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We formulate a N = (2,0) supersymmetric non-Abelian Proca-Stiickelberg theory in six space-time
dimensions (6D). As the foundation of our construction, we start with our recent work on N =1
supersymmetric Proca-Stiickelberg formulation in 4D with a Yang-Mills (YM) multiplet (A”’ ,A) and a
chiral multiplet (¢, ¥/, ¢'), where the index I = 1,2, ...,dim G is for the adjoint representation of a non-
Abelian group G, while ¢! parametrizes the coordinates of the group manifold G. Since ¢! and ¢’
transform differently under G, the conventional global R symmetry is lost. Next, we apply this mechanism
to 6D with the two multiplets: a YM multiplet (A,,22) and a hypermultiplet (HM) (¢”. z,". "). The
index i = 1,2, 3 is for the 3 of Sp(1). The spinorial index @ = (a,A) (@ = 1, ...,4) is for the Majorana-
Weyl spinor index for D = 5 + 1 with A = 1,2 for the 2 of Sp(1). As opposed to the common notion that
all four scalars in a HM in 6D must form the (2, 2) of global Sp(1) x Sp(1), we can use a scalar ¢’ in the
(1,1) of Sp(1) x Sp(1) as a Nambu-Goldstone boson absorbed into the longitudinal component of A,’,
separated from the remaining three scalars ¢ in the (3, 1) of Sp(1) x Sp(1). Similar to our recent result in
4D with broken automorphism R symmetry, the new feature of our result is that all four scalars in the HM in
6D do not have to form the (2,2) of Sp(1) x Sp(1).
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I. INTRODUCTION supersymmetrization and ‘“‘non-Abelianization” of the
Proca-Stiickelberg theory [7].

In our recent paper [9], we have presented a Proca-
Stueckelberg mechanism [7] for non-Abelian gauge sym-
metry in 4D. Its Abelian limit is shown to correspond to the
Proca-Stueckelberg type breaking of R symmetry in 4D. In
[11], it is concluded that R-symmetry breaking is closely

related to supersymmetry breaking in 4D. Moreover,

There has been a considerable number of applications
of the so-called “tensor-hierarchy” formulations [1,2] to
the consistent interactions of non-Abelian tensors. Explicit
examples are models such as the supersymmetrization [3]
of Jackiw-Pi model [4], the supersymmetrization [5,6] of
Proca-Stiickelberg formulation [7], supersymmetric com-

posite gauge models [8], and the supersymmetric Cremmer-
Scherk theory [9]. The common feature among these
formulations is the Chern-Simon-like modifications of the
conventional field strengths of non-Abelian tensors, such as
the field-strength G,,,,,' = 3Dy,B, )" 4+ 3f"/XF},,/C;/* of a
second-rank tensor BW’ [1,2].

Before the works [5,6] on supersymmetric non-Abelian
Proca-Stiickelberg theory [7] in four dimensions (4D),
there were already some works [10] in similar directions.
However, these works are limited to U(1) Abelian
gauge groups. The new feature of our papers [5,6]
is the simultaneous accomplishment of both the
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supersymmetry breaking in F theory [12] by an instanton
is associated with R-symmetry breaking [13]. In other
words, there is a natural link between supersymmetry
breaking and R-symmetry breaking. As such, it is impor-
tant to investigate R-symmetry-breaking models, such as
our formulation in 4D [9], where Proca-Stueckelberg
mechanism [7] results in R-symmetry breaking.

The basic ingredient of our supersymmetric non-Abelian
Proca-Stiickelberg formulations [5,6,9] is described as
follows: We introduce the scalars ¢ = ¢/T! with the
anti-Hermitian generators 7/ (I = 1,2,...,dim G) para-
metrizing the coordinates of the group manifold G. The
conventional Yang-Mills (YM) field strength F ,w’ is
modified to [9]

]:'le = F;wl + m—lfIJKP”JPDK’

(1.1)
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where F,,/ =20,A," +mf"* A, AKX, while P,/ is the
covariant field strength of ¢ made from the representative
e? of the group manifold G as

Pl =[(D,e?)e ") =[(D,e")e "] + mA,L.

(1.2)

The modification (1.1) is associated with the modified
Bianchi identities (BIds),

1
D[ﬂPD]I = —l—Em]:ﬂ,f, (13&)
DyF, = +fUKFL Py (1.3b)

The modifications of field strengths in tensor-hierarchy
formulations [1,2] are with Chern-Simons terms as the
combination of a field strength and a potential field, or
just the single factor of a potential field [1,2], while the
modification (1.1) involves two field strengths. Although
they look different, there is similarity between tensor-
hierarchy [1,2] and a non-Abelian Proca-Stiickelberg
formulation [5,6] as the “generalized Chern-Simons term,”
so that the latter can be interpreted as a “generalized”
tensor-hierarchy formulation. To be more specific, we can
regard any modification of Blds (1.3) by the wedge pro-
duct of field strengths as the “generalized” tensor-hierarchy
formulations.

In our recent paper [6] on supersymmetric Proca-
Stiickelberg formulations in 4D, we introduced a tensor
multiplet (B,,'.x".¢") and an extra vector multiplet
(K,".p", Cu,"), in addition to the YM multiplet (4,7, ').
The scalar ¢’ is used as a Nambu-Goldstone scalar absor-
bed into the longitudinal component of A”I . However, the
field content in [6] is rather involved, because of the extra
vector multiplet. One clue to exclude such extra vector
multiplets is found in the superspace formulations [14—16]
of Freedman-Townsend theory [17], where a chiral-
superfield is introduced. In such formulations, due to the
chiral superfields introduced, scalar and pseudoscalar fields
transform in the same way under the gauge group G.
In such conventional chiral-superfield formulations, the
so-called global R symmetry [18,19] is conserved, by
definition.

However, as a different approach, if we try to use the
chiral multiplet (CM) (A, B, y), in which only the scalar A
(but not B) is used for a Nambu-Goldstone field as
an alternative formulation of supersymmetric Proca-
Stiickelberg theory, it seems inevitable to break global R
symmetry. In fact, in our recent paper [9], we have
presented such a formulation, in which the scalar A is
transforming as the coordinates of the group manifold G,
while the pseudoscalar B is transforming as the usual
adjoint representation. In a sense, this formulation has more
potential applications to other dimensions, such as 6D,

where there are plural scalars in a hypermultiplet (HM), and
it is more advantageous to separate one scalar as a Nambu-
Goldstone scalar from the remaining scalars.

From this viewpoint, it seems to be a new feature in
supersymmetry that a single scalar is separated from other
(pseudo)scalars and is absorbed into the longitudinal part of
avector. In N = 1 locally supersymmetric systems in 4D, a
scalar and a pseudoscalar fields in a chiral multiplet form
the coordinates of complex Kéhler manifolds [20]. This is
further generalized to a hyper-Kihler manifold [21] for
N = 2 supersymmetry in 4D. Our objective in [9], there-
fore, was to look for a formulation in which a scalar is
separated from the remaining scalars in a CM in 4D and is
used as a Nambu-Goldstone field.

In our present paper, we first review the supersymmetric
formulation for non-Abelian Proca-Stiickelberg theory in
4D only with the YM-multiplet (A,’,A’) and the CM
(@', x', ¢"), presented in [9]. Following this result in 4D,
we formulate a super-Proca-Stiickelberg theory in 6D. We
consider N = (2,0) supersymmetry’ in 6D, with a YM
multiplet (A, '), and a hypermultiplet (HM) (¢, ¥'. ¢"),
where A’ and y' are Majorana-Weyl spinors with the
chiralities y;(4!, ') = (+4!, —¢'). The crucial technique
here is that out of the four scalars in HM, we single out one
scalar ¢! separated from other remaining three scalars ¢/
(i =1,2,3). These are, respectively, in the 1 and 3 of the
global Sp(1) gauge group. As such, the conventional
global symmetry among the original four scalars is lost
in 6D, as global R symmetry [18,19] is lost in 4D in
Sec. III. This further implies that the conventional super-
field approach in 6D is not the most general formulation,
due to the lack of uniform treatment of scalars in the HM
[23], or in terms of 4D chiral superfields [24].

This paper is organized as follows: In Sec. II, we give the
preliminary analysis related to a purely bosonic case of
Proca-Stiickelberg formulation. We also review our recent
supersymmetric Proca-Stiickelberg formulation in 4D only
with the a YM multiplet (A,/, 1) and the CM (¢', ¥, ¢")
[9], lacking global R symmetry [18,19]. In Sec. III, we give
our action in 6D with a Lagrangian invariant under N =
(2,0) supersymmetry with technical details. Section IV is
devoted to concluding remarks, while in Appendix we give
the superspace [25,26,23] reconfirmation of our system.
Since our system has the peculiar separation 1+ 3 in the
HM, the conventional superspace method in 6D [23,24]
does not directly apply. This situation is also similar to the
4D case that the chiral-superfield formulation [24] does not
apply to our system [9].

'We use the symbol N = (2,0) based on Majorana-Weyl
spinors, counting each component of 2 of Sp(1) separately for
supersymmetry. This counting based on a Majorana-Weyl spinor
complies with that by J. Strathdee in [22] in 6D.
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II. N=1 SUPERSYMMETRIC PROCA-
STUCKELBERG FORMULATION IN 4D

We first give some preliminaries to review the Proca-
Stiickelberg formulation. Let a scalar ¢! (I =1,2,...,
dim G) carry the adjoint index of any non-Abelian gauge
group G. We identify ¢! with the g-dimensional coordi-
nates of the group manifold G. We use also the symbol
@ = ¢'T' with the anti-Hermitian generators 77 of G.

Consider the finite gauge transformation for the group-
manifold representative [27],

e? —> (e?) = e7he?, (2.1)
and that of the gauge field A, = A, T,
A, — A, = e +mle™(9,eh),  (2.2)

where A = AT! is a finite gauge-transformation param-
eter. The conventional field strength F ,w’ = ZGWAD]’ +
mf"kA,7AK transforms as

F,, — F,, = e F, e (2.3)
Accordingly, the field strength of ¢,
P,= (D,e?)e™? = (0,e?)e™? + mA,, (2.4)
transforms “left and right covariantly” [28,27] as
P, — P, = e P, (2.5)

The definition of D, on e? is D,e? = 8,,64” +mA,e?,
because this combination transforms “left covariantly”:
D,e? — e7D, e’ like (2.1), with no derivative on the
finite parameter A.

The field strength Pﬂ’ plays a crucial role for the group-
manifold ¢ model, and Proca-Stiickelberg formulation, as
well. Its BId is

1
D[},PZ,]I = +§mf !

av

(2.6)

where F is the modified field strength of F defined by [9]

fﬂyl = F/tul + m_lfIJKPM‘]PUK,

F,' =20,A," +mfU%a,/AK. (2.7)

__l 1\2 1_1 N _ —
'C4D_ 4(-7:;11/) +2(/1p/1> 2

The P-BId (2.6) gives the necessity and justification of the
modified F instead of F. As such, the modification of F ﬂyl
into the peculiar F }w’ is not based on the authors’
subjective tastes, but on the naturalness of P-Blds. Of
course, in principle, we can separate the P A P term in the
P-BId (2.6), but it unnecessarily increases terms, as
elucidated in the supersymmetric-invariance confirmation
of our action in the non-Abelian case, as has been also
confirmed in 4D [9].

In terms of two field strengths F and P, the Lagrangian
for non-Abelian Proca-Stiickelberg theory is [5,6]

1 1
‘CPS =~ *7:”1/1)2 __<P/41)2'

7 : (2.8)

Needless to say, by the field redefinition AM' EA/ -
m~1[(8,e”)e™*]", the gp-kinetic term in (2.8) becomes the
mass term of A,/ as —(1/2)(P,/)? = —(1/2)m?*(A,)%
This is nothing but the non-Abelian version of the original
Proca-Stiickelberg mechanism [7].

The N =1 supersymmetrization of the non-Abelian
Proca-Stiickelberg Lagrangian (2.8) in 4D [9] is reviewed
as follows. Even before [9], we performed similar super-
symmetrizations in [5,6]. However, there are certain draw-
backs in those formulations. For example, the formulation
in [5] needs the extra auxiliary field C,,,’ together with the
tensor multiplet (B,,’. ", ¢'). In other words, there are two
extra bosonic fields C,,,/ and B,,' needed. Similarly, [6]
needs an extra vector multiplet (K,/,p’, C,,,"), with two
additional tensor fields K,/ and C,,,' other than the
original A, and ¢

To improve on these drawbacks, we minimized in [9] the
number of multiplets without extra tensor multiplet or
vector multiplet. In other words, we use the field content
more economical than those in [5,6] with only two
multiplets: the non-Abelian YM multiplet (A,,2") and
the CM (@', x!, ¢'), without any other multiplet. The scalar
@' parametrizes the coordinates of the gauge group G,
while a pseudoscalar ¢’ is in the adjoint representation.
Thus, the two spin-zero fields 0™ and 0~ within a CM play
different roles under the same group G. Accordingly, the
conventional global R symmetry [18,19] is lost in this CM.

Our action Iyp = [ d*xL,p for N = 1 supersymmetric

Proca-Stiickelberg theory in 4D [9] has the Lagrangian,
|
Voo Yoip ] )2
(Pu)* +5WPr') =5 (D)
1 -
Ef”K(/{’y”/lJ)P”K, (2.9)

Fm(y) =3 (@) = imf S Gy ) -
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where the field strength P is defined by (2.4) and F by
(2.7), while
D

=9, +mf"kA, 72X, (idem for D,y' and D,¢").

(2.10)

The field strength P and F satisfy their BIds (1.3). The
P A P term in F is not directly required by supersym-
metry, but it is by the non-Abelianization of the original
Proca-Stiickelberg formulation [7]. However, it is also
closely related to the consistency with supersymmetry,
as is confirmed in terms of superspace language in the
Appendix.
Our action I4p is invariant under N = 1 supersymmetry,
5oA,! = +(er, ') -

m~! fR (& P, K, (2.11a)

0! =5 (€)1 +im(rse)! + A (%),

(2.11b)

[(8ge?)e™"]" = +(&x'), (2.11c)
Sox' = —(r*e)P,' + i(ysye) D', (2.11d)

So" = +i(ersy’). (2.11e)

Despite the loss of the conventional global R symmetry
[18,19], the total consistency is reconfirmed in superspace
in the Appendix of [9]. The loss of global R symmetry is
one of the reasons why we can no longer use the conven-
tional chiral superfields [14—16] in superspace.

The supersymmetric invariance Jyl4p =0 has been
confirmed in [9]. However, due to the subtlety of our
system, we give rather detailed review of the confirmation.
There are in total six sectors arising in the variation 6, /gpg
up to O(@*)%: (i) mO®2, (i) m' @2, (iii) m2®?, (iv) mO®3,
(v) m'®3, and (vi) m*®>* up to O(d*).

The sector (i) is rather a routine confirmation at the
bilinear order whose details we skip. So is the sector (i),
because it is at the bilinear order without subtlety whose
details are skipped. The sector (iii) has only one sort of
term: m%y¢, which is straightforward.

The sector (iv) is nontrivial with three subsectors:
(@) yADA, (b) APF, and (c) yF?. The subsector (a) needs
Fierz-rearrangements and the Ay term in 6p4 for the
cancellation of all terms. The subsector (c¢) of (iv) for
yF? terms is straightforward whose details are skipped.

The subsector (b) for APF terms is the most crucial one.
As has been promised with (2 7), the importance of the
modified field strength F,' instead of F,' will be

;w

*The symbol ® stands for any fundamental fields in our
multiplets.

elucidated in this subsector (b).3 There are three terms
contributing to this sector, resulting in their cancellation,”

. 1 - 1 1 -
02 50|~ NGB, — (£ + 5P

APF
—f”K|:<—%€7/mf >}/”/1J:|P K

1
_ 5 [+2f”K (éyylj)PyK]]:ﬂ”

(2.12a)

[\

1
+ [— (é}/””)fpa’] 7D,

APF

1
v + 5 FUK (gl P”J f/)ﬁK + FIK (zy221) P ]_—MK

_ 1 _
_ f”K(é‘}/ﬂ/ll)Py‘]f”yK + Efl]l((eyptmlll) ‘7:;40
(2.12b)
=0 (QED.), (2.12¢)

where < is an equality up to a surface term. The
cancellations occurred between the first and fourth as well
as second and third terms in (2.12b). In these manipula-
tions, the F-BId (2.6) has been used. Note that if the field
strength (F,,')* in the A,-kinetic term were replaced by
the conventional one (F,,/)?, there would arise no AFP
term from &y (F,,")?* via (5oP) A P. Therefore, the APF
terms would not be canceled. In a nonsupersymmetric case,
there was no such necessity. As has been also explained in
[5], it is not the authors’ “subjective taste” to use the
modified field strength F ﬂ,, , but is required by super-
invariance 6y l4p = 0.

The sector (v) has six subsectors: (a) mA@P, (b) miy?,
(c) mA3, (d) mipDep, (e) my¢?, and (f) my¢pF. While the
subsector (b) needs Fierz rearrangements, the remaining
subsectors (a), (c) through (f) are straightforward to handle.
The sector (vi) has only one kind of term: m’y¢>, whose
cancellation is straightforward and whose detail is skipped
here. The sectors (v) for m!®3 and (vi) for m2®3 are rather
straightforward with Fierz arrangements, which are not
peculiar to our system.

The total consistency of our new multiplet (¢!, y/, ¢'),
where only ¢! works as the group-manifold coordinates can
be also confirmed by the closures of supersymmetry. This
can be accomplished also by the use of the field equations
of all fields. Since they have been given by (3.9) in [9], we
do not list them up.

First, the closure of supersymmetry on Aﬂ’ is confirmed
as

ThlS feature has been already mentioned in our papers [5].
*The symbol < stands for an equality that is to be confirmed.
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[6o(e1). 8p(e2)]A, = 8pA,! + 60A, 1 + 83)A, = 5pA, L + 87,1, (2.13a)

81 =d¢(€1), 8, = dg(ea), &' = +2(err'er), 5pA, = &0,A,, (2.13b)
& =5.a9),  &V=s0D), s =6+, (2.13¢)

o = a0 4 oI a0l = —gvp o = m=1 K (2,47 ) (8215, (2.13d)

where Jp stands for a translation operation with the parameter . We skip the details, which are explained in [9].

Second, the closure on e? is [9]

([01,62]e?)e™ = {6,[(62€7)e™] = (6,€7)(81e7)} — (1 < 2)

= +(6pe?)e™? + (67e?)e™?,

where 8, = 8y (€,), 5, = 5y (e,), and (57e?)e™? = —al¥) —
al) = +&A,T" — m™'[(g,y), (2x)]. Here, we omit the
generators 77, regarding each term as generator valued. This
peculiar closure for generator-valued quantities provides
supporting evidence for the consistency. In [9], this compo-
nent result has been further reconfirmed in superspace.
Third, the closure on ¢’ is
(61, 6:]¢" = 6pd’ + 679’

(QED.)  (2.15)

Note that this closure works, despite the different &6p
transformations of ¢’ and ¢'.
Fourth, the closure on A/ contains the A-field equation,5

1 . 5[:5135
(61,854 = +&'D, A + 674" — Ze&’ Yu <7
1 v 5‘CSPS
- ZC” yﬂll( 521 (2163')
= 5PAI + 5T/11 (QED) é’ﬂl/ = (6‘2}//”61).
(2.16b)
In (2.16b), we have used the A-field equation.
Fifth, the closure on y/ is
61, 6y" = +&D,y" — 55”7,4( o7 (2.17a)
= +6py' +677'. (Q.E.D.) (2.17b)

We have used the y-field equation.

For the validity of our unconventional CM, we mention
the following three points: The first reason is rather logical:
We already know that a similar situation with a tensor

The symbol = stands for any equality that holds by the use of
field equation(s).

(QED.) (2.14)

[

multiplet was presented in [5]. The tensor multiplet (TM) in
[5] has the component fields (B,,”, x'. ¢') in terms of the
notation in [5]. The reason why the TM in [5] does not
follow the conventional tensor (linear) multiplet [25,29],
i.e., why it can not be described in terms of a scalar
superfield L is as follows: On the scalar superfield L
[25,29], the commutator (but not anticommutator) of two
spinorial derivatives gives

[Vm Vﬁ]L = C1(GCde)a/;che + tr(WaWb), (2-18)

where a (or f3) is for the positive (or negative) chirality.
Note that L is a singlet under the YM group, without an
adjoint index. Obviously, this is impossible for non-Abelian
TM in [5], because the G term in (2.18) should carry the
adjoint index, while the tr(WW) term does not, due to its
trace operation. The attempt to make the WW term to be
replaced by something like f/%(W,’W;*) does not work

either, because such a term vanishes for an Abelian case.
Because of this lack of fundamental scalar superfield,
we do not have superspace action formulation at the
present time.

The second reason is rather intuitive. Since the spin-
zero fields ¢! and ¢ play different roles under G, it is
obvious that this multiplet can not be described in terms
of a common superfield, such as the scalar superfield L’
carrying the common index for ¢/ and ¢'. The third
reason is based on the analogy of higher-dimensional
supersymmetry, e.g., 11D [30] or 10D [31] with no
explicit action formulation in superspace in terms of off
shell superfields. In view of this analogy, the lack of
action formulation in superspace for our on shell system
is nothing unusual.

Note that our results above are highly sophisticated, so
that their cancellations are neither trivial results nor
accidental coincidences. In particular, the sophisticated
cancellations of quadratic-order terms in the closure
on ¢ has not been well presented by papers in the past
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before our paper [9]. These computational and intuitive
considerations provide the supporting evidence for two
important aspects:

(1) N =1 supersymmetry necessitates the modified
field strength F,,' instead of the conventional
one F,, /.

(2) Our nonconventional CM (¢, ¥, ¢') with ¢! and ¢’
transforming differently under 67 is consistent with
N =1 supersymmetry. This has been confirmed
with couplings to YM multiplet (A,’, ')

Our supersymmetric Proca-Stiickelberg theory given by
(2.9) through (2.11) is more economical than our previous
formulations [5,6]. Notice that in our CM (¢!, ¥, ¢'), the
spin-zero fields ¢’ and ¢ play completely different roles,
because the former is for the coordinates of the group
manifold G, while the latter is in the adjoint representation
of G. To our knowledge, this supersymmetric Proca-
Stiickelberg theory has not been presented before in
the past.

III. THE LAGRANGIAN WITH N=(2,0)
SUPERSYMMETRY IN 6D

With our successful supersymmetrization of the Proca-
Stiickelberg theory in 4D [9], we are ready to consider its
application to 6D. Similar to 4D, we introduce two N =
(2,0) multiplets in our system in 6D [22,28,32], a YM
multiplet (A,/, 2%') and a HM (¢, 7,/ ¢'). The ¢ = 2*4!
(or y,! = y.a!) are Majorana-Weyl spinors with the pos-
itive (or negative) chirality: y; (4!, ¥/) = (+4!, —¢"). The
index A = 1,2 is for the 2 of Sp(1), which is lowered (or
raised) by the antisymmetric Sp(1) metric €45 = —epy (or
"B = —eB4) [28,32].

As was already stated, the original four scalars in the
conventional HM (¢, y,/) (a = 1.2,3,4) are separated
into the singlet 1 and triplet 3 of Sp(1) in our formulation.
The former 1 is a Nambu-Goldstone scalar to be absorbed
into the longitudinal components of A,”.

Our experience with the N = 1 supersymmetric case in
4D [9] leads us to the total action, I¢p = [ d®xLgp, for our

N = (2,0) supersymmetric Proca-Stiickelberg theory,
where

! n2 o Yaipay _Liop e L ip
Lop == (Fu')" +5@PY) =5 (P,)) +5 ' Pr')

S D m(iiy) ~ ()
_ %mz FUK glik gyl il kK
— mfUK iy )ik — %f”K(ZIyMJ)P#K, (3.1)

up to O(®*). The 2 x2 matrices (7'),% (i=1,2,3;
A,B=1,2) are all anti-Hermitian, satisfying 7'7/ =

8 + €kgk. Or equivalently, (7'),8(¢/)¢ = —675,€ +
€'/*(¢¥) ,€. The contracted spinorial and Sp(1) indices are
omitted, e.g., (' Pa") = 2% (y*) ;D APP e, etc.’

The covariant derivative D, acts with the minimal
coupling, like D,¢" = 9,¢" + mf"%A,’¢'* or D, 1% =
0,24 + mf"%A, 772K The field strengths F and P are
defined similar to (2.7) and (2.4) by
‘7:/41/1 = F/wl + m—lfl!KPMJPUK

= 20,4, +mfUKAIAK + m KPP K,

(3.2a)
P =[(D,e?)e ] =[(9,e”)e ] +mA,", (3.2b)

where ¢ = ¢/T! with the generators T/ of the gauge
group G. These field strengths satisfy the Blds,
DyF," = +f75FL Pk, (3.3a)

1
DyP, = +5mF, . (3.3b)

Our action I4p is invariant up to O(®*) under N = (2, 0)
supersymmetry,

5QA”1 = —&—(éyﬂ/l’) - m_lf”K(é)ﬂ)PﬂK, (3.4a)
1 ) .
S :—I—E(J/"”e)]:ﬂyl —m(z'e)p"

1 o
+fIJK/1J(E.)(K) _EmfIJKeuk (Tl€)¢]./¢kK’

(3.4b)

So! = +(eriy!), (3.4¢)

Sox' = +(y*i'e)D " - (r*e)P,, (3.4d)
[(Bge?)e™?]" = +(&x!). (3.4e)

Useful relationships are such as the arbitrary variations,

8F " = 2D, (6A,") + 2175 (54,7 )P, ¥
_ fIJK[((SE(ﬂ)e_(p]Jf K

s (3.5a)
8P,/ =D,[(6e?)e~?]! +m(3Aﬂ’) + f7K[(se?)e~?] P, K,
(3.5b)

5A, = 6A," + m~ fUK[(5e?)e~) P K. (3.5¢)

®Note that the metric C,; for 6D spinors are symmetric, but it
changes the dottedness of spinors. For example, we can express
2M = AP Cyi; we consistently avoid using the lower dot index

o for a A field, (or the upper dotted index “ for a y field).
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Note that SQA/ does not have the second term in (3.4a),
because of (3.5c). Accordingly, we have

5Q‘Flll/1 - —2(5‘}/[ﬂDy]lI) + 2f”K(€_J}/[ﬂ/1‘])PD]K
- f”K(é)(J)fﬂuK’ (363)
SoP, = (eDy") + m(ey, ") + [/ (&) P,X. (3.6b)

Let us next describe the peculiar properties of our
Lagrangian (3.1). First of all, the gauge-symmetry
breaking occurs with the effective mass term for A/,
arising from the kinetic term —(1/2)(P,’)? of ¢'. As in
4D, this is because the finite gauge transformation of A,
in (2.1) can absorb the derivative term on ¢ as A#’ =

A +m™(9,e)e ] as P, =mA,. Thereby, the

kinetic term —(1/2)(P,”)?> becomes the mass term
—(1/2)m*(A,1)2.

Second, there is a mixture mass term between A and
x- This is expected, because of the Proca-Stiickelberg
mechanism [7]. Because of this mixture mass term, the
original gaugino A becomes massive as a Majorana
spinor combined with y. The A,/ absorbs ¢’ to be
massive, with the original degrees of freedom (d.o.f.) 4
changed to 5 of a massive vector. The original two
Majorana-Weyl-fermions A’ and y/, each having 4 d.o.f.
are combined to form a Majorana-fermion with 2 42 =
4 d.o.f. The remaining ¢ field remains as massive
carrying 3 d.o.f. All of these are summarized in the
following table:

Third, some readers may develop a reasonable
skepticism against our formulation for the following
reason: The fact that the two scalars ¢’/ and ¢’ trans-
form differently under G leads to the suspicion that they
actually belong to two different supermultiplets. There
are two reasons why such possibility does not make
sense. A short reason is that their d.o.f. do not match
between bosons and fermions. A long reason is as
follows: Since ¢ has 3 d.o.f., while ¢’ has 1 d.o.f.
modulo the adjoint indices, we need in total 4 d.o.f.
from fermions. However, as the general representation
analysis in diverse dimensions shows [33], the accept-
able minimal units of fermions in D =5 + 1 are either
symplectic (pseudo) Majorana-Weyl spinors in the 2 of
Sp(1) [33]. Each of the pair in the 2 of Sp(1) carries
20/3-1 =2 d.o.f. as a Majorana-Weyl spinor. The sub-
traction of one in the exponent of 2 here is due to the
Majorana-Weyl condition. So, the minimal unit of a
fermion in D =5+ 1 is a Majorana-Weyl spinor with
2 x 2 =4 d.o.f. in total. In other words, any Majorana-
Weyl fermion in a given supermultiplet should carry
4 d.of. If there were two scalar supermultiplets, where
two scalars ¢/ and ¢! separately belong to, there would
be two distinct fermions with 8 d.o.f. in total, each

TABLE I. Physical d.o.f. of our fields modulo dim G for their
adjoint indices.

Before absorptions Al A P! 7 o'
Physical d.o.f. 4 4 3 4 1
After absorptions Al A " Ve ¢!
Physical d.o.f. 5 8 3 0 0

carrying 4 d.o.f. in each scalar multiplet. If so, we
would be short of bosons. As our Table I and our
transformation rule (3.4) show, there is only one
Majorana-Weyl fermion y with 4 d.o.f. modulo adjoint
index. An additional confirmation is the closure of two
supersymmetries on all fields ¢’, ¢/, and y/, as in (3.11)
and (3.12) to be shown below.

Fourth, the modified field strength F ;w] is involved as the
kinetic term for the YM field Aﬂl . This is nothing but the
supersymmetrization and 6D generalization of the purely
bosonic case (2.8) in 4D.

Fifth, there are terms like m(Azy)¢ and (Ay4) P. These are
understandable, because the former is the conventional
interaction term between the gaugino and the three scalar
fields in the HM. However, the (1yA)P term is peculiar to
our Proca-Stiickelberg formulation, because the scalars (p’
are coordinates of the group manifold G, so that its bare
field ¢’ should not appear directly in the Lagrangian. Its
involvement is only through its field strength P, similar
to [5,6].

Six, there is a peculiar cubic-potential term:
m? UK iik il hil p*K  The nontriviality of this term is
that it contains the structure constants of two different
groups: G and Sp(1).

We next describe the details of the invariance confirma-
tion of our action 5,1 = O(®*). We investigate six sectors:
O(m°®?), O(m!'®?), O(m*®?), O(m°®?), O(m'®*), and
O(m*®3). Let us describe how the confirmation works at
each of these sectors, in turn.

(i) At O(m°®?), there are three independent sectors:
(a) ADF, (b) yDP, and (c) yD?¢. These sectors are
rather routine at the free-field level, whose details we
skip here.

At O(m'®?), there are three sectors: (a) mAP,
(b) myF, and (c) mA¢. For sector (a), there are
two contributions from the ¢-kinetic term and the
mly term. These cancel with no problem. For
sector (b), the contributions from the y-kinetic term
and the mAy term cancel each other, by the use of the
P-BId (3.3b). Similarly for sector (c), the A-kinetic
term and the mly term cancel each other.

At O(m*®?), there is only one sector m’y¢. The
contributions are from the miy and m?¢? terms,
which cancel each other.

(i)

(iii)
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(iv) At O(m°®%), there are three sectors: (a) APF,
(b) ¥F?, and (c) A2Dy. For sector (a), three terms,
(AyA)P and the kinetic terms of A and A, contribute.
It is crucial to use the F-BId (3.3a). For sector (b),
there is only the potential contribution from the
A-kinetic term, which vanishes by itself due to
fYEF 7 FrK = 0. For sector (¢), two contributions
are from the A-kinetic term and the (Ay1)P term. It is
easy to see their cancellation, even without any Fierz
identity.

(v) At O(m'®?), there are five sectors: (a) migP,
(b) mA3, (c) mipDe¢p, (d) my¢pF, and (e) miy>.
For sector (a), two Lagrangian terms, (Ay4)P and
(Azy )¢, contribute, but their cancellation is straight-
forward. For sector (b), the A-kinetic term and the
(AyA)P term contribute. They double their contribu-
tion of the type,

F e, (R a) = K € 1P
=0, (3.7)

which vanishes by itself as a Fierz identity. This
identity itself is confirmed by the basic Fierz identity

[32],
_ _ L _ _
(W1y2) (Ways) = _g(Wl7uV/4)(W37ﬂW2)
1 ) _ )
+g rva) Wy Ty
1 7 ¥y 1%
+og W 17wpwa) 37" "w2)
| ) _ .
- % (llll yyypTll//4)(l//3yMW}Tll//2)7
(3.8)
where each of the four spinors w,; (i=1,

2,...,4) is a Majorana-Weyl spinor in the 2 of
Sp(1) with the chiralities y;(y1,wa, W3, wy) =
(—w1, +ws, +w3, —wy). The contractions of their
2 indices A, B, ... are omitted, e.g., the (yy,) =
(@waa). For sector (c), the kinetic term of ¢, that of
7, and the m(Jzy)¢ term contribute. The crucial
relationship is 77/ = —§" + €'/*z*. For sector (d),
the contributions from the y-kinetic term and the
(Aty)¢ term cancel each other. For sector (e), the
y-kinetic-term, m(Jy) term, and the (Azy)¢ term
contribute. After appropriate Fierzings, there remain
only two independent structures: f//K(ey,A") x
('r*x®) and  fYK(eyped!) (7 yPleyX).  Fortu-
nately, each of these two structures add up to zero.

(vi) At O(m>®?), there is only one sector m?y¢?*. There
are three contributions from the m(iy), m(dzy)e,
and m?¢’ terms. They are shown to cancel each
other by the use of 7/7/ = —§" + ¢'/kz*, This pro-
vides the good confirmation of the peculiar potential
term: (l/z)meIJKeijk¢i1¢jJ¢kK'

Our field equations for all fields are listed up as

oL ; ;
6/_161D — +Dll + m)(l _ mf”K(Tl)(J)(ﬁlK
_fUK(yﬂ,{J)PﬂK =0, (3.9a)
6Lep 1 I TIK (i 70\ piK =
57 =+Py" + mA —mfE ()" =0,  (3.9b)
Zﬁﬁ? — D, Fw ! _ g flIK (R K)
U
_ mP"I _ fIJKPD‘]]:’wK
1 - i i
_Ef[JK()(Jyy){K) _mfIJK¢ JD#¢K (390)
55;61'11) _ +D’%¢il — m*il — mfIJK(ZJTiZK)
3 L
_ EfIJK€1]k¢]J¢kK =0, (39(1)
6Lep |' . 1 1JK (74K =

up to O(®?). Note that the ¢-field equation (3.9¢) directly
from the Lagrangian is originally

1 -
| =D P

- %D, (P, FrK) = 0. (3.10)

However, for the second term in the right-hand side of
(3.10), we can use the A-field equation yielding the second
term m.f (Ay) of (3.9e). For this reason, we put the symbol =
for the first equality in (3.9¢). The third term D(PF) in
(3.10) vanishes up to O(®?*) because of the P-BId (3.3b),
and the A,’-field equation (3.9¢).

We mention one subtlety related to the closure of
supersymmetry. The most nontrivial closure of two super-
symmetries is on ¢’ because of the nonlinear feature of the
coordinates ¢'. However, this is just parallel to the 4D case
(2.14) [9]. To be more specific, it goes as
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([61.02]e”)e™ = {61[(6,€”)e™] — (62€7)(61e7")} — (1 © 2)
= [61 (") + (82¢")e™(81%)e™] = (1 <> 2)
=& (—r'e\P,! +iysy'eDyg') — (1 < 2) + (&), (€17)]
= +&P, + [ () (e )T
= +(6pe?)e™? + (67¢?)e™”. (Q.E.D.) (3.11)
Here, as in (2.14), a/ = —&A," + m™" f7X (e, 4") (exx"). As is clearly seen, this is nothing but the same pattern as in 4D in

(2.14). This closure works despite the special role as the coordinates of ¢ of the group manifold of G. Nevertheless, we need

to emphasize that the peculiar role played by the scalar ¢’ singlet under Sp(1) is consistent with the closure of
supersymmetries.

Similarly, we can confirm the closure of supersymmetries both on ¢ and y’ as

(61,8, = +8D, " = 3pp + 51" (QED.). (3.12a)

1 1 1 . .
61,6,y =Dy — Ef”(?ypll) - Emf"(}’ﬂﬂ) + Emf”K(f"hT%J)flﬁ’K
56‘6])

1
=6pyl + 6yt — <& {7’,4 <W

5 )} = 6py' + 677 (Q.E.D.). (3.12b)

Note that the nontrivial feature of the closure on y/ with sophisticated Fierzings needed to reach the final form in (3.12b)
with the correct coefficients.

As the additional confirmation of the validity of the whole system, we look into the mutual consistency of field equations.
We will perform three confirmations: (i) The supersymmetry variation of the A-field equation (3.9a). (ii) The supervariation
of the y-field equation (3.9b). The divergence of the A,-field equation (3.9¢). Even though these confirmations are parallel
to the corresponding 4D case in [9], we give their details in order to resolve any doubt on our system.

(i) The supervariation of the A-field equation (3.9a) works as follows:

’ oL : ,

0L §Q< 5Z6ID> _ 6Q [+D/'LI + m)(I _ mfIJK(Tl)(J)¢lK _ fIJK(}’Mllj)PﬂK}
1 S r

= D, 43 (P F ! = P+ I ) = e (g

+ mfHK &y, 47) (r,A5)
+m[=(y'e)P,' + (r'7'e)D, "]
= mfUEe[=(r'e)P,’ + (re'e) DM 1™ — mf K (zy ) (ex'y")

- P 5 T = (s |y
— JUR G (@D, + mler, i) + O@), 3.13)

where each term is evaluated as

1
+ (7ﬂyp6€)DﬂFpol = +§f”K(yﬂM€)]:/)aJPTK - (yﬂe)Dufﬂyl’ (31421)

N[ =

+ f”K(y”Dﬂ/lj)(é;(K) + f”K(}’”ﬂj)@DM)(K)
= (6(5?16’])) @) - %mf e @) + % mf K (Yo' e) (2 P2y

+ YR @ED ) (A7), (3.14b)
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1 -
U (e, ) () = =S mf U () (V7 25), (3.14¢)
= mPUE ) @) = =S m PR e Fr) = g mfUE (pm ) 0T ), (3.144)
1 1
_ 5fIJK (},M},pae)f'ﬂpjpgl( — _ zfljl((yypae)fﬂplpo_l( + f”K(}/pé‘)prJPUK. (3 146)

In (3.14c) and (3.14d), we have used the Fierz-identity formula (3.8). Using these in (3.13), we get considerable
cancellations, being left only with terms that vanish by the use of field equations,

) 5L -
0=25, <—5/_16ID> = (y"e) [—Dy}"ﬂ”l - mf”K(/ljyﬂ/lK) - mPﬂl

mfK 7y K) + UK E, PR - mfIJK¢iJD”¢iK:| 4 fUK <5(§161D> (&%)

) (‘;ﬁw) + fIK (5(;61D>( &®)=0. (QE.D.) (3.15)

Special attention should be paid to the fact that our F-BId (3.3a) has been used in (3.14a), which shows the crucial
role played by the modified field strength F,, !instead of the original F. ! This also shows that its usage is not based
on the authors’ “subjective taste” for the whole formulation.

(i) The supervariation of the y-field equation (3.9b) works in a way parallel to that of the A-field equation, so we give
only the result,

025, (5(;61)) = Sol Py’ + mA = m UK ()] (3.16a)
8Lep 1! 5L - (8Lep)\ .
— ¢ {ﬁ] + flKe {M( mﬁ?)] + (de) <5 qfi?) =0. (QED.) (3.16b)

In this confirmation, the validity of the peculiar ¢) A ¢ term in 64 in (3.4b) has been reconfirmed, because ¢ A ¢
term is produced by the variation §p4 in the second term in the rhs of (3.16a).

(iii) The divergence of the A”’ -field equation (3.9c) works in a way parallel to Eq. (3.19) of [9]. Because of this
cancellation structure, we skip the details, giving only the result,

? 6Lep 1JK | 7J 0Lepn 1JK | 5J 6Lep
= D = _ [——
0=D, (5A”’> A o ] I A

_ m{#}l 1K (555?1’3) =0. (QED) (3.17)

Since all fields A, ', ', ¢", ¥', and ¢’ in our system couple to A,’, the verification (3.17) provides nontrivial cross
confirmation of the consistency of our system. The most crucial aspect is that our two different scalars in two
different representations of Sp(1), i.e., ¢’ in the 1 of Sp(1) and ¢ in the 3 of Sp(1), do not pose any problem in our
system. This is reflected in the two distinct terms at the end of (3.17).

Other nontrivial confirmations are such as the coefficient of the 1> term and y? term in the Aﬂ’ -field equation (3.9c¢) that
differs by a factor of 2. This originates from the extra f//X(A’y#2/)P X term in the Lagrangian (3.1). The validity of this
statement has been also confirmed by the divergence confirmation D, (6Lep/5A,") Z 0.

These confirmations provide additional supporting evidence for the consistency of our total system. We do not have to
stress that so many mutual cross confirmations of our system resolve any possible doubt of the validity of our
supersymmetric system. Especially, the consistency with the unconventional scalars ¢’ and ¢ in the two different
representations of Sp(1) has been verified. Needless to say, these component-level confirmations have been also
reconfirmed in terms of superspace language in the Appendix.
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We have so far skipped fixing higher-order terms, such
as O(®*) at the Lagrangian level, corresponding to O(®?)
at the field-equation level. This principle is similar to the
corresponding case in 4D [9]. A natural question that may
be raised is whether such a prescription is really valid. Our
short answer is that according to our past experience, once a
system with the lowest order but nontrivial supersymmetric
interactions is established, it is supposed to work at higher
orders.

IV. SUMMARY AND CONCLUDING
REMARKS

In this paper, we have presented an economical
formulation of N = (2,0) supersymmetric non-Abelian
Proca-Stiickelberg theory in D =541 that was not
known before. We have succeeded in separating the
scalar @' from the remaining scalars ¢/ and use the
former as the Nambu-Goldstone boson to be absorbed
into A," as the supersymmetric Proca-Stiickelberg mecha-
nism. The success of our formulation in 6D is also based
on the similar formulation in 4D [9], only with the YM
multiplet (A,’, A’) and the CM (¢', ¥', ¢"), where the CM
is used for formulating the supersymmetric Proca-
Stiickelberg theory, and accordingly, conventional R
symmetry is lost in 4D.

This result is unexpected and nontrivial from the
following viewpoint: In D =5+ 1, a conventional HM
islike (¢p*, %) a=1,....45a=(aA);a=1,2;A= 1,2,
where all scalars transform uniformly under the gauge
group G [23,24]. However, in our present formulation, one
single scalar ¢’ transforms as the coordinates of the group
manifold, while other three remaining scalars ¢! transform
as the adjoint representation. Under the global automor-
phism symmetry Sp(1), the former (or the latter) trans-
forms as the 1 (or the 3) of Sp(1).

As our objective in this paper, we applied our 4D result
to 6D with the parallel field content: YM multiplet (A,’, 2')
and HM (¢, ¥/, ¢'). This is an unexpected result, due to
the different transformations of ¢ and ¢i =1,2,3,
respectively, in the 1 and 3 of Sp(1). Because in the
conventional HM, they together form the 4 =2 x2
of Sp(1) x Sp(1).

This feature further indicates a general conjecture that
the scalars in a supermultiplet do not have to realize a
uniform representation or maximal symmetry, such as
global R symmetry in 4D, or2 x 2 of Sp(1) x Sp(1) in 6D.

There are differences as well as similarities of our
result compared with our previous tensor-hierarchy for-
mulations [5,6]. One example of the latter is the term
FUK@2!y#27)P,K. One example of the former is the cubic-
potential term m? f1/K 'kl i p*K  which is very peculiar
to our present formulation. The latter coupling is possible
because of the three scalars ¢/ in the 3 of Sp(1) after the
separation of one scalar @.

Due to the peculiar single scalar ¢’ separated from the
remaining three scalars ¢/ in our HM, we have a non-
conventional superspace reformulation in the Appendix.
This implies that the conventional method using scalar
superfields [23,24] is neither the only way nor the most-
general way to describe supersymmetric systems. We have
established this fact by explicit supporting evidence in 6D
in this paper, in addition to the recent result in 4D [9].

The YM field strength (2.7) for non-Abelian Proca-
Stiickelberg formulations [7] is modified by a “general-
ized” Chern-Simon-like term [5,6]. This is interpreted as an
“generalized” tensor-hierarchy formulation [1,2], in the
sense that Blds of field strengths are modified by the
products of field strengths like (1.3) or (3.3).

In our present work, we have presented arguments and
provided ample computational details to prove the consis-
tency of our model and the procedures adapted for proving
the consistency. Admittedly, our computations have only
been carried up to third order in the fields. One concern is
that the consistency of our assigning the two scalars, one
representing/serving as coordinates and the other conven-
tional, to one superfield may actually not go through once
higher orders in the fields that are considered. If this were to
be the case, then one way out is to assign one scalar to one
superfield (with its own superpartners) and the other scalar to
a second superfield (with its own superpartners). Thus, the
system would have two superfields with the doubling of the
superpartners. We would then recover our present system
once the new additional superpartners are either set to zero or
are expressed in terms of the known fields through the
equations of motion. This procedure will at least overcome
the controversial unconventional assignment of the scalar
fields as has been used in the presentation and at the same
time save the model.
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APPENDIX: SUPERSPACE REFORMULATION

In this Appendix, we give the superspace reformulation
of our component results. This reformulation is not a
routine task, but has two important missions. First, our
system has the peculiar split 1 + 3 in the HM that can not
be simply described by conventional superfields [23]. This
pattern seems to apply also to the method of higher-
dimensional superspace mimicking the 4D chiral super-
fields [24]. Second, it provides good supporting evidence of
the total consistency of our component formulation, includ-
ing representation-related subtleties.

The first point can be elucidated by the 4D-based chiral-
superfield formulation of HM in 6D with the action of the
HM [24],
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- / Bxd0(®, D, +B_d_) + / Bxd0(®, 0D )

+/d6xd29<(i)+a(i)_)’ (Ala)
zzl(x4+ix5) ZEl(X4—ix5)

2 ’ 2 ’
552234 i0s, (_952_—544-1'35 (Alb)

9z 0z

The 4D-based “chiral superfields” ® and ® have their R
symmetry, just as in 4D [34]. In contrast, in our formu-
lation, the original four scalars are decomposed into the
1+ 3 of Sp(1), so that it can not be described in terms of
chiral superfields @, and ®, in 4D.

Our formulation therefore does not rely on 4D-based
“chiral superfields” [24]. Instead, our formulation is con-
trolled by the F and P-Blds,’

1 1 1
+3ViuFse) =5 Tus " Foie) =5 /7 Fus’ Py =0,

(A2a)

+V[APB)] - TABCPCI - mfABI = 0. (A2b)

These corresponds to the component-Blds (1.3). The super-
space constraints at engineering dimensions 0 < d <1 are

Top® = +2(}/C)gé' = +2(r°) yp€an> (A3a)
Fap' = =12 = +(yb)gé/1é[ = +(rp)apeast’™’

= _(yb)aﬁllﬁIAv (A3b)

P =4y =o' (A3c)

Vo' = =ty = =@ on = =(1)a"xa8",  (A3d)

1, . . 4
Vol =42 (1) Fod = m(@)ob e

1 e .
+f[]]()(gji£1( —Emf”Ke”k(T’)g/—}qbﬂqka, (A3e)

va)(ﬂl = _(ycri)gévc¢” - (}/C)QEPCI' (A3f)

"We use the superspace-coordinate indices A = (a,a) =
(a,a,A),B=(b,p) = (b,p,B),..., where a,b,... =0,1,...,5
(or a,p,...=1,2,3,4, A,B,... =1,2) are for bosonic (or
fermionic) coordinates. Our antisymmetrization in superspace
is normalized as My5) = M5 — (—=1)** Mg, , without the factor
of 1/2. We use this superspace notation only in this section. Other
notations in superspace also comply with that in [35].

All other independent components, such as F a // or Tg°,

are all zero. Even though we are using the A, B, ... = 1,2
indices for the 2 of Sp(1) that are the same as the
superspace indices A, B, ..., they are distinguished from
the context. These are all consistent with the component
transformation rule (3.4a) through (3.4e).

The constraints at d = 3/2 corresponding to (3.6) are

VaFpe' = +rpVar)e = 75 d”)oPio®

— fUthcJ)(gKa (A4a)

ngb[ = _vb)(g[ - m(yb/l[)g - f”K)(aJPbK' (A4b)

As usual, the fermionic superfield equations are obtained
by the use of (A4). For example, the A-field equation is
obtained by

1
_(W/V)g = +(}’C)gévcl1£[ = E {Vg, Vé}/lél

- +1VE(V/M/—”) + %V/;(Vg/lél)

2
I 1 I
— 3 VP 4 5 45 (T
_ m(ri)gﬁ Pl + Ky, K
—%mf”KGijk(Ti)gﬂd)ﬂqﬁkK] . (A5)

Evaluating the right-hand side, we get the A-field
equation (A7a) below. For the y-field equation, due to
the negative chirality of y, the procedure is a little different,

+(¥x' )2 = (r) 2V

1

=) (=5 ) 1 T V!

_ _% ()L (re)2Vs(Very')

1 a € i
== VLI PN~y Vat" = (ra)epPe]
(A6)
Evaluating the right-hand side, we get the y-field
equation (A7b) below. As usual, the bosonic field equations
for A/, ¢, and ¢’ are obtained by applying spinorial
derivatives on these fermionic field equations.
We thus reach the field equations of all fields,

+X7ﬂ41 + m)(I _ mfIJK(Ti)(J)¢iK _ f”K(}’bﬂJ)PbK - 0,

(A7a)

+Xy! + mA — mfUK (A pK =0, (ATb)
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1 -
_ vb]:abl _ EmfIJK(/?’17/5111() _ mPaI _ f”KPbJ]:abK

1 . ,
_EmfIJK()—{JyaZK) _ mfIJK¢1JVa¢1K - 07 (A7C)
—|—Vg¢il _ m2¢i1 _ mf”l((zl’[ij(l() _ %flll(eijk(pjl(pkl( - 0’

(A7d)

+V, P — mflUK (3 K) = 0, (ATe)

up to O(®3). Here, we omitted the spinorial indices,
e.g., ¥2! instead of (WA! )a ==(1)a sV etc. Our field

equations in (A7) are consistent with the component field

equations (3.9). In contrast to the component case in
Sec. III, the second term mf(ly) in (A7e) arises without
the explicit use of A- field equation.

As the final remark, we stress the importance of an on
shell superspace formulation based on Blds such as (A2),
instead of using off shell chiral superfields in 4D [34].
This has been also emphasized in [9], citing the cases of
10D or 11D superspace [30,31]. One of the reasons is that
off shell superfield formulation has a certain limit for
describing a supersymmetric system. Typical examples
are the supersymmetric tensor-hierarchy systems [2], and
supergravity in 10D [31] or 11D [30]. When the gauge
group is non-Abelian like [2,9], the conventional super-
field description fails because of the problem mentioned
with (2.18).
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