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We investigate the structure of the gravity-induced generalized uncertainty principle in three dimensions.
The subtleties of lower-dimensional gravity, and its important differences concerning four and higher
dimensions, are duly taken into account, by considering different possible candidates for the gravitational
radius, Rg, that is the minimal length/maximal resolution of the quantum mechanical localization process.
We find that the event horizon of the M ≠ 0 Bañados-Teitelboim-Zanelli micro-black-hole furnishes the
most consistent Rg. This allows us to obtain a suitable formula for the generalized uncertainty principle in
three dimensions, and also to estimate the corrections induced by the latter on the Hawking temperature and
Bekenstein entropy. We also point to the extremalM ¼ 0 case, and its natural unit of length introduced by

the cosmological constant, l ¼ 1=
ffiffiffiffiffiffiffi
−Λ

p
, as a possible alternative to Rg, and present a condensed matter

analog realization of this scenario.
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I. INTRODUCTION

The research on the possible modifications of the
Heisenberg uncertainty principle (HUP) [1–3] has by
now a long and established history [4–9]. Since the
1940s, many such studies have converged on the idea that
some form of generalization of the HUP, usually indicated
as generalized uncertainty principle (GUP), must emerge
when the effects of gravitation are taken into account. In
the last three decades, these generalizations, all resorting
to some deformations of the quantization rules, have
been proposed in string theory, noncommutative geometry,
deformed special relativity, loop quantum gravity, and
black-hole physics [10–24].
As we shall recall below, such gravity-induced GUPs

can be extended to higher dimensions, d > 4, anytime a
“gravitational radius” (e.g., an event horizon) can be

defined. These generalizations have been obtained, for
example, in Refs. [25,26]. To our knowledge, though,
what is still missing is a gravity-induced GUP for lower
dimensions, d ¼ 3 and d ¼ 2. The reasons for this lie in the
radically different behavior of key geometric tensors, in
lower as compared to higher dimensions. For instance,
the Weyl tensor is identically zero in three dimensions,
therefore gravitation does not propagate, while the Ricci
scalar in two dimensions is just the density of a topological
number, the Euler characteristic, and hence can carry no
dynamics. Such things, that happen when we depart from
d ¼ 4 lowering the dimensions, do not happen when we
augment them.
In these days of holography [27], of which the AdS3=

CFT2 correspondence is a prominent example [28], lower-
dimensional physics is increasingly essential for the theo-
retical investigation. Also important these days are the
analog realizations of high energy theoretical construc-
tions. Examples are the (2þ 1)-dimensional black holes
in graphene [29–33], on the one hand, and the GUP
stemming from the fundamental length of Dirac materials,
on the other hand [34,35] (see also [36]). For at least these
reasons, it seems an opportune time to fill the gap and build a
consistent gravity-induced GUP in lower dimensions.
Our focus will be on three dimensions, where Einstein

gravity still makes some sense, and other generalizations of
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the latter can be naturally included. Furthermore, Einstein
gravity with a cosmological constant, in three dimensions,
admits a Bañados-Teitelboim-Zanelli (BTZ) black-hole
solution [37]. On the other hand, the two dimensions are
even more unique, as Einstein gravity makes no sense at all,
and one has to invent an appropriate theory of gravity from
scratch. We shall only briefly comment on this, leaving to a
later work a more in-depth analysis.
In what follows we first review, in Sec. II, how to achieve

a GUP that takes into account the effects of gravitation. In
Sec. III we discuss the subtleties involved with the choice
of a proper gravitational radius in lower dimensions,
especially in d ¼ 2, and then move to d ¼ 3 in Secs. IV
and V, where we focus on the Newtonian gravity, and on the
BTZ black hole, respectively. The latter provides a natural
and consistent gravitational radius; hence it allows us to
obtain a GUP. In Sec. VI we present a physical realization,
in an analog condensed matter system, of the peculiar zero
mass BTZ black hole, which will give yet another view on
the minimal length. In Sec. VII we show how the Hawking
temperature and Bekenstein entropy of the BTZ black hole
are modified when the GUP is taken into account. In the
last section we draw our conclusions, and point to some of
the possible future investigations.

II. UNCERTAINTY PRINCIPLE IN THE
PRESENCE OF GRAVITY

Let us now briefly review how to achieve a GUP that
takes into account the effects of gravitation. One way to do
so is to reconsider the argument of the “Heisenberg
microscope” [1–3]: The size δx of the smallest detail of
an object, theoretically detectable under such microscope
with a beam of photons of energy E (assuming the
dispersion relation E ¼ cp), is roughly given by

δx ≃
ℏc
2E

; ð1Þ

so that increasingly large energies are required to explore
decreasingly small details.
In its original formulation, Heisenberg’s gedanken

experiment ignores gravity. However later gedanken
experiments do take it into account, in particular those
involving the formation of gravitational instabilities in high
energy scattering of strings [10–13], or the formation of
micro-black-holes, with an event horizon (gravitational
radius), Rg ¼ RgðEÞ, depending on the center-of-mass
scattering energy E; see Ref. [17]. Such scenarios suggest
that (1) should be modified to

δx ≃
ℏc
2E

þ βRgðEÞ; ð2Þ

where β is a dimensionless parameter, and Rg is the
gravitational radius associated with E. The deformation

parameter β, in principle, is not fixed by the theory,
although it is generally assumed to be of order one. This
happens, in particular, in some models of string theory (see
again, e.g., Refs. [10–13]), and has been confirmed in
Ref. [38] where an explicit calculation of β has been
performed. A lively debate is however present in the
literature on the “size” of β (see, e.g., Refs. [39–47]).
In d ¼ 4 dimensions1 Rg ¼ 2l2

pE=ðℏcÞ; hence (2)
becomes

δx ≃
ℏc
2E

þ 2βl2
p
E
ℏc

: ð3Þ

This kind of modification was also proposed in Ref. [18].
Relation (3) can be recast in the form of a GUP

[δx → Δx, E → cΔp and lp ¼ ℏ=ð2mpcÞ],

ΔxΔp ≥
ℏ
2

�
1þ β

�
Δp
mpc

�
2
�
: ð4Þ

For mirror-symmetric states (with hp̂i ¼ 0), since
ΔxΔp ≥ ð1=2Þjh½x̂; p̂�ij, the inequality (4) implies the
commutator

½x̂; p̂� ¼ iℏ
�
1þ β

�
p̂

mpc

�
2
�
: ð5Þ

Vice versa, the commutator (5) implies the inequality (4)
for any state. The GUP is widely studied in the context
of quantum mechanics [48–50], quantum field theory
[51–53], thermal effects in QFT [54–59], and for lattice
formulation of the quantization rules [36].
A couple of comments are now in order. The gravita-

tional radius appearing in formula (2) has been initially
introduced for spherical symmetric situations, in particular
the Schwarzschild case for d ≥ 4. While, for the sake of
simplicity, the use of spherical symmetry can be justified
here, relation (2) certainly might enjoy future improve-
ments to the nonspherical case. A similar fate was that of
the original Bekenstein bound, with the emergence of a
characteristic radius that, over the years, enjoyed modifi-
cations to the spherical symmetric formula (see, e.g.,
Bousso review [27]).
Another comment is that the GUP stemming from strings

or micro-black-holes gedanken experiments is substantially
different from the approach of noncommutative geometry
(see, e.g., [16] and also [60,61]). While there a general
commutator ½xμ; xν� ¼ iℏθμνðxÞ is postulated on the
grounds of noncommutative geometry insights, here we
introduce a commutator dictated essentially from high

1The Planck length is defined as lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNℏ=c3

p
≃ 10−33 cm,

with GN the Newton constant. The Planck energy is
Ep ¼ ℏc=ð2lpÞ, and the Planck mass is mp ¼ Ep=c2. The
Boltzmann constant kB will be shown explicitly, unless otherwise
stated.
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energy scatterings reexamined in specific gedanken experi-
ments. Further connections and comparison with the
approach of Ref. [16] will be discussed in future works.
As mentioned, the formula (2) and the related GUP can

be easily generalized to d > 4, anytime Rg can be defined
[25,26]. Let us show now how to proceed when d ¼ 2, 3.

III. LOWER-DIMENSIONAL GUP

The main message of the previous section is that the
existence of a gravitational radius affects the localization,
as expressed in formula (2). We shall assume that a version
of that formula is also valid in lower dimensions, as long as
a gravitational radius can be identified. In what follows we
shall discuss several options.
A fundamental observation is that, for d ¼ 2; 3, Einstein

gravity and the corresponding Newtonian limit decouple.
Hence, we are led to three possibilities:
(A) To develop a coherent Newtonian gravity in d ¼ 2 or

in d ¼ 3 dimensions. These, in general, cannot be
derived as limits of Einstein gravity;

(B) To rely on Einstein gravity (perhaps, including a
cosmological constant) at least for d ¼ 3;

(C) To go beyond Einstein gravity, either (d ¼ 3) by
adding to the Einstein-Hilbert (EH) term other
admissible terms, such as the Chern-Simons gravi-
tational term, see, e.g., [62,63], or (d ¼ 2) by pro-
posing entirely new dynamical models, often based
on scalar fields (dilatons), see, e.g., the review [64].

In the Sec. IV, we shall focus on d ¼ 3 by elaborating on
the cases (A) and (B), since in these cases there is a clear
d ¼ 4 correspondence, while case (C) deserves a separate
later study. But before going there, let us only briefly
comment on d ¼ 2.
As well known, the EH action in two dimensions

amounts to a topological numberZ
M

ffiffiffi
g

p
Rd2x ¼ 2πχ; ð6Þ

where χ, the Euler characteristic, depends only on the
topology of the spacetime manifoldM. As a consequence,
the Einstein tensor identically vanishes. Henceforth, one
needs to invent from scratch a suitable theory, whose
dynamics plays the role of Einstein field equations.
This opens the doors to a variety of candidates for two-
dimensional gravity, as one can see by combing through
Refs. [64,65]. Two-dimensional black holes, with their
temperatures, entropies, and the whole thermodynamics,
can be defined for some of these theories; see [66–68], and
also the recent [69]. However, in this lineal world it is not
clear whether it makes sense to talk about a consistent Rg.
The meaning of Rg itself is, of course, model dependent,
just like the specific gravity one uses for its definition. In
other words, the d ¼ 2 world needs a separate study, for
each black hole stemming from a specific gravity model.

It is surely worth it, but we shall not perform that here. We
want, instead, to merely point to the complexity of this
case, and move to the more tractable case of d ¼ 3, first
considering the Newtonian gravity and then the Einstein
gravity.

IV. d = 3 NEWTONIAN GRAVITY
AND INCONSISTENT Rg

As said above, in d ¼ 3 (and in d ¼ 2) Einstein gravity
does not have a straightforward Newtonian limit, opening
the doors to many different speculations [70]. In this case,
the reason is that in three dimensions the Weyl tensor,
responsible for the nontrivial solution of the Einstein field
equations, outside a matter region (Rμν ¼ 0), identically
vanishes.
To develop Newtonian gravity we require the validity of

the Gauss theorem, also in d ¼ 3. Then the Newtonian
gravitational field, g⃗, of a point mass M should be

g⃗ ¼ −
GM
r2

r⃗; ð7Þ

so that the flux through the circle S ¼ 2πr is

ΦSðg⃗Þ ¼
GM
r

· 2πr ¼ 2πGM: ð8Þ

Notice that here G cannot be the usual Newton constant of
d ¼ 4, GN. However, if we demand that the field g⃗ has the
dimensions of an acceleration, ½g� ¼ L=T2, then the prod-
uct GM should have the dimension of a speed squared,
½GM� ¼ L2=T2. Comparing the latter with the d ¼ 4 result,
½GNM� ¼ L3=T2, we see that, if we want to keep as
fundamental the dimension of a mass, M, then

½G� ¼ ½GN�
L

: ð9Þ

This way, the fundamental dimensions of length, time, and
mass are preserved in d ¼ 3, just as in d ¼ 4.
The gravitational potential then reads

VðrÞ ¼ GM lnðr=r0Þ; ð10Þ

where r0 identifies the zero of the potential, Vðr0Þ ¼ 0.
Notice the positive sign on the right-hand side of (10), that
gives the gravity field the correct direction

g⃗ ¼ −∇⃗V ¼ −
GM
r2

r⃗: ð11Þ

To identify a possible gravitational radius let us introduce
an effective potential, Veff , and analyze its behavior. We
consider a particle of mass m, at radial distance r from a
much larger massM ≫ m (see Fig. 1), and suppose that the
gravitational potential, VðrÞ, generated by M is as in (10).
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Then the gravitational potential energy of the system is
U ¼ mV, and from the Lagrangian

L ¼ T −U ¼ 1

2
m_r2 þ 1

2
mr2 _θ2 −GMm lnðr=r0Þ;

we obtain the equations of motion [71,72]

mr2 _θ ¼ j ¼ constant;

m̈r ¼ j2

mr3
−GM

m
r
: ð12Þ

Integration of the second equation leads directly to the
energy

E ¼ 1

2
m_r2 þ GMm lnðr=r0Þ þ

j2

2mr2
; ð13Þ

that is always bounded from below, E ≥ GMm lnðr=r0Þ þ
j2=ð2mr2Þ, otherwise _r would be imaginary. This allows
us to define the wanted effective potential as Ueff ¼
mVeff ≡m½GM lnðr=r0Þ þ j2=ð2m2r2Þ�. In Fig. 2, we

see the consequences of this. For any allowed value of
the total energy (e.g., E ¼ �3 in the figure), the particle’s
orbit must be bounded (closed), as can be seen also
in Fig. 3.
This should be compared with the d ¼ 4 case. There, if

the total energy is bigger than some value (in general set to
zero), the orbit is not bounded. Therefore, the pointlike
particle can escape to infinity. On the contrary, in d ¼ 3 the
logarithmic behavior of Veff at r → þ∞ makes the orbits
bounded, no matter how big the total energy E is. As well
known, in d ¼ 4, this allows for a clean definition of a
gravitational radius: One needs to consider the first
unbounded orbit at E ¼ 0, and define an “escape velocity”
vf, as the velocity necessary for a point particle to escape
from a distance r, from M, to infinity

v2f ¼ 2GNM
r

−
j2

m2r2
: ð14Þ

For a radial path (i.e., for j ¼ 0), and considering the
limiting case of vf → c, we obtain the wanted gravitational
radius from c2 ¼ 2GNM=Rg, that is Rg ¼ 2GNM=c2.
The same steps cannot be repeated in the d ¼ 3 case,

simply because there are no unbounded orbits; i.e., all the
orbits are closed, and therefore there is no escape velocity.
Thus, our suggestion here is simply

Rg ¼ undefined: ð15Þ

Of course, when light is seen as a bunch of photons, that
are relativistic massless particles, Newtonian gravity cannot
affect them. In that sense, a black hole cannot even be
defined in a consistent way. On the other hand, if we take
the old Newtonian view of light as particles with tiny mass,
we could say that the radius of the black-hole horizon
in d ¼ 3 Newtonian gravity is infinite. These arguments
about light, though, are better faced in a fully relativistic

FIG. 1. In the text we consider the effective potential Veff of a
configuration with a very large mass M interacting with a
pointlike mass m (M ≫ m).

0.5 1.0 1.5 2.0
r

−5

5

10

Veff(r)

Newtonian Potential in d=4

Newtonian Potential in d=3

FIG. 2. The Newtonian gravitational effective potential in d ¼ 3 (short dashes) and in d ¼ 4 (long dashes). The horizontal continuous
lines, that refer to arbitrary values of the total energy E, help visualize that, for any value of the allowed energiesE, the orbits in d ¼ 3 are
always bounded; i.e., the value of r can never exceed a value fixed by the intersection of Veff and the given horizontal line (here, roughly
given by r ≃ 1.5 for E ¼ þ3).
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approach. This, and the previous arguments, make us move
to the Sec. V, to keep searching for a consistent Rg.

V. BTZ BLACK HOLE, CONSISTENT Rg,
AND THE GUP

Given the previous puzzling results, that do not allow us
to define a consistent gravitational radius in d ¼ 3
Newtonian gravity, we consider here, instead, Einstein
gravity with a cosmological constant:

R
d3x

ffiffiffi
g

p ðR − 2Λ).
Indeed, this is probably the most direct way to proceed, that
is, to simply write the d ¼ 4 action in d ¼ 3, and define that
to be the d ¼ 3 theory of gravity.
In what follows, we shall discard the case Λ > 0, which

furnishes a natural (de Sitter) radius, that is the location of
the cosmological horizon. Such horizon cannot be identi-
fied with the Rg we are looking for, because it has nothing
to do with the process of measurement and quantum
localization of a particle, that we discussed at length in
the first two sections of this paper. On the other hand, when
Λ < 0, the theory supports the well-known BTZ black-hole
solution, with a proper event horizon that can naturally be
associated with the wanted Rg (see Refs. [37,73–75]).
To write the metric describing the BTZ black hole in

“Schwarzschild coordinates,” we follow here Ref. [76],
with some small changes. In particular, we work with
c ≠ 1. Moreover, although Einstein gravity in d ¼ 3
dimensions does not have a Newtonian limit, we want to
keep some contact with Newton theory. Therefore we
choose the parameter M to measure a physical mass,

and the gravitational constant G to be the same as in d¼3

Newtonian theory. Hence, as before, ½GM� ¼ L2=T2. With
these conventions the BTZ metric reads [37,76]

ds2BTZ ¼ fðrÞ2c2dt2 − fðrÞ−2dr2 − r2ðdϕþ NϕcdtÞ2;
ð16Þ

where

f2ðrÞ ¼ −
8GM
c2

− Λr2 þ 16G2J2

c4r2
; Nϕ ¼ −

4GJ
c2r2

;

ð17Þ
whereM is the mass (the conserved charge associated with
the asymptotic invariance under time displacements), and
Λ < 0 is the negative cosmological constant, as said earlier.
Furthermore, J is the conserved charge associated with
rotational invariance, namely the angular momentum. As
usual (see, e.g., [77]), horizons are located at the positive
zeros of the function fðrÞ. In this case they are two, rþ and
r−, given by

r2� ¼ 4GMl2

c2

�
1�

�
1 −

J2

l2M2

�
1=2

�
ð18Þ

where, from now on, we write Λ≡ −1=l2 < 0.
We have a black hole under the conditions

M > 0; jJj ≤ Ml ð19Þ

FIG. 3. The trajectories of a particle of mass m ¼ 1 and l ¼ 1 in d ¼ 3. The plots are in the phase space of the radial coordinate,
ðr; prÞ, for three different values of the energy, E ¼ 1, 1.5, and 2. As discussed in the text, this illustrates the inescapable bounded nature
of the orbits of massive particles in d ¼ 3 Newtonian gravity.
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with rþ a genuine event horizon, and r− a Cauchy horizon
(when J ≠ 0). There also exist solutions with other values
of M and J, which are not black holes but conical naked
singularities discarded on physical grounds. There is,
though, an important exception that is the case M ¼ −1
(in units where 8G=c2 ¼ 1) and J ¼ 0, which corresponds
to the anti–de Sitter space [73,78]. The latter solution
indicates that the “vacuum state,” namely the extremal case
M → 0, which implies J → 0 too, is not the bottom of the
spectrum, but rather a peculiar “massless black hole,”
whose (empty) spacetime has the line element

ds20 ¼ ðr=lÞ2c2dt2 − ðr=lÞ−2dr2 − r2dϕ2: ð20Þ

Therefore, even in the extremal case of a “massless BTZ
black hole,” one can introduce a special value of r, that is
r ¼ l, that is a sort of natural unit of length. Of course, this
does not make r ¼ l an event horizon, as such, but further
physical inputs are necessary to use l as the minimal length
of quantum localization we are seeking. In the Sec. VI, we
shall present a condensed matter analog realization of
this scenario. There, the physics of l indeed is clear,
and points to a fundamental length. Before that, let us focus
on the general case of a gravitational radius associated with
nonzero M.
For simplicity, we keep spherical symmetry, that is we

choose J ¼ 0, so that a natural d ¼ 3 gravitational radius
can eventually be defined as

Rg ≡ rþ ¼ l
c

ffiffiffiffiffiffiffiffiffiffiffi
8GM

p
: ð21Þ

We shall soon build on this definition to obtain the GUP
formula we are looking for. Before doing so, we present an
argument about the BTZ black-hole formation mechanism.
In Ref. [79] it is shown that a gravitational collapse, that
ignites the black-hole formation, is best obtained for a
perfect fluid. For pointlike masses things are different,
because in three dimensions gravity does not propagate,
and the pointlike mass just creates a conical singularity
[80,81]. In d ¼ 3 Einstein gravity the formation of a
nonrotating black-hole horizon is impossible, without a
negative cosmological constant.
For the perfect fluid, according to the results of [79], the

formula (21) for Rg should be modified to

RðγÞ
g ¼ l

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8G0ðM − γÞ

p
ð22Þ

where γ is a constant that depends on the perfect fluid, and
G0 is a constant with the dimensions of the Newton constant
in d ¼ 3 that needs not be the same as theG of the previous
discussion (since, as we know, the Newtonian limit does
not necessarily apply here).
Having said that, for the sake of both simplicity and

generality, here we stick to the formula (21), and we leave

to future analysis the discussion about the physical for-
mation of a d ¼ 3 black hole. Hence, considering the
energy E involved in the scattering process of the locali-
zation measurement, and the equivalent massM → E=c2 of
the ensuing micro-BTZ black hole, then we can write

RgðEÞ ¼
l
c2

ffiffiffiffiffiffiffiffiffiffi
8GE

p
; ð23Þ

and the d ¼ 3 version of the minimal spatial uncertainty (2)
reads

δx ≃
ℏc
2E

þ β
l
c2

ffiffiffiffiffiffiffiffiffiffi
8GE

p
: ð24Þ

Following standard procedures (see, e.g., Refs. [17,18,
82,83]), and assuming the dispersion relation E ¼ pc
(in general valid for any high energy particle), a little
algebra allows us to recast (24) into a deformation of the
uncertainty principle

ΔxΔp ≥
ℏ
2

"
1þ 4β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gl2

ℏ2

�
Δp
c

�
3

s #
: ð25Þ

Note that the second term in the squared brackets is
dimensionless, as it must be. Furthermore, it is possible
to define a d ¼ 3 Planck mass as

mp ≡
ffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2l2G

3

s
: ð26Þ

With this, Eq. (25) becomes our GUP in d ¼ 3, and can be
written as

ΔxΔp ≥
ℏ
2

�
1þ 4β

�
Δp
mpc

�
3=2

�
: ð27Þ

Note that, in this case it is not straightforward to write
a commutator which implies the inequality (27). We have
been able to do so for Eqs. (4) and (5) because, for any
given operator Â, we could use the equality ðΔAÞ2 ¼
hÂ2i − hÂi2. Here the different exponent, ðΔAÞ3=2, does not
allow us to write a similar expression. Finally, in the limit
β → 0, we recover the standard HUP, ΔxΔp ≥ ℏ=2.

VI. CONDENSEDMATTER ANALOGOFM = 0 BTZ
AND l AS MINIMAL LENGTH

Let us now present the promised condensed matter
example of an analog of a zero mass BTZ black hole,
where there is a natural physical interpretation of l ¼
1=

ffiffiffiffiffiffiffi
−Λ

p
as the minimal length of the system.

The system we refer to is a two- (spatial) dimensional
Dirac material [84], a prototypical example being graphene
[85]. Indeed, it is by now about a decade that, due to their
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low energy spectrum, Dirac materials have emerged as
powerful condensed matter analogs of high energy phe-
nomena [29–35,86,87]. In particular, in [32] analogs of
Dirac quantum fields on a variety of graphene spacetimes
with nontrivial curvature have been proposed (see also the
open debate on spacetimes with nontrivial torsion [88–90]).
Particularly important for us here are two aspects of that
research: one is the BTZ of [32], and one is the emergence
of a GUP from the lattice constant, the length scale of the
material [34–36,91].
In [32] it was shown that the metric of the J ¼ 0 BTZ

black hole is conformal to the metric of a spacetime
ΣHYP ×R, where the spatial part, ΣHYP, is the hyperbolic
pseudosphere [92], see Fig. 4, while R is spanned by time.
One important point here is that the hyperbolic pseudo-
sphere belongs to the family of surfaces of constant
negative Gaussian curvature

K ¼ −1=a2: ð28Þ

As such, since a real lab is in R3, such surfaces can only
represent portions of the Lobachevsky plane; hence they
necessarily have boundaries, cusps, self-intersections, or
other kinds of singularities, as established by a theorem of
Hilbert; see, e.g., [93]. In particular, since the surface in
point is a surface of revolution, with line element

dl2 ¼ du2 þ C2 cosh2ðu=aÞdϕ2; ð29Þ

with u the longitudinal coordinate, and ϕ ∈ ½0; 2π�, the
locus of such singular boundary is a circle. In terms of the
radial coordinate

ρðuÞ ¼ C coshðu=aÞ; ð30Þ

such circle is the maximal, ρmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ C2

p
, where C is

the minimum, ρmin ¼ C; cf. Fig. 4.
As a tribute to Hilbert, and with a little abuse of the word

“horizon,” such locus in [32] has been called the “Hilbert
horizon,” ρmax ¼ ρHh. In fact, it is not a horizon in the
general relativistic sense. On the other end, it is not even a
boundary one is free to move, as for the cylinder, or to
remove, as for the sphere (for a general introduction to the
latter case, see the classic [92], while for a recent appli-
cation, closer to the present discussion, see [94]).
Knowing this, one could conclude that, in general, the

Hilbert horizon and the event horizon could not match, as
noticed in [95]. For a nonextremal hyperbolic pseudo-
sphere, strictly speaking, this is true. Nonetheless, when the
role of the C parameter is duly taken into account, the two
horizons can be meaningfully made to coincide in the
C=a → 0 limit. The mass of the hole goes to zero even
faster; hence we have the M → 0 BTZ we announced. In
that limit the hyperbolic pseudosphere tends to two
Beltrami pseudospheres “glued” at the tails, as shown in
Fig. 4. Let us show this here.
Let us rewrite the line element of the BTZ black hole in

(16), setting to zero the angular momentum in (17), and
easing a little the notation by setting2 8G=c2 to 1. With this

ds2BTZ ¼ ðr2=l2 −MÞdt2 − dr2

r2=l2 −M
− r2dϕ2

≡ ðr2=l2 −MÞds2; ð31Þ

where, as we know, Λ ¼ −1=l2 < 0,

ds2 ≡ dt2 − l4
dr2

ðr2 − r2þÞ2
− l2

r2

ðr2 − r2þÞ
dϕ2; ð32Þ

and

rþ ≡ l
ffiffiffiffiffi
M

p
; ð33Þ

as in (18), adapted to this case (J ¼ 0) and to this notation.
Let us define

du≡ −
l2

r2 − r2þ
dr; ρðrÞ≡ lr

r2 − r2þ
; ð34Þ

FIG. 4. The hyperbolic pseudosphere for a ¼ 1, C ¼ 1=100.
Clearly for C=a → 0, the surface tends to two Beltrami pseudo-
spheres joined at the minimum value of ρ, that is ρmin ¼ C. In the
plot, the “Hilbert horizons” are two, and located at the two
maximal circles ρmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ C2

p
≃ 1.00005.

2This hides important issues about the physical meaning of the
“speed of light” c here, but has the advantage of focusing entirely
on the role of length scale l. On the importance of G in this
context we extensively commented earlier.
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from which one obtains

rðuÞ ¼ rþ cothðrþu=l2Þ; ð35Þ

that gives

ρðrðuÞÞ≡ ρðuÞ ¼ l coshðrþu=l2Þ: ð36Þ

Comparing the latter with (30), we see the hyperbolic
pseudosphere, with the C parameter (the smallest radius ρ)
equal to the “cosmological” parameter

C≡ l; ð37Þ

and the radius of curvature, a, related to the former
parameter and to the radius of the event horizon

a≡ l2=rþ: ð38Þ

With this, one sees that the line element in (32) is that of
ΣHYP ×R, so that

ds2BTZ ¼ ðr2=C2 −MÞds2HYP; ð39Þ

with

M ¼ C2=a2: ð40Þ

The last formula is obtained by using (37) and (33) in (38).
We then need to notice that, in a laboratory realization of

the structure in Fig. 4, the narrowest throat of the pseudo-
sphere, corresponding to ρmin ¼ C, cannot have a radius
smaller than the lattice constant of the given Dirac material,
otherwise the structure would break. This simple and
evident argument makes our point here. That is, the
physical meaning of C, hence in turn of l, is the lattice
constant, lL, the most natural minimal length of the system

l ¼ C ¼ lL: ð41Þ

Of course, the last equality is an idealization, and only
holds approximately, as such structures in a real lab, for
stability, require a bigger ρmin (for the case of graphene
see [96,97]).
Therefore, the BTZ black-hole relevant quantities, after

this identification, are given by

Λ≡ −1=l2
L; M ≡ l2

L=a
2; rþ ≡ l2

L=a: ð42Þ

Let us now compare the event horizon, rþ, to the Hilbert
horizon of the hyperbolic pseudosphere spacetime

ρHh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ l2

L

q
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

L=a
2

q
; ð43Þ

which is given in different coordinates, though. This is
easily obtained if we use the corresponding meridian

coordinate, uHh ¼ a arccoshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=l2

L

p
Þ, substitute this

value into (35), and use (42)

rHh ≡ rðuHhÞ ¼ rþ coth
�
arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=l2

L

q ��
: ð44Þ

For a ¼ 10nlL this formula approximates to

rHh ¼ rþ ×
10n

ð102n − 1Þ1=2 ≃ rþ × ð1þ 5 × 10−ð2nþ1ÞÞ:

ð45Þ

Clearly, in the limit of small lL=a, these two horizons
coincide. That is also the limit where M → 0, and,
accordingly rþ → 0, i.e., the zero mass black hole
we have announced, or what in [37] is called “the vacuum
state.”
The spectrum of the BTZ is continuous from M ¼ 0 on,

for growing values of the mass,M > 0. As said earlier, this
continuous spectrum corresponds to black holes, the
extremal case being M→0. Between M¼−1 and M ¼ 0
the spectrum is discrete, and corresponds to conical
singularities. The AdS is reached only when M ¼ −1, that
is the true end of the spectrum. Therefore, one may say that
there is still “something of the black hole,” even in the
M ¼ 0 case. This is in contrast with the higher-dimensional
case, where atM ¼ 0 all features of the black hole are gone.
So, in this context we may as well choose to define

Rg ≡ lL: ð46Þ

The logic of this choice is that we learned of this “radius”
when dealing with a gravitational object, that is the M ¼ 0
BTZ black hole. Nonetheless, its meaning is somehow
deeper than the gravity used to spot it. In fact, when
curvature is present in the membrane (say K ¼ −1=a2), we
have the second scale, a, but that is not really necessary as it
is lL that identifies the scale at which the continuum field
theory description breaks down, opening the doors to the
emergence of granular/discreteness effects. Such effects are
there even when curvature effects are absent (a → ∞).
Indeed, in [34,35] it was shown how naturally a GUP
emerges in d ¼ 3 Dirac materials, already in the flat case,
when the effects of a nonzero lL are taken into account. On
this crucial point, are illuminating the results of Ref. [36],
where the fundamental commutator ½x̂; p̂� has been com-
puted (for the first time) on a generic Euclidean lattice.

VII. IMPACT OF THE GUP ON THE BTZ
BLACK-HOLE TEMPERATURE

AND ENTROPY

Armed with the previous results, we want now to focus
on how the GUP affects the Hawking temperature and
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Bekenstein entropy of a macroscopic BTZ black hole3

in d ¼ 3.
In fact, we can rewrite formula (27), by safely assuming

the dispersion relation ΔE ¼ cΔp, as

ΔxΔE ≥
ℏc
2

�
1þ 4β

�
ΔE
mpc2

�
3=2

�
: ð47Þ

Following [40,54,55,57], we now first recall how to
compute the standard Hawking temperature from the
standard HUP, for a d ¼ 4 Schwarzschild black hole.
Then we shall apply the very same technique to obtain
the standard Hawking temperature of the d ¼ 3 BTZ black
hole, through the standard HUP [that is the β → 0 limit of
Eq. (47)]. Finally, using the full GUP of (47), we shall
obtain the corrections to the BTZ Hawking temperature for
a nonzero β.
Suppose we are in a d ¼ 4 spacetime region of

weak field (e.g., far outside a Schwarzschild black hole),
where an effective potential can be defined. Then for any
metric of the form ds2 ¼ FðrÞc2dt2 − gikdxidxk (where
r2 ¼ x21 þ x22 þ x23) the effective potential reads (see, e.g.,
Refs. [98,99])

VðrÞ ¼ 1

2
c2ðFðrÞ − 1Þ: ð48Þ

Note that this expression holds as well in a weak field
of a d ¼ 3 spacetime region. The potential energy of a
particle of rest mass m in that region is U ¼ mV ¼
ðFðrÞ − 1Þmc2=2. If the particle falls radially in the gravity
field for a small radial displacement Δr, the variation of its
potential energy is

ΔU ¼ 1

2
mc2F0ðrÞΔr: ð49Þ

Suppose that this energy is sufficient to create some
particles of mass m from the quantum vacuum, then we
can write 1

2
mc2F0ðrÞΔr ¼ Nmc2, where N is a form factor

related to the particle creation process. The Δr needed for
such a process is

Δr ¼ 2N
F0ðrÞ : ð50Þ

The particles so created are confined in a space slice Δr, so
each of them has an uncertainty in energy given by (HUP)

ΔE ≃
ℏc
2Δr

¼ ℏc
4N

F0ðrÞ: ð51Þ

Interpreting this uncertainty as due to a thermal agitation
energy, and using the Maxwell-Boltzmann statistics, we
can write the equipartition theorem as

3

2
kBTHUP ¼ ΔE ≃

ℏc
4N

F0ðrÞ; ð52Þ

where THUP is the temperature of this gas of particles.
Therefore

THUP ≃
ℏc

6NkB
F0ðrÞ: ð53Þ

For a d ¼ 4 Schwarzschild spacetime FðrÞ ¼ 1 − Rg=r,
with Rg ¼ 2GNM=c2, and (53) computed at the horizon
r ¼ Rg yields

THUP ≃
ℏc

6NkB

1

Rg
¼ 1

12N
ℏc3

kBGNM
≡ 2π

3N
TH; ð54Þ

where the last expression matches the well-known
Hawking temperature of a d ¼ 4 Schwarzschild black
hole, TH ≡ ℏc3=ð8πkBGNMÞ, if we adjust the free param-
eter N as N ¼ 2π=3.
We can now repeat a similar argument for the nonrotating

BTZ black hole in d ¼ 3. From Eq. (17), with J ¼ 0, we
have FðrÞ ¼ ðr2 −R2

gÞ=l2, with Rg ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
8GM

p
=c. Using

again the standard HUP for the radial coordinate,
ΔE ≃ ℏc=ð2ΔrÞ, and Eq. (50), the equipartition of energy
now reads

kBTHUP ¼ ΔE ≃
ℏc
4N

F0ðrÞ; ð55Þ

where we accounted for the fact that in d ¼ 3 the
spatial degrees of freedom are 2, rather than the 3 of
d ¼ 4. Evaluating (55) at the horizon, r ¼ rþ ¼ Rg ¼
ðl=cÞ ffiffiffiffiffiffiffiffiffiffiffi

8GM
p

, we get

THUP ≃
ℏcRg

2Nl2kB
¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffi
8GM

p

2NlkB
≡ π

N
TH; ð56Þ

where again, by choosing now N ¼ π, the last expression
matches

3Two warnings are important here. First, we shall use the GUP
in (27); hence our choice for the gravitational radius in d ¼ 3 is
the event horizon of a microscopic BTZ black hole, as given in
(23). Second, as in any dimension, also in this case we should not
get confused about the logic of having, so to speak, “two kinds of
black holes,” one microscopic, one macroscopic. In fact, as
explained in some detail in Sec. II, the microscopic black hole is
only there associated with the process of localization of a particle
with an uncertainty of Δx, through a photon beam of energy E.
Such energy can create a gravitational instability (“collapse”)
characterized by the event horizon of a micro-black-hole with
equivalent mass M ¼ E=c2.
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TH ≡ ℏcRg

2πl2kB
¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffi
8GM

p

2πlkB
; ð57Þ

which is the well-known Hawking temperature of a BTZ
black hole (see, e.g., [76]).
From the latter expression for the temperature TH,

and from the total energy of the hole, E ¼ Mc2 ¼
ðc4=l28GÞR2

g, it is easy to recover the Bekenstein-
Hawking entropy of a BTZ black hole, by integrating
the thermodynamic definition dSBH ¼ dE=TH. In fact
we get

SBH ¼ kBc3

ℏG
1

4
ð2πRgÞ; ð58Þ

which, in proper units, is the expected one-quarter of the
d ¼ 3 black-hole horizon area, SBH ¼ A=4.
We are now ready to compute the corrections to (57) due

to the GUP. As first step, consider the inequality (47) at the
saturation,

ΔE ≃
ℏc
2Δr

�
1þ 4β

�
ΔE
mpc2

�
3=2

�
; ð59Þ

where in (47) we choose x to be the radial coordinate r, and
solve it forΔE as a function ofΔr. Since the second term in
the square brackets is small compared to 1, we just need a
solution of (59) only to first order in β. In other words, in
the second term in the squared brackets we shall use
ΔE ≃ ℏc=ð2ΔrÞ, to obtain

ΔE ≃
ℏc
2Δr

�
1þ 4β

�
ℏ

2mpcΔr

�
3=2

�
: ð60Þ

Inserting now Δr from Eq. (50) and proceeding as before
[cf. Eq. (55)], we arrive at

kBTGUP ¼ ΔE ≃
ℏc
4N

F0ðrÞ
�
1þ 4β

�
ℏF0ðrÞ
4Nmpc

�
3=2

�
: ð61Þ

Evaluating this expression at the horizon, F0ðRgÞ¼2Rg=l2,
and following the same logic as above [cf. Eq. (56)], we
can write

TGUP ≃
ℏcRg

2Nl2kB

�
1þ 4β

�
ℏRg

2Nl2mpc

�
3=2

�
: ð62Þ

We can fix the free parameter N by demanding the
matching of Eq. (62) with the exact BTZ Hawking temper-
ature (57) in the semiclassical limit β → 0. So we get
N ¼ π and finally

TðβÞ
H ≡ TH

�
1þ 4β

�
ℏRg

2πl2mpc

�
3=2

�
; ð63Þ

with the usual TH given in (57).
Finally, according to the same arguments that lead to

entropy SBH in (58), it is quite easy to write the GUP-
corrected version of the Bekenstein-Hawking entropy for

the BTZ black hole. In fact, using dSðβÞBH ¼ dE=TðβÞ
H , to first

order in β we obtain

SðβÞBH ¼ SBH

�
1 −

8

5
β

�
ℏRg

2πl2mpc

�
3=2

�
; ð64Þ

which is smaller than SBH. A comment is in order
here. Notice that we find a power-law correction to the
Bekenstein-Hawking entropy SBH, instead of a more com-
mon logðSBHÞ term. But actually, according to what we see
in the literature (see, e.g., [26,100,101]) about semiclassical
corrections to SBH, it is clear that leading logðSBHÞ term
corrections due to GUP appear specifically in d ¼ 4
dimensions. As soon as we consider GUP corrections in
d ≥ 5 dimensions, the leading terms always follow a power
law. So, a leading log-term seems to be a specific feature of
four dimensions. Therefore, it does not sound surprising
that in d ¼ 3 we find a correction with a power-law
leading term.

VIII. PERSPECTIVES AND CONCLUSIONS

The various generalizations of the HUP, over the
years, have all converged on the idea that the effects of
gravity instabilities caused by a highly energetic process of
quantum measurement, must be taken into account. Such
gravity-induced GUPs have been extended to dimensions
higher than four, but not to lower dimensions, d ¼ 3
and d ¼ 2.
Due to the central role played by lower-dimensional

physics in various contemporary theoretical investigations
(from holography in quantum gravity, to dimensional
reduction in early cosmology, from the bulk-gravity/
boundary-gauge correspondences, to lower-dimensional
analogs of black-hole physics), we intended to fill the
gap in this paper. The focus here was on the more
straightforward case of d ¼ 3, although we did point to
the main issues of the d ¼ 2 case, leaving to a later work to
address the open questions.
The study revealed to be much more than a mere

dimensional analysis of the existing higher-dimensional
formulas. This is due to the well-known radically different
behavior of key geometric tensors, in lower as compared to
higher dimensions. In particular, we had to face here the
decoupling between Newtonian and Einstein gravity in
lower dimensions, that do not allow for a consistent
definition of the gravitational radius Rg from Newtonian
gravity, as opposed to what happens in d ≥ 4.
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We found, though, that the event horizon of the M ≠ 0
BTZ micro-black-hole, that is solution of the d ¼ 3
Einstein equations with a negative cosmological constant,
can be safely taken as the most consistent Rg. This gave us
the tools to build up a suitable formula for the d ¼ 3 GUP
we were chasing. We then used the latter formula to
estimate the impact of the GUP on the Hawking temper-
ature and Bekenstein entropy of the BTZ black hole.
Taking advantage of the peculiarities of the BTZ black

hole, we also pointed here to the extremalM ¼ 0 case. This
approach furnishes an alternative way to the emergence
of a maximal resolution/minimal length, in the form of4

l ¼ 1=
ffiffiffiffiffiffiffi
−Λ

p
. Notice that no such thing is possible for a

standard d ¼ 4 Schwarzschild black hole, simply because
there is no cosmological constant from which one could
obtain a second length scale, the first being the spacetime
curvature.
This l is a possible alternative to the event horizon, to

play the role of Rg. Here we did not pursue this road till the
formulation of a general GUP, but presented instead a
specific condensed matter analog realization of this sce-
nario on Dirac material. There l emerges as the lattice
constant, lL, and specific forms of the GUP based on such
l have been obtained elsewhere, and here just recalled.
Notice that the logic for which lL could play the role of a
minimal length is somehow complementary to the one

involving the formation of micro-black-holes in the locali-
zation process: At those length scales, the standard gravity
description, including the smooth manifolds, breaks, in
favor of a granular fully quantum description. The famous
spacetime foam envisioned by John Wheeler in the 1950s.
To close, let us point to some of the possible future

investigations. As said earlier, surely one direction is to
move to d ¼ 2, and consider the vast family of models with
black-hole solutions, that should give different Rg’s for
different models. This is delicate work that needs be done
really case by case, because each case is a different theory
of gravity, and we have extensively commented here on
how this could affect a proper definition of an Rg. Another
direction is to consider different d ¼ 3 gravity theories than
the one that is home of the BTZ black hole. One possibility
is topologically massive gravity, and its various limiting
cases, with or without a cosmological constant. Yet another
direction is to include noncommutativity of spatial coor-
dinates, ½xμ; xν� ¼ iθμν, in the scenario. Finally, on a more
phenomenology tune, all of the abovementioned directions
could find experimental realizations in analog gravity
models, where dimensionality is often lower than four,
one key example being the d ¼ 3 Dirac materials.
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