ 0.03684. This result
is compatible with the recent conformal bootstrap calculation of η ¼ 0.03631ð3Þ [25] and Monte Carlo simulation result of
η ¼ 0.03627ð10Þ in Ref. [15].
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C. Resummation results for N = 2 (XY universality class)

In this case, the seven-loop β function is given by

β ≈ −gþ 3.333g2 − 6.667g3 þ 39.95g4 − 350.5g5 þ 3845g6 − 48999g7 þ 696998g8: ð47Þ

This series is resummed using the approximant ð−gð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞÞ which gives the critical coupling
value gc ¼ 0.43292. Resuming the g-differentiated series yields the result ω ¼ 0.80233. The value ω ¼ 0.789 has been
adopted using a recent high-precision Monte Carlo calculations [54] while the conformal bootstrap calculations give
ω ¼ 0.811ð10Þ [13,26].
The mass anomalous dimension has the seventh-loop result as

γm2 ≈ −1.333gþ 1.111g2 − 5.222g3 þ 31.87g4 − 255.8g5 þ 2434g6 − 26086g7; ð48Þ

where we resummed it using ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ. This led to the result ν ¼ 0.66953. The recent
Monte Carlo result is ν ¼ 0.67183ð18Þ [54] while the conformal bootstrap gives ν ¼ 0.6719ð11Þ [27].
For the field anomalous dimension γϕ, we have

γϕ ≈ 0.11111g2 − 0.09259g3 þ 0.5093g4 − 3.148g5 þ 24.71g6 − 224.6g7: ð49Þ

The corresponding hypergeometric approximant is 0.11111g2ð4F2ða1; a2; a3; a4; b1; b2;−gÞÞ with the result η ¼ 0.03824.
For that exponent, the recent Monte Carlo simulations in Ref. [54] give η ¼ 0.03853ð48Þ while conformal bootstrap gives
the result η ¼ 0.03852ð64Þ [27].

D. Resummation results for Heisenberg universality class (N = 3)

The seven-loop β function for N ¼ 3 is given by

β ≈ −gþ 3.667g2 − 7.667g3 þ 47.65g4 − 437.6g5 þ 4999g6 − 66243g7 þ 978330g8: ð50Þ

To resum this series, we used the hypergeometric approximant ð−gþ 3.667g2 − 7.667g3ð4F2ða1; a2; a3; a4; b1; b2;−gÞÞ
which predicts the critical coupling value gc ¼ 0.39363 while the resummation of the ω series gives the value 0.78683.
Conformal bootstrap result is ω ¼ 0.791ð22Þ [13,26] and the Monte Carlo result is ω ¼ 0.773 [20].
The series representing the mass anomalous dimension up to seven-loop order is

γm2 ≈ −1.667gþ 1.389g2 − 7.222g3 þ 46.64g4 − 394.9g5 þ 39506 − 44412g7; ð51Þ

which has been resummed using ð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞ − 1Þ that gives the result ν ¼ 0.70810. In Ref. [27],
conformal bootstrap calculations give the value ν ¼ 0.7121ð28Þ and the Monte Carlo simulations in Ref. [16]
give ν ¼ 0.7116ð10Þ.
The field anomalous dimension γϕ has the seventh order perturbative form,

γϕ ≈ 0.1389g2 − 0.1273g3 þ 0.6993g4 − 4.689g5 þ 38.44g6 − 365.9g7; ð52Þ

which approximated by ðgð4F2ða1; a2; a3; a4; b1; b2;−gÞ − 1ÞÞ and gives the result η ¼ 0.03795. To compare with other
recent results, the bootstrap calculations in Ref. [27] give η ¼ 0.0386ð12Þ and the Monte Carlo results give η ¼
0.0378ð3Þ [16].

E. Resummation results for the O(4)-symmetric case

The seven-loop β function for N ¼ 4 is shown to be

β ≈ −gþ 4.000g2 − 8.667g3 þ 55.66g4 − 533.0g5 þ 6318g6 − 86768g7 þ 1.326 × 106g8: ð53Þ

The corresponding approximant is ð−gð5F3ða1; a2; a3; a4; a5; b1; b2; b3;−gÞÞ which yields gc ¼ 0.36662 while resumming
the ω series gives the result ω ¼ 0.80325. Monte Carlo methods in Ref. [20] give ω ¼ 0.765 while conformal bootstrap
calculations predict the result ω ¼ 0.817ð30Þ [13,26].
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The anomalous mass dimension is given by

γm2 ≈ −2.000gþ 1.667g2 − 9.500g3 þ 64.39g4 − 571.9g5 þ 5983g6 − 70240g7; ð54Þ

which has been approximated by 5F3ða1; a2; a3; a4; a5;
b1; b2; b3;−gÞ − 1 and gives ν ¼ 0.75093. This result is
very close to the Monte Carlo result ν ¼ 0.750ð2Þ in
Ref. [16] and the conformal bootstrap result ν ¼
0.751ð3Þ in Ref. [26].
Likewise, the field anomalous dimension up to seven

loops is given by

γϕ ≈ 0.1667g2 − 0.1667g3 þ 0.9028g4 − 6.563g5

þ 55.93g6 − 555.2g7; ð55Þ

which is approximated by gð4F2ða1; a2; a3; a4; b1; b2;
−gÞ − 1Þ and gives the result η ¼ 0.03740. Again, the
Monte Carlo simulations in Ref. [16] give the values
η ¼ 0.0365ð3Þ. Also, Monte Carlo simulations and
finite-size scaling of three-dimensional Potts models in
Ref. [22] give the result η ¼ 5 − 2yh ¼ 0.036ð6Þ and the
conformal bootstrap calculation is 0.0378(32) [24].
A note to be mentioned is that one should not judge the

convergence of the seven-loop resummation results by
comparing with six-loop resummation or lower order
resummation in this work. The point is that the seven-loop
resummation in this work applied for the g series but for the
other orders we resummed the ε series. Our aim behind
resumming both available series is to test our algorithm
using different types of perturbation series. To have an idea
about the good convergence of our algorithm for the
resummation of the g series, one should look at different
orders of resummation of the g series itself. For instance,
for N ¼ 4, we get ω ¼ 0.77963 from five-loop resumma-
tion of the g series, ω ¼ 0.78162 from six loops [14]
compared to the seven-loop result in Table XII as
ω ¼ 0.80325.

VI. SUMMARY AND CONCLUSIONS

We show that divergent series with different large-order
behaviors can be approximated by different generalized
hypergeometric functions pFqða1;…ap; b1…:bq; σzÞ. The
relation between the number of numerator and denominator
parameters (p and q) is determined from the growth factor
in the large-order behavior of the divergent series. For
a divergent series with a growth factor n!, the series
expansion of the hypergeometric function pFqða1;…ap;
b1…:bq; σzÞ where p ¼ qþ 2 can reproduce a large-order
behavior with same growth factor. Accordingly, the hyper-
geometric function pFp−2ða1;…ap; b1…:bp−2; σzÞ is the
suitable candidate to approximate such type of divergent
series. Since the function pFp−2ða1;…ap; b1…:b−p−2; σzÞ

possesses an expansion of zero radius of convergence, a
representation in terms of Meijer-G function is capable to
resum the divergent hypergeometric series.
For divergent series that have growth factors ð2nÞ! and

ð3nÞ!, hypergeometric functions with p ¼ qþ 3 and
p ¼ qþ 4, respectively, can reproduce such large-order
behaviors and thus are suitable approximants for such
perturbation series. On the other hand, one might have a
divergent series with finite radius of convergence which has
a large-order behavior with a growth factor of 1. To mimic
such type of large-order behavior, the hypergeometric
function pFp−1ða1;…ap; b1…:bp−1; σzÞ can be used as
suitable approximant for such kind of divergent series.
The large-order behavior of the ε expansion of the

renormalization group functions for the OðNÞ-symmetric
model has a growth factor of n!. Accordingly, we used the
hypergeometric function pFp−2ða1;…ap; b1…:bp−2; σzÞ
to approximate the respective divergent series. Since the
strong-coupling data are not yet known for such expansion,
we use weak-coupling and large-order data to parametrize
the hypergeometric function pFp−2ða1;…ap; b1…:bp−2;
σzÞ. The parametrization of the hypergeometric function is
then followed by the resummation step of using a repre-
sentation in terms of Meijer-G function. We applied the
algorithm to resum the divergent series representing critical
exponents νðν−1Þ, η, and ω, as well as the critical coupling
up to ε5 order as input. For N equals 0,1,2,3, and 4, the
results ought to be reasonable even for very low order of
perturbation used to parametrize the hypergeometric
approximant. The results are greatly improved in using
third order and being more precise in going to fourth order
while the fifth order offers very competitive predictions
when compared to other resummation algorithms in
literature.
To show that the precise results extend to higher N

values, we resummed the perturbation series for the
exponent ν for N ¼ 6, 8, 10 and 12. The precision of
the results can be seen from Table II where we listed the
fifth order resummation results for the exponent ν and
compared it with other methods.
All the hypergeometric functions pFp−2ða1;…ap;

b1…:bp−2; σzÞ share the same analytic behavior.
Accordingly, one expects no surprises in going to higher
orders of resummation. To test this clear fact, as well as to
seek more improved results, we resummed the six-loop
order for the perturbation series for the exponents ν, η,
and ω for N ¼ 1, 2, 3, and 4. The results are showing
improved predictions for those exponents. When compared
to other calculations, our results for the critical exponents
are compatible with the recent six-loop BC resummation
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method in Ref. [13], MC simulations calculations
[15,16,19–22,54], and conformal bootstrap methods
[23,24,26,27,52].
The very recent seven-loop order (coupling-series) for

the renormalization group functions β; γϕ, and γm2 has been
resummed too. Up to the best of our knowledge, no other
resummation algorithm has been used to resum this order.
Very accurate results for the critical coupling and the
exponent ν have been extracted from the resummed
functions.
In all of our calculations, we used weak-coupling and

large-order data as input. The ai parameters in the hyper-
geometric functions pFqða1;…ap; b1…:bp−2; σzÞ are well
known to represent the strong-coupling data [14]. However,
the strong-coupling expansion for the series under consid-
eration has not been obtained yet (up to the best of
our knowledge). Accordingly, we cannot get benefited
from this fact in further acceleration of the convergence
of the resummation algorithm. However, the expansion

coefficients of the hypergeometric function depend on
the strong-coupling parameters and they in turn con-
strained to match the weak-coupling and large-order data.
Accordingly, this algorithm is linking the unknown strong-
coupling parameters to the known weak-coupling and
large-order data. Thus, the algorithm has the ability to
predict the nonperturbative asymptotic strong-coupling
behavior of a quantum field theory from knowing the
weak-coupling and large-order data. In other algorithms,
this asymptotic behavior is predicted from optimization
techniques and different optimizations can even lead to
different results for the same theory.
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