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Covariant mass and geometrical setup in Euclidean gauge theories
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A nonlocal mass operator is consistently defined in the local form through the introduction of a set of
additional fields with geometrical appropriated properties. A local and polynomial gauge-invariant action is
thus established. Equations compatible with the study of renormalization, from the algebraic point of view,

are presented in the Landau gauge.
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I. INTRODUCTION

Nonmaximal dimension condensates are of fundamental
interest in order to study the infrared into Euclidean Yang-
Mills theories as we can see by the number of results
obtained through theoretical, phenomenological, and lattice
simulations [1-26]. One particularly important case is the
dimension two operator AjAy which is not gauge invariant
but is multiplicatively renormalizable to all orders in the
Landau gauge. Other dimension two operators can be
renormalizable at a large number of other gauges like
linear covariant gauges [27], Curci-Ferrari, and the maxi-
mal Abelian gauge [26,28].

The fundamental problem of these operators like AjAj
and the condensate (AjA¢) is that they are gauge dependent
and all of their quantum properties must be defined in each
gauge. Many attempts in order to present a gauge-invariant
mechanism for these operators can be done by [29-31], but
the result is always nonunitary, nonrenormalizable, or both.
In this way, it is a quite natural objective to discuss and
present a suitable colorless dimension two operator O(A)
which preserves gauge invariance,

s0(A) =0
5AY = —Diba’, (1)

where Djj” is the covariant derivative, given by
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Dgb = 59, — gfabeAs. (2)

The natural candidate for this is the nonlocal operator

o) == [ dxr o) ()

This operator is studied in [32]. The method developed
consists of writing the nonlocal operator into a local form as

/ d*xF?, <D2) Fh,

= /d4 < Ba DubDbLBc _|_ 1 (B B)ZVFZV) (4)

Unfortunately, by means of algebraic renormalization
methods, it is possible to observe that a mass counterterm
in the tensorial fields can be obtained and that this
counterterm turns localization of the gauge-invariant non-
local mass into an impossibility only by usual antisym-
metric tensor fields[32]. In fact, the obtained result implies
that it is necessary to include to the quantum action, terms
like

3 - ) A3
- gmzﬂl (BZI/B;; ) + m? ( 1/)2

32
abed

+16

(BjiBy) (BjsByo). (5)

These terms make in turn impossible the localization of the
gauge-invariant nonlocal mass operator with this simple
mechanism. It is important to emphasize here that this
analysis in no way prohibits a more elaborate mechanism
from achieving this goal. Now, we will present a mecha-
nism that could make it possible to localize the nonlocal
operator (3) without the possibility of mass terms in the
localizing action that can destroy the process.
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II. LOCALIZATION OF THE OPERATOR
i d*xF WD 12F WITH SELF-DUAL AND
ANTI-SELF DUAL TENSOR FIELDS

First, it is necessary to provide a geometrical mechanism
that could avoid mass terms in localizing tensorial fields.
This geometrical mechanism is recognizable in the
self-dual and anti-self-dual properties. In simple terms,
two antisymmetric tensor fields that obey the relation
P,@" = 0 are necessary in order to avoid mass term in
the localizing fields. The most simple way in order to
achieve this goal is to introduce these fields in the localizing
action with projectors that have the desired properties, i.e.,

- 1
gmzaﬂ = Z (5/40151/,5 - 5/4,551/04 —+ €uvap )
1
Hﬂl/aﬂ = Z (5ﬂ05Dﬂ - 5;4/351101 ~ €uvap )
éﬂvaﬂéaﬁo‘i — 9”1/0%
aﬂmﬂeaﬁml — gﬂuai
0,0ap0*P7* = 0
Eapu€Pt = 25’[;1]
57y = 076, — 678,
€ aeml — 56 56/1 + 5/1 5¢¢ 56 5/1e (6)
apuv® $0u) T OpOu) T Op0fu)
and
(Z)ﬂy = éﬂu(lﬂ¢(lﬁ
(pﬂl/ = ;wa[)’(paﬁ7 (7)
which lead to the following solution:
= T 7 7 1 Tap
%u = T/w + Tﬂw T/w = ieaﬂva
- - 1
Py = T/u/ - T,uzn T;w = EeaﬁyuTaﬁ' (8)

This solution, in spite of being interesting, is not the best
form to write the action in order to explicitly obtain the set
of equations compatible with the quantum action principle.
Due to this, we will continue with the fields ¢, and ¢, . It
is important to stress the following property:

0

uvaf

Qrrie = (), (9)

This property is fundamental for the construction of a
dynamical kinetic term. It is also important to note that
these two properties are also relevant in the study of
infrared properties. The generation of mass for all compo-
nents of the gauge field is different from the usual
symmetry breaking. This apparent paradox is solved in
this model in a different way as to the one presented in [32].
To understand the mechanism that we will present, it is
instructive to remember the original mechanism presented

in [32]. It starts adding the nonlocal mass operator to the
Yang-Mills action, i.e., considering

Sym + So. (10)
where
1
Sym = i / d*xF4,F4, (11)
and
=—— / d*xF,[(D*)~ ") F,. (12)

The term (12) is localized by means of the introduction of a
pair of bosonic antisymmetric tensor fields in the adjoint

representation, (By,, Bf, ), according to

e—Soz/DBDB(detDZ)G[—SOL}

] :
SOL< / d*xB4,D DY B, + +7 / d*x(B— )WF;;D)>
(13)

where the determinant, (detD?)%, takes into account the
Jacobian arising from the integration over the bosonic fields
(B4,.Bg,). This term can also be localized by means of
suitable anticommuting antisymmetric tensor fields

(G,‘j,,, Gy, ), namely,

_ 1 _
(det D?)° = / DGDG exp (Z / d‘*xG,‘jUngDZCG;D).
(14)

The bosonic fields (B, B,) and the anticommuting fields
(G4,.G4,) form a quartet [32]. Taking into account that the
gauge parameter @ will be promoted to a ghost c, this
quartet will become a Becchi-Rouet-Stora-Tyutin (BRST)
quartet. The complete set of BRST equations for the

localizing fields is given by

— b b
AL = —Diw

5BZ1,=gf”bc bBc + G4

Hv

5Ba :gfahc bBcw

(SG“ :gfahc h

Gl

5(_}“ = gf"w ”GC + B,‘jy, (15)
so the kinetic part of the localizing action
1 I ' RC ~a na be (¢
Sec =5 / d*x(B4,DS* Db BS, — G4,DSP Db Ge,)  (16)

is left invariant, but the massive part of the localizing
action
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im
Sp=—

- | (B =By

vt py

(17)

is not invariant. In order to avoid that problem, the mass
action §,, is replaced by

1 - _
Z/ d4x(VapungpFZu - VopﬂngpFZv)‘ (18)
At the end, the sources V,,,,(x), V,,,,(x) are required to

attain their physical value, namely,

—im
= vap/w‘phys = T (5aﬂ6pu - 501/5/)/4)7

‘_/apm/ |phys (19)

so that expression (18) gives back the term S,,. This is
essentially a trick in order to treat a noninvariant action
term in an algebraic renormalization scheme. Here, it is
necessary to emphasize that this mechanism has many
problems from the renormalization point of view. In the
algebraic renormalization scheme, classical sources can be
set to any classical value at any point in the renormalization
calculus. We will abandon this mechanism in order to
remain strictly into the algebraic renormalization scheme
observing that all equations and symmetry identities are
compatible with the quantum action principle, i.e., Ward
identities with and without linear breaking and Slavnov
equation without breaking. There are three points that still
need some attention in this procedure. First, we need a
geometrical mechanism that can block mass terms like

S, = / d*x[m*(B4,B4, — G4,G4,)]. (20)

This can be done by introducing tensor fields coupled to the
projectors or obeying the equations as presented in (7).
Again, it is important to remember that due to (6) a mass
term like the above one is forbidden if the fields (B, BY,)
are replaced by (0,550 0,,450°*"). It is also clear that
anticommunting fields (G%,.
(0,ap @, 0,,,050*"). Second, a quantum mechanism that
guarantees that a source be a well-defined classical term
and not a specific fixed mass value,' and the third and final
point is a way to define two different phases, a massive and
a nonmassive one. In order to solve that problem, we will
introduce another quartet of scalar fields

Gy,) are also substituted by

'In order to use algebraic renormalization scheme to ensure the
renormalizability of the quantum action, it is necessary that all the
transformations for a classical source give rise to another classical
source[33]. This only opens the possibility for a symmetry
breaking mechanism or a linear soft breaking symmetry.

op =¢
S5p=0
op =y
Sy =0 (21)

and do a symmetry breaking into these scalar fields (¢, ¢).
This mechanism is clearly not exactly a standard one. The
fundamental difference is that the scalar fields are not
linked to a non-Abelian group and due to this, the
spontaneous symmetry breaking mechanism gives mass
to all components of the non-Abelian gauge field Ay. Also,
the two phases are defined in the symmetry breaking
mechanism.

The proper action in order to do that is

1 a -
SYM+OP = / d4x{ZFz”FZV + aﬂlzaﬂ (D”goaﬁ)ﬂgﬂo‘ip (Dglp/{p)a
= 0ap(D @) 047 (D ;)" — i, P
+ iq’)@l‘jyéﬂvaﬂ Fo+ i, Qrap Fe,
+ iW@ZyéﬂDaﬁFg/} + aﬂa;aﬂqs — 8ﬂl/_/aﬂl//

S TR S )
to which adding the Landau gauge fixing action
Sor = /d“x{ib“@”Aﬁ +c0"(Dye)} (23)
determines the action
S = Symrop + Sy, (24)

which is left invariant under the following set of BRST
transformations:

a __ a abc Ab .c
sAj = —(0,c + gf " Ajc)
sc = gfabccbcc

st = @% + abccb(bc
v Puw T 4. uv
—_ _ b b_
SPuy = 9f Pl
_ bc b
Sy = Oy + 9F Py
sl = gfabccbw;l/

v

sy = ¢

sp =0

s =y

sy = 0. (25)

It is now necessary to say a few words about the
scalar sector and spontaneous symmetry breaking.
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The action (22) is invariant under a global U(1) trans-
formation which is

¢—ehp ph — e
= e g~ o

IA

_ lA_
g - ety ap, > e oy,

v = e_iAW wm/ - etAwa (26)

and these symmetries, together with (25), are enough to
ensure that

V(g.d:p.w) = V(g )
V(pdipw) = V(dd —wy). (27)

Looking to (22), the potential

V@ —i) = —m2 B~ i)+ 5 B~ (28)

admits a nonzero expectation value for the scalar field

ov m?
Gy = 0= @) =" (29)

Due to the U(1) global symmetry, it is necessary to take

(d) = (¢) = e (30)

It is important to emphasize here that in order to obtain
localization (¢) and (¢) always appear in the propagator
and observables as a pair (¢)(¢). The redefinitions ¢ —
¢ —(¢) and ¢ — ¢ — (¢) are the only necessary require-
ment in order to obtain localization, and after the integra-
tion over the localizing fields, the bilinear term is given by

Swas = [ edatpyoing (o0 -2 Vash o)

which is the desired mass contribution for the free
propagator. In a future section, we will discuss in detail
the gauge propagator. It is also important that is possible to
use such mechanism to study certain topologically non-
trivial solutions to the gauge field.

A. Small comment about the symmetry
breaking mechanism

It is clear that the action (22) is constructed in the form

1
Sowsor = [ ax{yrarn 5@} @

where © is constructed with ultraviolet dimension 4 and
ghost number —1 with the localizing and gauge fields.
In the symmetric phase, s(®) is a trivial term and the
cohomology property ensures that the action is pure Yang-
Mills from the geometrical point of view. The situation in
the broken phase is a little different. Let us look at the terms
of interaction of the localizing fields and the curvature.
They are obtained as

© = 0y (D* @7 ) 0" (D))
- Ll;/(pWH””“ﬁFgﬂ + iq’)&)ﬁyé’“"'ﬂFgﬂ
= ém/a/i (D y(pa/})aguﬂﬂp (D rf(pﬂ/))a
- é;wa/i (DD&)Q/})agﬂﬂﬂp (Dryw}w)a
— i@, 0P FS, + i@, 0" Pl
+ g, 0P F, + iy, 0P F,. (33)

5(®)

In the broken phase, the set of BRST symmetries for the
scalar fields become

SW=¢-—pu

sp=0

sp=y

sy =0, (34)

where p is defined in (30). Applying now the same
procedure to the localizing sector above, now we obtain
one more term iuqol‘j,ﬁ”‘”’/’F ap It is clear that by doing the
shift ¢ = ¢ —p and ¢ = ¢ — u into the action, another
term is obtained. The term is —iﬂ@,‘jﬁ””’ﬂFgﬂ which is
gauge invariant. The relation of this term to other terms of
this sector is provided by a symmetry,

- 08 55} (35)

oS oS
/d4 {60;41/5 4 (p}wégﬂyy ¢_¢_¢ ¢

which can be easily extended to the broken phase and
means that the U(1) symmetry presented in (26) is broken,

S, oS - oS, oS,
/d4 {¢yv5 a _¢”y5(/)5y+(¢ )6¢ (¢_ )(Sd)} 0

S, =S({@) =p:(p) =p). (36)

This equation does the link between the two phases and
fixes the value of the mass in a similar way as used in the
symmetry breaking mechanism. The main difference
between this and the usual one is that mass for all the
A¢ which is also the same that appears in Delbourgo-
Thompson [29-31] mechanism is avoided here.
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III. EXTENDING TO THE QUANTUM LEVEL

The set of equations, valid at quantum level as any
equation that obeys the quantum action principle (QAP)
[33], that ensure that no mixing term of the form @y, ¢y, is
permitted are

Gﬂyaﬁ% =0
‘ﬂyaﬁ% ~0
eﬂyaﬂ% —0
‘W% 0. (37)

In order to present all equations compatible with the
quantum action principle, it is necessary to add to the
action all the symmetries coupled to classical sources. It is
interesting to remember here that due to the properties of
the projectors it is useful to introduce the projectors
explicitly into the source terms in a way that the projections
over the source equations are also obtained. It is clear that
introducing directly the projectors with the sources the
functional derivative in respect to the sources does not give
us only the symmetry associated to these source but instead
we obtain the projected symmetry which is also a symmetry
of the action due to the operator idempotency. The Landau
gauge fixing action plus the symmetries is given by

5= / dx{~Q(D,C)"
+La gfabccb ¢+ ]gﬁ@aﬁm/ (wﬁy + g abc Cb(p;,,)
+ Jgﬂéaﬂﬂzx (gfabc c”(o,‘;y) +)(Zﬂ9a/3ﬂv <¢zv + gf“b"cbci);y)
<F)—(Zl([}90!ﬂ;w(gfabccbw;b)}7 (38)

which has over the sources the same type of property as
presented over the equations of motion for the fields

- 58’
b =
pe 6J5s
58’
0 2
aff
uvey 5-]3,/;
58’
f o—a -
uva, 5)(3/3
587
ﬂ _—
uva, 5)(3/3

=0

0

0. (39)

Now the quantum actions and the Slavnov-Taylor identity
are given by

) = [ e o
5AL Q% | 5cv LY 5t 60,
0X o 0X % 0X %
0oy TGy 0@y 00y Sy 00
- 0X ox 1)
= — 4+ b , 40
+¢51/7+W§¢+l 56“} (40)

and the self-dual and anti-self-dual equations extended to
the quantum action are

()Y
0 s ——— = 0
e
nva 5?3/}

- oz

0 S———
uvaff (34)3/}

o0X

2 R
of < —a

" 560(1/}

- oz

uvaf 560“/} =
a

_ o
7] —_
pvaf 5]3[;
I
0 =
s,
_ oX
wvafp 5)_(3/;
o
—=0. (41)

0
p
1 %e] 5){3/}

=0

=0

=0

It is important to emphasize again that this set of equations
simply block the possibility of mass terms like (pgﬁq)"‘/j" or
c?)gﬂa)”/’“ and thus turn the mass term obtained from the
localization of the nonlocal operator presented in action and
the symmetry breaking mechanism (22) into a stable one.
Also, this set of equations block a quartic term for the
localizing fields due to the simple fact that every anti-
symmetric tensor of rank D 4 1 in D dimensions is zero
than it is always possible to rewrite the indexes of a
quadratic term in order to be forbidden by this set of
equations.

The linearized operator fy is easily obtained from the
Slavnov-Taylor identity and is given by
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615 5%

&5 6L 5 S5 S8 6T S
+ —+ -

Sqpag 85y 8J55 008 0%, Sxay * Y 005

or 6 oX 6 -0 o )
a -a + a a + ¢ + l// + lba } 42
0o, Oap O gp 00y, ) (42)

The gauge fixing, the antighost equation, and the ghost equation that are characteristics of the Landau gauge are given by’

8
e i0MAf

o LT

ser - reQe

ox o
GG(Z) = /d4x{éca + lg ”bcéb %}

A¢ = /d4ngubc{9lljiALﬂ Lbc + 9# (ﬁ(]ﬂyh(paﬂc _)(ﬂzzh (lf)’c) + 9 (Jﬂyh(pa/)’L _)(;wb rl/)’c)}

G*(3) = A“. (43)

The rigid equation that corresponds, in the Landau gauge, to the anticommutation of the ghost equation and the Slavnov
one is

{G*. ps} = -
. 5 5 5 5 5
Wi = d4 abc Qb Lb b_~ bb =b_~
/ xgf { " 5AC+ e T P T
8 5 5 5
0 J/u/b uvbi b w/u/b
+ O ( 5J2ﬁ+)( 57 te 5(paﬂ+ Sa
+0 ﬁ<J i 0 =+ P+ P 0 >} (44)
. 5'] af 6)( af 640{1/} 50)(1/5

Also, another set of equations that are compatible with the QAP are

oz o0X - OX 0X - 0% ox
z d*x - - +J4 ——— ] L=
Q( ) / {wﬂl/é—zy (pﬂl/égazy MVSJa ﬂl/éja ¢5¢ ¢5¢}

/ d4 X { eﬂya[}’ )(al a emza/i Jau )(Zﬂ}

Q(Z) = A, (45)
) ) 1) > 52 oZ
R(Z d*x B n——— ] — B
( ) / { Dy S5 a Dy 50);1” +)(;w 5)_{;(5 Xuw 5){;y 6W l//&//}
R(E) = —A. (46)

These sets of equations ensure that the ghost fields do not renormalize in the Landau gauge
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The sum of Egs. (45) and (46) corresponds to a local implementation of the U(1) (26) symmetry and to the quantum

implementation of (26),

[0.Bs] =n

B S
D)= [ d*x{ ¢ty + 0P| g
n(%) / X{qﬁ&l_/ Vs (co

This set of equations, with the hermiticity condition, is
enough to guarantee that no mass term for the localizing
fields exists. Now, it is necessary to guarantee that at the
bilinear level the localizing action generates a mass term
for the gauge fields Aj. In order to do that, it is enough to
take the bilinear action and integrate over the localizing
fields.

A. Bilinear sector of the localizing fields
and the propagators

Taking into account the bilinear part of the gauge
functional with localizing fields and the gauge field, it is
possible to do the integration in the localizing fields,

Z[A, c,b] = / DA, / DgDpe=S: 204,

SO(g‘a,(p) = /d4x{é/4mﬂ(ay¢aﬁ)a0ﬂﬂp (aafplp)a
— iapq;y, 0P Fl,, + iau@l, 0P FG )
Fiy = 0,A% — 94A4, (48)

where (¢) = u and (p) = u are the vacuum obtained
from a spontaneous symmetry breaking mechanism
over the fields ¢ and ¢. In order to do that integration,
it is enough to obtain the classical equations of motion
which are

_{éﬂl’(lﬁeﬂﬂlp(auaﬂ(pﬁll)a} + iaﬂéﬂvﬂﬂFoa”y - 07
_{gﬂyaﬁéﬂoﬂp(abaﬁ@iﬁ)a} — iaﬂeﬂbaﬂFoaﬂy = 0 (49)

The classical solution for this set of equations of motion is
of the form

. 1
ol = 4zaﬂ?9”mﬂFg””
—a . 1~ afia
P = —41a,u?9ﬂ,,aﬁFo . (50)

Integrating over the localizing fields, it is easy to find the
contribution for the mass of the gauge field as

My 6&)“

> o0X - O
_a 9/41/(1/1 a —Ja . 47
oy Z/}) " <a)m, Spay K 3/3) } “7)

o
T / d4x{4(a)2y2A,‘j <5~"— =2 )Ag}. (51)

It is clear that S, corresponds to the bilinear contribution
to the gauge-invariant mass term presented in (22) for the
value a = 1. It is important to emphasize here that the mass
term is proportional to

/d“x{AjjTA”“T}, (52)
where
a v aﬂay a
AﬂT = (5" ~ )A,, (53)

is the transverse part of the gauge field. The complete non-
Abelian extension could be understood as the localization
of AZ. . These operators, defined as

min*

A2 EminuTr/d“x{A}jA"”}

min

i
Al =u'A,u +§MT(9MM, (54)

and their relation to a non-Abelian nonlocal operator have
been obtained in Ref. [32].

Taking into account that we are working on the Landau
gauge, it is easy to obtain’

gt =250 (94 -5 ) ol 69

Performing some calculations, we obtain for all the
propagators

*We are using the convention that (©(—k)O(k)) = —Geg.
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2 (1 1 -
e (kAL (k=== | ———— )0, k°
e e P L
2 (1 1
a (—A(KN) =60 | = ———— |0, k°
A 0) =072 (s O
~ a 2 € a
((pﬂ(k)cpﬁ,,(—k» =90 bkz +8(a)2? (901/)6]‘ Oy K7 & )

(7)

_ 2 - 1
<w§/1 (k)w/l;l/(_k» = _5ab P (aa/lpekeeﬂvayky&oa) (p)

@000 =3 (e )
PR = b-008) =3 (5 )
-0y () = 5

(b (~R)AL(R)) = ~5 %

(e (e l) =2 56

This set of propagators confirm our assumption that this
mechanism generates a transverse mass term for the gauge
field. It is also possible to observe the nonmassive poles in
(@, (=k)AL(k)) and (g%, (—k)AL(k)) expected from the
symmetry breaking mechanism. Moreover, it is relevant to
emphasize again that by construction the model is renor-
malizable due to the geometrical properties of the tensorial
fields. Finally, one can note that mixing terms between the
tensorial terms and the gauge curvature take into account
the values of a scalar field and can be useful to study

topological properties of this action, but this is a very
extended task and certainly demands another work.

IV. CONCLUSION

In this work, we present a possible extension of the main
idea presented in Ref. [32] that is to localize a non-Abelian
gauge-invariant operator in order to obtain gauge-invariant
mass term. The method uses a symmetry breaking mechanism
and obtain the same mass for all components of the gauge
field. This can be useful in order to study the operator A2, that
is quite important in many aspects of confinement [34-39].
We present all the necessary equations that are compatible to
the quantum action principle that can be used to prove the
renormalizability of the model. We have obtained the
important property that mass terms in the localizing fields
are blocked by the geometrical properties of these fields while
maintaining the localizing property. We point out that this
action possesses a small number of parameters, a feature that
is useful for higher order computations.

The possibility of having at our disposal a true local and
renormalizable action might provide us with a consistent
framework for a future investigation of the possible
implications of nonlocal gauge-invariant operators of ultra-
violet dimension two.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior—Brasil
(Capes)—Finance Code 001. The Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq-Brazil)
and the SR2-UERI are gratefully acknowledged for finan-
cial support. M. A. L. C. is a level PQ-2 researcher under
the program Produtividade em Pesquisa-CNPq, 302040/
2017-0.

[1] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).

[2] J. Greensite and M. B. Halpern, Nucl. Phys. B271, 379
(1986).

[3] M. Stingl, Phys. Rev. D 34, 3863 (1986); 36, 651(E) (1987).

[4] M.J. Lavelle and M. Schaden, Phys. Lett. B 208, 297
(1988).

[5] F. V. Gubarev and V.I. Zakharov, Phys. Lett. B 501, 28
(2001).

[6] F. V. Gubarev, L. Stodolsky, and V. I. Zakharov, Phys. Rev.
Lett. 86, 2220 (2001).

[7] H. Verschelde, K. Knecht, K. Van Acoleyen, and M.
Vanderkelen, Phys. Lett. B 516, 307 (2001).

[8] K. I. Kondo, Phys. Lett. B 514, 335 (2001).

[9] K. I. Kondo, T. Murakami, T. Shinohara, and T. Imai, Phys.
Rev. D 65, 085034 (2002).

[10] D. Dudal, H. Verschelde, R. E. Browne, and J. A. Gracey,
Phys. Lett. B 562, 87 (2003).

[11] R.E. Browne and J. A. Gracey, J. High Energy Phys. 11
(2003) 029.

[12] D. Dudal, H. Verschelde, J. A. Gracey, V. E. R. Lemes, M. S.
Sarandy, R. F. Sobreiro, and S.P. Sorella, J. High Energy
Phys. 01 (2004) 044.

[13] D. Dudal, J. A. Gracey, V. E. R. Lemes, M. S. Sarandy, R. F.
Sobreiro, S. P. Sorella, and H. Verschelde, Phys. Rev. D 70,
114038 (2004).

[14] R.E. Browne and J. A. Gracey, Phys. Lett. B 597, 368
(2004).

[15] J. A. Gracey, Eur. Phys. J. C 39, 61 (2005).

[16] X.d. Li and C.M. Shakin, Phys. Rev. D 71, 074007
(2005).

105003-8


https://doi.org/10.1103/PhysRevD.26.1453
https://doi.org/10.1016/0550-3213(86)90322-6
https://doi.org/10.1016/0550-3213(86)90322-6
https://doi.org/10.1103/PhysRevD.34.3863
https://doi.org/10.1103/PhysRevD.36.651
https://doi.org/10.1016/0370-2693(88)90433-9
https://doi.org/10.1016/0370-2693(88)90433-9
https://doi.org/10.1016/S0370-2693(01)00085-5
https://doi.org/10.1016/S0370-2693(01)00085-5
https://doi.org/10.1103/PhysRevLett.86.2220
https://doi.org/10.1103/PhysRevLett.86.2220
https://doi.org/10.1016/S0370-2693(01)00929-7
https://doi.org/10.1016/S0370-2693(01)00817-6
https://doi.org/10.1103/PhysRevD.65.085034
https://doi.org/10.1103/PhysRevD.65.085034
https://doi.org/10.1016/S0370-2693(03)00541-0
https://doi.org/10.1088/1126-6708/2003/11/029
https://doi.org/10.1088/1126-6708/2003/11/029
https://doi.org/10.1088/1126-6708/2004/01/044
https://doi.org/10.1088/1126-6708/2004/01/044
https://doi.org/10.1103/PhysRevD.70.114038
https://doi.org/10.1103/PhysRevD.70.114038
https://doi.org/10.1016/j.physletb.2004.07.040
https://doi.org/10.1016/j.physletb.2004.07.040
https://doi.org/10.1140/epjc/s2004-02082-1
https://doi.org/10.1103/PhysRevD.71.074007
https://doi.org/10.1103/PhysRevD.71.074007

COVARIANT MASS AND GEOMETRICAL SETUP ...

PHYS. REV. D 101, 105003 (2020)

[17] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene,
and J. Rodriguez-Quintero, Phys. Rev. D 63, 114003 (2001).

[18] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene,
F. De Soto, A. Donini, H. Moutare, and J. Rodriguez-
Quintero, Phys. Rev. D 66, 034504 (2002).

[19] P. Boucaud, F. de Soto, J.P. Leroy, A. Le Yaouanc, J.
Micheli, H. Moutarde, O. Pene, and J. Rodriguez-Quintero,
Phys. Rev. D 74. 034505 (2006).

[20] E. Ruiz Arriola, P. O. Bowman, and W. Broniowski, Phys.
Rev. D 70, 097505 (2004).

[21] T. Suzuki, K. Ishiguro, Y. Mori, and T. Sekido, Phys. Rev.
Lett. 94, 132001 (2005).

[22] F. V. Gubarev and S. M. Morozov, Phys. Rev. D 71, 114514
(2005).

[23] S. Furui and H. Nakajima, Few Body Syst. 40, 101 (2006).

[24] P. Boucaud, J. P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J.
Micheli, O. Pene, J. Rodriguez-Quintero, and C. Roiesnel,
J. High Energy Phys. 01 (2006) 037.

[25] M. N. Chernodub, K. Ishiguro, Y. Mori, Y. Nakamura, M. L.
Polikarpov, T. Sekido, T. Suzuki, and V. I. Zakharov, Phys.
Rev. D 72, 074505 (2005).

[26] D. Dudal, H. Verschelde, V.E.R. Lemes, M. S. Sarandy,
S.P. Sorella, and M. Picariello, Ann. Phys. (Amsterdam)
308, 62 (2003).

[27] D. Dudal, H. Verschelde, V.E.R. Lemes, M. S. Sarandy,
R. F. Sobreiro, S. P. Sorella, and J. A. Gracey, Phys. Lett. B
574, 325 (2003).

[28] D. Dudal, H. Verschelde, V.E.R. Lemes, M. S. Sarandy,
R. F. Sobreiro, S. P. Sorella, M. Picariello, and J. A. Gracey,
Phys. Lett. B 569, 57 (2003) [arXiv:hep-th/0306116].

[29] R. Delbourgo and G. Thompson, Phys. Rev. Lett. 57, 2610
(1986).

[30] R. Delbourgo, S. Twisk, and G. Thompson, Int. J. Mod.
Phys. A 03, 435 (1988).

[31] H. Ruegg and M. Ruiz-Altaba, Int. J. Mod. Phys. A 19,
3265 (2004).

[32] M. A. L. Capri, D. Dudal, J. A. Gracey, V. E. R. Lemes, R. F.
Sobreiro, S. P. Sorella, and H. Verschelde, Phys. Rev. D 72,
105016 (2005).

[33] O. Piguet and S. P. Sorella, Lect. Notes Phys. Monographs
28, 1 (1995).

[34] M. A. Semenov-Tyan-Shanskii and V. A. Franke, Zapiski
Nauchnykh Seminarov Leningradskogo Otdeleniya Mate-
maticheskogo Instituta im. V.A. Steklov AN SSSR 120, 159
(1982) [J. Sov. Math. 34, 1999 (1986)].

[35] D. Zwanziger, Nucl. Phys. B345, 461 (1990).

[36] G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B326, 333
(1989).

[37] G. Dell’ Antonio and D. Zwanziger, Commun. Math. Phys.
138, 291 (1991).

[38] D. Dudal, H. Verschelde, V.E.R. Lemes, M. S. Sarandy,
S.P. Sorella, and M. Picariello, Ann. Phys. (Amsterdam)
308, 62 (2003).

[39] P. van Baal, Nucl. Phys. B369, 259 (1992).

105003-9


https://doi.org/10.1103/PhysRevD.63.114003
https://doi.org/10.1103/PhysRevD.66.034504
https://doi.org/10.1103/PhysRevD.74.034505
https://doi.org/10.1103/PhysRevD.70.097505
https://doi.org/10.1103/PhysRevD.70.097505
https://doi.org/10.1103/PhysRevLett.94.132001
https://doi.org/10.1103/PhysRevLett.94.132001
https://doi.org/10.1103/PhysRevD.71.114514
https://doi.org/10.1103/PhysRevD.71.114514
https://doi.org/10.1007/s00601-006-0162-2
https://doi.org/10.1088/1126-6708/2006/01/037
https://doi.org/10.1103/PhysRevD.72.074505
https://doi.org/10.1103/PhysRevD.72.074505
https://doi.org/10.1016/S0003-4916(03)00131-3
https://doi.org/10.1016/S0003-4916(03)00131-3
https://doi.org/10.1016/j.physletb.2003.09.018
https://doi.org/10.1016/j.physletb.2003.09.018
https://arXiv.org/abs/hep-th/0306116
https://doi.org/10.1103/PhysRevLett.57.2610
https://doi.org/10.1103/PhysRevLett.57.2610
https://doi.org/10.1142/S0217751X88000163
https://doi.org/10.1142/S0217751X88000163
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1103/PhysRevD.72.105016
https://doi.org/10.1103/PhysRevD.72.105016
https://doi.org/10.1007/978-3-540-49192-7_1
https://doi.org/10.1007/978-3-540-49192-7_1
https://doi.org/10.1007/BF01095108
https://doi.org/10.1016/0550-3213(90)90396-U
https://doi.org/10.1016/0550-3213(89)90135-1
https://doi.org/10.1016/0550-3213(89)90135-1
https://doi.org/10.1007/BF02099494
https://doi.org/10.1007/BF02099494
https://doi.org/10.1016/S0003-4916(03)00131-3
https://doi.org/10.1016/S0003-4916(03)00131-3
https://doi.org/10.1016/0550-3213(92)90386-P

