
 

Covariant mass and geometrical setup in Euclidean gauge theories
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A nonlocal mass operator is consistently defined in the local form through the introduction of a set of
additional fields with geometrical appropriated properties. A local and polynomial gauge-invariant action is
thus established. Equations compatible with the study of renormalization, from the algebraic point of view,
are presented in the Landau gauge.
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I. INTRODUCTION

Nonmaximal dimension condensates are of fundamental
interest in order to study the infrared into Euclidean Yang-
Mills theories as we can see by the number of results
obtained through theoretical, phenomenological, and lattice
simulations [1–26]. One particularly important case is the
dimension two operator Aa

μAa
μ which is not gauge invariant

but is multiplicatively renormalizable to all orders in the
Landau gauge. Other dimension two operators can be
renormalizable at a large number of other gauges like
linear covariant gauges [27], Curci-Ferrari, and the maxi-
mal Abelian gauge [26,28].
The fundamental problem of these operators like Aa

μAa
μ

and the condensate hAa
μAa

μi is that they are gauge dependent
and all of their quantum properties must be defined in each
gauge. Many attempts in order to present a gauge-invariant
mechanism for these operators can be done by [29–31], but
the result is always nonunitary, nonrenormalizable, or both.
In this way, it is a quite natural objective to discuss and
present a suitable colorless dimension two operator OðAÞ
which preserves gauge invariance,

δOðAÞ ¼ 0;

δAa
μ ¼ −Dab

μ ωb; ð1Þ

where Dab
μ is the covariant derivative, given by

Dab
μ ¼ δab∂μ − gfabcAc

μ: ð2Þ

The natural candidate for this is the nonlocal operator

OðAÞ ¼ −
1

2

Z
d4xFa

μν½ðD2Þ−1�abFb
μν: ð3Þ

This operator is studied in [32]. The method developed
consists of writing the nonlocal operator into a local form as

m2

4

Z
d4xFa

μν

�
1

D2

�
ab
Fb
μν

⇒
Z

d4x

�
1

4
B̄a
μνDab

σ Dbc
σ Bc

μν þ
im
4
ðB − B̄ÞaμνFa

μν

�
: ð4Þ

Unfortunately, by means of algebraic renormalization
methods, it is possible to observe that a mass counterterm
in the tensorial fields can be obtained and that this
counterterm turns localization of the gauge-invariant non-
local mass into an impossibility only by usual antisym-
metric tensor fields[32]. In fact, the obtained result implies
that it is necessary to include to the quantum action, terms
like

−
3

8
m2λ1ðB̄a

μνBa
μνÞ þm2

λ3
32

ðB̄a
μν − Ba

μνÞ2

þ λabcd

16
ðB̄a

μνBb
μνÞðB̄c

ρσBd
ρσÞ: ð5Þ

These terms make in turn impossible the localization of the
gauge-invariant nonlocal mass operator with this simple
mechanism. It is important to emphasize here that this
analysis in no way prohibits a more elaborate mechanism
from achieving this goal. Now, we will present a mecha-
nism that could make it possible to localize the nonlocal
operator (3) without the possibility of mass terms in the
localizing action that can destroy the process.
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II. LOCALIZATION OF THE OPERATORR
d4xFμν

1
D2 Fμν WITH SELF-DUAL AND

ANTI-SELF-DUAL TENSOR FIELDS

First, it is necessary to provide a geometrical mechanism
that could avoid mass terms in localizing tensorial fields.
This geometrical mechanism is recognizable in the
self-dual and anti-self-dual properties. In simple terms,
two antisymmetric tensor fields that obey the relation
φ̄μνφ

μν ¼ 0 are necessary in order to avoid mass term in
the localizing fields. The most simple way in order to
achieve this goal is to introduce these fields in the localizing
action with projectors that have the desired properties, i.e.,

θ̄μναβ ¼
1

4
ðδμαδνβ − δμβδνα þ ϵμναβÞ

θμναβ ¼
1

4
ðδμαδνβ − δμβδνα − ϵμναβÞ

θ̄μναβθ̄
αβσλ ¼ θ̄μν

σλ

θμναβθ
αβσλ ¼ θμν

σλ

θ̄μναβθ
αβσλ ¼ 0

ϵαβμνϵ
αβσλ ¼ 2δσλ½μν�

δσλ½μν� ¼ δσμδ
λ
ν − δσνδ

λ
μ

ϵαβμνϵ
αϵσλ ¼ δϵβδ

σλ
½μν� þ δλβδ

ϵσ
½μν� þ δσβδ

λϵ
½μν� ð6Þ

and

φ̄μν ¼ θ̄μναβφ̄
αβ

φμν ¼ θμναβφ
αβ; ð7Þ

which lead to the following solution:

φ̄μν ¼ T̄μν þ ˜̄Tμν;
˜̄Tμν ¼

1

2
ϵαβμνT̄αβ

φμν ¼ Tμν − T̃μν; T̃μν ¼
1

2
ϵαβμνTαβ: ð8Þ

This solution, in spite of being interesting, is not the best
form to write the action in order to explicitly obtain the set
of equations compatible with the quantum action principle.
Due to this, we will continue with the fields φ̄μν and φμν. It
is important to stress the following property:

θ̄μναβθ
μγλρ ≠ 0: ð9Þ

This property is fundamental for the construction of a
dynamical kinetic term. It is also important to note that
these two properties are also relevant in the study of
infrared properties. The generation of mass for all compo-
nents of the gauge field is different from the usual
symmetry breaking. This apparent paradox is solved in
this model in a different way as to the one presented in [32].
To understand the mechanism that we will present, it is
instructive to remember the original mechanism presented

in [32]. It starts adding the nonlocal mass operator to the
Yang-Mills action, i.e., considering

SYM þ SO; ð10Þ
where

SYM ¼ 1

4

Z
d4xFa

μνFa
μν ð11Þ

and

SO ¼ −
m2

4

Z
d4xFa

μν½ðD2Þ−1�abFb
μν: ð12Þ

The term (12) is localized by means of the introduction of a
pair of bosonic antisymmetric tensor fields in the adjoint
representation, ðBa

μν; B̄a
μνÞ, according to

e−SO¼
Z

DB̄DBðdetD2Þ6½−SOL�

SOL¼
�
1

4

Z
d4xB̄a

μνDab
σ Dbc

σ Bc
μνþ

im
4

Z
d4xðB−B̄ÞaμνFa

μνÞ
�
;

ð13Þ

where the determinant, ðdetD2Þ6, takes into account the
Jacobian arising from the integration over the bosonic fields
ðB̄a

μν; Ba
μνÞ. This term can also be localized by means of

suitable anticommuting antisymmetric tensor fields
ðḠa

μν; Ga
μνÞ, namely,

ðdetD2Þ6 ¼
Z

DḠDG exp

�
1

4

Z
d4xḠa

μνDab
σ Dbc

σ Gc
μν

�
:

ð14Þ
The bosonic fields ðB̄a

μν; Ba
μνÞ and the anticommuting fields

ðḠa
μν; Ga

μνÞ form a quartet [32]. Taking into account that the
gauge parameter ω will be promoted to a ghost c, this
quartet will become a Becchi-Rouet-Stora-Tyutin (BRST)
quartet. The complete set of BRST equations for the
localizing fields is given by

δAa
μ ¼ −Dab

μ ωb;

δBa
μν ¼ gfabcωbBc

μν þ Ga
μν;

δB̄a
μν ¼ gfabcωbB̄c

μν;

δGa
μν ¼ gfabcωbGc

μν;

δḠa
μν ¼ gfabcωbḠc

μν þ B̄a
μν; ð15Þ

so the kinetic part of the localizing action

SBG ¼ 1

4

Z
d4xðB̄a

μνDab
σ Dbc

σ Bc
μν − Ḡa

μνDab
σ Dbc

σ Gc
μνÞ ð16Þ

is left invariant, but the massive part of the localizing
action
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Sm ¼ im
4

Z
d4xðB − B̄ÞaμνFa

μν ð17Þ

is not invariant. In order to avoid that problem, the mass
action Sm is replaced by

1

4

Z
d4xðVσρμνB̄a

σρFa
μν − V̄σρμνBa

σρFa
μνÞ: ð18Þ

At the end, the sources VσρμνðxÞ, V̄σρμνðxÞ are required to
attain their physical value, namely,

V̄σρμνjphys ¼ Vσρμνjphys ¼
−im
2

ðδσμδρν − δσνδρμÞ; ð19Þ

so that expression (18) gives back the term Sm. This is
essentially a trick in order to treat a noninvariant action
term in an algebraic renormalization scheme. Here, it is
necessary to emphasize that this mechanism has many
problems from the renormalization point of view. In the
algebraic renormalization scheme, classical sources can be
set to any classical value at any point in the renormalization
calculus. We will abandon this mechanism in order to
remain strictly into the algebraic renormalization scheme
observing that all equations and symmetry identities are
compatible with the quantum action principle, i.e., Ward
identities with and without linear breaking and Slavnov
equation without breaking. There are three points that still
need some attention in this procedure. First, we need a
geometrical mechanism that can block mass terms like

S̃m ¼
Z

d4x½m2ðB̄a
μνBa

μν − Ḡa
μνGa

μνÞ�: ð20Þ

This can be done by introducing tensor fields coupled to the
projectors or obeying the equations as presented in (7).
Again, it is important to remember that due to (6) a mass
term like the above one is forbidden if the fields ðB̄a

μν; Ba
μνÞ

are replaced by ðθ̄μναβφ̄aαβ; θμναβφaαβÞ. It is also clear that
anticommunting fields ðḠa

μν; Ga
μνÞ are also substituted by

ðθ̄μναβω̄aαβ; θμναβωaαβÞ. Second, a quantum mechanism that
guarantees that a source be a well-defined classical term
and not a specific fixed mass value,1 and the third and final
point is a way to define two different phases, a massive and
a nonmassive one. In order to solve that problem, we will
introduce another quartet of scalar fields

δψ̄ ¼ ϕ̄

δϕ̄ ¼ 0

δϕ ¼ ψ

δψ ¼ 0 ð21Þ

and do a symmetry breaking into these scalar fields ðϕ̄;ϕÞ.
This mechanism is clearly not exactly a standard one. The
fundamental difference is that the scalar fields are not
linked to a non-Abelian group and due to this, the
spontaneous symmetry breaking mechanism gives mass
to all components of the non-Abelian gauge field Aa

μ. Also,
the two phases are defined in the symmetry breaking
mechanism.
The proper action in order to do that is

SYMþOP¼
Z

d4x

�
1

4
Fa
μνFa

μνþ θ̄μναβðDνφ̄αβÞaθμσλρðDσφλρÞa

− θ̄μναβðDνω̄αβÞaθμσλρðDσωλρÞa− iϕ̄φa
μνθ

μναβFa
αβ

þ iϕφ̄a
μνθ̄

μναβFa
αβþ iψ̄ωa

μνθ
μναβFa

αβ

þ iψω̄a
μνθ̄

μναβFa
αβþ∂μϕ̄∂μϕ−∂μψ̄∂μψ

−m2ðϕ̄ϕ− ψ̄ψÞþ λ

2
ðϕ̄ϕ− ψ̄ψÞ2

�
; ð22Þ

to which adding the Landau gauge fixing action

Sgf ¼
Z

d4xfiba∂μAa
μ þ c̄a∂μðDμcÞag ð23Þ

determines the action

S ¼ SYMþOP þ Sgf; ð24Þ
which is left invariant under the following set of BRST
transformations:

sAa
μ ¼ −ð∂μca þ gfabcAb

μccÞ
sca ¼ g

2
fabccbcc

sω̄a
μν ¼ φ̄a

μν þ gfabccbω̄c
μν

sφ̄a
μν ¼ gfabccbφ̄c

μν

sφa
μν ¼ ωa

μν þ gfabccbφc
μν

sωa
μν ¼ gfabccbωc

μν

sψ̄ ¼ ϕ̄

sϕ̄ ¼ 0

sϕ ¼ ψ

sψ ¼ 0: ð25Þ
It is now necessary to say a few words about the

scalar sector and spontaneous symmetry breaking.

1In order to use algebraic renormalization scheme to ensure the
renormalizability of the quantum action, it is necessary that all the
transformations for a classical source give rise to another classical
source[33]. This only opens the possibility for a symmetry
breaking mechanism or a linear soft breaking symmetry.
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The action (22) is invariant under a global Uð1Þ trans-
formation which is

ϕ̄ → eiΛϕ̄ φ̄a
μν → e−iΛφ̄a

μν

ϕ → e−iΛϕ φa
μν → eiΛφa

μν

ψ̄ → eiΛψ̄ ω̄a
μν → e−iΛω̄a

μν

ψ → e−iΛψ ωa
μν → eiΛωa

μν; ð26Þ

and these symmetries, together with (25), are enough to
ensure that

Vðϕ̄;ϕ; ψ̄ ;ψÞ ¼ Vðϕ̄ϕ; ψ̄ψÞ
Vðϕ̄ϕ; ψ̄ψÞ ¼ Vðϕ̄ϕ − ψ̄ψÞ: ð27Þ

Looking to (22), the potential

Vðϕ̄ϕ − ψ̄ψÞ ¼ −m2ðϕ̄ϕ − ψ̄ψÞ þ λ

2
ðϕ̄ϕ − ψ̄ψÞ2 ð28Þ

admits a nonzero expectation value for the scalar field

∂V
∂ϕ ¼ 0 ⇒ hϕ̄ϕi ¼ m2

λ
: ð29Þ

Due to the Uð1Þ global symmetry, it is necessary to take

hϕ̄i ¼ hϕi ¼ mffiffiffi
λ

p ¼ μ: ð30Þ

It is important to emphasize here that in order to obtain
localization hϕ̄i and hϕi always appear in the propagator
and observables as a pair hϕ̄ihϕi. The redefinitions ϕ̄ →
ϕ̄ − hϕ̄i and ϕ → ϕ − hϕi are the only necessary require-
ment in order to obtain localization, and after the integra-
tion over the localizing fields, the bilinear term is given by

Smass ¼
Z

d4x

�
4hϕ̄ihϕiAa

μ

�
δμν −

∂μ∂ν

∂2

�
Aa
ν

�
; ð31Þ

which is the desired mass contribution for the free
propagator. In a future section, we will discuss in detail
the gauge propagator. It is also important that is possible to
use such mechanism to study certain topologically non-
trivial solutions to the gauge field.

A. Small comment about the symmetry
breaking mechanism

It is clear that the action (22) is constructed in the form

SYMþOP ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ sðΘÞ
�
; ð32Þ

where Θ is constructed with ultraviolet dimension 4 and
ghost number −1 with the localizing and gauge fields.
In the symmetric phase, sðΘÞ is a trivial term and the
cohomology property ensures that the action is pure Yang-
Mills from the geometrical point of view. The situation in
the broken phase is a little different. Let us look at the terms
of interaction of the localizing fields and the curvature.
They are obtained as

Θ ¼ θ̄μναβðDνω̄αβÞaθμσλρðDσφλρÞa
− iψ̄φa

μνθ
μναβFa

αβ þ iϕω̄a
μνθ̄

μναβFa
αβ

sðΘÞ ¼ θ̄μναβðDνφ̄αβÞaθμσλρðDσφλρÞa
− θ̄μναβðDνω̄αβÞaθμσλρðDσωλρÞa
− iϕ̄φa

μνθ
μναβFa

αβ þ iϕφ̄a
μνθ̄

μναβFa
αβ

þ iψ̄ωa
μνθ

μναβFa
αβ þ iψω̄a

μνθ̄
μναβFa

αβ: ð33Þ

In the broken phase, the set of BRST symmetries for the
scalar fields become

sψ̄ ¼ ϕ̄ − μ

sϕ̄ ¼ 0

sϕ ¼ ψ

sψ ¼ 0; ð34Þ

where μ is defined in (30). Applying now the same
procedure to the localizing sector above, now we obtain
one more term iμφa

μνθ
μναβFa

αβ. It is clear that by doing the

shift ϕ ⇒ ϕ − μ and ϕ̄ ⇒ ϕ̄ − μ into the action, another
term is obtained. The term is −iμφ̄a

μνθ̄
μναβFa

αβ which is
gauge invariant. The relation of this term to other terms of
this sector is provided by a symmetry,

Z
d4x

�
φ̄a
μν

δS
δφ̄a

μν
− φa

μν
δS
δφa

μν
þ ϕ̄

δS

δϕ̄
− ϕ

δS
δϕ

�
¼ 0; ð35Þ

which can be easily extended to the broken phase and
means that the U(1) symmetry presented in (26) is broken,

Z
d4x

�
φ̄a
μν
δSμ
δφ̄a

μν
−φa

μν
δSμ
δφa

μν
þðϕ̄−μÞδSμ

δϕ̄
−ðϕ−μÞδSμ

δϕ

�
¼0

Sμ¼Sðhφi¼μ;hφ̄i¼μÞ: ð36Þ

This equation does the link between the two phases and
fixes the value of the mass in a similar way as used in the
symmetry breaking mechanism. The main difference
between this and the usual one is that mass for all the
Aa
ν which is also the same that appears in Delbourgo-

Thompson [29–31] mechanism is avoided here.
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III. EXTENDING TO THE QUANTUM LEVEL

The set of equations, valid at quantum level as any
equation that obeys the quantum action principle (QAP)
[33], that ensure that no mixing term of the form φ̄a

μνφ
a
μν is

permitted are

θμναβ
δS
δφ̄a

αβ

¼ 0

θ̄μναβ
δS
δφa

αβ

¼ 0

θμναβ
δS
δω̄a

αβ

¼ 0

θ̄μναβ
δS
δωa

αβ

¼ 0: ð37Þ

In order to present all equations compatible with the
quantum action principle, it is necessary to add to the
action all the symmetries coupled to classical sources. It is
interesting to remember here that due to the properties of
the projectors it is useful to introduce the projectors
explicitly into the source terms in a way that the projections
over the source equations are also obtained. It is clear that
introducing directly the projectors with the sources the
functional derivative in respect to the sources does not give
us only the symmetry associated to these source but instead
we obtain the projected symmetry which is also a symmetry
of the action due to the operator idempotency. The Landau
gauge fixing action plus the symmetries is given by

SJ¼
Z

d4xf−ΩaðDμCÞa

þLag
2
fabccbccþ J̄aαβθ

αβμνðωa
μνþgfabccbφc

μνÞ
þJaαβθ̄

αβμνðgfabccbφ̄c
μνÞþχaαβθ̄

αβμνðφ̄a
μνþgfabccbω̄c

μνÞ
þ χ̄aαβθ

αβμνðgfabccbωc
μνÞg; ð38Þ

which has over the sources the same type of property as
presented over the equations of motion for the fields

θ̄μναβ
δSJ

δJ̄aαβ
¼ 0

θμναβ
δSJ

δJaαβ
¼ 0

θ̄μναβ
δSJ

δχ̄aαβ
¼ 0

θμναβ
δSJ

δχaαβ
¼ 0: ð39Þ

Now the quantum actions and the Slavnov-Taylor identity
are given by

Σ ¼ Sþ Sgf þ SJ

SðΣÞ ¼
Z

d4x

�
δΣ
δAa

μ

δΣ
δΩa

μ
þ δΣ
δca

δΣ
δLa þ

δΣ
δφ̄a

αβ

δΣ
δJaαβ

þ δΣ
δφa

αβ

δΣ
δJ̄aαβ

þ δΣ
δω̄a

αβ

δΣ
δχaαβ

þ δΣ
δωa

αβ

δΣ
δχ̄aαβ

þ ϕ̄
δΣ
δψ̄

þ ψ
δΣ
δϕ

þ iba
δΣ
δc̄a

�
; ð40Þ

and the self-dual and anti-self-dual equations extended to
the quantum action are

θμναβ
δΣ
δφ̄a

αβ

¼ 0

θ̄μναβ
δΣ
δφa

αβ

¼ 0

θμναβ
δΣ
δω̄a

αβ

¼ 0

θ̄μναβ
δΣ
δωa

αβ

¼ 0

θ̄μναβ
δΣ
δJ̄aαβ

¼ 0

θμναβ
δΣ
δJaαβ

¼ 0

θ̄μναβ
δΣ
δχ̄aαβ

¼ 0

θμναβ
δΣ
δχaαβ

¼ 0: ð41Þ

It is important to emphasize again that this set of equations
simply block the possibility of mass terms like φ̄a

αβφ
αβa or

ω̄a
αβω

αβa and thus turn the mass term obtained from the
localization of the nonlocal operator presented in action and
the symmetry breaking mechanism (22) into a stable one.
Also, this set of equations block a quartic term for the
localizing fields due to the simple fact that every anti-
symmetric tensor of rank Dþ 1 in D dimensions is zero
than it is always possible to rewrite the indexes of a
quadratic term in order to be forbidden by this set of
equations.
The linearized operator βΣ is easily obtained from the

Slavnov-Taylor identity and is given by
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βΣ ¼
Z

d4x

�
δΣ
δAa

μ

δ

δΩa
μ
þ δΣ
δΩa

μ

δ

δAai
μ

þ δΣ
δca

δ

δLa þ
δΣ
δLa

δ

δca
þ δΣ
δφ̄a

αβ

δ

δJaαβ
þ δΣ
δJaαβ

δ

δφ̄a
αβ

þ δΣ
δφa

αβ

δ

δJ̄aαβ
þ δΣ
δJ̄aαβ

δ

δφa
αβ

þ δΣ
δω̄a

αβ

δ

δχaαβ
þ δΣ
δχaαβ

δ

δω̄a
αβ

þ δΣ
δωa

αβ

δ

δχ̄aαβ
þ δΣ
δχ̄aαβ

δ

δωa
αβ

þ ϕ̄
δ

δψ̄
þ ψ

δ

δϕ
þ iba

δ

δc̄a

�
: ð42Þ

The gauge fixing, the antighost equation, and the ghost equation that are characteristics of the Landau gauge are given by2

δΣ
δba

¼ i∂μAa
μ

δΣ
δc̄a

þ ∂μ
δΣ
δΩa

μ
¼ 0

GaðΣÞ ¼
Z

d4x

�
δΣ
δca

þ igfabcc̄b
δΣ
δbc

�

Δa ¼
Z

d4xgfabcfΩbi
μ Acμ − Lbcc þ θμναβðJ̄μνbφαβc − χ̄μνbωαβcÞ þ θ̄μναβðJμνbφ̄αβc − χμνbω̄αβcÞg

GaðΣÞ ¼ Δa: ð43Þ

The rigid equation that corresponds, in the Landau gauge, to the anticommutation of the ghost equation and the Slavnov
one is

fGa; βΣg ¼ −Wa

Wai ¼
Z

d4xgfabc
�
Ab
μ

δ

δAc
μ
þ Ωb

μ
δ

δΩc
μ
þ Lb δ

δLc þ cb
δ

δcc
þ bb

δ

δbc
þ c̄b

δ

δc̄c

þ θμναβ

�
J̄μνb

δ

δJ̄cαβ
þ χ̄μνbi

δ

δχ̄cαβ
þ φμνb δ

δφc
αβ

þ ωμνb δ

δωci
αβ

�

þ θ̄μναβ

�
Jμνbi

δ

δJ̄cαβ
þ χμνb

δ

δχcαβ
þ φ̄μνb δ

δφ̄c
αβ

þ ω̄μνb δ

δω̄c
αβ

��
: ð44Þ

Also, another set of equations that are compatible with the QAP are

QðΣÞ ¼
Z

d4x

�
φ̄a
μν

δΣ
δφ̄a

μν
− φa

μν
δΣ
δφa

μν
þ J̄aμν

δΣ
δJ̄aμν

− Jaμν
δΣ
δJaμν

þ ϕ̄
δΣ
δϕ̄

− ϕ
δΣ
δϕ

�

Δ ¼
Z

d4xfθ̄μναβχaiμνφ̄a
αβ þ θμναβJ̄aμνχaαβg

QðΣÞ ¼ Δ; ð45Þ

RðΣÞ ¼
Z

d4x

�
ω̄a
μν

δΣ
δω̄a

μν
− ωa

μν
δΣ
δωa

μν
þ χ̄aμν

δΣ
δχ̄aμν

− χaμν
δΣ
δχaμν

þ ψ̄
δΣ
δψ̄

− ψ
δΣ
δψ

�

RðΣÞ ¼ −Δ: ð46Þ

2These sets of equations ensure that the ghost fields do not renormalize in the Landau gauge.
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The sum of Eqs. (45) and (46) corresponds to a local implementation of the Uð1Þ (26) symmetry and to the quantum
implementation of (26),

½Q; βΣ� ¼ η

ηðΣÞ ¼
Z

d4x

�
ϕ̄
δΣ
δψ̄

þ ψ
δΣ
δϕ

þ θ̄μναβ
�
φ̄a
μν

δΣ
δω̄a

αβ

− χaμν
δΣ
δJaαβ

�
þ θμναβ

�
ωa
μν

δΣ
δφa

αβ

− J̄aμν
δΣ
δχ̄aαβ

��
: ð47Þ

This set of equations, with the hermiticity condition, is
enough to guarantee that no mass term for the localizing
fields exists. Now, it is necessary to guarantee that at the
bilinear level the localizing action generates a mass term
for the gauge fields Aa

μ. In order to do that, it is enough to
take the bilinear action and integrate over the localizing
fields.

A. Bilinear sector of the localizing fields
and the propagators

Taking into account the bilinear part of the gauge
functional with localizing fields and the gauge field, it is
possible to do the integration in the localizing fields,

Z½A; c; b� ¼
Z

DAμ

Z
DφDφ̄e−Soðφ̄;φ;AμÞ

S0ðφ̄;φÞ ¼
Z

d4xfθ̄μναβð∂νφ̄αβÞaθμσλρð∂σφλρÞa

− iaμφa
μνθ

μναβFa
0αβ þ iaμφ̄a

μνθ̄
μναβFa

0αβg
Fa
0αβ ¼ ∂αAa

β − ∂βAa
α; ð48Þ

where hϕ̄i ¼ μ and hϕi ¼ μ are the vacuum obtained
from a spontaneous symmetry breaking mechanism
over the fields ϕ and ϕ̄. In order to do that integration,
it is enough to obtain the classical equations of motion
which are

−fθ̄μναβθμσλρð∂ν∂σφλρÞag þ iaμθ̄μναβF0aμν ¼ 0;

−fθμναβθ̄μσλρð∂ν∂σφ̄λρÞag − iaμθμναβF0aμν ¼ 0: ð49Þ

The classical solution for this set of equations of motion is
of the form

φa
μν ¼ 4iaμ

1

∂2
θμναβF

αβa
0

φ̄a
μν ¼ −4iaμ

1

∂2
θ̄μναβF

αβa
0 : ð50Þ

Integrating over the localizing fields, it is easy to find the
contribution for the mass of the gauge field as

Smass ¼
Z

d4x

�
4ðaÞ2μ2Aa

μ

�
δμν −

∂μ∂ν

∂2

�
Aa
ν

�
: ð51Þ

It is clear that Smass corresponds to the bilinear contribution
to the gauge-invariant mass term presented in (22) for the
value a ¼ 1. It is important to emphasize here that the mass
term is proportional to

Z
d4xfAaT

μ AμaTg; ð52Þ

where

AaT
μ ¼

�
δμν −

∂μ∂ν

∂2

�
Aa
ν ð53Þ

is the transverse part of the gauge field. The complete non-
Abelian extension could be understood as the localization
of A2

min. These operators, defined as

A2
min ≡minuTr

Z
d4xfAu

μAμug

Au
μ ¼ u†Aμuþ i

g
u†∂μu; ð54Þ

and their relation to a non-Abelian nonlocal operator have
been obtained in Ref. [32].
Taking into account that we are working on the Landau

gauge, it is easy to obtain3

hAa
μð−kÞAb

νðkÞi¼−2δab
�
δμν−

kμkν

k2

�
1

k2þ8ðaÞ2μ2 : ð55Þ

Performing some calculations, we obtain for all the
propagators

3We are using the convention that hΘð−kÞΘðkÞi ¼ −GΘΘ.
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hφ̄a
μνð−kÞAb

γ ðkÞi ¼ −δab
2

aμ

�
1

k2
−

1

k2 þ 8ðaÞ2μ2
�
θ̄μνγσkσ

hφa
μνð−kÞAb

γ ðkÞi ¼ δab
2

aμ

�
1

k2
−

1

k2 þ 8ðaÞ2μ2
�
θμνγσkσ

hφa
σλðkÞφ̄b

μνð−kÞi ¼ δab
2

k2 þ 8ðaÞ2μ2 ðθσλρϵk
ϵθ̄μναγkγδραÞ

×

�
1

k2

�

hωa
σλðkÞω̄b

μνð−kÞi ¼ −δab
2

k2
ðθσλρϵkϵθ̄μναγkγδραÞ

�
1

k2

�

hϕ̄ð−kÞϕðkÞi ¼ −
1

2

�
1

k2 þ 2λμ2
þ 1

k2

�

hϕ̄ð−kÞϕ̄ðkÞi ¼ hϕð−kÞϕðkÞi ¼ −
1

2

�
1

k2 þ 2λμ2
−

1

k2

�

hψ̄ð−kÞψðkÞi ¼ 1

k2

hbað−kÞAb
νðkÞi ¼ −δab

kν
k2

hc̄að−kÞcbðkÞi ¼ δab

k2
: ð56Þ

This set of propagators confirm our assumption that this
mechanism generates a transverse mass term for the gauge
field. It is also possible to observe the nonmassive poles in
hφ̄a

μνð−kÞAb
γ ðkÞi and hφa

μνð−kÞAb
γ ðkÞi expected from the

symmetry breaking mechanism. Moreover, it is relevant to
emphasize again that by construction the model is renor-
malizable due to the geometrical properties of the tensorial
fields. Finally, one can note that mixing terms between the
tensorial terms and the gauge curvature take into account
the values of a scalar field and can be useful to study

topological properties of this action, but this is a very
extended task and certainly demands another work.

IV. CONCLUSION

In this work, we present a possible extension of the main
idea presented in Ref. [32] that is to localize a non-Abelian
gauge-invariant operator in order to obtain gauge-invariant
mass term.Themethoduses a symmetry breakingmechanism
and obtain the same mass for all components of the gauge
field.This canbeuseful in order to study theoperatorA2

min that
is quite important in many aspects of confinement [34–39].
We present all the necessary equations that are compatible to
the quantum action principle that can be used to prove the
renormalizability of the model. We have obtained the
important property that mass terms in the localizing fields
are blocked by thegeometrical properties of these fieldswhile
maintaining the localizing property. We point out that this
action possesses a small number of parameters, a feature that
is useful for higher order computations.
The possibility of having at our disposal a true local and

renormalizable action might provide us with a consistent
framework for a future investigation of the possible
implications of nonlocal gauge-invariant operators of ultra-
violet dimension two.
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