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Extending the principle of local gauge invariance ψðxÞ → exp ð{PA ω
AðxÞTAÞψðxÞ; x ∈ Rd, with TA

being the generators of the gauge group A, to the fields ψðgÞ≡ hχjΩ�ðgÞjψi, defined on a locally compact
Lie group G, g ∈ G, where ΩðgÞ is a suitable square-integrable representation of G, it is shown that taking
the coordinates (g) on the affine group, we get a gauge theory that is finite by construction. The
renormalization group in the constructed theory relates to each other the charges measured at different
scales. The case of the A ¼ SUðNÞ gauge group is considered.
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I. INTRODUCTION

Gauge theories form the basis of modern high-energy
physics. Quantum electrodynamics (QED)—a quantum
field theory model based on the invariance of the
Lagrangian under local phase transformations of the matter
fields ψðxÞ → e{wðxÞψðxÞ—was the first theory to succeed
in describing the effect of the vacuum energy fluctuations
on atomic phenomena, such as the Lamb shift, with an
extremely high accuracy of several decimal digits [1]. The
crux of QED is that in representing the matter fields by
square-integrable functions in Minkowski space, it yields
formally infinite Green functions, unless a special pro-
cedure, called renormalization, is applied to the action
functional [2,3]. Much later, it was discovered that all other
known interactions of elementary particles, viz. weak
interaction and strong interaction, are also described by
gauge theories. The difference from QED consists in the
fact that the multiplets of matter fields are transformed by
unitary matrices ψðxÞ → UðxÞψðxÞ, making the theory
non-Abelian. Due to ’t Hooft, we know such theories to
be renormalizable, and thus physically meaningful [4].
Now they form the standard model (SM) of elementary
particles—an A ¼ SUð2Þ × Uð1Þ × SUcð3Þ gauge theory
supplied with the Higgs mechanism of spontaneous sym-
metry breaking.
A glimpse at the stream of theoretical papers in high-

energy physics, from Ref. [2] till the present time, shows
that renormalization takes a bulk of technical work,
although the role of it is subjunctive to the main physical

principle of gauge invariance, explicitly manifested in the
existence of gauge bosons—the carriers of gauge inter-
action. The role of the renormalization group (RG) is to
view the physics changing with scale in an invariant way
depending on charges and parameters related to the given
scale, absorbing all divergences in renormalization factors.
According to the author’s point of view [5], the cause of

divergences in quantum field theory is an inadequate choice
of the functional space L2ðRdÞ. Due to the Heisenberg
uncertainty principle, nothing can be measured at a sharp
point: it would require an infinite momentum Δp to keep
Δx → 0 with ΔpΔx ≥ ℏ

2
. Instead, the values of physical

fields are meaningful on a finite domain of size Δx, and
hence the physical fields should be described by scale-
dependent functions ψΔxðxÞ. As was shown in previous
papers [5–7], having defined the fields ψaðxÞ as the wavelet
transform of square-integrable fields, we yield a quantum
field theory of scale-dependent fields—a theory finite by
construction with no renormalization required to get rid
of divergences.
The present paper makes an endeavor to construct a

gauge theory based on local unitary transformations of the
scale-dependent fields: ψaðxÞ → UaðxÞψaðxÞ. The physi-
cal fields in such a theory are defined on a region of finite-
size Δx centered at x as a sum of all scale components from
Δx to infinity by means of the inverse wavelet transform.
The Green functions are finite by construction. The RG
symmetry represents the relations between the charges
measured at different scales.
This is essentially important for quantum chromody-

namics, the theory of strong interactions, where the
ultimate way of analyzing the hadronic interactions at both
short and long distances remains the study of the depend-
ence of the coupling constant αS on only one parameter—
the squared transferred momentum Q2. Naturally, one can
suggest that two parameters may be better than one. As has
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been realized in the classical physics of strongly coupled
nonlinear systems—first in geophysics [8]—the use of two
parameters (scale and frequency) may solve a problem that
appears hopeless for spectral analysis. Attempts of a similar
kind have also been made in QCD [9], although they have
not received further development.
I must admit, in this respect, that one of the challenges of

modern QCD is to separate the short-distance behavior of
quarks, where the perturbative calculations are feasible,
from the long-distance dynamics of quark confinement—
and then somehow to relate the parameter Λ, which
describes the short-range dynamics, to the mass scale of
hadrons [10]. This may not be the ultimate solution of the
problem: sometimes it is easier to scan the whole range of
scales with some continuous parameter than to separate the
small- and the large-scale modes [11].
The remainder of this paper is organized as follows: In

Sec. II, I briefly review the formalism of local gauge
theories as it is applied to the Standard Model and QCD.
Section III summarizes the wavelet approach to
quantum field theory, developed by the author in previous
papers [5–7], which yields finite Green functions
hϕa1ðx1Þ…ϕanðxnÞi for scale-dependent fields. Its applica-
tion to gauge theories, however, remains cumbersome.
Section IV is the main part of the paper. It presents the
formulation of gauge invariance in scale-dependent for-
malism, sets up the Feynman diagram technique, and gives
the one-loop contribution in a pure gauge theory to the
three-gluon vertex in scale-dependent Yang-Mills theory.
The developed formalism aims to catch the effect of
asymptotic freedom in a non-Abelian gauge theory that
is finite by construction, and hopefully, with fermions being
included, to describe the color confinement and enable
analytical calculations in QCD. The problems and pro-
spectives of the developed methods are summarized in the
Conclusion.

II. LOCAL GAUGE THEORIES

The theory of gauge fields stems from the invariance
of the action functional under the local phase transforma-
tions of the matter fields. Historically, it originated in
quantum electrodynamics, where the matter fields ψ—the
spin-1

2
fermions with mass m—are described by the action

functional

SE ¼
Z

d4x½ψ̄γμ∂μψ þ {mψ̄ψ �; ð1Þ

written in Euclidean notation, with γ matrices satisfying the
anticommutation relations fγμ; γνg ¼ −2δμν.
The action functional [Eq. (1)] can be made invariant

under the local phase transformations

ψðxÞ → UðxÞψðxÞ; UðxÞ≡ e{wðxÞ ð2Þ

by changing the partial derivative ∂μ into the covariant
derivative

Dμ ¼ ∂μ þ {AμðxÞ: ð3Þ

The modified action

S0E ¼
Z

d4x½ψ̄γμDμψ þ {mψ̄ψ � ð4Þ

remains invariant under the phase transformations of
Eq. (2) if the gauge field AμðxÞ is transformed accordingly:

AU
μ ¼ UðxÞAμðxÞU†ðxÞ þ {ð∂μUðxÞÞU†ðxÞ: ð5Þ

Equation (2) represents gauge rotations of the matter-
field multiplets. The matrices wðxÞ can be expressed in the
basis of appropriate generators

wðxÞ ¼
X
A

wAðxÞTA;

where TA are the generators of the gauge group A, acting
on matter fields in the fundamental representation. For the
Lie group, they satisfy the commutation relations

½TA; TB� ¼ {fABCTC

and are normalized as Tr½TA; TB� ¼ TFδ
AB; where TF ¼ 1

2

is a common choice. For the Yang-Mills theory, I
assume the symmetry group to be SUðNÞ. The trivial case
of N ¼ 1 corresponds to the Abelian theory—quantum
electrodynamics.
The Yang-Mills action, which describes the action of the

gauge field AμðxÞ itself, should be added to the action in
Eq. (4). It is expressed in terms of the field-strength tensor

SYM½A� ¼
1

2g2

Z
TrðFμνFμνÞd4x; ð6Þ

where

Fμν ¼ −{½Dμ; Dν� ¼ ∂μAν − ∂νAμ þ {½Aμ; Aν� ð7Þ

is the strength tensor of the gauge field, and g is a formal
coupling constant obtained by redefinition of the gauge
fields Aμ → gAμ.
It should be noted that the free-field action [Eq. (1)] that

has given rise to gauge theory was written in a Hilbert
space of square-integrable functions L2ðRdÞ, with the
scalar product hψ jϕi ¼ R

ψ̄ðxÞϕðxÞddx. In what follows,
the same will be done for more general Hilbert spaces.

M. V. ALTAISKY PHYS. REV. D 101, 105004 (2020)

105004-2



III. SCALE-DEPENDENT QUANTUM
FIELD THEORY

A. The observation scale

The dependence of physical interactions on the scale
of observation is of paramount importance. In classical
physics, when the position and the momentum can be
measured simultaneously, one can average the measured
quantities over a region of a given size Δx centered at point
x. For instance, the Eulerian velocity of a fluid, measured at
point x within a cubic volume of size Δx, is given by

vΔxðxÞ ≔
1

ðΔxÞd
Z
ðΔxÞd

vðxÞddx:

In quantum physics, it is impossible to measure any field
ϕ sharply at a point x. This would require an infinite
momentum transfer Δp ∼ ℏ=Δx, with Δx → 0, making
ϕðxÞ meaningless. That is why any such field should be
designated by the resolution of observation: ϕΔxðxÞ. In
high-energy physics experiments, the initial and final states
of particles are usually determined in momentum basis
jpi—the plane wave basis. For this reason, the results of
measurements—i.e., the correlations between different
events—are considered as functions of squared momentum
transfer Q2, which play the role of the observation
scale [10,12].
In theoretical models, the straightforward introduction of

a cutoff momentum Λ as the scale of observation is not
always successful. A physical theory should be Lorentz
invariant, should provide energy and momentum conser-
vation, and may have gauge and other symmetries. The use
of the truncated fields

ϕ<ðxÞ ≔
Z
jkj<Λ

e−{kxϕ̃ðkÞ ddk
ð2πÞd

may destroy the symmetries. In the limiting case of
Λ → ∞, this returns to the standard Fourier transform,
making some of the Green functions hϕðx1Þ…ϕðxnÞi
infinite and the theory meaningless. A practical solution
of this problem was found in the renormalization group
(RG) method [13], first discovered in quantum electrody-
namics [2]. The bare charges and the bare fields of the
theory are then renormalized to some “physical” charges
and fields, the Green functions for which become finite.
The price to be paid for it is the appearance in the theory of
some new normalization scale μ2. The comparison of the
model prediction to the experimental observations now
requires the use of two scale parameters, (Q2, μ2) [13].
A significant disadvantage of the RG method is that in

renormalized theories, we are often doomed to ignore the
finite parts of the Feynman graphs. The solution of the
divergences problem may be the change of the functional
space to the space of functions that explicitly depend on

both the position and the resolution—the scale of
observation. The Green functions for such fields
hϕa1ðx1Þ…ϕanðxnÞi can be made finite by construction
under certain causality conditions [7,14].
The introduction of resolution into the definition of the

field function has a clear physical interpretation. If the
particle, described by the field ϕ, has been initially
prepared in the interval ðx − Δx

2
; xþ Δx

2
Þ, the probability

of registering this particle in this interval is generally less
than unity, because the probability of registration depends
on the strength of interaction and on the ratio of typical
scales of the measured particle and the measuring equip-
ment. The maximum probability of registering an object of
typical scale Δx by equipment with typical resolution a is
achieved when these two parameters are comparable.
For this reason, the probability of registering an electron
by visual-range photon scattering is much higher than
that by long radio-frequency waves. As a mathematical
generalization, we should say that if a set of measuring
equipment with a given spatial resolution a fails to
register an object, prepared on a spatial interval of width
Δx, with certainty, then tuning the equipment to all
possible resolutions a0 would lead to the registrationR jϕaðxÞj2dμða; xÞ ¼ 1, where dμða; xÞ is some measure
that depends on resolution a. This certifies the fact of the
existence of the measured object.
A straightforward way to construct a space of scale-

dependent functions is to use a projection of local fields
ϕðxÞ ∈ L2ðRdÞ onto some basic function χðxÞ with good
localization properties, in both the position and momentum
spaces, and scaled to a typical window width of size a.
This can be achieved by using a continuous wavelet
transform [15].

B. Continuous wavelet transform

LetH be a Hilbert space of states for a quantum field jϕi.
Let G be a locally compact Lie group acting transitively
on H, with dμðνÞ; ν ∈ G being a left-invariant measure
on G. Then, any jϕi ∈ H can be decomposed with respect
to a representation ΩðνÞ of G in H [16,17]:

jϕi ¼ 1

Cχ

Z
G
ΩðνÞjχidμðνÞhχjΩ†ðνÞjϕi; ð8Þ

where jχi ∈ H is referred to as a mother wavelet, satisfying
the admissibility condition

Cχ ¼
1

kχk2
Z
G
jhχjΩðνÞjχij2dμðνÞ < ∞:

The coefficients hχjΩ†ðνÞjϕi are referred to as wavelet
coefficients. Wavelet coefficients can be used in quantum
mechanics in the same spirit as the coherent states are
used [18,19].
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If the groupG is Abelian, the wavelet transform [Eq. (8)]
with G∶x0 ¼ xþ b0 is the Fourier transform. Next to the
Abelian group is the group of the affine transformations of
the Euclidean space Rd:

G∶ x0 ¼aRðθÞxþb; x; b∈Rd; a∈Rþ; θ∈SOðdÞ;
ð9Þ

where RðθÞ is the SOðdÞ rotation matrix. Here we define
the representation of the affine transform [Eq. (9)] with
respect to the mother wavelet χðxÞ as follows:

Uða; b; θÞχðxÞ ¼ 1

ad
χ

�
R−1ðθÞ x − b

a

�
: ð10Þ

Thus, the wavelet coefficients of the function ϕðxÞ ∈
L2ðRdÞ with respect to the mother wavelet χðxÞ in
Euclidean space Rd can be written as

ϕa;θðbÞ ¼
Z
Rd

1

ad
χ

�
R−1ðθÞ x − b

a

�
ϕðxÞddx: ð11Þ

The wavelet coefficients (11) represent the result of the
measurement of function ϕðxÞ at the point b at the scale a
with an aperture function χ rotated by the angle(s) θ [20].
The function ϕðxÞ can be reconstructed from its wavelet
coefficients [Eq. (11)] using the formula Eq. (8):

ϕðxÞ ¼ 1

Cχ

Z
1

ad
χ

�
R−1ðθÞ x − b

a

�
ϕaθðbÞ

daddb
a

dμðθÞ;

ð12Þ

where dμðθÞ is the left-invariant measure on the SOðdÞ
rotation group, usually written in terms of the Euler angles:

dμðθÞ ¼ 2π
Yd−2
k¼1

Z
π

0

sinkθkdθk:

The normalization constant Cχ is readily evaluated using
the Fourier transform. In what follows, I assume isotropic
wavelets and omit the angle variable θ. This means that the
mother wavelet χ is assumed to be invariant under SOðdÞ
rotations. This is quite common for the problems with no
preferable directions. For isotropic wavelets,

Cχ ¼
Z

∞

0

jχ̃ðakÞj2 da
a

¼
Z

jχ̃ðkÞj2 ddk
Sdjkjd

< ∞; ð13Þ

where Sd ¼ 2πd=2

Γðd=2Þ is the area of the unit sphere in Rd, with

ΓðxÞ being Euler’s gamma function. A tilde denotes the
Fourier transform: χ̃ðkÞ ¼ R

Rd e{kxχðxÞddx.
If the standard quantum field theory defines the field

function ϕðxÞ as a scalar product of the state vector of the

system and the state vector corresponding to the localiza-
tion at the point x: ϕðxÞ≡ hxjϕi, the modified theory [5,21]
should respect the resolution of the measuring equipment.
Namely, we define the resolution-dependent fields

ϕaðxÞ≡ hx; a; χjϕi; ð14Þ

also referred to as the scale components of ϕ, where
hx; a; χj is the bra-vector corresponding to localization of
the measuring device around the point x with the spatial
resolution a; in optics χ labels the apparatus function of the
equipment, an aperture function [20].
In QED, the common calculation techniques are based

on the basis of plane waves. However, the basis of plane
waves is not obligatory. For instance, if the inverse size of
a QED microcavity is compared to the energy of an
interlevel transition of an atom, or a quantum dot inside
the cavity, we can (at least in principle) avoid the use of
plane waves and use some other functions to estimate the
dependence of vacuum energy effects on the size and
shape of the cavity. In this sense, the mother wavelet can
be referred to as an aperture function. In QCD, all
measuring equipment is far removed from the collision
domain, and the approximation of plane waves may be
most simple technically, but it is not justified unambig-
uously: some other sets of functions may be used as well.
Discrete wavelet basis, for instance, has been already used
for common QCD models in Ref. [9]. The field theory of
extended objects with the basis χ defined on the spin
variables was considered in Refs. [22,23].
The goal of the present paper is to study the scale

dependence of the running coupling constant in non-
Abelian gauge theory constructed directly on scale-
dependent fields. Assuming the mother wavelet χ to be
isotropic, we drop the angle argument θ in Eq. (12) and
perform all calculations in Euclidean space.
The interpretation of the real experimental results in

terms of the wave packet χ is a nontrivial problem to be of
special concern in future. It can be addressed by construct-
ing wavelets in the Minkowski space and by analytic
continuation from the Euclidean space to the Minkowski
space [7,24].
For the same reason, I also do not consider here

the quantization of scale-dependent fields, which was
addressed elsewhere [7,25,26]. A prospective way to do
this, as suggested in Refs. [7,27], is the use of light-cone
coordinates [28,29]. With these remarks, we can under-
stand the physically measured fields, at least in local
theories like QED and the φ4 model, as the integrals over
all scale components from the measurement scale (A) to
infinity:

ϕðAÞðxÞ ¼ 1

Cχ

Z
a≥A

hxjχ; a; bidμða; bÞhχ; a; bjϕi:
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The limit of an infinite resolution (A → 0) certainly drives
us back to the known divergent theories.

C. An example of scalar field theory

To illustrate the wavelet method, following the previous
papers [5,30], I start with the phenomenological model of a
scalar field with nonlinear self-interaction ϕ4ðxÞ, described
by the Euclidean action functional

SE½ϕ� ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þm2

2
ϕ2 þ λ

4!
ϕ4

�
: ð15Þ

This model is an extrapolation of a classical interacting spin
model to the continual limit [31]. Known as the Ginzburg-
Landau model [32], it describes phase transitions in super-
conductors and other magnetic systems fairly well, but it
produces divergences when the correlation functions

GðnÞðx1;…; xnÞ ¼
δn lnZ½J�

δJðx1Þ…δJðxnÞ
����
J¼0

ð16Þ

are evaluated from the generating functional

Z½J� ¼ N
Z

e−SE½ϕ�þ
R

JðxÞϕðxÞddxDϕ ð17Þ

[where JðxÞ is a formal source, used to calculate the Green
functions, and N is a formal normalization constant of
the Feynman integral] by perturbation expansion; see, e.g.,
Ref. [33].
The parameter λ in the action functional [Eq. (15)] is a

phenomenological coupling constant, which knows noth-
ing about the scale of observation, and becomes the running
coupling constant only because of renormalization or cutoff
introduction. The straightforward way to introduce the
scale dependence into the model [Eq. (15)] is to express the
local field ϕðxÞ in terms of its scale components ϕaðbÞ
using the inverse wavelet transform [Eq. (12)]:

ϕðxÞ ¼ 1

Cχ

Z
1

ad
χ

�
x − b
a

�
ϕaðbÞ

daddb
a

: ð18Þ

This leads to the generating functional for scale-dependent
fields:

ZW ½Ja� ¼ N
Z

DϕaðxÞ exp
�
−
1

2

Z
ϕa1ðx1ÞDða1; a2; x1 − x2Þϕa2ðx2Þ

da1ddx1
Cχa1

da2ddx2
Cχa2

−
λ

4!

Z
Va1;…;a4
x1;…;x4ϕa1ðx1Þ � � �ϕa4ðx4Þ

da1ddx1
Cχa1

da2ddx2
Cχa2

da3ddx3
Cχa3

da4ddx4
Cχa4

þ
Z

JaðxÞϕaðxÞ
daddx
Cχa

�
; ð19Þ

where Dða1; a2; x1 − x2Þ is the wavelet transform of the
ordinary propagator, and N is a formal normalization
constant.
The functional (19)—if integrated over all scale argu-

ments in infinite limits
R
∞
0

dai
ai
—will certainly drive us back

to the known divergent theory. All scale-dependent fields
[ϕaðxÞ] in Eq. (19) still interact with each other with the
same coupling constant λ, but their interaction is now
modulated by the wavelet factor Va1a2a3a4

x1x2x3x4 , which is the
Fourier transform of

Q
4
i¼1 χ̃ðaikiÞ. In coordinate form, for

the λ
N!
ϕN interaction, these coefficients, calculated with the

above mentioned first derivative of the Gaussian taken as
the mother wavelet, have the form

Va1;…;aN
b1;…;bN

¼ ð−1ÞN
�
2π

ζ

�d
2

exp

�
−
1

2

XN
k¼1

�
bk
ak

�
2
�

× exp

�
ξ2

2ζ

�YN
i¼1

1

adþ1
i

�
ξ

ζ
− bi

�
;

ζ ≡XN
k¼1

1

a2k
; ξ≡XN

k¼1

bk
a2k

;

where d is the space dimension, and 1=
ffiffiffi
ζ

p
is a kind of

weighted scale.
For Feynman diagram expansion, the substitution of

the fields by Eq. (18) is naturally performed in the Fourier
representation

ϕðxÞ ¼ 1

Cχ

Z
∞

0

da
a

Z
ddk
ð2πÞd e

−{kxχ̃ðakÞϕ̃aðkÞ;

ϕ̃aðkÞ ¼ χ̃ðakÞ ϕ̃ðkÞ:

Doing so, we have the following modification of the
Feynman diagram technique [6]:
(1) Each field ϕ̃ðkÞ is substituted by the scale compo-

nent ϕ̃ðkÞ → ϕ̃aðkÞ ¼ χ̃ðakÞ ϕ̃ðkÞ.
(2) Each integration in the momentum variable is

accompanied by the corresponding scale integration

ddk
ð2πÞd →

ddk
ð2πÞd

da
a

1

Cχ
:

(3) Each interaction vertex is substituted by its wavelet
transform; for the Nth-power interaction vertex, this
gives multiplication by the factor

Q
N
i¼1 χ̃ðaikiÞ.
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According to these rules, the bare Green function in
wavelet representation takes the form

Gð2Þ
0 ða1; a2; pÞ ¼

χ̃ða1pÞχ̃ð−a2pÞ
p2 þm2

:

The finiteness of the loop integrals is provided by the
following rule: There should be no scales ai in internal lines
smaller than the minimal scale of all external lines [5,6].
Therefore, the integration in ai variables is performed from
the minimal scale of all external lines up to infinity.
For a theory with local ϕNðxÞ interaction, the presence of

two conjugated factors χ̃ðakÞ and χ̃ðakÞ on each diagram
line, connected to the interaction vertex, simply means
that each internal line of the Feynman diagram carrying
momentum k is supplied by the cutoff factor f2ðAkÞ, where

fðxÞ ≔ 1

Cχ

Z
∞

x
jχ̃ðaÞj2 da

a
; fð0Þ ¼ 1; ð20Þ

where A is the minimal scale of all external lines of this
diagram. This factor automatically suppresses all UV
divergences.
The admissibility condition [Eq. (13)] for the mother

wavelet χ is rather loose. At best, χðxÞ would be the
aperture function of the measuring device [20]. In practice,
any well-localized function with χ̃ð0Þ ¼ 0 will suit. For
analytical calculations, the mother wavelet should be easy
to integrate, and for this reason, as in previous papers
[5,7,30], we choose the derivative of the Gaussian function
as a mother wavelet:

χ̃ðkÞ ¼ −{ke−k2
2 : ð21Þ

This gives Cχ ¼ 1
2
and provides the exponential cutoff

factor [Eq. (20)]: fðxÞ ¼ e−x
2

.
As usual in functional renormalization group technique

[34], we can introduce the effective action functional:

Γ½ϕ� ¼ −W½J� þ hJϕi;

the functional derivatives of which are the vertex
functions:

ΓðAÞ½ϕa� ¼ Γð0Þ
ðAÞ þ

X∞
n¼1

Z
1

Cn
χ
ΓðnÞ
ðAÞða1; b1;…; an; bnÞ

× ϕa1ðb1Þ…ϕanðbnÞ
da1ddb1

a1
…

danddbn
an

:

The subscript (A) indicates the presence in the theory of
minimal scale—the observation scale.

Let us consider the one-loop vertex function Γð4Þ
ðAÞ in the

scale-dependent ϕ4 model with the mother wavelet

Eq. (21) [30]. The Γð4Þ
ðAÞ contribution to the effective action

is shown in diagram (22):

ð22Þ

Each vertex of the Feynman diagram corresponds to −λ,
and each external line of the 1PI diagram contains the
wavelet factor χ̃ðaikiÞ, hence

Γð4Þ
ðAÞ

χ̃ða1p1Þχ̃ða2p2Þχ̃ða3p3Þχ̃ða4p4Þ
¼ λ −

3

2
λ2XdðAÞ: ð23Þ

The value of the one-loop integral

XdðAÞ ¼
Z

ddq
ð2πÞd

f2ðqAÞf2ððq − sÞAÞ
½q2 þm2�½ðq − sÞ2 þm2� ; ð24Þ

where s ¼ p1 þ p2 and A ¼ minða1; a2; a3; a4Þ, depends
on the mother wavelet χ by means of the cutoff function
fðxÞ. The integral in Eq. (24) with the Gaussian cutoff
function [Eq. (20)] can be easily evaluated. In physical
dimension d ¼ 4 in the limit s2 ≫ 4m2, this gives [5]

lim
s2≫4m2

X4ðα2Þ ¼ e−2α
2

16π2α2
½eα2 − 1 − α2e2α

2

Ei1ðα2Þ

þ 2α2e2α
2

Ei1ð2α2Þ�; ð25Þ

where α ¼ As is a dimensionless scale, and

Ei1ðxÞ≡
Z

∞

1

e−xt

t
dt

is the exponential integral of the first type. All integrals are
finite now, and the coupling constant becomes running,
λ ¼ λðα2Þ, only because of its dependence on the dimen-
sionless observation scale α:

∂λ
∂μ ¼ 3λ2α2

∂X4

∂α2 ¼ 3λ2

16π2
2α2 þ 1 − eα

2

α2
e−2α

2

; ð26Þ

where μ ¼ − lnAþ const. The dimensionless scale varia-
ble α is the product of the observation scale A and the total
momentum s. The analogue of Eq. (25) in standard field
theory subjected to cutoff at momentum Λ is
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Xd
Λ ¼

Z
jqj≤Λ

ddq
ð2πÞd

1

ðq2 þm2Þððq − sÞ2 þm2Þ :

Symmetrizing the latter equation in the loop momenta
q → qþ s=2, we get, in the same limit of s2 ≫ 4m2 and
the dimension d ¼ 4:

X4
Λ ¼ 1

16π2
ln

�
4

�
Λ
s

�
2

þ 1

�
: ð27Þ

We can compare Eq. (27) to Eq. (25) by setting Λ2

s2 ¼ 1=r in
momentum space, and α2 ¼ r in wavelet space. Graphs
showing the dependence of the one-loop contribution to the
ϕ4 vertex as a function of scale for both the standard
[Eq. (27)] and the wavelet-based formalism [Eq. (25)] are
presented in Fig. 1 below. The slopes of both curves in the
UV limit (A → 0) are the same: ∂λ

∂μ ¼ 3λ2

16π2
.

The running coupling constant λðα2Þ can be understood
as the coupling that folds into its running all quantum
effects characterized by a scale larger than the observation
scale A.
For small α, Eq. (26) tends to the known result. This is

because we have started with the local Ginzburg-Landau
theory, where the fluctuations of all scales interact
with each other, with the interaction of neighboring scales
being most important; see, e.g., Ref. [35] for an excellent
discussion of the underlying physics.

D. QED: Wavelet regularization of a local gauge theory

Quantum electrodynamics is the simplest gauge theory
of the type given in Eq. (4), with the gauge group being the
Abelian group Uð1Þ:

ψðxÞ → e−{eΛðxÞψðxÞ: ð28Þ

The transformation of the gauge field—the electromagnetic
field—is the gradient transformation:

AμðxÞ → AμðxÞ þ ∂μΛðxÞ: ð29Þ

In view of the linearity of the wavelet transform, Eq. (29)
keeps the same form for all scale components of the gauge
field Aμ;aðxÞ—in contrast to the matter field transformation
[Eq. (28)], which is nonlinear—and thus, the gauge trans-
form of the matter fields in a local gauge theory is not the
change of all scale components ψaðxÞ by the same phase.
The Euclidean QED Langangian is

L ¼ ψ̄ðxÞð=Dþ {mÞψðxÞ þ 1

4
FμνFμν þ

1

2α
ð∂μAμÞ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gauge fixing

;

Dμ ≡ ∂μ þ {eAμðxÞ; with Fμν ¼ ∂μAν − ∂νAμ; ð30Þ

which is the field-strength tensor of the electromagnetic
field AμðxÞ. (The slashed vectors denote the convolution
with the Dirac γ matrices: =D≡ γμDμ.)
The wavelet regularization technique works for QED in

the sameway as it does for the above considered scalar field
theory. This means that each line of the Feynman diagram
carrying momentum p acquires a cutoff factor f2ðApÞ.
In this way, in one-loop approximation, we get the

electron self-energy, shown in Fig. 2:

ΣðAÞðpÞ
χ̃ðapÞχ̃ð−a0pÞ ¼ −{e2

Z
d4q
ð2πÞ4

FAðp; qÞγμ½p2 − =q −m�γμ
½ðp

2
− qÞ2 þm2�½p

2
þ q�2 ;

ð31Þ

where

FAðp; qÞ≡ f2
�
A

�
p
2
þ q

��
f2
�
A

�
p
2
− q

��

¼ e−A
2p2−4A2q2

is the product of the wavelet cutoff factors, and A ¼
minða; a0Þ is the minimal scale of two external lines of
the diagram in Fig. 2.
Similarly, for the vacuum polarization diagram of QED,

shown in Fig. 3, we get [21]

FIG. 2. Electron self-energy diagram in scale-dependent QED.

X
4(

r)

squared dimensionless scale (r)

wavelet scale cutoff
momentum cutoff

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

FIG. 1. Plot of the one-loop contribution to the ϕ4 vertex,
calculated with the first derivative of the Gaussian as the mother
wavelet as a function of the squared observation scale r ¼ A2s2,
compared to that calculated with the standard cutoff at the cutoff
momentum Λ ¼ A−1 in Euclidean d ¼ 4 dimensions.
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ΠðAÞ
μν ðpÞ

χ̃ðapÞχ̃ð−a0pÞ ¼ −e2
Z

d4q
ð2πÞ4FAðp; qÞ

×
Trðγμð=qþ =p=2−mÞγνð=q− =p=2−mÞÞ
½ðqþ p=2Þ2 þm2�½ðq− p=2Þ2 þm2� :

ð32Þ

The electron-photon interaction vertex, in one-loop ap-
proximation, with the photon propagator taken in the
Feynman gauge, gives the equation

ΓðAÞ
μ;r

χ̃ð−pa0Þχ̃ð−qrÞχ̃ðkaÞ ¼ e2
Z

d4f
ð2πÞ4 γα

=p − =f −m
ðp − fÞ2 þm2

× γμ
=k − =f −m

ðk − fÞ2 þm2
γα

×
1

f2
f2ðAðp − fÞÞ

× f2ðAðk − fÞÞf2ðAfÞ: ð33Þ

The vertex function [Eq. (33)] and the inverse propagator
are related by the Ward-Takahashi identities, which are
wavelet transforms of corresponding identities of the
ordinary local gauge theory [7,36]. The detailed one-loop
calculations, except for the contribution to the vertex,
can be found in Ref. [7]. As for the vertex contribution
[Eq. (33)], shown in Fig. 4, the calculation is rather
cumbersome, but it can be done numerically.

IV. GAUGE INVARIANCE FOR
SCALE-DEPENDENT FIELDS

For a non-Abelian gauge theory, both terms in the gauge
field transformation [Eq. (5)] are nonlinear. The wavelet
transform [Eq. (18)] can hardly be applied to the theory
without violation of local gauge invariance. An attempt to

use wavelets for gauge theories, QED and QCD, was
undertaken for the first time by P. Federbush [9] in a form
of discrete wavelet transform. Later, it was extended by
using the wavelet transform in lattice simulations and
theoretical studies of related problems [37–39]. The con-
sideration was restricted to axial gauge and a special type
of divergency-free wavelets in four dimensions. The con-
text of that application was the localization of the wavelet
basis, which may be beneficial for numerical simulation,
but is not tailored for analytical studies, and does not
link the gauge invariance to the dependence on scale. The
discrete wavelet transform approach to different quantum
field theory problems has been further developed in
Hamiltonian formalism, but for scalar theories with local
interaction [39,40].
Now is a point to think of how we can build a gauge-

invariant theory of fields that depend on both the position
(x) and the resolution (a). To do this, we recall that the free
fermion action [Eq. (1)] can be considered as a matrix
element of the Dirac operator:

SE ¼ hψ jγμ∂μ þ {mjψi: ð34Þ

Assuming a scalar product h·j·i in a general Hilbert space
H, in accordance with the original Dirac’s formulation of
quantum field theory [41], we can insert arbitrary partitions
of unity 1̂ ¼ P

c jcihcj into Eq. (34), so that

SE ¼
X
c;c0

hψ jcihcjγμ∂μ þ {mjc0ihc0jψi:

An important type of the unity partition in Hilbert space
H is a unity partition related to the generalized wavelet
transform [Eq. (8)]:

1̂ ¼
Z
G
ΩðνÞjχi dμLðνÞ

Cχ
hχjΩ†ðνÞ: ð35Þ

Our main criterion for this choice is to find a group G
which pertains to the physics of quantum measurement and
provides the fields defined on finite domains rather than
points. The group that can leverage this task is a group of
affine transformations:

G∶ x0 ¼ axþ b; a ∈ Rþ; x0; x; b ∈ Rd:

ð36Þ

Following Refs. [5,7], we consider an isotropic theory. The
representation of the affine group [Eq. (36)] in L2ðRdÞ is
chosen as

½Ωða; bÞχ�ðxÞ ≔ 1

ad
χ

�
x − b
a

�
; ð37Þ

and the left-invariant Haar measure isFIG. 4. One-loop vertex function in scale-dependent QED.

FIG. 3. Vacuum polarization diagram in scale-dependent QED.
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dμLða; bÞ ¼
daddb

a
: ð38Þ

In view of the linearity of the wavelet transform

ψðxÞ → ψaðbÞ ¼
Z
Rd

1

ad
χ̄

�
x − b
a

�
ψðxÞddx; ð39Þ

the action on the affine group [Eq. (36)] keeps the same
form as the action of the genuine theory [Eq. (34)]. Thus,
we get the action functional for the fields ψaðbÞ defined on
the affine group:

SE ¼ 1

Cχ

Z
Rþ⊗Rd

½ψ̄aðbÞγμ∂μψaðbÞ

þ {mψ̄aðbÞψaðbÞ�
daddb

a
; ð40Þ

where the derivatives ∂μ are now taken with respect to
spatial variables bμ. The meaning of the representation
Eq. (40) is that the action functional is now a sum of
independent scale components SE ¼ R

SðaÞ daa , with no
interaction between the scales.
Starting from the locally gauge invariant action

SE ¼ R
d4xψ̄ð=Dþ {mÞψ , we destroy such independence

by the cubic term ψ̄=Aψ , which yields cross-scale terms.
However, knowing nothing about the point-dependent
gauge fields AμðxÞ at this stage, we should certainly ask
the question of how one can make the theory of Eq. (40)
invariant with respect to a phase transformation defined
locally on the affine group:

UaðbÞ ¼ exp

�
{
X
A

wA
aðbÞTA

�
? ð41Þ

Since the action [Eq. (40)], for each fixed value of the
scale a, has exactly the same form as the standard action
[Eq. (1)], we can introduce the invariance with respect
to local phase transformation separately at each scale
by changing the derivative ∂μ ≡ ∂

∂bμ into the covariant

derivative

Dμ;a ¼ ∂μ þ {Aμ;aðbÞ ð42Þ

with the gauge transformation law for the scale-dependent
gauge field Aμ;aðbÞ ¼

P
A A

A
μ;aðbÞTA identical to Eq. (5):

A0
μ;aðbÞ ¼ UaðbÞAμ;aðbÞU†

aðbÞ þ {ð∂μUaðbÞÞU†
aðbÞ:

Similarly, for the field strength tensor and for the Yang-
Mills Lagrangian:

Fμν;a¼−{½Dμ;a;Dν;a�; LYM
a ¼ 1

2g2
TrðFμν;aFμν;aÞ: ð43Þ

Assuming the formal coupling constant of the gauge field
Aμ;aðbÞ to be dependent on scale only, we can rewrite the
covariant derivative by changing Aμ;aðbÞ to gðaÞAμ;aðbÞ:

Dμ;a ¼ ∂μ þ {gAμ;aðbÞ: ð44Þ

This means we have a collection of identical gauge theories
for the fields ψaðbÞ; Aμ;aðbÞ, labeled by the scale variable a,
which differ from each other only by the value of the scale-
dependent coupling constant g ¼ gðaÞ. It is a matter of
choice whether to keep the scale dependence in gðaÞ, or
solely in Aμ;aðbÞ. The Euclidean action of the multiscale
theory takes the form

SE ¼ 1

Cχ

Z
daddb

a

�
ψ̄aðbÞðγμDμ;a þ {mÞψaðbÞ

þ 1

4
FA
μν;aFA

μν;a

�
þ gauge fixing terms; ð45Þ

where

FA
μν;a ¼ ∂μAA

ν;a − ∂νAA
μ;a − gfABCAB

μ;aAC
ν;a:

The difference between the standard quantum field theory
formalism and the field theory with action (45), defined
on the affine group, consists in changing the integration
measure from ddx to the left-invariant measure on the affine
group [Eq. (38)]. So, the generating functional can be
written in the form

Z½JaðbÞ� ¼
Z

DΦaðbÞe−SE½Φ�þ
R

dad4b
Cχa

ΦaðbÞJaðbÞ; ð46Þ

where ΦaðbÞ ¼ ðAa;μðbÞ;ψaðbÞ;…Þ is the full set of all
scale-dependent fields present in the theory. Since the
“Lagrangian” in action (45), for each fixed value of a,
has exactly the same form as that in standard theory, the
Faddeev-Popov gauge-fixing procedure [42] can be intro-
duced to the scale-dependent theory in a straightfor-
ward way.

A. Feynman diagrams

The same as in wavelet regularization of a local theory,
described in Sec. III, here we understand the physically
observed fields as the sums of scale components from the
observation scale A to infinity [5]:

ψAðxÞ ¼ 1

Cχ

Z
∞

A

da
a

Z
ddb

1

ad
χ

�
x − b
a

�
ψaðbÞ:

The free-field Green functions at a given scale a are
projections of the ordinary Green function to the scale a
performed by the χ wavelet filters:
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Ga1;…;anðk1;…; knÞ ¼ ˜̄χða1k1Þ… ˜̄χðanknÞGðk1;…; knÞ:

The interacting-field Green functions, according to the
action [Eq. (45)], can be constructed if we provide the
equality of all scale arguments by ascribing the multiplier
gðaÞQi δðln ai − ln aÞ to each vertex, and δðln ai − ln ajÞ
to each line of the Feynman diagram. This is different from
the local theory, described in Sec. III, where all scale
components do interact with each other. Now, we do not
yield the cutoff factor f2ð·Þ on each internal line, with fðxÞ
given by the scale integration [Eq. (20)]. Instead, we have
to put the wavelet filter modulus squared on each internal
line. This suppresses not only the UV divergences, but also
the IR divergences. As a result, we arrive at the following
diagram technique, which is (up to the above mentioned
cutoff factors) identical to standard Feynman rules for
Yang-Mills theory; see, e.g., Ref. [43].
The propagator for the spin-half fermions:

where c, d are the indices of the fermion representation of
the gauge group.
The propagator of the gauge field (taken in the Feynman

gauge):

The gluon-to-fermion coupling:

The three-gluon vertex:

ð47Þ

All momenta are incident to the vertex: pþ qþ r ¼ 0.

Similarly, for the four-gluon vertex:

The ghost propagator:

The gluon-to-ghost interaction vertex:

with rþ pþ q ¼ 0.
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For simplicity in the following calculations, I use the first
derivative of Gaussian as a mother wavelet [Eq. (21)],
which provides the cancellation of both the UV and the IR
divergences by virtue of jχ̃ð·Þj2 on each propagator line.
For the chosen wavelet [Eq. (21)], the wavelet cutoff
factor is

FaðpÞ ¼ ðapÞ2e−a2p2 ð48Þ

for each line of the diagram, calculated for the scale a of the
considered model.

B. Scale dependence of the gauge coupling constant

To study the scale dependence of the gauge coupling
constant, we can start with a pure gauge field theory
without fermions, along the lines of Ref. [44]. The total
one-loop contribution to three-gluon interaction is given by
the diagram in Eq. (49):

ð49Þ

In standard QCD theory, the one-loop contribution to the
three-gluon vertex is calculated in the Feynman gauge [45].
This was later generalized to an arbitrary covariant gauge
[46]. These known results, being general in kinematic
structure, are based on dimensional regularization, and thus
are determined by the divergent parts of integrals. Different
corrections to the perturbation expansion based on analy-
ticity have been proposed [47,48], but they are still based
on divergent graphs. In this context, QCD is often con-
sidered as an effective theory, which describes the low-
energy limit for a set of asymptotically observed fields,
obtained by integrating out all heavy particles [49]. The
effective theory is believed to be derivable from a future
unified theory, which includes gravity.
The essential artifact of renormalized QCD is the

logarithmic decay of the running coupling constant
αsðQ2Þ at infinite momentum transfer Q2 → ∞, known
as asymptotic freedom. With the help of MS, the calcu-
lations are available up to the five-loop approximation [50].
In the present paper, I do not pretend to derive the

logarithmic law. Instead, I have shown that if our under-
standing of gauge invariance is true in an arbitrary func-
tional basis, based on a Lie group representation we use to
measure physical fields, the resulting theory is finite by
construction. The restriction of calculations to the Feynman
gauge and the specific form of the mother wavelet are
technical simplifications, with which we proceed to make
the results viewable.
The first term on the rhs of Eq. (49) is the unrenormal-

ized three-gluon vertex [Eq. (47)]. The second graph is the
gluon loop shown in Fig. 5: Its value is

ΓABC
μ1μ2μ3 ¼ −{g3ðaÞCA

2
fABCVone-loop

μ1;μ2;μ3 ðp1; p2; p3Þ; ð50Þ

where the common color factor is CA ¼ 2TFNC, NC is
the number of colors, and TF ¼ 1

2
is the usual normalization

of generators in fundamental representation; see, e.g.,
Ref. [51].

1. Gluon loop contribution

We calculate the one-loop tensor structure
Vone-loop
μ1;μ2;μ3 ðp1; p2; p3Þ in the Feynman gauge. After symmet-

rization of the loop momenta in diagram (50),

l1¼fþp3−p2

3
; l2¼fþp1−p3

3
; l3¼fþp2−p1

3
;

and the tensor structure of the diagram takes the form

FIG. 5. Gluon loop contribution to three-gluon vertex;
p1 þ p2 þ p3 ¼ 0.
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Vone-loop
μ1;μ2;μ3 ðp1; p2; p3; fÞ ¼ Vμ1;α;βðp1; l3;−l2Þ

× Vα;μ2;δð−l3; p2; l1Þ
× Vδ;μ3;βð−l1; p3; l2Þ; ð51Þ

where

Vμ1;μ2;μ3ðp1; p2; p3Þ ≔ ðp3;μ1 − p2;μ1Þδμ2;μ3
þ ðp1;μ2 − p3;μ2Þδμ3;μ1
þ ðp2;μ3 − p1;μ3Þδμ1;μ2 ð52Þ

is the tensor structure of the three-gluon interaction
vertex [Eq. (47)].
The tensor structure of Eq. (50) can be represented as a

sum of two terms: the first term is free of loop momentum
f, and the second term is quadratic in it:

Vone-loop
μ1;μ2;μ3 ðp1;p2;p3;fÞ¼V0ðp1;p2;p3ÞþV1ðp1;p2;p3;fÞ;

with

V1
μ1;μ2;μ3ðp1; p2; p3; fÞ ¼ 3½fμ1fμ3ðp1;μ2 − p3;μ2Þ þ fμ1fμ2ðp2;μ3 − p1;μ3Þ þ fμ2fμ3ðp3;μ1 − p2;μ1Þ�

þ 7

3
f2½ðp3;μ1 − p2;μ1Þδμ2;μ3 þ ðp1;μ2 − p3;μ2Þδμ3;μ1 þ ðp2;μ3 − p1;μ3Þδμ1;μ2 �

þ 2

3
½δμ1μ2fμ3fαðp2;α − p1;αÞ þ δμ1μ3fμ2fαðp1;α − p3;αÞ þ δμ2μ3fμ1fαðp3;α − p2;αÞ�:

Integrating the equation V1
μ1;μ2;μ3ðp1; p2; p3; fÞ with the Gaussian weight, we substitute fμfν →

δμν
d f2 into the Gaussian

integral
R
e−ζf

2

f2ddf ¼ d
2
π

d
2ζ−

d
2
−1. With ζ ¼ 3a2, d ¼ 4, this gives the tensor structure

V1ðp1; p2; p3Þ ¼
13

864π2
e−

2
9
a2½p2

1
þp2

2
þp2

3
−p1p2−p1p3−p2p3� × Vμ1;μ2;μ3ðp1; p2; p3Þ:

The part of the tensor structure that does not contain f contributes a term proportional to the Gaussian integralR
e−ζf

2

ddf ¼ ðπζÞ
d
2. This gives

a2

144π2
e−

2
3
a2½p2

1
þp2

2
þp1p2�V0

μ1;μ2;μ3ðp1; p2; p3 ¼ −p1 − p2Þ;

where

V0
μ1;μ2;μ3ðp1; p2Þ ¼

4

3
ðp2;μ1p2;μ2p2;μ3 − p1;μ1p1;μ2p1;μ3Þ þ

5

3
ðp2;μ1p2;μ2p1;μ3 − p1;μ1p1;μ2p2;μ3Þ

þ 2

3
ðp2;μ2p2;μ3p1;μ1 − p1;μ1p1;μ3p2;μ2Þ þ

1

3
ðp1;μ2p1;μ3p2;μ1 − p2;μ1p2;μ3p1;μ2Þ

þ 37

27
δμ1μ2p1p2ðp2;μ3 − p1;μ3Þ þ

58

27
δμ1μ2ðp2

1p2;μ3 − p2
2p1;μ3Þ

þ 5

27
ðδμ2μ3p2

1p1;μ1Þ− δμ1μ3p
2
2p2;μ2 − δμ1μ2p

2
2p2;μ3Þ

þ 32

27
ðδμ1μ3p1;μ2ðp2

1 þ p1p2Þ− δμ2μ3p2;μ1ðp2
2 þ p1p2ÞÞ

þ 16

27
ðδμ1μ3p2

1p2;μ2 − δμ2μ3p
2
2p1;μ1Þ þ

53

27
ðδμ1μ3p2

2p1;μ2 − δμ2μ3p
2
1p2;μ1Þ þ

47

27
p1p2ðδμ2μ3p1;μ1 − δμ1μ3p2;μ2Þ:

Summing these two terms, we get

ΓABC
μ1μ2μ3ðp1; p2Þ ¼ −{g3ðaÞCA

2

fABC

144π2
× e−

2
3
a2ðp2

1
þp2

2
þp1p2Þ

�
a2V0

μ1μ2μ3ðp1; p2Þ þ
13

6
Vμ1μ2μ3ðp1; p2;−p1 − p2Þ

�
; ð53Þ

where Vμ1μ2μ3 , given by Eq. (52), is the tensor structure of the unrenormalized three-gluon vertex.
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2. Contribution of four-gluon vertex

The next one-loop contribution to the three-gluon vertex
comes from the diagrams with four-gluon interaction, of the
type shown in Fig. 6. In the case of four-gluon contribution,
the common color factor cannot be factorized: instead,
there are three similar diagrams with gluon loops inserted in
each gluon leg: p3, p2, and p1, respectively. The case of p3

is shown in Fig. 6.
The one-loop contribution to a three-gluon vertex shown

in Fig. 6 can be easily calculated, taking into account that
the squared momenta in gluon propagators are canceled by
wavelet factors [Eq. (48)]. This gives

a4
Z

ð−{gðaÞÞfDEC½ð2p3 − fÞδδμ3ϵ þ ð−f − p3Þϵδμ3δ þ ð2f − p3Þμ3δϵδ� × ð−gðaÞÞ2½fAEXfBDXðδμ1μ2δϵδ − δϵμ2δμ1δÞ

þ fBEXfADXðδμ1μ2δϵδ − δϵμ1δμ2δÞ þ fDEXfBAXðδδμ2δϵμ1 − δϵμ2δμ1δÞ� × expð−a2f2 − a2ðf þ p1 þ p2Þ2Þ
d4f
ð2πÞ4 :

The presence of four-gluon interaction does not allow for
the factorization of the common color factor. Instead, there
are three different terms in color space:

fDECfAEXfBDX ¼ −
CA

2
fABC;

fDECfBEXfADX ¼ þCA

2
fABC;

fDECfDEXfBAX ¼ −CAfABC; ð54Þ
with the normalization condition

fACDfBCD ¼ CAδAB:

There are two Gaussian integrals contributing to the
diagram shown in Fig. 6:

IðsÞ ¼
Z

d4f
ð2πÞ4 e

−2a2f2−2a2sf ¼ 1

64π2a4
e
a2s2
2 ;

IμðsÞ ¼
Z

d4f
ð2πÞ4 fμe

−2a2f2−2a2sf ¼ −
sμ

128π2a4
e
a2s2
2 ;

where s ¼ p1 þ p2.
Thus, we can express the tensor coefficients at the three

terms in Eq. (54) as

T1 ¼ −
3

2
δμ1μ3sμ2 þ

3

2
δμ2μ3sμ1 ;

T2 ¼ þ 3

2
δμ1μ3sμ2 −

3

2
δμ2μ3sμ1 ;

T3 ¼ 3ðδμ2μ3sμ1 − δμ1μ3sμ2Þ; ð55Þ

respectively. The sum of all three terms − CA
2
fABCT1 þ

CA
2
fABCT2 − CAfABCT3 gives

9

2
CAfABC½δμ1μ3s2 − δμ2μ3sμ1 �;

and thus the whole integral

VABC
μ1μ2μ3ðsÞ ¼

{g3ðaÞ
64π2

e
−a2s2

2
9CA

2
fABC½δμ1μ3sμ2 − δμ2μ3sμ1 �:

ð56Þ

Two more contributing diagrams, symmetric to Fig. 6, are
different from the above calculated VðA; μ1; p1; B; μ2; p2;
C; μ3; p3Þ only by changing B; μ2; p2 ↔ C; μ3; p3 and
A; μ1; p1 ↔ C; μ3; p3, respectively. This gives us two more
terms,

VABC
μ1μ2μ3ðtÞ ¼

{g3ðaÞ
64π2

e
−a2t2

2
9CA

2
fACB½δμ1μ2tμ3 − δμ2μ3tμ1 �;

VABC
μ1μ2μ3ðuÞ ¼

{g3ðaÞ
64π2

e
−a2u2

2
9CA

2
fCBA½δμ1μ3uμ2 − δμ2μ1uμ3 �;

where t¼p1þp3¼−p2 and u ¼ p2 þ p3 ¼ −p1. Taking
into account the common topological factor 1

2
standing

before all these diagrams in Eq. (49), finally we get

ΓABC
μ1μ2μ3ðp1;p2Þ¼ {

g3ðaÞ
256π2

9CAfABC½e−a2s2
2 ðδμ1μ3sμ2 −δμ2μ3sμ1Þ

þe
−a2p2

2
2 ðδμ1μ2p2;μ3 −δμ2μ3p2;μ1Þ

þe
−a2p2

1
2 ðδμ1μ3p1;μ2 −δμ1μ2p1;μ3Þ�; ð57Þ

where t ¼ −p2, u ¼ −p1, p3 ¼ −p1 − p2.

FIG. 6. One-loop contribution to the three-gluon vertex pro-
vided by four-gluon interaction.
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3. Ghost loop contribution

The last one-loop contribution, not shown in Eq. (49), is
the ghost loop diagram (Fig. 7), and one more diagram
symmetric to it. The color factor of the diagram Fig. 7 is
fDEAfFDBfEFC ¼ − CA

2
fABC. The tensor structure for dia-

gram Fig. 7 is l2;μ1l3;μ2l1;μ3 , and it is l3;μ1l1;μ2l2;μ3 for the
symmetric diagram [51]. Ghost propagators multiplied by
wavelet factors give ð−{Þ3a6e−3a2f2−2

3
a2ðp2

1
þp2

2
þp1p2Þ, and one

more (−1) accounts for the fermion loop. Finally, this gives

Γghost ¼ −{g3ðaÞCA

2
fABC

e−
2
3
a2ðp2

1
þp2

2
þp1p2Þ

144π2

×

�
a2V0 þ

1

18
Vμ1μ2μ3ðp1; p2; p3 ¼ −p1 − p2Þ

�
;

V0 ¼
1

27
ðp1;μ3 − p2;μ3Þðp1;μ2p2;μ1 − 2p1;μ1p2;μ2Þ

þ 4

27
ðp2;μ1p2;μ2p2;μ3 − p1;μ1p1;μ2p1;μ3Þ

þ 5

27
ðp2;μ1p2;μ2p1;μ3 − p1;μ1p1;μ2p2;μ3Þ: ð58Þ

C. Study of simplified three-gluon vertex ðp;− p;0Þ
To study the scale dependence of the coupling constant,

let us start with a trivial situation: p1 ¼ p, p2 ¼ −p,
p3 ¼ 0. The unrenormalized vertex takes the form

ΓABC
μ1μ2μ3ðpÞ ¼ −{gðaÞfABCVðp;−p; 0Þ;

where

Vðp;−p; 0Þ≡ pμ1δμ2μ3 þ pμ2δμ1μ3 − 2pμ3δμ1μ2 :

The triangle gluon loop contribution, shown in Fig. 5, is

ΓABC;3
μ1μ2μ3ðpÞ ¼ −{gðaÞ3 CA

2
fABC

e−
2
3
a2p2

144π2

×

�
a2V0 þ

13

6
Vðp;−p; 0Þ

�

V0 ¼
4

3
pμ1pμ2pμ3 −

p2

27
ð5δμ2μ3pμ1

þ 5δμ1μ3pμ2 þ 32δμ1μ2pμ3Þ: ð59Þ

The contributions containing four-gluon vertexes (without
fermions) give

ΓABC;4
μ1μ2μ3ðpÞ ¼ −{

g3ðaÞ
256π2

9CAfABCe−
a2p2

2 Vðp;−p; 0Þ: ð60Þ

The contributions of two ghost loops give

Γghost
μ1μ2μ3ðp;−p; 0Þ ¼ −{g3ðaÞCA

2

fABC

144π2
e−

2
3
a2p2

×
1

9

�
a2

4

3
pμ1pμ2pμ3 þ

1

2
Vðp;−p; 0Þ

�
:

ð61Þ

Therefore, due to the use of a localized wavelet basis
with a window width of size a, we obtain an exponential
decay of the vertex function proportional to p2.
The gauge interaction in the action functional [Eq. (45)]

is not identical to that of local gauge theory [Eq. (4)].
At this point, I cannot definitely claim that physical
observables are integrals of the form

R∞
A

da
a F½ϕaðbÞ�. If

the parameter A of a wavelet-regularized local theory
[Eq. (19)] were a counterpart of a 1=μ normalization scale,
in our theory, with scale-dependent gauge invariance, the
scale parameter a should be treated as an independent
coordinate on a (dþ 1)-dimensional group manifold (a, x),
with the scale transformations given by the generator
D ¼ a∂a.
Using the simplified vertex contributions [Eqs. (59)–

(61)] of the one-loop scale-dependent Yang-Mills theory,
we can estimate the renormalization of the coupling
constant g in the considered theory with scale-dependent
gauge invariance [Eq. (41)]. Since the scale a in such a
theory plays the role of the normalization scale 1=μ of
common models, we can calculate the β function:

β ¼ −a2
∂g
∂a2

����
g0¼const:

from the equality g0 ¼ Z1g, with

Z1 ¼ 1þ g2CA

16π2

�
10

81
e−

2
3
a2p2 þ 9

16
e−

1
2
a2p2

�
ð62Þ

calculated from the one-loop expansion [Eq. (49)] with the
vertex contributions [Eqs. (59)–(61)]. This gives

β ¼ −ga2
∂
∂a2

1

Z1

: ð63Þ

The equation (63) differs from standard renormalization

schemes by the absence of the factor Z
3
2

3 for field renorm-
alization. This is because each of the scale-dependent fields
Aμ;aðbÞ dwells on its own scale a, and is not subjected to

FIG. 7. Ghost loop contribution to three-gluon vertex;
p1 þ p2 þ p3 ¼ 0.

M. V. ALTAISKY PHYS. REV. D 101, 105004 (2020)

105004-14



renormalization [30]. Taking the scale derivative in Eq. (63)
explicitly, we get

β ¼ −
g3CAðapÞ2

16π2

�
20

243
e−

2
3
a2p2 þ 9

32
e−

1
2
a2p2

�
< 0: ð64Þ

The dependence of this function on dimensionless scale
x ¼ ap is shown in Fig. 8 below.
The factors similar to field renormalization may be

required depending on the type of observation—if we
assume the observable quantity to be dependent on hAAAi

hAi3 ,
where the averaging h·i involves integration over a certain
range of scales. A more detailed study of the subject is
planned for future research. Since the action in Eq. (45)
comprises the fields of different scales which do not
interact to each other, to derive a phenomenological
interpretation of the proposed model, we need to study it
within a wider framework of the Standard Model with the
SUð2Þ × Uð1Þ × SUcð3Þ gauge group to calculate the
observable quantities.

V. CONCLUSION

The basis of Fourier harmonics, an omnipresent tool of
quantum field theory, is just a particular case of the
decomposition of the observed field ϕ with respect to
representations ΩðgÞ of the symmetry group G responsible
for observations. It is commonly assumed that the sym-
metry group of measurement is a translation group (or,
more generally, the Poincaré group), the representations of
which are used. We can imagine, however, that the
measurement process itself is more complex, and may

have symmetries more complex than the Abelian group of
translations. The simplest generalization is the affine group
G∶x0 ¼ axþ b, considered in this paper—a tool for study-
ing scaling properties of physical systems. In this paper, I
have considered the possibility to extend quantum field
theory models of gauge fields, usually defined in Rd or
Minkowski space, to more general space—the group of
affine transformations, which includes not only translations
and rotations, but also scale transformation. The peculiarity
of the scale parameter (a) is that the scale transformation
generatorD ¼ a∂a, in contrast to coordinate or momentum
operators, is not a Hermitian operator. Hence, the scale a is
not a physical observable—it is a parameter of measure-
ment—say, a scale we use in our measurements.
Following the previous papers [5,7,30], introducing

explicitly a basis χða; ·Þ to describe quantum fields, the
current paper presents a gauge theory with a gauge
transformation defined separately on each scale,
ψaðxÞ → e{ΩaðxÞψaðxÞ. The transformation from the usual
local fields ψðxÞ to the scale-dependent fields, which may
be referred to as the scale components of the field ψ with
respect to the basic function χ at a given scale a, is
performed by means of continuous wavelet transform—a
versatile tool of group representation theory. This repre-
sentation is physically similar to coherent state representa-
tion [18]. The Green functions in the scale-dependent
theory become finite, because both the UV and the IR
divergences are suppressed by the wavelet factor jχ̃ðapÞj2
on each internal line of the Feynman diagrams.
As a practical example of calculations, the paper presents

one-loop correction to the three-gluon vertex in a pure
Yang-Mills theory. The calculations are done with the
mother wavelet χ being the first derivative of the Gaussian.
The Green functions vanish at high momenta, which is
usual for the theories with asymptotic freedom.
The existence of such a theory is merely an exciting

mathematical possibility. The author does not know which
type of interaction takes place in real processes: standard
local gauge theory, where all scales talk to each other due
to locally defined gauge invariance, or the same-scale
interaction proposed in this paper. This subject needs
further investigation—at least, it seems not less elegant
than the existing finite-length and noncommutative
geometry models [52,53].
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