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We formulate a N ¼ ð2; 0Þ supersymmetric non-Abelian Proca-Stückelberg theory in six space-time
dimensions (6D). As the foundation of our construction, we start with our recent work on N ¼ 1

supersymmetric Proca-Stückelberg formulation in 4D with a Yang-Mills (YM) multiplet ðAμ
I ; λIÞ and a

chiral multiplet ðφI ; χI ;ϕIÞ, where the index I ¼ 1; 2;…; dim G is for the adjoint representation of a non-
Abelian group G, while φI parametrizes the coordinates of the group manifold G. Since φI and ϕI

transform differently under G, the conventional global R symmetry is lost. Next, we apply this mechanism
to 6D with the two multiplets: a YM multiplet ðAμ

I ; λαIÞ and a hypermultiplet (HM) ðϕiJ; χαI ;φIÞ. The
index i ¼ 1; 2; 3 is for the 3 of Spð1Þ. The spinorial index α ¼ ðα; AÞ (α ¼ 1;…; 4) is for the Majorana-
Weyl spinor index for D ¼ 5þ 1 with A ¼ 1; 2 for the 2 of Spð1Þ. As opposed to the common notion that
all four scalars in a HM in 6D must form the (2; 2) of global Spð1Þ × Spð1Þ, we can use a scalar φI in the
(1; 1) of Spð1Þ × Spð1Þ as a Nambu-Goldstone boson absorbed into the longitudinal component of Aμ

I ,
separated from the remaining three scalars ϕiI in the (3; 1) of Spð1Þ × Spð1Þ. Similar to our recent result in
4D with broken automorphism R symmetry, the new feature of our result is that all four scalars in the HM in
6D do not have to form the (2; 2) of Spð1Þ × Spð1Þ.
DOI: 10.1103/PhysRevD.101.105005

I. INTRODUCTION

There has been a considerable number of applications
of the so-called “tensor-hierarchy” formulations [1,2] to
the consistent interactions of non-Abelian tensors. Explicit
examples are models such as the supersymmetrization [3]
of Jackiw-Pi model [4], the supersymmetrization [5,6] of
Proca-Stückelberg formulation [7], supersymmetric com-
posite gauge models [8], and the supersymmetric Cremmer-
Scherk theory [9]. The common feature among these
formulations is the Chern-Simon-like modifications of the
conventional field strengths of non-Abelian tensors, such as
the field-strength Gμνρ

I ≡ 3D½μBνρ�I þ 3fIJKF½μνJCρ�K of a
second-rank tensor Bμν

I [1,2].
Before the works [5,6] on supersymmetric non-Abelian

Proca-Stückelberg theory [7] in four dimensions (4D),
there were already some works [10] in similar directions.
However, these works are limited to Uð1Þ Abelian
gauge groups. The new feature of our papers [5,6]
is the simultaneous accomplishment of both the

supersymmetrization and “non-Abelianization” of the
Proca-Stückelberg theory [7].
In our recent paper [9], we have presented a Proca-

Stueckelberg mechanism [7] for non-Abelian gauge sym-
metry in 4D. Its Abelian limit is shown to correspond to the
Proca-Stueckelberg type breaking of R symmetry in 4D. In
[11], it is concluded that R-symmetry breaking is closely
related to supersymmetry breaking in 4D. Moreover,
supersymmetry breaking in F theory [12] by an instanton
is associated with R-symmetry breaking [13]. In other
words, there is a natural link between supersymmetry
breaking and R-symmetry breaking. As such, it is impor-
tant to investigate R-symmetry-breaking models, such as
our formulation in 4D [9], where Proca-Stueckelberg
mechanism [7] results in R-symmetry breaking.
The basic ingredient of our supersymmetric non-Abelian

Proca-Stückelberg formulations [5,6,9] is described as
follows: We introduce the scalars φ≡ φITI with the
anti-Hermitian generators TI (I ¼ 1; 2;…; dim G) para-
metrizing the coordinates of the group manifold G. The
conventional Yang-Mills (YM) field strength Fμν

I is
modified to [9]

F μν
I ≡ Fμν

I þm−1fIJKPμ
JPν

K; ð1:1Þ
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where Fμν
I ≡ 2∂ ½μAν�I þmfIJKAμ

JAν
K , while Pμ

I is the
covariant field strength of φ made from the representative
eφ of the group manifold G as

Pμ
I ≡ ½ðDμeφÞe−φ�I ≡ ½ð∂μeφÞe−φ�I þmAμ

I: ð1:2Þ

The modification (1.1) is associated with the modified
Bianchi identities (BIds),

D½μPν�I ≡þ 1

2
mF μν

I; ð1:3aÞ

D½μF νρ�I ≡þfIJKF ½μνJPρ�K: ð1:3bÞ

The modifications of field strengths in tensor-hierarchy
formulations [1,2] are with Chern-Simons terms as the
combination of a field strength and a potential field, or
just the single factor of a potential field [1,2], while the
modification (1.1) involves two field strengths. Although
they look different, there is similarity between tensor-
hierarchy [1,2] and a non-Abelian Proca-Stückelberg
formulation [5,6] as the “generalized Chern-Simons term,”
so that the latter can be interpreted as a “generalized”
tensor-hierarchy formulation. To be more specific, we can
regard any modification of BIds (1.3) by the wedge pro-
duct of field strengths as the “generalized” tensor-hierarchy
formulations.
In our recent paper [6] on supersymmetric Proca-

Stückelberg formulations in 4D, we introduced a tensor
multiplet ðBμν

I; χI;φIÞ and an extra vector multiplet
ðKμ

I; ρI; Cμνρ
IÞ, in addition to the YM multiplet ðAμ

I; λIÞ.
The scalar φI is used as a Nambu-Goldstone scalar absor-
bed into the longitudinal component of Aμ

I . However, the
field content in [6] is rather involved, because of the extra
vector multiplet. One clue to exclude such extra vector
multiplets is found in the superspace formulations [14–16]
of Freedman-Townsend theory [17], where a chiral-
superfield is introduced. In such formulations, due to the
chiral superfields introduced, scalar and pseudoscalar fields
transform in the same way under the gauge group G.
In such conventional chiral-superfield formulations, the
so-called global R symmetry [18,19] is conserved, by
definition.
However, as a different approach, if we try to use the

chiral multiplet (CM) ðA;B; χÞ, in which only the scalar A
(but not B) is used for a Nambu-Goldstone field as
an alternative formulation of supersymmetric Proca-
Stückelberg theory, it seems inevitable to break global R
symmetry. In fact, in our recent paper [9], we have
presented such a formulation, in which the scalar A is
transforming as the coordinates of the group manifold G,
while the pseudoscalar B is transforming as the usual
adjoint representation. In a sense, this formulation has more
potential applications to other dimensions, such as 6D,

where there are plural scalars in a hypermultiplet (HM), and
it is more advantageous to separate one scalar as a Nambu-
Goldstone scalar from the remaining scalars.
From this viewpoint, it seems to be a new feature in

supersymmetry that a single scalar is separated from other
(pseudo)scalars and is absorbed into the longitudinal part of
a vector. In N ¼ 1 locally supersymmetric systems in 4D, a
scalar and a pseudoscalar fields in a chiral multiplet form
the coordinates of complex Kähler manifolds [20]. This is
further generalized to a hyper-Kähler manifold [21] for
N ¼ 2 supersymmetry in 4D. Our objective in [9], there-
fore, was to look for a formulation in which a scalar is
separated from the remaining scalars in a CM in 4D and is
used as a Nambu-Goldstone field.
In our present paper, we first review the supersymmetric

formulation for non-Abelian Proca-Stückelberg theory in
4D only with the YM-multiplet ðAμ

I; λIÞ and the CM
ðφI; χI;ϕIÞ, presented in [9]. Following this result in 4D,
we formulate a super-Proca-Stückelberg theory in 6D. We
consider N ¼ ð2; 0Þ supersymmetry1 in 6D, with a YM
multiplet ðAμ

I; λIÞ, and a hypermultiplet (HM) ðϕiI ; χI;φIÞ,
where λI and χI are Majorana-Weyl spinors with the
chiralities γ7ðλI; χIÞ ¼ ðþλI;−χIÞ. The crucial technique
here is that out of the four scalars in HM, we single out one
scalar φI separated from other remaining three scalars ϕiI

(i ¼ 1; 2; 3). These are, respectively, in the 1 and 3 of the
global Spð1Þ gauge group. As such, the conventional
global symmetry among the original four scalars is lost
in 6D, as global R symmetry [18,19] is lost in 4D in
Sec. III. This further implies that the conventional super-
field approach in 6D is not the most general formulation,
due to the lack of uniform treatment of scalars in the HM
[23], or in terms of 4D chiral superfields [24].
This paper is organized as follows: In Sec. II, we give the

preliminary analysis related to a purely bosonic case of
Proca-Stückelberg formulation. We also review our recent
supersymmetric Proca-Stückelberg formulation in 4D only
with the a YM multiplet ðAμ

I; λIÞ and the CM ðφI; χI;ϕIÞ
[9], lacking global R symmetry [18,19]. In Sec. III, we give
our action in 6D with a Lagrangian invariant under N ¼
ð2; 0Þ supersymmetry with technical details. Section IV is
devoted to concluding remarks, while in Appendix we give
the superspace [25,26,23] reconfirmation of our system.
Since our system has the peculiar separation 1þ 3 in the
HM, the conventional superspace method in 6D [23,24]
does not directly apply. This situation is also similar to the
4D case that the chiral-superfield formulation [24] does not
apply to our system [9].

1We use the symbol N ¼ ð2; 0Þ based on Majorana-Weyl
spinors, counting each component of 2 of Spð1Þ separately for
supersymmetry. This counting based on a Majorana-Weyl spinor
complies with that by J. Strathdee in [22] in 6D.
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II. N= 1 SUPERSYMMETRIC PROCA-
STÜCKELBERG FORMULATION IN 4D

We first give some preliminaries to review the Proca-
Stückelberg formulation. Let a scalar φI (I ¼ 1; 2;…;
dimG) carry the adjoint index of any non-Abelian gauge
group G. We identify φI with the g-dimensional coordi-
nates of the group manifold G. We use also the symbol
φ≡ φITI with the anti-Hermitian generators TI of G.
Consider the finite gauge transformation for the group-

manifold representative [27],

eφ ⟶ ðeφÞ0 ¼ e−Λeφ; ð2:1Þ

and that of the gauge field Aμ ≡ Aμ
ITI ,

Aμ ⟶ A0
μ ¼ e−ΛAμeΛ þm−1e−Λð∂μeΛÞ; ð2:2Þ

where Λ≡ ΛITI is a finite gauge-transformation param-
eter. The conventional field strength Fμν

I ≡ 2∂ ½μAν�I þ
mfIJKAμ

JAν
K transforms as

Fμν ⟶ F0
μν ¼ e−ΛFμνeΛ: ð2:3Þ

Accordingly, the field strength of φ,

Pμ ≡ ðDμeφÞe−φ ≡ ð∂μeφÞe−φ þmAμ; ð2:4Þ

transforms “left and right covariantly” [28,27] as

Pμ ⟶ P0
μ ¼ e−ΛPμeΛ: ð2:5Þ

The definition of Dμ on eφ is Dμeφ ≡ ∂μeφ þmAμeφ,
because this combination transforms “left covariantly”:
Dμeφ ⟶ e−ΛDμeφ like (2.1), with no derivative on the
finite parameter Λ.
The field strength Pμ

I plays a crucial role for the group-
manifold σ model, and Proca-Stückelberg formulation, as
well. Its BId is

D½μPν�I ≡þ 1

2
mF μν

I; ð2:6Þ

where F is the modified field strength of F defined by [9]

F μν
I ≡ Fμν

I þm−1fIJKPμ
JPν

K;

Fμν
I ≡ 2∂ ½μAν�I þmfIJKAμ

JAν
K: ð2:7Þ

The P-BId (2.6) gives the necessity and justification of the
modified F instead of F. As such, the modification of Fμν

I

into the peculiar F μν
I is not based on the authors’

subjective tastes, but on the naturalness of P-BIds. Of
course, in principle, we can separate the P ∧ P term in the
P-BId (2.6), but it unnecessarily increases terms, as
elucidated in the supersymmetric-invariance confirmation
of our action in the non-Abelian case, as has been also
confirmed in 4D [9].
In terms of two field strengths F and P, the Lagrangian

for non-Abelian Proca-Stückelberg theory is [5,6]

LPS ¼ −
1

4
ðF μν

IÞ2 − 1

2
ðPμ

IÞ2: ð2:8Þ

Needless to say, by the field redefinition Aμ
I ≡ Ãμ

I −
m−1½ð∂μeφÞe−φ�I , the φ-kinetic term in (2.8) becomes the
mass term of Ãμ

I as −ð1=2ÞðPμ
IÞ2 ¼ −ð1=2Þm2ðÃμ

IÞ2.
This is nothing but the non-Abelian version of the original
Proca-Stückelberg mechanism [7].
The N ¼ 1 supersymmetrization of the non-Abelian

Proca-Stückelberg Lagrangian (2.8) in 4D [9] is reviewed
as follows. Even before [9], we performed similar super-
symmetrizations in [5,6]. However, there are certain draw-
backs in those formulations. For example, the formulation
in [5] needs the extra auxiliary field Cμνρ

I together with the
tensor multiplet ðBμν

I; χI;φIÞ. In other words, there are two
extra bosonic fields Cμνρ

I and Bμν
I needed. Similarly, [6]

needs an extra vector multiplet ðKμ
I; ρI; Cμνρ

IÞ, with two
additional tensor fields Kμ

I and Cμνρ
I other than the

original Aμ
I and φI.

To improve on these drawbacks, we minimized in [9] the
number of multiplets without extra tensor multiplet or
vector multiplet. In other words, we use the field content
more economical than those in [5,6] with only two
multiplets: the non-Abelian YM multiplet ðAμ

I; λIÞ and
the CM ðφI; χI;ϕIÞ, without any other multiplet. The scalar
φI parametrizes the coordinates of the gauge group G,
while a pseudoscalar ϕI is in the adjoint representation.
Thus, the two spin-zero fields 0þ and 0− within a CM play
different roles under the same group G. Accordingly, the
conventional global R symmetry [18,19] is lost in this CM.
Our action I4D ≡ R

d4xL4D for N ¼ 1 supersymmetric
Proca-Stückelberg theory in 4D [9] has the Lagrangian,

L4D ¼ −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄I=DλIÞ − 1

2
ðPμ

IÞ2 þ 1

2
ðχ̄I=DχIÞ − 1

2
ðDμϕ

IÞ2

þmðλ̄IχIÞ − 1

2
m2ðϕIÞ2 − imfIJKðλ̄Iγ5χJÞϕK −

1

2
fIJKðλ̄IγμλJÞPμ

K; ð2:9Þ
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where the field strength P is defined by (2.4) and F by
(2.7), while

Dμλ
I ≡∂μλ

I þmfIJKAμ
JλK; ðidem for Dμχ

I and Dμϕ
IÞ:

ð2:10Þ

The field strength P and F satisfy their BIds (1.3). The
P ∧ P term in F is not directly required by supersym-
metry, but it is by the non-Abelianization of the original
Proca-Stückelberg formulation [7]. However, it is also
closely related to the consistency with supersymmetry,
as is confirmed in terms of superspace language in the
Appendix.
Our action I4D is invariant under N ¼ 1 supersymmetry,

δQAμ
I ¼ þðϵ̄γμλIÞ −m−1fIJKðϵ̄χJÞPμ

K; ð2:11aÞ

δQλ
I¼þ1

2
ðγμνϵÞF μν

Iþimðγ5ϵÞϕIþfIJKλJðϵ̄χKÞ;
ð2:11bÞ

½ðδQeφÞe−φ�I ¼ þðϵ̄χIÞ; ð2:11cÞ

δQχ
I ¼ −ðγμϵÞPμ

I þ iðγ5γμϵÞDμϕ
I; ð2:11dÞ

δQϕ
I ¼ þiðϵ̄γ5χIÞ: ð2:11eÞ

Despite the loss of the conventional global R symmetry
[18,19], the total consistency is reconfirmed in superspace
in the Appendix of [9]. The loss of global R symmetry is
one of the reasons why we can no longer use the conven-
tional chiral superfields [14–16] in superspace.
The supersymmetric invariance δQI4D ¼ 0 has been

confirmed in [9]. However, due to the subtlety of our
system, we give rather detailed review of the confirmation.
There are in total six sectors arising in the variation δQISPS
up to OðΦ4Þ2: (i) m0Φ2, (ii) m1Φ2, (iii) m2Φ2, (iv) m0Φ3,
(v) m1Φ3, and (vi) m2Φ3 up to OðΦ4Þ.
The sector (i) is rather a routine confirmation at the

bilinear order whose details we skip. So is the sector (ii),
because it is at the bilinear order without subtlety whose
details are skipped. The sector (iii) has only one sort of
term: m2χϕ, which is straightforward.
The sector (iv) is nontrivial with three subsectors:

(a) χλ̄Dλ, (b) λPF , and (c) χF 2. The subsector (a) needs
Fierz-rearrangements and the λχ term in δQλ for the
cancellation of all terms. The subsector (c) of (iv) for
χF2 terms is straightforward whose details are skipped.
The subsector (b) for λPF terms is the most crucial one.

As has been promised with (2.7), the importance of the
modified field strength F μν

I instead of Fμν
I will be

elucidated in this subsector (b).3 There are three terms
contributing to this sector, resulting in their cancellation,4

0 ≟ δQ

�
−
1

2
fIJKðλ̄IγμλJÞPμ

K −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄I=DλIÞ

�����
λPF

¼ −fIJK
��

−
1

2
ϵ̄γρσF ρσ

I

�
γμλJ

�
Pμ

K

−
1

2
½þ2fIJKðϵ̄γμλJÞPν

K�F μν I

þ
�
−
1

2
ðϵ̄γρσÞF ρσ

I

�
γμDμλ

I

����
λPF

ð2:12aÞ

¼∇ þ 1

2
fIJKðϵ̄γμρσλIÞPμ

JF ρσ
K þ fIJKðϵ̄γρλIÞPσJF ρσ

K

− fIJKðϵ̄γμλIÞPν
JF μνK þ 1

2
fIJKðϵ̄γρσμλIÞPσ

KF μρ
J

ð2:12bÞ

¼ 0 ðQ:E:D:Þ; ð2:12cÞ

where ¼∇ is an equality up to a surface term. The
cancellations occurred between the first and fourth as well
as second and third terms in (2.12b). In these manipula-
tions, the F -BId (2.6) has been used. Note that if the field
strength ðF μν

IÞ2 in the Aμ-kinetic term were replaced by
the conventional one ðFμν

IÞ2, there would arise no λFP
term from δQðF μν

IÞ2 via ðδQPÞ ∧ P. Therefore, the λPF
terms would not be canceled. In a nonsupersymmetric case,
there was no such necessity. As has been also explained in
[5], it is not the authors’ “subjective taste” to use the
modified field strength F μν

I , but is required by super-
invariance δQI4D ¼ 0.
The sector (v) has six subsectors: (a) mλϕP, (b) mλχ2,

(c) mλ3, (d) mλϕDϕ, (e) mχϕ2, and (f) mχϕF . While the
subsector (b) needs Fierz rearrangements, the remaining
subsectors (a), (c) through (f) are straightforward to handle.
The sector (vi) has only one kind of term: m2χϕ2, whose
cancellation is straightforward and whose detail is skipped
here. The sectors (v) for m1Φ3 and (vi) for m2Φ3 are rather
straightforward with Fierz arrangements, which are not
peculiar to our system.
The total consistency of our new multiplet ðφI; χI;ϕIÞ,

where only φI works as the group-manifold coordinates can
be also confirmed by the closures of supersymmetry. This
can be accomplished also by the use of the field equations
of all fields. Since they have been given by (3.9) in [9], we
do not list them up.
First, the closure of supersymmetry on Aμ

I is confirmed
as

2The symbol Φ stands for any fundamental fields in our
multiplets.

3This feature has been already mentioned in our papers [5].
4The symbol ≟ stands for an equality that is to be confirmed.
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½δQðϵ1Þ; δQðϵ2Þ�Aμ
I ¼ δPAμ

I þ δð0ÞT Aμ
I þ δð1ÞT Aμ

I ¼ δPAμ
I þ δTAμ

I; ð2:13aÞ

δ1 ≡ δQðϵ1Þ; δ2 ≡ δQðϵ2Þ; ξμ ≡þ2ðϵ1γμϵ2Þ; δPAμ
I ¼ ξν∂νAμ

I; ð2:13bÞ

δð0ÞT ≡ δTðαð0ÞÞ; δð1ÞT ≡ δTðαð1ÞÞ; δT ≡ δð0ÞT þ δð1ÞT ; ð2:13cÞ

αI ≡ αð0ÞI þ αð1ÞI; αð0ÞI ≡ −ξνAν
I; αð1ÞI ≡m−1fIJKðϵ̄1χJÞðϵ̄2χKÞ; ð2:13dÞ

where δP stands for a translation operation with the parameter ξμ. We skip the details, which are explained in [9].
Second, the closure on eφ is [9]

ð½δ1; δ2�eφÞe−φ ¼ fδ1½ðδ2eφÞe−φ� − ðδ2eφÞðδ1e−φÞg − ð1 ↔ 2Þ
¼ þðδPeφÞe−φ þ ðδTeφÞe−φ; ðQ:E:D:Þ ð2:14Þ

where δ1 ≡ δQðϵ1Þ, δ2 ≡ δQðϵ2Þ, and ðδTeφÞe−φ ≡ −αð0Þ −
αð1Þ ¼ þξμAμ

ITI −m−1½ðϵ̄1χÞ; ðϵ̄2χÞ�. Here, we omit the
generators TI , regarding each term as generator valued. This
peculiar closure for generator-valued quantities provides
supporting evidence for the consistency. In [9], this compo-
nent result has been further reconfirmed in superspace.
Third, the closure on ϕI is

½δ1; δ2�ϕI ¼ δPϕ
I þ δTϕ

I: ðQ:E:D:Þ ð2:15Þ

Note that this closure works, despite the different δT
transformations of ϕI and φI .
Fourth, the closure on λI contains the λ-field equation,5

½δ1; δ2�λI ¼ þξμDμλ
I þ δTλ

I −
1

4
ξμγμ

�
δLSPS

δλ̄I

�

−
1

4
ζμνγμν

�
δLSPS

δλ̄I

�
ð2:16aÞ

≐ δPλ
I þ δTλ

I ðQ:E:D:Þ ζμν ≡ ðϵ̄2γμνϵ1Þ:
ð2:16bÞ

In (2.16b), we have used the λ-field equation.
Fifth, the closure on χI is

½δ1; δ2�χI ¼ þξμDμχ
I −

1

2
ξμγμ

�
δLSPS

δχ̄I

�
ð2:17aÞ

≐ þδPχ
I þ δTχ

I: ðQ:E:D:Þ ð2:17bÞ

We have used the χ-field equation.
For the validity of our unconventional CM, we mention

the following three points: The first reason is rather logical:
We already know that a similar situation with a tensor

multiplet was presented in [5]. The tensor multiplet (TM) in
[5] has the component fields ðBμν

I; χI;φIÞ in terms of the
notation in [5]. The reason why the TM in [5] does not
follow the conventional tensor (linear) multiplet [25,29],
i.e., why it can not be described in terms of a scalar
superfield L is as follows: On the scalar superfield L
[25,29], the commutator (but not anticommutator) of two
spinorial derivatives gives

½∇α; ∇̄_β�L ¼ c1ðσcdeÞα _βGcde þ c2 trðWαW̄ _βÞ; ð2:18Þ

where α (or _β) is for the positive (or negative) chirality.
Note that L is a singlet under the YM group, without an
adjoint index. Obviously, this is impossible for non-Abelian
TM in [5], because the G term in (2.18) should carry the
adjoint index, while the trðWW̄Þ term does not, due to its
trace operation. The attempt to make the WW̄ term to be
replaced by something like fIJKðWα

JW̄ _β
KÞ does not work

either, because such a term vanishes for an Abelian case.
Because of this lack of fundamental scalar superfield,
we do not have superspace action formulation at the
present time.
The second reason is rather intuitive. Since the spin-

zero fields φI and ϕI play different roles under G, it is
obvious that this multiplet can not be described in terms
of a common superfield, such as the scalar superfield LI

carrying the common index for φI and ϕI . The third
reason is based on the analogy of higher-dimensional
supersymmetry, e.g., 11D [30] or 10D [31] with no
explicit action formulation in superspace in terms of off
shell superfields. In view of this analogy, the lack of
action formulation in superspace for our on shell system
is nothing unusual.
Note that our results above are highly sophisticated, so

that their cancellations are neither trivial results nor
accidental coincidences. In particular, the sophisticated
cancellations of quadratic-order terms in the closure
on φ has not been well presented by papers in the past

5The symbol ≐ stands for any equality that holds by the use of
field equation(s).
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before our paper [9]. These computational and intuitive
considerations provide the supporting evidence for two
important aspects:
(1) N ¼ 1 supersymmetry necessitates the modified

field strength F μν
I instead of the conventional

one Fμν
I .

(2) Our nonconventional CM ðφI; χI;ϕIÞwith φI and ϕI

transforming differently under δT is consistent with
N ¼ 1 supersymmetry. This has been confirmed
with couplings to YM multiplet ðAμ

I; λIÞ.
Our supersymmetric Proca-Stückelberg theory given by

(2.9) through (2.11) is more economical than our previous
formulations [5,6]. Notice that in our CM ðφI; χI;ϕIÞ, the
spin-zero fields φI and ϕI play completely different roles,
because the former is for the coordinates of the group
manifold G, while the latter is in the adjoint representation
of G. To our knowledge, this supersymmetric Proca-
Stückelberg theory has not been presented before in
the past.

III. THE LAGRANGIAN WITH N= (2;0)
SUPERSYMMETRY IN 6D

With our successful supersymmetrization of the Proca-
Stückelberg theory in 4D [9], we are ready to consider its
application to 6D. Similar to 4D, we introduce two N ¼
ð2; 0Þ multiplets in our system in 6D [22,28,32], a YM
multiplet ðAμ

I; λαIÞ and a HM ðϕiI ; χαI;φIÞ. The λαI ≡ λαAI

(or χαI ≡ χαA
I) are Majorana-Weyl spinors with the pos-

itive (or negative) chirality: γ7ðλI; χIÞ ¼ ðþλI;−χIÞ. The
index A ¼ 1; 2 is for the 2 of Spð1Þ, which is lowered (or
raised) by the antisymmetric Spð1Þ metric ϵAB ¼ −ϵBA (or
ϵAB ¼ −ϵBA) [28,32].
As was already stated, the original four scalars in the

conventional HM ðφaI; χαIÞ (a ¼ 1: 2; 3; 4) are separated
into the singlet 1 and triplet 3 of Spð1Þ in our formulation.
The former 1 is a Nambu-Goldstone scalar to be absorbed
into the longitudinal components of Aμ

I.
Our experience with the N ¼ 1 supersymmetric case in

4D [9] leads us to the total action, I6D ≡ R
d6xL6D for our

N ¼ ð2; 0Þ supersymmetric Proca-Stückelberg theory,
where

L6D ¼ −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄I=DλIÞ − 1

2
ðPμ

IÞ2 þ 1

2
ðχ̄I=DχIÞ

−
1

2
ðDμϕ

iIÞ2 þmðλ̄IχIÞ − 1

2
m2ðϕiIÞ2

−
1

2
m2fIJKϵijkϕiIϕjJϕkK

−mfIJKðλ̄IτiχJÞϕiK −
1

2
fIJKðλ̄IγμλJÞPμ

K; ð3:1Þ

up to OðΦ4Þ. The 2 × 2 matrices ðτiÞAB (i ¼ 1; 2; 3;
A;B ¼ 1; 2) are all anti-Hermitian, satisfying τiτj ¼

−δij þ ϵijkτk. Or equivalently, ðτiÞABðτjÞBC ¼ −δijδAC þ
ϵijkðτkÞAC. The contracted spinorial and Spð1Þ indices are
omitted, e.g., ðλ̄I=DλIÞ≡ λαAIðγμÞαβDμλ

βBIϵBA, etc.
6

The covariant derivative Dμ acts with the minimal
coupling, like Dμϕ

iJ ≡ ∂μϕ
iJ þmfIJKAμ

JϕiK or Dμλ
αI ≡

∂μλ
αI þmfIJKAμ

JλαK . The field strengths F and P are
defined similar to (2.7) and (2.4) by

F μν
I ≡ Fμν

I þm−1fIJKPμ
JPν

K

≡ 2∂ ½μAν�I þmfIJKAμ
JAν

K þm−1fIJKPμ
JPν

K;

ð3:2aÞ

Pμ
I ≡ ½ðDμeφÞe−φ�I ≡ ½ð∂μeφÞe−φ�I þmAμ

I; ð3:2bÞ

where φ≡ φITI with the generators TI of the gauge
group G. These field strengths satisfy the BIds,

D½μF νρ�I ≡þfIJKF ½μνJPρ�K; ð3:3aÞ

D½μPν�I ≡þ 1

2
mF μν

I: ð3:3bÞ

Our action I6D is invariant up toOðΦ4Þ underN ¼ ð2; 0Þ
supersymmetry,

δQAμ
I ¼ þðϵ̄γμλIÞ −m−1fIJKðϵ̄χJÞPμ

K; ð3:4aÞ

δQλ
I¼þ1

2
ðγμνϵÞF μν

I−mðτiϵÞϕiI

þfIJKλJðϵ̄χKÞ−1

2
mfIJKϵijkðτiϵÞϕjJϕkK;

ð3:4bÞ

δQϕ
iI ¼ þðϵ̄τiχIÞ; ð3:4cÞ

δQχ
I ¼ þðγμτiϵÞDμϕ

iI − ðγμϵÞPμ
I; ð3:4dÞ

½ðδQeφÞe−φ�I ¼ þðϵ̄χIÞ: ð3:4eÞ

Useful relationships are such as the arbitrary variations,

δF μν
I ¼ 2D½μðδ̃Aν�IÞ þ 2fIJKðδ̃A½μJÞPν�K

− fIJK½ðδeφÞe−φ�JF μν
K; ð3:5aÞ

δPμ
I¼Dμ½ðδeφÞe−φ�Iþmðδ̃Aμ

IÞþfIJK½ðδeφÞe−φ�JPμ
K;

ð3:5bÞ

δ̃Aμ
I ≡ δAμ

I þm−1fIJK½ðδeφÞe−φ�JPμ
K: ð3:5cÞ

6Note that the metric Cα _β for 6D spinors are symmetric, but it
changes the dottedness of spinors. For example, we can express
λ _α

AI ≡ λβAICβ _α; we consistently avoid using the lower dot index

_α for a λ field, (or the upper dotted index _α for a χ field).
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Note that δ̃QAμ
I does not have the second term in (3.4a),

because of (3.5c). Accordingly, we have

δQF μν
I ¼ −2ðϵ̄γ½μDν�λIÞ þ 2fIJKðϵ̄γ½μλJÞPν�K

− fIJKðϵ̄χJÞF μν
K; ð3:6aÞ

δQPμ
I ¼ ðϵ̄Dμχ

IÞ þmðϵ̄γμλIÞ þ fIJKðϵ̄χJÞPμ
K: ð3:6bÞ

Let us next describe the peculiar properties of our
Lagrangian (3.1). First of all, the gauge-symmetry
breaking occurs with the effective mass term for Aμ

I,
arising from the kinetic term −ð1=2ÞðPμ

IÞ2 of φI . As in
4D, this is because the finite gauge transformation of Aμ

in (2.1) can absorb the derivative term on φ as Ãμ
I ≡

Aμ
I þm−1½ð∂μeφÞe−φ�I as Pμ

I ¼ mÃμ
I . Thereby, the

kinetic term −ð1=2ÞðPμ
IÞ2 becomes the mass term

−ð1=2Þm2ðÃμ
IÞ2.

Second, there is a mixture mass term between λ and
χ. This is expected, because of the Proca-Stückelberg
mechanism [7]. Because of this mixture mass term, the
original gaugino λ becomes massive as a Majorana
spinor combined with χ. The Aμ

I absorbs φI to be
massive, with the original degrees of freedom (d.o.f.) 4
changed to 5 of a massive vector. The original two
Majorana-Weyl-fermions λI and χI , each having 4 d.o.f.
are combined to form a Majorana-fermion with 2þ 2 ¼
4 d.o.f. The remaining ϕiI field remains as massive
carrying 3 d.o.f. All of these are summarized in the
following table:
Third, some readers may develop a reasonable

skepticism against our formulation for the following
reason: The fact that the two scalars ϕiI and φI trans-
form differently under G leads to the suspicion that they
actually belong to two different supermultiplets. There
are two reasons why such possibility does not make
sense. A short reason is that their d.o.f. do not match
between bosons and fermions. A long reason is as
follows: Since ϕiI has 3 d.o.f., while φI has 1 d.o.f.
modulo the adjoint indices, we need in total 4 d.o.f.
from fermions. However, as the general representation
analysis in diverse dimensions shows [33], the accept-
able minimal units of fermions in D ¼ 5þ 1 are either
symplectic (pseudo) Majorana-Weyl spinors in the 2 of
Spð1Þ [33]. Each of the pair in the 2 of Spð1Þ carries
26=3−1 ¼ 2 d.o.f. as a Majorana-Weyl spinor. The sub-
traction of one in the exponent of 2 here is due to the
Majorana-Weyl condition. So, the minimal unit of a
fermion in D ¼ 5þ 1 is a Majorana-Weyl spinor with
2 × 2 ¼ 4 d.o.f. in total. In other words, any Majorana-
Weyl fermion in a given supermultiplet should carry
4 d.o.f. If there were two scalar supermultiplets, where
two scalars ϕiI and φI separately belong to, there would
be two distinct fermions with 8 d.o.f. in total, each

carrying 4 d.o.f. in each scalar multiplet. If so, we
would be short of bosons. As our Table I and our
transformation rule (3.4) show, there is only one
Majorana-Weyl fermion χ with 4 d.o.f. modulo adjoint
index. An additional confirmation is the closure of two
supersymmetries on all fields φI;ϕiI, and χI , as in (3.11)
and (3.12) to be shown below.
Fourth, themodified field strengthF μν

I is involved as the
kinetic term for the YM field Aμ

I. This is nothing but the
supersymmetrization and 6D generalization of the purely
bosonic case (2.8) in 4D.
Fifth, there are terms likemðλ̄τχÞϕ and ðλ̄γλÞP. These are

understandable, because the former is the conventional
interaction term between the gaugino and the three scalar
fields in the HM. However, the ðλ̄γλÞP term is peculiar to
our Proca-Stückelberg formulation, because the scalars φI

are coordinates of the group manifold G, so that its bare
field φI should not appear directly in the Lagrangian. Its
involvement is only through its field strength Pμ

I , similar
to [5,6].
Six, there is a peculiar cubic-potential term:

m2fIJKϵijkϕiIϕjJϕkK . The nontriviality of this term is
that it contains the structure constants of two different
groups: G and Spð1Þ.
We next describe the details of the invariance confirma-

tion of our action δQI ¼ OðΦ4Þ. We investigate six sectors:
Oðm0Φ2Þ, Oðm1Φ2Þ, Oðm2Φ2Þ, Oðm0Φ3Þ, Oðm1Φ3Þ, and
Oðm2Φ3Þ. Let us describe how the confirmation works at
each of these sectors, in turn.

(i) At Oðm0Φ2Þ, there are three independent sectors:
(a) λDF , (b) χDP, and (c) χD2ϕ. These sectors are
rather routine at the free-field level, whose details we
skip here.

(ii) At Oðm1Φ2Þ, there are three sectors: (a) mλP,
(b) mχF , and (c) mλϕ. For sector (a), there are
two contributions from the φ-kinetic term and the
mλ̄χ term. These cancel with no problem. For
sector (b), the contributions from the χ-kinetic term
and themλ̄χ term cancel each other, by the use of the
P-BId (3.3b). Similarly for sector (c), the λ-kinetic
term and the mλ̄χ term cancel each other.

(iii) At Oðm2Φ2Þ, there is only one sector m2χϕ. The
contributions are from the mλ̄χ and m2ϕ2 terms,
which cancel each other.

TABLE I. Physical d.o.f. of our fields modulo dim G for their
adjoint indices.

Before absorptions Aμ
I λI ϕiI χI φI

Physical d.o.f. 4 4 3 4 1

After absorptions Aμ
I λI ϕiI χI φI

Physical d.o.f. 5 8 3 0 0
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(iv) At Oðm0Φ3Þ, there are three sectors: (a) λPF ,
(b) χF 2, and (c) λ2Dχ. For sector (a), three terms,
ðλ̄γλÞP and the kinetic terms of A and λ, contribute.
It is crucial to use the F -BId (3.3a). For sector (b),
there is only the potential contribution from the
A-kinetic term, which vanishes by itself due to
fIJKF μν

JF μνK ≡ 0. For sector (c), two contributions
are from the λ-kinetic term and the ðλ̄γλÞP term. It is
easy to see their cancellation, even without any Fierz
identity.

(v) At Oðm1Φ3Þ, there are five sectors: (a) mλϕP,
(b) mλ3, (c) mλϕDϕ, (d) mχϕF , and (e) mλχ2.
For sector (a), two Lagrangian terms, ðλ̄γλÞP and
ðλτχÞϕ, contribute, but their cancellation is straight-
forward. For sector (b), the λ-kinetic term and the
ðλ̄γλÞP term contribute. They double their contribu-
tion of the type,

fIJKðϵ̄γμλIÞðλ̄JγμλKÞ≡ fIJKðϵ̄AγμλAIÞðλ̄BJγμλBKÞ
≡ 0; ð3:7Þ

which vanishes by itself as a Fierz identity. This
identity itself is confirmed by the basic Fierz identity
[32],

ðψ̄1ψ2Þðψ̄3ψ4Þ ¼ −
1

8
ðψ̄1γμψ4Þðψ̄3γ

μψ2Þ

þ 1

8
ðψ̄1γμτ

iψ4Þðψ̄3γ
μτiψ2Þ

þ 1

96
ðψ̄1γμνρψ4Þðψ̄3γ

μνρψ2Þ

−
1

96
ðψ̄1γμνρτ

iψ4Þðψ̄3γ
μνρτiψ2Þ;

ð3:8Þ

where each of the four spinors ψ i (i ¼ 1;
2;…; 4) is a Majorana-Weyl spinor in the 2 of
Spð1Þ with the chiralities γ7ðψ1;ψ2;ψ3;ψ4Þ ¼
ð−ψ1;þψ2;þψ3;−ψ4Þ. The contractions of their
2 indices A; B;… are omitted, e.g., the ðψ̄1ψ2Þ≡
ðψ̄A

1ψ2AÞ. For sector (c), the kinetic term of ϕ, that of
χ, and the mðλ̄τχÞϕ term contribute. The crucial
relationship is τiτj ¼ −δij þ ϵijkτk. For sector (d),
the contributions from the χ-kinetic term and the
ðλ̄τχÞϕ term cancel each other. For sector (e), the
χ-kinetic-term, mðλ̄χÞ term, and the ðλ̄τχÞϕ term
contribute. After appropriate Fierzings, there remain
only two independent structures: fIJKðϵ̄γμλIÞ ×
ðχ̄JγμχKÞ and fIJKðϵ̄γ½3�τiλIÞðχ̄Jγ½3�τiχKÞ. Fortu-
nately, each of these two structures add up to zero.

(vi) At Oðm2Φ3Þ, there is only one sector m2χϕ2. There
are three contributions from the mðλ̄χÞ, mðλ̄τχÞϕ,
and m2ϕ3 terms. They are shown to cancel each
other by the use of τIτj ¼ −δij þ ϵijkτk. This pro-
vides the good confirmation of the peculiar potential
term: ð1=2Þm2fIJKϵijkϕiIϕjJϕkK.

Our field equations for all fields are listed up as

δL6D

δλ̄I
¼ þ=DλI þmχI −mfIJKðτiχJÞϕiK

− fIJKðγμλJÞPμ
K ≐ 0; ð3:9aÞ

δL6D

δχ̄I
¼ þ=DχI þmλI −mfIJKðτiλJÞϕiK ≐ 0; ð3:9bÞ

δL6D

δAμ
I ¼ −DνF μν I −mfIJKðλ̄JγμλKÞ

−mPμI − fIJKPν
JF μνK

−
1

2
fIJKðχ̄JγμχKÞ −mfIJKϕiJDμϕ

iK ð3:9cÞ

δL6D

δϕiI ¼ þD2
μϕ

iI −m2ϕiI −mfIJKðλ̄JτiχKÞ

−
3

2
fIJKϵijkϕjJϕkK ≐ 0; ð3:9dÞ

�
δL6D

ðδeφÞe−φ
�
I
≐ þDμPμI −mfIJKðλ̄JχKÞ ≐ 0; ð3:9eÞ

up to OðΦ3Þ. Note that the φ-field equation (3.9e) directly
from the Lagrangian is originally

�
δL6D

ðδeφÞe−φ
�
I
¼ þDμPμI þ fIJKðλ̄J=DλKÞ

− fIJKDμðPν
JF μνKÞ ≐ 0: ð3:10Þ

However, for the second term in the right-hand side of
(3.10), we can use the λ-field equation yielding the second
termmfðλ̄χÞ of (3.9e). For this reason, we put the symbol≐
for the first equality in (3.9e). The third term DðPF Þ in
(3.10) vanishes up to OðΦ3Þ because of the P-BId (3.3b),
and the Aμ

I-field equation (3.9c).
We mention one subtlety related to the closure of

supersymmetry. The most nontrivial closure of two super-
symmetries is on φI because of the nonlinear feature of the
coordinates φI . However, this is just parallel to the 4D case
(2.14) [9]. To be more specific, it goes as
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ð½δ1; δ2�eφÞe−φ ¼ fδ1½ðδ2eφÞe−φ� − ðδ2eφÞðδ1e−φÞg − ð1 ↔ 2Þ
¼ ½δ1ðϵ̄2χIÞ þ ðδ2eφÞe−φðδ1eφÞe−φ� − ð1 ↔ 2Þ
¼ ϵ̄2ð−γμϵ1Pμ

I þ iγ5γμϵ1Dμϕ
IÞ − ð1 ↔ 2Þ þ ½ðϵ̄2χÞ; ðϵ̄1χÞ�

¼ þξμPμ þ fIJKðϵ̄2χJÞðϵ̄1χKÞTI

¼ þðδPeφÞe−φ þ ðδTeφÞe−φ: ðQ:E:D:Þ ð3:11Þ

Here, as in (2.14), αI ≡ −ξμAμ
I þm−1fIJKðϵ̄1χJÞðϵ̄2χKÞ. As is clearly seen, this is nothing but the same pattern as in 4D in

(2.14). This closure works despite the special role as the coordinates of φ of the group manifold ofG. Nevertheless, we need
to emphasize that the peculiar role played by the scalar φI singlet under Spð1Þ is consistent with the closure of
supersymmetries.
Similarly, we can confirm the closure of supersymmetries both on ϕiI and χI as

½δ1; δ2�ϕiI ¼ þξμDμϕ
iI ¼ δPϕ

iI þ δTϕ
iI ðQ:E:D:Þ; ð3:12aÞ

½δ1; δ2�χI ¼ ξμDμχ
I −

1

2
ξμðγμ=DχIÞ − 1

2
mξμðγμλIÞ þ

1

2
mfIJKðξμγμτiλJÞϕiK

¼ δPχ
I þ δTχ

I −
1

2
ξμ
�
γμ

�
δL;6D

δχ̄I

��
≐ δPχ

I þ δTχ
I ðQ:E:D:Þ: ð3:12bÞ

Note that the nontrivial feature of the closure on χI with sophisticated Fierzings needed to reach the final form in (3.12b)
with the correct coefficients.
As the additional confirmation of the validity of the whole system, we look into the mutual consistency of field equations.

We will perform three confirmations: (i) The supersymmetry variation of the λ-field equation (3.9a). (ii) The supervariation
of the χ-field equation (3.9b). The divergence of the Aμ-field equation (3.9c). Even though these confirmations are parallel
to the corresponding 4D case in [9], we give their details in order to resolve any doubt on our system.

(i) The supervariation of the λ-field equation (3.9a) works as follows:

0 ≟ δQ

�
δL6D

δλ̄I

�
¼ δQ½þ=DλI þmχI −mfIJKðτiχJÞϕiK − fIJKðγμλJÞPμ

K�

¼ þγμDμ

�
þ 1

2
ðγρσϵÞF ρσ

I −mðτiϵÞϕiI þ fIJKλJðϵ̄χKÞ − 1

2
mϵijkðτiϵÞϕjJϕkK

�

þmfIJKðϵ̄γμλJÞðγμλKÞ
þm½−ðγμϵÞPμ

I þ ðγμτiϵÞDμϕ
iJ�

−mfIJKτi½−ðγμϵÞPμ
J þ ðγμτkϵÞDμϕ

kJ�ϕiK −mfIJKðτiχJÞðϵ̄τiχKÞ

− fIJKγμ
�
þ 1

2
ðγρσϵÞF μν

J −mðτiϵÞϕiJ

�
Pμ

K

− fIJKðγμλJÞ½ðϵ̄Dμχ
KÞ þmðϵ̄γμλKÞ� þOðΦ3Þ; ð3:13Þ

where each term is evaluated as

þ 1

2
ðγμγρσϵÞDμF ρσ

I ¼ þ 1

2
fIJKðγρστϵÞF ρσ

JPτ
K − ðγμϵÞDνF μν I; ð3:14aÞ

þ fIJKðγμDμλ
JÞðϵ̄χKÞ þ fIJKðγμλJÞðϵ̄Dμχ

KÞ

¼ þfIJK
�
δL6D

δλ̄J

�
ðϵ̄χKÞ − 1

8
mfIJKðγμϵÞðχ̄JγμχKÞ þ

1

96
mfIJKðγμνρτiϵÞðχ̄JγμνρτiχKÞ

þ fIJKðϵ̄Dμχ
KÞðγμλJÞ; ð3:14bÞ
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þmfIJKðϵ̄γμλJÞðγμλKÞ ¼ −
1

2
mfIJKðγνϵÞðλ̄JγνλKÞ; ð3:14cÞ

−mfIJKðτiχJÞðϵ̄τiχKÞ ¼ −
3

8
mfIJKðγμϵÞðχ̄JγμχKÞ −

1

96
mfIJKðγμνρτiϵÞðχ̄JγμνρτiχKÞ; ð3:14dÞ

−
1

2
fIJKðγμγρσϵÞF μρ

JPσ
K ¼ −

1

2
fIJKðγμρσϵÞF μρ

JPσ
K þ fIJKðγρϵÞF ρσ

JPσK: ð3:14eÞ

In (3.14c) and (3.14d), we have used the Fierz-identity formula (3.8). Using these in (3.13), we get considerable
cancellations, being left only with terms that vanish by the use of field equations,

0 ≟ δQ

�
δL6D

δλ̄I

�
¼ ðγμϵÞ

�
−DνF μ

ν I −mfIJKðλ̄JγμλKÞ −mPμ
I

−
1

2
mfIJKðχ̄JγμχKÞ þ fIJKF μν

JPνK −mfIJKϕiJDμϕ
iK

�
þ fIJK

�
δL6D

δλ̄I

�
ðϵ̄χKÞ

¼ þðγμϵÞ
�
δL6D

δAμ
I

�
þ fIJK

�
δL6D

δλ̄J

�
ðϵ̄χKÞ ≐ 0: ðQ:E:D:Þ ð3:15Þ

Special attention should be paid to the fact that our F -BId (3.3a) has been used in (3.14a), which shows the crucial
role played by themodified field strengthF μν

I instead of the original Fμν
I. This also shows that its usage is not based

on the authors’ “subjective taste” for the whole formulation.
(ii) The supervariation of the χ-field equation (3.9b) works in a way parallel to that of the λ-field equation, so we give

only the result,

0 ≟ δQ

�
δL6D

δχ̄I

�
¼ δQ½þ=DχI þmλI −mfIJKðτiλJÞϕiK� ð3:16aÞ

¼ −ϵ
�

δL6D

ðδeφÞe−φ
�
I
þ fIJKϵ

�
λ̄J
�
δL6D

δλ̄K

��
þ ðτiϵÞ

�
δL6D

δϕiI

�
≐ 0: ðQ:E:D:Þ ð3:16bÞ

In this confirmation, the validity of the peculiar ϕ ∧ ϕ term in δQλ in (3.4b) has been reconfirmed, because ϕ ∧ ϕ
term is produced by the variation δQλ in the second term in the rhs of (3.16a).

(iii) The divergence of the Aμ
I-field equation (3.9c) works in a way parallel to Eq. (3.19) of [9]. Because of this

cancellation structure, we skip the details, giving only the result,

0 ≟ Dμ

�
δL6D

δAμ
I

�
¼ −mfIJK

�
λ̄J
�
δL6D

δλ̄K

��
−mfIJK

�
χ̄J
�
δL6D

δχ̄K

��

−m

�
δL6D

ðδeφÞe−φ
�
I
−mfIJKϕiJ

�
δL6D

δϕiK

�
≐ 0: ðQ:E:D:Þ ð3:17Þ

Since all fields Aμ
I , λI , ϕiI , χI, and φI in our system couple to Aμ

I , the verification (3.17) provides nontrivial cross
confirmation of the consistency of our system. The most crucial aspect is that our two different scalars in two
different representations of Spð1Þ, i.e., φI in the 1 of Spð1Þ and ϕiI in the 3 of Spð1Þ, do not pose any problem in our
system. This is reflected in the two distinct terms at the end of (3.17).

Other nontrivial confirmations are such as the coefficient of the λ2 term and χ2 term in the Aμ
I-field equation (3.9c) that

differs by a factor of 2. This originates from the extra fIJKðλ̄IγμλJÞPμ
K term in the Lagrangian (3.1). The validity of this

statement has been also confirmed by the divergence confirmation DμðδL6D=δAμ
IÞ ≟ 0.

These confirmations provide additional supporting evidence for the consistency of our total system. We do not have to
stress that so many mutual cross confirmations of our system resolve any possible doubt of the validity of our
supersymmetric system. Especially, the consistency with the unconventional scalars φI and ϕiI in the two different
representations of Spð1Þ has been verified. Needless to say, these component-level confirmations have been also
reconfirmed in terms of superspace language in the Appendix.
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We have so far skipped fixing higher-order terms, such
as OðΦ4Þ at the Lagrangian level, corresponding to OðΦ3Þ
at the field-equation level. This principle is similar to the
corresponding case in 4D [9]. A natural question that may
be raised is whether such a prescription is really valid. Our
short answer is that according to our past experience, once a
system with the lowest order but nontrivial supersymmetric
interactions is established, it is supposed to work at higher
orders.

IV. SUMMARY AND CONCLUDING
REMARKS

In this paper, we have presented an economical
formulation of N ¼ ð2; 0Þ supersymmetric non-Abelian
Proca-Stückelberg theory in D ¼ 5þ 1 that was not
known before. We have succeeded in separating the
scalar φI from the remaining scalars ϕiI and use the
former as the Nambu-Goldstone boson to be absorbed
into Aμ

I as the supersymmetric Proca-Stückelberg mecha-
nism. The success of our formulation in 6D is also based
on the similar formulation in 4D [9], only with the YM
multiplet ðAμ

I; λIÞ and the CM ðφI; χI;ϕIÞ, where the CM
is used for formulating the supersymmetric Proca-
Stückelberg theory, and accordingly, conventional R
symmetry is lost in 4D.
This result is unexpected and nontrivial from the

following viewpoint: In D ¼ 5þ 1, a conventional HM
is like ðϕa;ψαÞ a ¼ 1;…; 4; α ¼ ðαAÞ; a ¼ 1; 2; A ¼ 1; 2,
where all scalars transform uniformly under the gauge
group G [23,24]. However, in our present formulation, one
single scalar φI transforms as the coordinates of the group
manifold, while other three remaining scalars ϕiI transform
as the adjoint representation. Under the global automor-
phism symmetry Spð1Þ, the former (or the latter) trans-
forms as the 1 (or the 3) of Spð1Þ.
As our objective in this paper, we applied our 4D result

to 6D with the parallel field content: YMmultiplet ðAμ
I; λIÞ

and HM ðφI; χI;ϕiIÞ. This is an unexpected result, due to
the different transformations of φI and ϕiIi ¼ 1; 2; 3,
respectively, in the 1 and 3 of Spð1Þ. Because in the
conventional HM, they together form the 4 ¼ 2 × 2
of Spð1Þ × Spð1Þ.
This feature further indicates a general conjecture that

the scalars in a supermultiplet do not have to realize a
uniform representation or maximal symmetry, such as
global R symmetry in 4D, or 2 × 2 of Spð1Þ × Spð1Þ in 6D.
There are differences as well as similarities of our

result compared with our previous tensor-hierarchy for-
mulations [5,6]. One example of the latter is the term
fIJKðλ̄IγμλJÞPμ

K . One example of the former is the cubic-
potential term m2fIJKϵijkϕiIϕjJϕkK, which is very peculiar
to our present formulation. The latter coupling is possible
because of the three scalars ϕiI in the 3 of Spð1Þ after the
separation of one scalar φ.

Due to the peculiar single scalar φI separated from the
remaining three scalars ϕiI in our HM, we have a non-
conventional superspace reformulation in the Appendix.
This implies that the conventional method using scalar
superfields [23,24] is neither the only way nor the most-
general way to describe supersymmetric systems. We have
established this fact by explicit supporting evidence in 6D
in this paper, in addition to the recent result in 4D [9].
The YM field strength (2.7) for non-Abelian Proca-

Stückelberg formulations [7] is modified by a “general-
ized” Chern-Simon-like term [5,6]. This is interpreted as an
“generalized” tensor-hierarchy formulation [1,2], in the
sense that BIds of field strengths are modified by the
products of field strengths like (1.3) or (3.3).
In our present work, we have presented arguments and

provided ample computational details to prove the consis-
tency of our model and the procedures adapted for proving
the consistency. Admittedly, our computations have only
been carried up to third order in the fields. One concern is
that the consistency of our assigning the two scalars, one
representing/serving as coordinates and the other conven-
tional, to one superfield may actually not go through once
higher orders in the fields that are considered. If this were to
be the case, then one way out is to assign one scalar to one
superfield (with its own superpartners) and the other scalar to
a second superfield (with its own superpartners). Thus, the
system would have two superfields with the doubling of the
superpartners. We would then recover our present system
once the new additional superpartners are either set to zero or
are expressed in terms of the known fields through the
equations of motion. This procedure will at least overcome
the controversial unconventional assignment of the scalar
fields as has been used in the presentation and at the same
time save the model.
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APPENDIX: SUPERSPACE REFORMULATION

In this Appendix, we give the superspace reformulation
of our component results. This reformulation is not a
routine task, but has two important missions. First, our
system has the peculiar split 1þ 3 in the HM that can not
be simply described by conventional superfields [23]. This
pattern seems to apply also to the method of higher-
dimensional superspace mimicking the 4D chiral super-
fields [24]. Second, it provides good supporting evidence of
the total consistency of our component formulation, includ-
ing representation-related subtleties.
The first point can be elucidated by the 4D-based chiral-

superfield formulation of HM in 6D with the action of the
HM [24],
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IHM ¼
Z

d6xd4θðΦ̄þΦþ þ Φ̄−Φ−Þ þ
Z

d6xd2θðΦþ∂Φ−Þ

þ
Z

d6xd2θ̄ðΦ̄þ∂̄Φ̄−Þ; ðA1aÞ

z≡ 1

2
ðx4 þ ix5Þ; z̄≡ 1

2
ðx4 − ix5Þ;

∂ ≡ ∂
∂z ¼ ∂4 − i∂5; ∂̄ ≡ ∂

∂z̄ ¼ ∂4 þ i∂5: ðA1bÞ

The 4D-based “chiral superfields” Φ and Φ̄ have their R
symmetry, just as in 4D [34]. In contrast, in our formu-
lation, the original four scalars are decomposed into the
1þ 3 of Spð1Þ, so that it can not be described in terms of
chiral superfields Φ� and Φ̄� in 4D.
Our formulation therefore does not rely on 4D-based

“chiral superfields” [24]. Instead, our formulation is con-
trolled by the F and P-BIds,7

þ 1

2
∇½AFBCÞI −

1

2
T ½ABjDFDjCÞI −

1

2
fIJKF ½ABJPCÞK ≡ 0;

ðA2aÞ

þ∇½APBÞI − TAB
CPC

I −mFAB
I ≡ 0: ðA2bÞ

These corresponds to the component-BIds (1.3). The super-
space constraints at engineering dimensions 0 ≤ d ≤ 1 are

Tα β
c ¼ þ2ðγcÞα β ≡þ2ðγcÞαβϵAB; ðA3aÞ

F αb
I ¼ −ðγbλIÞα ≡þðγbÞα βλβI ≡þðγbÞαβϵABλβBI

≡ −ðγbÞαβλβIA; ðA3bÞ

Pα
I ¼ −χαI ≡ −χαAI; ðA3cÞ

∇αϕ
iI ¼ −ðτiχIÞα ≡ −ðτiχIÞαA ≡ −ðτiÞABχαBI; ðA3dÞ

∇αλ
βI ¼ þ 1

2
ðγcdÞαβF cd

I −mðτiÞαβϕiI

þ fIJKχαJλ
βK −

1

2
mfIJKϵijkðτiÞαβϕjJϕkK; ðA3eÞ

∇αχβ
I ¼ −ðγcτiÞα β∇cϕ

iI − ðγcÞα βPc
I: ðA3fÞ

All other independent components, such as F α β
I or Tαb

c,

are all zero. Even though we are using the A;B;… ¼ 1; 2
indices for the 2 of Spð1Þ that are the same as the
superspace indices A;B;…, they are distinguished from
the context. These are all consistent with the component
transformation rule (3.4a) through (3.4e).
The constraints at d ¼ 3=2 corresponding to (3.6) are

∇αF bc
I ¼ þðγ½b∇c�λIÞα − fIJKðγ½bjλJÞαPjc�K

− fIJKF bc
Jχα

K; ðA4aÞ

∇αPb
I ¼ −∇bχα

I −mðγbλIÞα − fIJKχαJPb
K: ðA4bÞ

As usual, the fermionic superfield equations are obtained
by the use of (A4). For example, the λ-field equation is
obtained by

−ð=∇λIÞα ¼ þðγcÞα β∇cλ
βI ¼ 1

2
f∇α;∇βgλβI

¼ þ 1

2
∇αð∇βλ

βIÞ þ 1

2
∇βð∇αλ

βIÞ

¼ þ 1

2
∇α½−fIJKðχ̄JλKÞ� þ

1

2
∇β

�
þ 1

2
ðγcdÞαβF cd

I

−mðτiÞαβϕiI þ fIJKχαJλ
βK

−
1

2
mfIJKϵijkðτiÞαβϕjJϕkK

�
: ðA5Þ

Evaluating the right-hand side, we get the λ-field
equation (A7a) below. For the χ-field equation, due to
the negative chirality of χ, the procedure is a little different,

þð=∇χIÞα ¼ðγcÞαβ∇cχβ
I

¼þðγcÞαβ
�
−

1

16

�
ðγcÞδϵf∇δ;∇ϵgχβI

¼−
1

8
ðγcÞαβðγcÞδϵ∇δð∇ϵχβ

IÞ

¼−
1

8
ðγcÞαβðγcÞδϵ∇δ½−ðγdτÞϵβ∇dϕ

iI − ðγdÞϵβPc
I�:

ðA6Þ

Evaluating the right-hand side, we get the χ-field
equation (A7b) below. As usual, the bosonic field equations
for Aa

I;ϕiI, and φI are obtained by applying spinorial
derivatives on these fermionic field equations.
We thus reach the field equations of all fields,

þ=∇λI þmχI −mfIJKðτiχJÞϕiK − fIJKðγbλJÞPb
K ≐ 0;

ðA7aÞ

þ=∇χI þmλI −mfIJKðτiλJÞϕiK ≐ 0; ðA7bÞ

7We use the superspace-coordinate indices A ¼ ða; αÞ ¼
ða; α; AÞ; B ¼ ðb; βÞ ¼ ðb; β; BÞ;…, where a; b;… ¼ 0; 1;…; 5
(or α; β;… ¼ 1; 2; 3; 4; A; B;… ¼ 1; 2) are for bosonic (or
fermionic) coordinates. Our antisymmetrization in superspace
is normalized as M½ABÞ ≡MAB − ð−1ÞABMBA, without the factor
of 1=2. We use this superspace notation only in this section. Other
notations in superspace also comply with that in [35].
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−∇bF abI −
1

2
mfIJKðλ̄JγaλKÞ −mPaI − fIJKPb

JF abK

−
1

2
mfIJKðχ̄JγaχKÞ −mfIJKϕiJ∇aϕiK ≐ 0; ðA7cÞ

þ∇2
aϕ

iI −m2ϕiI −mfIJKðλ̄JτiχKÞ − 3

2
fIJKϵijkϕjJϕkK ≐ 0;

ðA7dÞ

þ∇aPaI −mfIJKðλ̄JχKÞ ≐ 0; ðA7eÞ

up to OðΦ3Þ. Here, we omitted the spinorial indices,
e.g., =∇λI instead of ð=∇λIÞα ≡ −ðγcÞα β∇cλ

βI etc. Our field

equations in (A7) are consistent with the component field

equations (3.9). In contrast to the component case in
Sec. III, the second term mfðλ̄χÞ in (A7e) arises without
the explicit use of λ- field equation.
As the final remark, we stress the importance of an on

shell superspace formulation based on BIds such as (A2),
instead of using off shell chiral superfields in 4D [34].
This has been also emphasized in [9], citing the cases of
10D or 11D superspace [30,31]. One of the reasons is that
off shell superfield formulation has a certain limit for
describing a supersymmetric system. Typical examples
are the supersymmetric tensor-hierarchy systems [2], and
supergravity in 10D [31] or 11D [30]. When the gauge
group is non-Abelian like [2,9], the conventional super-
field description fails because of the problem mentioned
with (2.18).
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