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The traditional S-matrix does not exist for theories with massless particles, such as quantum
electrodynamics. The difficulty in isolating asymptotic states manifests itself as infrared divergences at
each order in perturbation theory. Building on insights from the literature on coherent states and
factorization, we construct an S-matrix that is free of singularities order-by-order in perturbation theory.
Factorization guarantees that the asymptotic evolution in gauge theories is universal, i.e., independent of
the hard process. Although the hard S-matrix element is computed between well-defined few particle Fock
states, dressed/coherent states can be seen to form as intermediate states in the calculation of hard S-matrix
elements. We present a framework for the perturbative calculation of hard S-matrix elements combining
Lorentz-covariant Feynman rules for the dressed-state scattering with time-ordered perturbation theory for
the asymptotic evolution. With hard cutoffs on the asymptotic Hamiltonian, the cancellation of divergences
can be seen explicitly. In dimensional regularization, where the hard cutoffs are replaced by a
renormalization scale, the contribution from the asymptotic evolution produces scaleless integrals that
vanish. A number of illustrative examples are given in QED, QCD, and N ¼ 4 super-Yang-Mills theory.
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I. INTRODUCTION

The scatteringmatrix, orS-matrix, is a fundamental object
in physics. Intuitively, the S-matrix is meant to transform an
“in” state jψ ini at t ¼ −∞ into an “out” state hψoutj at
t ¼ þ∞. Unfortunately, constructing an operator in quan-
tum field theory which achieves this projection is far from
trivial. To begin, one might imagine that S ¼ limt→∞ e−iHt.
However, this operator does not exist, even in a free theory.
For example, acting on states with energies Ei, matrix
elements of this operator would be infinitely oscillating
phases. The proper resolution in quantum mechanics was
first understood byWheeler [1], who defined the S-matrix to
project from a basis of metastable asymptotic states jψ ini (a
nucleus) to other states (other nuclei) jψouti. This idea was
expanded for use in quantum field theory by Heisenberg,
Feynman, and Dyson [2–4] for calculations in quantum
electrodynamics (QED). In modern language, one must
factor out the evolution due to the free Hamiltonian H0 to
make S well-defined.
In the Wheeler-Heisenberg-Feynman-Dyson (henceforth

“traditional”) approach, one assumes that in the far past, the

“in” state is well-approximated with a freely evolving state,
i.e., a state that evolves with the free Hamiltonian H0:
e−iHtjψi → e−iH0tjψ ini as t → −∞. The interaction is
assumed to occur during some finite time interval so that
in the far future, the time evolution is again nearly free:
e−iHtjψi → e−iH0tjψouti as t → þ∞. The state jψi is then
related to the in and out states by Møller operators

Ω� ¼ lim
t→�∞

eiHte−iH0t ð1Þ

as jψi ¼ Ωþjψouti ¼ Ω−jψ ini and so jψouti ¼ Sjψ iniwhere
the traditional S-matrix is defined as

S ¼ Ω†
þΩ−: ð2Þ

Unfortunately, this textbook approach has problems too:
bare S-matrix elements computed this way are both ultra-
violet (UV) and infrared (IR) divergent.1 Ultraviolet diver-
gences are by now completely understood: they are an
artifact of computing S-matrix elements using unphysical
fields in terms of unphysical (bare) parameters. When
S-matrix elements are computed with physical, renormal-
ized, fields in terms of physical observable parameters,
the UV divergences disappear. IR divergences, however,
are not as well-understood and remain an active area of
research. In theories with massless charged particles, such
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1In this paper, we use “IR divergences” to refer to any
divergence that is not of short-distance origin. So IR divergences
come from both soft and collinear regions.
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as QCD, S-matrix elements have IR divergences of both
soft and collinear origin. Historically, three approaches
have been explored to ameliorate the problem: the “cross
section method,” the “dressed-state method,” and the
“modification-of-S method.”
The first way of dealingwith IR divergences, referred to as

the cross section method (following [5,6]), is the most
common. It argues that S-matrix elements themselves are
not physical; only cross sections, determined by the squares
of S-matrix elements integrated over sufficiently inclusive
phase space regions, correspond to observables. Importantly,
in this method, IR divergences cancel between virtual
contributions and real emission contributions to different
final states. The cancellation in QED was demonstrated
definitively by Bloch and Nordsieck [7] in 1937. They
showed that cross sections in QED (with massive fermions)
are IR finite order-by-order in perturbation theory when
processes with all possible numbers of final state photons
with energies less than some cutoff δ are summed over. The
proof ofBloch-Nordsieck cancellation [8–10] crucially relies
on Abelian exponentiation [8]: the soft singularities at any
given order in α in QED are given by the exponential of the
one-loop soft singularities. For theories with massless
charged particles, such as QCD, Bloch-Nordsieck fails [11].
In non-Abelian gauge theories, the theorem of Kinoshita,

Lee, and Nauenberg (KLN) [12,13] is often invoked to
establish IR finiteness. The KLN theorem states that for any
given process a finite cross section can be obtained by
summing over all possible initial and final states for
processes whose energy E lies within some compact energy
window around a reference energy E0, i.e., jE − E0j < δ for
a given δ. In fact, the KLN theorem is weaker and its proof
more complicated than required. First of all, energy is
conserved, so the cancellation must occur without the energy
window. Second of all, one does not need to sum over initial
and final states; the sum over only final states for a fixed
initial state will do, as will the sum over initial states for a
fixed final state. This stronger version of the KLN theorem
was proven recently by Frye et al. [14]. The proof is one line:
for a given initial state, the probability of it becoming
anything is 1, which is finite to all orders in perturbation
theory. Importantly, both the KLN theorem and its stronger
version by Frye et al. generically require the sum of
diagrams to include the forward scattering contribution,
which is usually excluded from a cross section definition.
Unless they happen to be IR finite on their own, the forward
scattering diagrams are crucial to achieve IR finiteness.
Multiple illustrative examples can be found in [14]. If one
wants the cross section to be finite when summing over only
a restricted set of final states, insights beyond Block-
Nordsieck, KLN, and Frye et al. are required, such as those
coming from factorization (e.g., [15–23]).
In the second approach to remedy IR divergences, the

dressed-state method, the S-matrix is defined in the tradi-
tional way, but it is evaluated between states jψdi that are

not the usual few-particle Fock states jp1;…; pni. One of
the first proposals in this direction was by Chung [24], who
argued that in QED one should replace single-particle
electron states jpi with dressed states of the form jpdi ¼
eRjpi with R defined as

Rjpi ¼ e
X2
j¼1

Z
dd−1k

ð2πÞd−1 ffiffiffiffiffiffiffiffi
2ωk

p p · ϵjðkÞ
p · k

aj†k jpi; ð3Þ

where ϵj is a photon polarization vector and aj†k is its
corresponding creation operator. The idea behind this
dressing is that the eikonal factors p·ϵ

p·k give the real emission
amplitude in the singular (soft) limit, which is then canceled
by virtual contributions, so that hpd

3 � � �pd
njSjpd

1p
d
2i is IR

finite. The exponentiation of the eikonal interaction is the
samemechanism (Abelian exponentiation) as invoked in the
Bloch-Nordsieck cancellation. Indeed, the proof of the IR
finiteness of these dressed states in QED is essentially the
same as in the proof of the Bloch-Nordsieck theorem. This
cloud of photons in the dressing has the same form as
Glauber’s coherent states [25] used in quantum optics (these
are, roughly speaking, eRj0i), and so the dressed states in
this case are commonly called coherent states.
While the coherent state approach is in some ways

appealing, it has drawbacks. The main problem is that the
IR divergences are just moved from the amplitudes to the
states. That is, the coherent states themselves are IR
divergent and therefore not normalizable elements of a
Fock space (although they may be understood as living in
a nonseparable von Neumann space, as explained in a series
of papers by Kibble [26–29]). The IR divergence problem is
therefore still present in this construction; it has merely been
moved from the S-matrix elements to the states of the theory.
Additionally, generalizing beyond massive QED to theories
such as QCD with collinear divergences and color factors
has remained elusive [30,31]. In particular, no prescription is
given for how to go beyond the singular points (zero energy
or exactly collinear). For example, the coherent states are
sums over particles with different momenta, so they do not
have well-defined momenta themselves. Is momentum then
conserved by the S-matrix in the coherent-state basis? How
does one integrate over coherent states to produce an
observable cross section? These problems are not commonly
discussed in the literature. As far as we know, no one has
explicitly computed an S-matrix element between coherent
states. This defect gives the coherent-state literature a rather
formal aspect.
The third approach to removing the IR divergences in

scattering theory is to redefine the S-matrix rather than the
states. That the traditional S-matrix inaccurately captures the
asymptotic dynamics arises already in nonrelativistic scatter-
ing of a charged particle off a Coulomb potential in non-
relativistic quantum mechanics. The standard assumption
that particles move freely at asymptotic times is not justified
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for non-square-integrable potentials, such as the 1
r Coulomb

potential, and leads to ill-defined S-matrix elements. In
modern language, the S-matrix element for nonrelativistic
Coulomb scattering has the form

hp⃗fjSjp⃗ii ∼
α

ðp⃗i − p⃗fÞ2
e
−iα m

jp⃗i−p⃗f j
1

2ϵIR : ð4Þ

We see that the leading term of order α, corresponding to the
first Born approximation, is not problematic: except in the
exactly forward limit, there are no divergences in the tree-
level scattering process. The logarithmic IR divergence
(showing up as a 1

ϵIR
pole in d ¼ 4 − 2ϵ dimensions) first

appears in the secondBorn approximation, where it is seen to
be purely imaginary. Moreover, the IR divergent part
exponentiates (as do all IR divergences in QED), into the
Coulomb phase. Thus, in nonrelativistic quantum mechan-
ics, one can apply the cross section ideology evenwithout the
inclusive phase space integrals: the cross section for the
scattering of a single electron off aCoulombpotential iswell-
defined. However, the S-matrix is not.
One of the first attempts to define an S-matrix for

potentials that are not square-integrable was made by
Dollard [32] in 1971. He noted that when incoming
momentum eigenstates are evolved to late times with the
Coulomb interaction H ¼ H0 þ α

r, there is a residual
logarithmic time dependence for large t:

e−i
R

t Hðt0Þdt0 jpi ≅ e−ið
p2

2mtþmα
jpj ln tÞjpi: ð5Þ

The intuition for this form is that at large t the particle
moves approximately on a classical trajectory with r ¼ pt

m,
which gives the logarithmic dependence on t when inte-

grated up to infinity. While the e−i
p2

2mt is removed by
Wheeler’s eiH0t factor, the other term is not and persists
to generate the 1

ϵIR
divergences in the S-matrix. Dollard then

proposed to replace the eiH0t factor with a eiHasðtÞ factor,
with HasðtÞ defined with exactly the logarithmic time
dependence needed to cancel the time dependence in
Eq. (5). He then showed that a modified S-matrix, defined
with his asymptotic Hamiltonian replacing H0, exists for
Coulomb scattering.
When the electron is relativistic, the IR divergence in the

second Born approximation has a real part that does not
cancel at the cross section level. So first-quantized quantum
mechanics is insufficient to produce an IR-finite cross
section: QED is needed. Faddeev and Kulish [33] com-
bined the aforementioned work of Chung in QED and
Dollard in nonrelativistic quantum mechanics. They
observed that in QED, infrared divergences have both a
real part (as Chung observed) and an imaginary part (the
relativistic generalization of the Coulomb phase). These
can be combined into a modified S-matrix of the form

SFK ¼ lim
t�→�∞

e−RðtþÞe−iΦðtþÞSe−iΦðt−ÞeRðt−Þ; ð6Þ

where

ΦðtÞ ¼ α

2

Z
d3p
ð2πÞ3

d3q
ð2πÞ3 ∶ρðpÞρðqÞ∶

p · qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 −m4

p ln jtj

ð7Þ

corresponds to the Coulomb phase [compare to the ln t
dependence in Dollard’s form, Eq. (5)]. The factor R is
similar to Chung’s in Eq. (3) but with a power-expanded
phase, and annihilation operators included as well:

RðtÞ ¼ e
X2
j¼1

Z
d3p
ð2πÞ3

d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2ωk
p

�
p · ϵ⋆j ðkÞ
p · k

aj†k e
ip·kωp

t

−
p · ϵjðkÞ
p · k

ajke
−ip·kωp

t
�
ρðp⃗Þ; ð8Þ

where

ρðpÞ ¼
X
s

ðas†p asp − bs†p bspÞ ð9Þ

is the electron-number operator. Acting on states, it pulls
out the direction p of each fermion and multiplies the
contribution by 1 for electrons or −1 for positrons:
ρðpÞjq1 � � �qni ¼

P�ð2πÞ3δ3ðp⃗− q⃗jÞjq1 � � �qni. Faddeev
and Kulish proceed to argue that SFK has finite matrix
elements between coherent states in QED. They argued that
one should include the phase factors in a redefinition of the
S-matrix while including the eR factors in dressing the
states. Although there are some suspicious orders-of-limit
and signs in the paper of Faddeev and Kulish (see [6]), we
believe their construction is essentially valid. Indeed, one
goal of our paper is to translate this classic work in QED to
modern language. As we will show in Sec. II C, both the
real and the imaginary parts in the factor eiΦðt−ÞeR are
reproduced by the action of a single Wilson line.
In the 50 odd years since the work of Faddeev and

Kulish, there has been intermittent progress on generalizing
the coherent state construction from QED to non-Abelian
theories. Early work [30,34,35] focused on trying to use
coherent states to salvage the Bloch-Nordsieck theorem,
following the QCD counterexamples given by Doria et al.
[11,36]. Although soft divergences in QCD do not expo-
nentiate into a compact form as they do in QED [37,38],
they still have a universal form and factorize off of the hard
scattering [15,23]. Using this observation, it has been
argued using a frequency-ordered formalism that soft-finite
dressed states can be constructed between S-matrix ele-
ments in QCD [30,39]. Collinear divergences and the
soft-collinear overlap in gauge theories were explored in
[6,40–42]. An explicit check of the dressed formalism was
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performed by Forde and Signer [43] who used explicit
cutoffs to separate the regions and showed that the cross
section for eþe− → jets can be reproduced at leading power
at order αs through finite S-matrix elements. The authors of
Ref. [42] argued that if soft-collinear factorization holds in
QCD, then the dressed state formalism should allow one to
construct a finite S-matrix in QCD to all orders. Collinear
factorization was proven diagrammatically at large N a
decade later [44], and a full proof of collinear factorization
and soft/collinear factorization for QCD to all orders
in perturbation theory was given in [22,23], inspired
by [15–17,19,20,45]. One goal of the current paper is to
combine these various insights to provide, for the first time,
an explicit construction of an IR-finite S-matrix for QCD.
In all of this literature, there are a number of unresolved

issues. First, there are essentially no results about the finite
parts of a finite S-matrix. Showing the cancellation of the
IR singularities is one thing, but to evaluate S one needs to
deal with complications of momentum conservation, cut-
offs, and UV divergences, as well as to actually be able to
compute the resulting integrals. A prescription to determine
the finite parts of the modified S-matrix is required if we are
to explore the S-matrix’s properties. While some authors
have suggested criteria such as that the dressed states
should be gauge [46] or BRST invariant [47], or have
asymptotic charges [48,49], or be compatible with
decoherence [50,51], the necessity of these choices is
unclear. Certainly nothing goes wrong at the level of cross
sections if we proceed using the cross section method. After
the finite part is fixed, one must further explain how to
relate modified S-matrix elements to observables: what is
the measure for integration over momenta in the von
Neumann space of dressed states (if one goes that route)?
To agree with data, the predictions had better reduce to
what one calculates using the IR-divergent S, but how that
will happen in any of the approaches to dressed states is
rarely discussed. In this paper, we attempt to raise the bar
for constructing a finite S-matrix by providing a motivated,
calculable scheme, and give explicit expression for S-
matrix elements and observables in a number of cases in
QED, QCD, and N ¼ 4 super Yang-Mills theory.
The organization of this paper is as follows. We start by

motivating and defining a “hard” S-matrix in Sec. II. We
show how to get finite answers, and connect to the previous
work on QED using dressed states in Sec. II A. In Sec. II B,
we discuss how to compute observables and show that the
same predictions for infrared-safe differential cross sections
result from SH as from the traditional S. In Sec. II C we
connect our construction to the expressions of Faddeev and
Kulish in QED. We then proceed to explicit calculations,
working out the Feynman rules and some toy examples in
Sec. III. In Sec. IV we demonstrate IR finiteness in the
process γ⋆e− → e− in QED using cutoffs, and we illustrate
the relative simplicity when pure dimensional regulariza-
tion is invoked. In Sec. V we discuss Z → eþe− including

the connection to the Coulomb phase and the Glauber
operator as well as an explicit calculation of the thrust
distribution, both exactly at next-to-leading order (NLO)
and to the leading logarithmic level using the asymptotic
interactions. Section V B makes explicit some of the
general observations about exclusive measurements from
Sec. II B. Section VI gives some examples inN ¼ 4 super-
Yang-Mills theory, connecting to observations about
remainder functions, renormalization, and subtraction
schemes. Concluding remarks and a summary of our main
results are given in Sec. VII.

II. THE HARD S-MATRIX

The intuition behind scattering is that one startswith some
initial state, usually well-approximated as a superposition of
momentum eigenstates, which then evolves with time into a
region of spacetime where it interacts, and then a new state
emerges. The S-matrix is meant to be a projection of this
emergent final state on to a basis of momentum eigenstates.
For scattering off a local (square-integrable) potential, this
picture works fine. The S-matrix is then defined as S ¼
Ω†

þΩ− as in Eq. (2) with the Møller operatorsΩ� defined in
Eq. (1). However, when the interactions cannot be confined
to a finite-volume interaction region, as in Coulomb scatter-
ing or in a quantum field theory with massless particles, this
picture breaks down: the states at early and late times
continue to interact, so the momentum-eigenstate approxi-
mation is no longer valid.
As mentioned in the Introduction, the simplest example

with the traditional definition of S breaking down is for
nonrelativistic scattering off a Coulomb potential. In this
case, the Møller operators acting on momentum eigenstates
generate an infrared divergent “Coulomb” phase. While the
infrared divergence is a problem for a formal definition of
the S-matrix, it is not a problem for cross section calcu-
lations that depend only on squares of S-matrix elements. In
relativistic Coulomb scattering, or in QED, S has both an
infrared divergent Coulomb phase and an infrared divergent
real part. A convenient feature (Abelian exponentiation [8])
of QED is that a closed form expression is known for the
IR-divergent contribution to all orders in perturbation
theory for any process. Indeed, the one-loop divergences
are given by S ∼ γcusp

ϵIR
where the cusp-anomalous dimension

is (see [52])

γcusp ¼ −
α

π
½ðβ − iπÞ coth β − 1� ð10Þ

with the cusp angle defined by cosh β ¼ v1·v2
jv1jjv2j and vμ1 ¼ pμ

1

E1

and vμ2 ¼ pμ
2

E2
are the four-velocities of the incoming and

outgoing electrons. To all orders, the IR divergences
exponentiate as S ∼ exp −γcusp

2ϵIR
[53]. Thus, it is possible to

factor out IR-divergent parts from the S-matrix and redefine
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a new S-matrix that is IR-finite order-by-order. This was
done by Chung and Faddeev and Kulish, as discussed in the
Introduction. Note that the nonrelativistic limit corresponds
to β → 0 in which case γcusp ¼ iα 1

β becomes the purely
imaginary Coulomb phase.
When the charged particles are also massless, as in QED

with me ¼ 0, new IR divergences appear associated with
collinear divergences. Soft-collinear divergences appear as
double IR poles. Indeed, in the me → 0 limit, vμi becomes
lightlike, so β → ∞. At large β in the cusp angle γcusp ∼
− α

π β diverges linearly with β, so the S-matrix now has
double 1

ϵ2IR
poles. In QCD, or other non-Abelian theories, the

cusp angle gets corrections beyond one-loop and the IR
divergences do not exponentiate into a closed form
expression [37,38,54]. These complications have made it
difficult to come up with a complete formulation of an IR-
finite S-matrix in general quantum field theories [6,42,43].
The approach we take in this paper is to construct an

S-matrix that is IR finite by replacing the free Hamiltonian
H0 in the definition of the traditional S-matrix with an
appropriate asymptotic Hamiltonian Has. That is, we can
define new hard Møller operators

ΩH
� ¼ lim

t�→�∞
eiHt�e−iHast� ð11Þ

and a hard S-matrix as

SH ¼ ΩH†
þ ΩH

− : ð12Þ
Ideally, we would want to choose Has so that the hard
Møller operators exist, as unitary operators on the Hilbert
space. Proving their existence is challenging, as even in a
mass-gapped theory, where we can take Has ¼ H0, they do
not exist by Haag’s theorem [55]. From a practical point of
view, we can be less ambitious and aim to choose Has so
that the hard S-matrix is free of IR divergences at each order
in perturbation theory. If this was our only criteria, we
could choose Has ¼ H, so that SH ¼ 1.
A better criteria for defining Has is that, in addition to

capturing long-distance interactions, the asymptotic
Hamiltonian should be defined so that the asymptotic
evolution of the states is independent of how they scatter.
It is possible to define Has this way due to the universality
of infrared divergences in gauge theories. Using factori-
zation [15–23], the soft and collinear interactions can be
separated from the hard scattering process: Any S-matrix
element in gauge theories can be reproduced by the product
of a hard factor, collinear factors for each relevant direction,
and a single soft factor. See [23] for a concise statement of
factorization at the amplitude level.
In order to exploit factorization, we employ methods

developed in soft-collinear effective theory (SCET). The
theory provides a systematic power expansion of the QED
or QCD Lagrangian, and reproduces all infrared effects.
The leading power Lagrangian in SCET is [56,57]

LSCET ¼ −
1

4
ðFs

μνÞ2 þ
X
n

−
1

4
ðFc;n

μν Þ2

þ
X
n

ψ̄c
n
=̄n
2

�
in ·Dc þ gn · Aa

s ðx−ÞTa

þ iDc⊥
1

in̄ ·Dc
iDc⊥

�
ψc
n þ LGlauber; ð13Þ

where s and c, n are soft and collinear labels, respectively,
and the collinear covariant derivative is

iDc
μ ¼ i∂μ þ gAc;a

μ Ta: ð14Þ

The last term LGlauber describes Coulomb or Glauber gluon
interactions [58] (see also [59]). Pedagogical introductions
to SCET can be found in [56,57,60].
We define the asymptotic Hamiltonian Has to be the

SCET Hamiltonian appended with free Hamiltonians for
massive particles. The hard S-matrix is then defined in
terms of Has using Eqs. (11) and (12).
Although the SCET Lagrangian looks complicated and

nonlocal, much of the complication comes from being
careful to include only leading-power interactions. In
principle, for a theory to be valid at leading power, one
could include any subleading power interactions one wants.
Exploiting this flexibility, the collinear interactions in
LSCET can be replaced simply with the full interactions
of QCD: iψ̄c

nDcψ
c
n. The soft interactions, from the ψ̄c

n
n̄
2
n ·

Aa
s ðx−Þψc

n term, are also not that complicated: they are
equivalent to treating the collinear fermions as being
infinitely energetic, with no recoil. That is, the fermions
act as classical sources for radiation moving in a straight
line along the nμ direction. This leads to an alternative
representation of the soft interactions as coming from
Wilson lines. This connection is made more precise in
Sec. II C.
In practice, when computing SH elements we will not use

the explicit and cumbersome interactions in LSCET. Instead,
we will take the method-of-regions approach [57,61]. We
start with a particular Feynman diagram and then expand to
leading power based on the collinear or soft scaling
associated with particles involved. In a sense, this is the
most straightforward and foolproof way to compute SH
amplitudes. Numerous examples are given in subsequent
sections.
We also, in accord with the general principles of the

method of regions, do not impose any hard cutoffs on the
momenta of the soft and collinear particles that interact
through Has. Imposing cutoffs is helpful for demonstrating
explicit IR-divergence cancellation, and some examples are
provided in Sec. IVA. However, cutoffs generally lead to
very difficult integrals, andmoreover they break symmetries
such as gauge invariance that we would like SH to respect.
More precisely, it is only the finite, cutoff-dependent
remainder terms that may depend on gauge—the IR
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divergence cancellation mechanism is gauge independent.
Since the cutoff-dependent finite parts are unphysical any-
way, it is not a problem that they are also gauge dependent. In
general, however, thewhole frameworkwith cutoffs is rather
unwieldy.
When using pure dimensional regularization, the dia-

grams involving Has interactions will lead to scaleless
integrals. These integrals are both UV and IR divergent.
The IR divergences cancel in other contributions to SH (as
we will provide ample demonstration), but the UV diver-
gences must be removed through renormalization. As a
consequence, in pure dimensional regularization, SH-
matrix elements are not guaranteed to be independent of
the renormalization scheme. Indeed, they are generally
complex and will depend on the scale μ at which renorm-
alization is performed. The SH-matrix is not scale inde-
pendent: d

dμ SH ≠ 0, in contrast to S which does satisfy the

Callan-Symanzik equation d
dμ S ¼ 0. This is unsatisfying,

but not unsettling, as SH elements are not themselves
observable. (To be fair, if S-matrix elements are IR
divergent, it is not clear what it means to say they are
scale independent.) In any case, one should think of SHðμÞ
as one thinks about the strong coupling constant αsðμÞ in
MS. While αsðμÞ is not observable, it is still an extraor-
dinarily useful concept. The running coupling indeed
encodes qualitatively and quantitatively a lot of important
physics, such as unification and confinement. As with
αsðμÞ, when SHðμÞ is used to compute an observable, the
scale dependence will cancel. We demonstrate that in
general in Sec. II B, and we provide an explicit example
in Sec. V.

A. SH and dressed states

The usual way of calculating S-matrix elements in
perturbation theory is to work in the interaction picture,
where one expands the interactions in terms of freely
evolving fields. The propagators for free fields have a
relatively simple form, and S-matrix elements then become
integrals over these propagators. One might try to work out
Feynman rules for SH analogously, in an asymptotic
interaction picture. Then propagators would correspond
to nonperturbative Green’s functions for the soft and
collinear fields in LSCET, including all of their interactions.
Unfortunately, finding a closed-form expression for these
propagators is not possible. In any case, it is not necessary,
since if we want to work perturbatively in the coupling
constants, we must do so consistently in both H and Has.
To proceed, we note that the hard S-matrix can be written

suggestively as

SH ¼ ΩH†
þ ΩH

− ¼ ΩasþΩ
†
þΩ−Ωas†

− ¼ ΩasþSΩas†
− ; ð15Þ

where

Ωas
� ¼ lim

t→�∞
eiHaste−iH0t ð16Þ

are asymptoticMøller operators andΩ�¼limt→�∞eiHte−iH0t

are the usual Møller operators. Inserting complete sets of
states lets us write hard S-matrix elements between a
Heisenberg picture out-state jψouti and a Heisenberg picture
in-state jψ ini as

hψoutjSHjψ ini ¼
Z

dΠψ 0
out

Z
dΠψ 0

in
hψoutjΩasþjψ 0

outi

× hψ 0
outjSjψ 0

inihψ 0
injΩas†

− jψ ini: ð17Þ

Here the integral is over complete sets of Fock-space states
jψ 0

ini and jψ 0
outi. The hard scattering matrix elements are

written as a product of three terms. The middle term is the
traditional S-matrix and the outer terms correspond to
evolution with the asymptotic Møller operators. The
Feynman rules for these contributions closely resemble those
of time-ordered perturbation theory and are derived in
Sec. III A below.
Another interpretation of the hard matrix elements can be

obtained by defining dressed states as

jψd
ini≡Ωas†

− jψ ini; jψd
outi≡Ωas†

þ jψouti: ð18Þ

Then,

hψoutjSHjψ ini ¼ hψd
outjSjψd

ini; ð19Þ

i.e., the matrix elements of the hard S-matrix are equivalent
to matrix elements of the traditional S-matrix between
dressed states. This connection was made in the context of
QED in [6]. The role of the asymptotic evolution can then
be viewed as transforming the in-state defined at t ¼ 0 into
a dressed state at t ¼ −∞ that scatters in the traditional way
(with S). The role of dressed states is illustrated in Fig. 1.
The dressed states jψd

ini and jψd
outi are not normalizable

elements of the Fock space that jψ ini and jψouti live in.

FIG. 1. (Left) The traditional S-matrix is computed from Fock
states evolved using H0 and H. (Right) The hard S-matrix is
computed either using Fock states evolved with Hsc and H or
using dressed states evolved with H0 and H.
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Indeed, if we expand them perturbatively, their coefficients
in the Fock space basis contain infrared divergent integrals.
For example, starting with an jeþe−i state
jψ ini ¼ jv̄sðp1Þus0 ðp2Þi ¼

ffiffiffiffiffiffiffiffiffiffi
2ωp1

p
bs†p1

ffiffiffiffiffiffiffiffiffiffi
2ωp2

p
as

0†
p2
j0i ð20Þ

in QED, the asymptotic Møller operator can add or remove
soft photons with each factor of the coupling e. Up to order
Oðe2Þ the dressed state will be a superposition of the
leading order jeþe−i state, jeþe−γi states, and jeþe−γγi
Fock states. Explicitly,

jψd
ini ¼ jv̄ðp1Þuðp2Þi − e

Z
d3k
ð2πÞ3

1

2ωk

�
p1 · ϵ
p1 · k

jv̄ðp1 − kÞuðp2ÞϵðkÞi −
p2 · ϵ
p2 · k

jv̄ðp1Þuðp2 − kÞϵðkÞi
�

þ e2

2

Z
d3k1
ð2πÞ3

1

2ωk1

Z
d3k2
ð2πÞ3

1

2ωk2

×

�
p1 · ϵ1
p1 · k1

p1 · ϵ2
p1 · k2

jv̄ðp1 − k1 − k2Þuðp2Þϵ1ðk1Þϵ2ðk2Þi þ
p2 · ϵ1
p2 · k1

p2 · ϵ2
p2 · k2

jv̄ðp1Þuðp2 − k1 − k2Þϵ1ðk1Þϵ2ðk2Þi

−
p1 · ϵ1
p1 · k1

p2 · ϵ2
p2 · k2

jv̄ðp1 − k1Þuðp2 − k2Þϵ1ðk1Þϵ2ðk2Þi −
p1 · ϵ2
p1 · k2

p2 · ϵ1
p2 · k1

jv̄ðp1 − k2Þuðp2 − k1Þϵ1ðk1Þϵ2ðk2Þi
�

− e2
Z

d3k
ð2πÞ3

1

2ωk

p1 · p2

p1 · kp2 · k
jv̄ðp1 − kÞuðp2 þ kÞi þ � � � : ð21Þ

Let us make a few observations about these dressed states.
First, note that the Fock states being added have different
three-momenta. When k has exactly zero momentum (the
case almost exclusively considered in the literature),
momentum is conserved. But if one really wants to take
these dressed states seriously, k must be allowed to have
finite energy too, and then jψd

ini is not a momentum
eigenstate.
Second, the coefficient at order e2 is a UV and IR

divergent integral. The IR divergence is expected; it is
exactly the IR divergence that cancels the IR divergence in
elements of S to make elements of SH IR finite.
Nevertheless, it makes jψd

ini hard to deal with as a state.
The divergence requires an excursion from the traditional
Fock space to a von Neumann space [26–29]. The UV
divergence is due to the fact a soft momentum is not
sensitive to any hard scale in the problem, so there is no
natural cutoff on the k integrals. One could, of course, put
in explicit hard cutoffs on the soft momenta; however, it is
easier to simply renormalize the UV divergence by rescal-
ing jψd

ini.
Third, it is not each separate electron that is being

dressed. Rather it is the combination. Indeed, the IR
divergence in the example above comes from loops con-
necting the two electrons. These loops are critical for
canceling the IR divergences in SH. In Chung’s original
formulation [cf. Eq. (3)], a picture can be sketched for a
coherent state as an electron moving with a cloud of
photons around it. But this picture is too naive: the cloud
depends on all the charged particles. This is even clearer in
QCD, where the soft factors come with non-Abelian color
matrices so one cannot rely on the crutch of Abelian
exponentiation to move the dressing factors from state to

state at will. A discussion of additional complications in
QCD and the failure of Bloch-Nordsieck mechanism can be
found in [30].
In conclusion, although the dressed state picture fits in

naturally with the construction of SH we have presented, we
doubt that thinking of the dressed states as physical states
will ultimately be profitable.
We emphasize that for the purpose of having finite

matrix elements, neither the in- and out-states jψ ini and
jψouti nor the dressed states jψd

ini and jψd
outi need to be

eigenstates of the asymptotic Hamiltonian. In the examples
to follow we will take jψ ini and jψouti to be eigenstates of
the free momentum operator Pμ

0 with a finite number of
particles, but in principle they can be taken to be any
sensible linear combination of states in the relevant Hilbert
space, i.e., with finite coefficients, in contrast to the usual
coherent states which are an infinite linear superposition of
Fock state elements. The SH-matrix elements between any
such states are always finite.

B. Computing observables using SH
To compute an observable using SH, one must specify

what is to be included in the measurement and what is not.
As a concrete example, consider computing the inclusive
decay rate of the Z boson in perturbation theory. Since the
Z does not couple to massless gauge bosons, it has no
interactions in Has and therefore Ωas

�jZi ¼ jZi. The rate is
then (up to kinematic factors)

ΓZ ∝
X
X≠Z

jhXjSHjZij2

¼
X
X≠Z

hZjΩas
−S†Ω

as†
þ jXihXjΩasþSΩas†

− jZi: ð22Þ
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The sum is over all states in the theory except the Z itself,
since Z → Z does not contribute to the rate and includes an
implicit integral over the phase space for jXi. Now we writeP

X≠Z jXihXj ¼ 1 − jZihZj to get

ΓZ ∝ hZjZi − hZjS†Ωas†
þ jZihZjΩasþSjZi ¼

X
X≠Z

jhXjSjZij2;

ð23Þ

where Ωas†
þ jZi ¼ jZi was used in the last step. So the sum

over final states gives the same decay rate using SH as it
would using S. The key here was that there are no
asymptotic interactions for Z. If there were, then the
derivation would not hold. But in that case, the Z → Z
forward scattering amplitude would be infrared divergent
using S so it is not clear what physical result we should
expect.
Suppose we wanted to compute something less inclusive

than the total decay rate. The observable has to be infrared
safe. For example, we could consider a 2-jet rate in
eþe− → hadrons. Such a rate depends on the jet definition,
which depends on exactly how the soft and collinear
momenta are handled. In other words, it depends not only
on the hard process, which is roughly speaking the jet-
production amplitude, but also on the evolution of the jets
after the hard scattering occurs. For this evolution,we need to
include the dynamics induced by e−iHastþ ≡ limt→∞ e−iHast,
as the state evolves from t ¼ 0 to t ¼ ∞ after the hard
scattering. That is, we should define our exclusive cross
section as

σ2-jet ¼
X
X

X
Y

jhXje−iHastþjYihYjSHjZij2δ½NjetsðXÞ − 2�:

ð24Þ

Here NjetsðXÞ is the measurement function which takes as
input the momenta of the particles in the final state X and
returns the number of jets according to some jet definition.

The factor hYjSHjZi gives the amplitude to produce the jets
and hXje−iHastþjYi gives the amplitude for those jets to evolve
into a state with the particles in jXi at asymptotic times. The
sum over Y can be as restrictive as desired. For example, if Y
is taken to be only jqq̄i quark-antiquark states, the distribu-
tion will be valid to leading power. To get the jet mass
distribution exactly right, including subleading power
effects, one should extend the sum from over jq̄qi states
to anything that could possibly evolve into a state X with
NjetsðXÞ ¼ 2. For example, jq̄qgi should be included. If all
states are allowed, then one can replace

P
Y jYihYjwith 1. In

that case, the rate reduces to

σ2-jet ¼
X
X

jhXjeiH0tþSjZij2δ½NjetsðXÞ − 2�: ð25Þ

The eiH0tþ factor generates a phase eiEXtwhich is constant for
all X by energy conservation and therefore drops out of the
absolute value. Thereby the exclusive cross section reduces
to the same thing one would compute using S (in agreement
with a century of theory/experiment comparisons). A cartoon
of the reduction of the cross section to the one computedwith
S for this process is shown in Fig. 2.
Just because one can reduce cross section calculations

using SH to those using S does not mean one should.
Additional physical insight is gained by maintaining the
separation into a calculation of SH first and then of the
evolution using e−iHastþ or equivalently Ωþ

as. In particular,
sinceHas is independent of the hard scattering, the separation
leads to the physical picture of a short-distance amplitude for
jet production followed by an evolution from short-to-long
distances where the jets are resolved into their constituents.
For example, in the computation of thrust in eþe− events,
when the events comprise pencil-like jets, the structure of the
distribution is almost completely determined by the asymp-
totic evolution alone. This example and the utility of the
separation will be discussed more in Sec. V.
The above discussion of observables also helps clarify

how one should think of assigning hard or soft/collinear

FIG. 2. An observable is computed by integrating the square of an amplitude against a measurement function, inserted at t ¼ ∞. In
computing an exclusive observable sensitive to the asymptotic dynamics, one must evolve the dressed states toþ∞ using the asymptotic
Hamiltonian. The example Z → jets is illustrated on the left. The result is equivalent to evolving the initial state jZi at t ¼ −∞ with the
full Hamiltonian to the set of states jXi on which the measurement is performed at t ¼ þ∞ (right).
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labels to the particles in the states. Consider, for example,
the process Z → q̄qg. In what circumstances should one
consider the gluon momentum to be collinear to the quark
or antiquark momenta, or soft?
On the one hand, if one declares the gluon momentum to

be soft or collinear, then there are necessarily interactions in
Has that can produce the gluon through a real emission. Due
to factorization, the amplitude for this emission from Has
will approach that fromH, but with an opposite sign. So the
two will cancel in the exact soft/collinear limits. In other
words, if the gluon momentum is soft/collinear, then the
hard matrix element hq̄qgjSHjZi will vanish in soft/collin-
ear limits. In this case, there is also a contribution to a q̄qg
final state from the hard q̄q production hq̄qjSHjZi and then
an emission of g though the asymptotic interactions. This
additional contribution is not power suppressed and adds to
the hq̄qgjSHjZi amplitude to produce the full distribution,
in agreement with hq̄qgjSjZi. Such a deconstruction
corresponds to the picture of matching onto a 2-jet operator
C2O2 and then matching on to a 3-jet operator C3O3 in
SCET. [62,63]. In such matching, the Wilson coefficient C3

vanishes in soft and collinear limits.
On the other hand, it does not really make sense to

compute hq̄qgjSHjZiwhen the gluon is soft or collinear. The
hard S-matrix is meant to give amplitudes for the production
of hard particles. The evolution of those hard particles into
jets with soft/collinear substructures is subsequently deter-
mined by Has. Thus, a more sensible convention is to
consider only matrix elements hq̄qgjSHjZi when all three
final state particles are considered hard. In this case, these
particles have no interactions with each other in Has, and
there are no contributions to hq̄qgjSHjZi that have real
emissions from the asymptotic region. Thus, all the con-
tributions to SH involving the asymptotic region are virtual
(and give scaleless integrals in pure dimensional regulari-
zation). In other words, if one is interested in 3-jet produc-
tion, one should study hq̄qgjSHjZi, and if one is interested in
2-jet production, one should study hq̄qjSHjZi. Although the
final predictions for IR-safe differential cross sections are
independent of what conventionwe take for assigning labels
to the final state particles (and always agree with the result
from S), the hard S-matrix should always be thought of as
giving the amplitudes for producing hard particles.With this
convention hq̄qgjSHjZi no longer vanishes in soft or
collinear limits. Instead in these limits, it factorizes into
hq̄qgje−iHastþjq̄qihq̄qjSHjZi. Since the splitting amplitudes
hq̄qgje−iHastþjq̄qi are universal [22,23,44], this restricts the
possible form that hq̄qgjSHjZi could have. Implications of
these restrictions have been discussed extensively (see
[64,65]) and are one instance of the deep structure present
in SH-matrix elements.
In summary, one has two choices:
(i) Allow states in which SH matrix elements are taken

to have soft or collinear momenta. Observables
computed this way will only be valid to leading

power, but can be computed efficiently exploiting
factorization.

(ii) Insist that all states in which SH matrix elements are
taken have only hard momenta. Then all the con-
tributions from the asymptotic regions are virtual as
well as scaleless in dimensional regularization.
Observables agree exactly with their computation
using S.

We emphasize that with either choice, SH matrix elements
are IR finite. The general observations in this section are
backed up with explicit calculations in Sec. V B.

C. Soft Wilson lines

To connect our framework to previous work, we consider
the QED case with massive electrons. In this case, there are
only soft interactions in the asymptotic Hamiltonian. The
interaction in the SCET Hamiltonian between soft photons
and collinear fermions has the form [see Eq. (13)]

Hint
softðtÞ ¼ e

X
n

Z
d3xn · Aðx−Þξ̄nðxÞ

=̄n
2
ξnðxÞ; ð26Þ

where nμ is a lightlike four-vector labeling the fermion, n̄μ

is the direction backwards to nμ, and x− ¼ n̄ · x. For
simplicity, we take nμ ¼ ð1; 0; 0; 1Þ so n̄μ ¼ ð1; 0; 0;−1Þ
and x− ¼ tþ z. The dependence of the interaction only on
x− follows from the multipole expansion.2 The collinear
fields have only half the degrees of freedom of fields in
QED: they only describe electrons in this case, as pair
creation is power suppressed. So we can write

ξnðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωp

p uðpÞape−ipx;

ξ̄nðxÞ ¼
Z

d3q
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωq

p ūðqÞa†qeiqx: ð27Þ

The field expansion for the soft photon is as usual, but the
phase is power expanded,

Aμðx−Þ ¼
X2
j¼1

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p

× ½ϵjμðkÞajke−i
1
2
kþx− þ ϵj�μ ðkÞaj†k ei

1
2
kþx− �: ð28Þ

Inserting these field expansions and integrating over d3x
gives

2A collinear momentum scales as ðp−; pþ; p⊥Þ ∼ ðλ2; 1; λÞ so
x scales as ðx−; xþ; x⊥Þ ∼ ð1; λ−2; λ−1Þ. Then since a soft mo-
mentum scales homogeneously as k ∼ λ2, only the kþx− compo-
nent is relevant at leading power. See [57] for more details.
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Hint
softðtÞ ¼ e

X
n

Z
d3p

ð2πÞ3 ffiffiffiffiffiffiffiffi
2ωp

p d3q

ð2πÞ3 ffiffiffiffiffiffiffiffi
2ωq

p d3k
ð2πÞ3 ffiffiffiffiffiffiffiffi

2ωk
p ð2πÞ3δ2ðp⃗⊥ − q⃗⊥ÞūðqÞ

=̄n
2
uðpÞa†qap

×
X2
j¼1

�
n · ϵjðkÞajkδ

�
qz − pz −

1

2
kþ

�
eiðωq−ωp−1

2
kþÞt þ n · ϵj�ðkÞaj†k δ

�
qz − pz þ 1

2
kþ

�
eiðωq−ωpþ1

2
kþÞt

�
: ð29Þ

Since kþ ≪ pz after doing the q integral, we can replace
a†q ≅ a†p at leading power and write

1ffiffiffiffiffiffiffiffi
2ωp

p 1ffiffiffiffiffiffiffiffi
2ωq

p ūðqÞ =̄n
2
uðpÞ ≅ 1

2ωp
p · n̄ ≅ 1: ð30Þ

Power expanding the energy ωq gives

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2⊥ þ

�
pz � 1

2
kþ

�
2

s

≅ ωp �
pz

2ωp
kþ ≅ ωp ∓ 1

2
kþ; ð31Þ

and hence the argument of the exponential becomes
iðωq − ωp ∓ 1

2
kþÞt ≅ ∓ikþt. So we get

Hint
softðtÞ ¼ e

X
n

AμðtnμÞ
Z

d3p
ð2πÞ3 a

†
pap: ð32Þ

Then we find that the asymptotic Møller operator acting on
a single electron state gives

Ωsoftþ jpi ¼ T

�
exp

�
−i

Z
∞

0

dtHint
softðtÞ

��
jpi

¼ P

�
exp

�
−ie

Z
∞

0

dsn · AðsnμÞ
��

jpi ð33Þ

withP a path-ordered product. The path ordering is actually
superfluous in QED, but is important in the non-Abelian
case. The soft Wilson line in QED is defined as

Y†
n ¼ exp

�
−ie

Z
∞

0

dsn · AðsnμÞe−εs
�
; ð34Þ

where the factor e−εs ensures convergence near s ¼ ∞.
Then, the action of the asymptotic soft Møller operator is
the same as that of a product of soft Wilson lines

Ωsoftþ jp1 � � �pji ¼ TfY†
n1 � � �Y†

njgjp1 � � �pji: ð35Þ

For antiparticles, one would have Yn factors instead, and for
incoming particles, one would have factors of Ȳn, defined
as Y†

n but with an integral from −∞ to 0 [22].
We can combine the time-ordered product of exponential

into a single exponential using the Magnus expansion [66],

T

�
exp

�Z
∞

0

dtOðtÞ
��

¼ exp

�Z
∞

0

dtOðtÞ þ 1

2

Z
∞

0

dt
Z

∞

t
ds½OðsÞ;OðtÞ�

×
1

6

Z
∞

0

dt
Z

∞

t
ds

Z
∞

s
duð½OðuÞ; ½OðsÞ;OðtÞ��

þ ½OðtÞ; ½OðsÞ;OðuÞ��Þ þ � � �
�
; ð36Þ

where the higher order terms are sums of nested commu-
tators. The commutators of two fields in Feynman gauge
can be computed directly from the field expansions in
Eq. (28),

½n1 · Aðsnμ1Þ; n2 · Aðtnμ2Þ�

¼ −
Z

d3k
ð2πÞ3

n1 · n2
2ωk

½e−iðsnμ1−tnμ2Þkμ − eiðsn
μ
1
−tnμ

2
Þkμ �: ð37Þ

Since the commutator in Eq. (37) is a c-number, additional
commutators vanish. This is the essence of Abelian
exponentiation. Then, we can combine all the time-ordered
exponentials into a single exponential,

TfY†
n1 � � �Y†

njg ¼ exp

�
−ie

X
j

Z
∞

0

dsnj · Aðsnμj Þ
�

× exp

�
i
X
ij

Φij

�
; ð38Þ

where

iΦij≡−e2
1

2

Z
∞

0

dt
Z

∞

t
ds½ni ·Aðsnμi Þ;nj ·Aðtnμj Þ�e−εðsþtÞ:

ð39Þ

When acting on states with electrons, this combination is
exactly of the form eReiΦ that Faddeev and Kulish write
[see Eq. (6)], with R the expression in Eq. (8). The electron-
number operator ρðp⃗Þ from Eq. (9) is of the same origin as
the a†pap in Eq. (32).
Consider the case of an outgoing electron and positron in

QED, where we want to simplify the time-ordered product
of two Wilson lines TfY†

n1Yn2g. Then
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OðtÞ ¼ −ie½n1 · Aðtnμ1Þ − n2 · Aðtnμ2Þ�: ð40Þ

To see the connection to the Coulomb phase, let us do the
integrations over s and t in Eq. (39) using Eq. (37)

iΦij¼ ie2
Z

d3k
ð2πÞ3

1

2ωk
Im

n1 ·n2
ðn1 ·k− iεÞððn1−n2Þ ·k−2iεÞ :

ð41Þ

Taking n1 ¼ ð1; 0; 0; 1Þ and n2 ¼ ð1; 0; 0;−1Þ we can
simplify this to

Φ ¼ e2
Z

d3k
ð2πÞ3

1

2ωk
Im

2

ðωk − kz − iεÞð−2kz − 2iεÞ

¼ −
e2

16π2

Z
d2k⊥
k2⊥

: ð42Þ

This is the usual divergent integral appearing in the
Coulomb phase [cf. Eq. (108)]. When one of the electrons
is incoming, the

R
∞
0 ds gets replaced with

R
0
−∞ ds in

Eq. (39), and we get

Φ ¼ −e2
Z

d3k
ð2πÞ3

1

2ωk
Im

2

ðωk þ kz þ iεÞðωk − kz − iεÞ
¼ 0; ð43Þ

which is consistent with the Coulomb phase vanishing for
timelike kinematics.
In this way, we have shown that our framework agrees

with previous work in the case of QED, where there are soft
but not collinear singularities and the gauge boson is
Abelian. Note that both the Coulomb phase and the real
part of the exponent emerge from the single soft-collinear
interaction in Has.
In the non-Abelian case, one cannot combine the path-

ordered exponentials into the exponential of a single closed-
form expression as in Eq. (38): the gauge generators do not
commute. There is an analog of Abelian exponentiation,

called non-Abelian exponentiation [37,38,54] but one must
include higher order commutators, and no closed form
expression is known. Thus, a Faddeev-Kulish type formu-
lation of the dressed states is impossible for QCD. The
Wilson-line description of the soft interactions is still valid,
however, and the soft interactions inQCDstill factorize off of
the scattering operator into soft Wilson lines.

III. COMPUTING THE HARD S-MATRIX

In this section, we show how to compute SH-matrix
elements perturbatively. We will use the formula in
Eq. (17):

hψoutjSHjψ ini ¼
Z

dΠψ 0
out

Z
dΠψ 0

in
hψoutjΩasþjψ 0

outi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
asymptotic region

× hψ 0
outjSjψ 0

ini|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
central region

hψ 0
injΩas†

− jψ ini|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
asymptotic region

: ð44Þ

We call the two outer matrix elements the asymptotic
region and the part involving hψ 0

outjSjψ 0
ini the central

region. The asymptotic regions go from 0 > t > −∞
and ∞ > t > 0, both backward in time. The central region
calculation is just that of an ordinary S-matrix. A cartoon of
the division is shown in Fig. 3. In this section we establish
the Feynman rules for the asymptotic regions, which are
similar to those in old-fashioned, time-ordered perturbation
theory with a few changes. We also give an example
calculation in ϕ3 theory that clarifies some of the subtleties.
Calculations for physical processes in QED, QCD, and
N ¼ 4 super-Yang-Mills (SYM) theories are given in
subsequent sections.

A. Asymptotic region Feynman rules

We have reduced the problem of computing matrix
elements of SH to calculating matrix elements of S and
matrix elements of the form

FIG. 3. In order to facilitate calculations in perturbation theory, we divide the matrix elements of SH into three parts. In the two outer
parts, the asymptotic evolution Møller operators Ωas

� work to dress the in- and out-states. The middle part corresponds to a calculation of
traditional S-matrix elements between dressed states.
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hψoutjΩasþjψ 0
outi and hψ 0

injΩas†
− jψ ini ð45Þ

in perturbation theory. To evaluate these matrix elements,
we separate the asymptotic Hamiltonian into a free part and
an interaction part:

Has ¼ H0 þ Vas: ð46Þ

Defining the operator UasþðtÞ by the equation Ωasþ ¼
limt→∞UasþðtÞ, it satisfies the differential equation

−i∂tUasþðtÞ ¼ UasþðtÞVI
asðtÞ; Uasþð0Þ ¼ 1; ð47Þ

where the superscript I indicates that VI
as is the interaction

picture potential, i.e., the asymptotic potential Vas½ϕ0� ¼
−
R
d3xLas½ϕ0� expressed in terms of freely evolving

interaction picture fields ϕ0, and where Las is the
Lagrangian density corresponding to the asymptotic inter-
actions. This differential equation has the solution

UasþðtÞ ¼ 1þ i
Z

t

0

dt0VI
asðt0Þ

þ i2
Z

t

0

dt0
Z

t0

0

dt00VI
asðt00ÞVI

asðt0Þ þ � � �

¼ T̄

�
exp

�
i
Z

t

0

dt0
Z

d3x⃗VI
asðt0Þ

��
; ð48Þ

where T̄ denotes an anti-time-ordered product.
To see how to evaluate matrix elements of this operator,

consider the following diagram in scalar ϕ3 theory:

ð49Þ

The free fields are given by

ϕ0ðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωp

p ðape−ipx þ a†peipxÞ: ð50Þ

One-particle states in the free theory are

jpi ¼ ffiffiffiffiffiffiffiffi
2ωp

p
a†pj0i: ð51Þ

Up to renormalization, which will be discussed later, the
external states are as usual taken to be free creation
operators acting on the free vacuum. We therefore aim
to calculate

Sþ ¼ hp1p2jΩasþðtÞjp0
1p

0
2i

¼ hp1p2jT̄
�
exp

�
−i

Z
∞

0

dt0
Z

d3x⃗Las½ϕ0�
��

jp0
1p

0
2i:

ð52Þ

The second order term in g is

Sþð2Þ ¼h0j ffiffiffiffiffiffiffiffiffiffi
2ωp1

p
ap1

ffiffiffiffiffiffiffiffiffiffi
2ωp2

p
ap2

Z
∞

0

dtx

Z
∞

tx

dty

Z
d3x⃗

×
Z

d3y⃗
−ig
3!

ϕ3
0ðxÞ

−ig
3!

ϕ3
0ðyÞ

ffiffiffiffiffiffiffiffiffiffi
2ωp0

1

q
a†p0

1

ffiffiffiffiffiffiffiffiffiffi
2ωp0

2

q
a†p0

2
j0i:

ð53Þ

Inserting Eq. (50) and commuting creation and annihilation
operators, gives the following expression corresponding to
the diagram above:

Sþð2Þ
A ¼ ð−igÞ2h0j ffiffiffiffiffiffiffiffiffiffi

2ωp1

p
ap1

ffiffiffiffiffiffiffiffiffiffi
2ωp2

p
ap2

Z
∞

0

dtx

Z
∞

tx

dty

Z
d3x⃗

Z
d3y⃗

×
Z

d3q1
ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi

2ωq1

p a†q1e
iq1x

Z
d3q2

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
2ωq2

p a†q2e
iq2y

Z
d3k

ð2πÞ3 ffiffiffiffiffiffiffiffi
2ωk

p ak0e−ik
0x
Z

d3k0

ð2πÞ3 ffiffiffiffiffiffiffiffiffi
2ωk0

p a†ke
iky

×
Z

d3q02
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffi
2ωq0

2

q aq0
2
e−iq

0
2
y

Z
d3q01

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
2ωq0

1

q aq0
1
e−iq

0
1
x

ffiffiffiffiffiffiffiffiffiffi
2ωp0

1

q
a†p0

1

ffiffiffiffiffiffiffiffiffiffi
2ωp0

2

q
a†p0

2
j0i: ð54Þ
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Integrating over x⃗ and y⃗ gives the δ-function. Integrating
over these δ-functions and the additional δ-functions
coming from the creation and annihilation operators re-
duces the expression to

Sþð2Þ
A ¼ ð2πÞ3δ3ðp⃗1 þ p⃗2 − p⃗1

0 − p⃗2
0Þð−igÞ2

×
1

2ωk

Z
∞

0

dtx

Z
∞

tx

dtyeiðω1−ω0
1
−ωkÞtxeiðω2−ω0

2
þωkÞty :

ð55Þ

Finally, the integrals over tx and ty give

Sþð2Þ
A ¼ ð2πÞ3δ3ðp⃗1 þ p⃗2 − p⃗1

0 − p⃗2
0Þð−igÞ2

×
1

2ωk

−i
ω0
1 þ ω0

2 − ω1 − ω2 − iε
−i

ω0
2 − ω2 − ωk − iε

:

ð56Þ

More generally, the Feynman rules for the asymptotic
regions are the same as those in ordinary relativistic time-
ordered perturbation theory (see [67] for example) with two
differences: (1) Since the outermost integral goes from 0 to
∞ instead of −∞ to ∞, the overall energy-conserving δ-
function, and 2πδðEf − EiÞ is replaced by a propagator

i
Ef−Eiþiε. (2) The evolution is backwards in time (eiHast

instead of e−iHast) so the whole amplitude is complex
conjugated. This means ig → −ig and i

Eþiε →
−i

E−iε.
For explicit computations and consistency checks, one

has to be very careful about the iε prescription. It is
important to keep in mind that the propagators −i

E−iε are
distributions, only defined under integration. The iε comes
from an integral representation of the θ function:Z

∞

0

dte−iωt ¼
Z

∞

−∞
dtθðtÞe−iωt

¼
Z

∞

−∞
dt

�Z
∞

−∞

dE
2π

eiEt
−i

E − iε

�
e−iωt

¼
Z

∞

−∞
dEδðE − ωÞ −i

E − iε
¼ −i

ω − iε
; ð57Þ

so it really should be associated with the shift ω → ω − iε
for any integral ending at t ¼ þ∞ or ω → ωþ iε for any
integral starting at t ¼ −∞. When we have a nested
integral, such as Eq. (55), we getZ

∞

0

dt2

Z
∞

t1

dt2eiω1txeiω2t2

→
Z

∞

0

dt2

Z
∞

t1

dt2eiðω1−iεÞt1eiðω2−iεÞt2

¼ −i
ω2 − iε

−i
ω1 þ ω2 − 2iε

: ð58Þ

So each vertex gives another factor of ε. An example of the
importance of careful treatment of these distributions is
given in Sec. III B.
In summary, the Feynman rules for hψoutjΩasþjψ 0

outi are as
follows:

(i) Draw all relevant time-ordered diagrams between
the state jψouti at t ¼ 0 on the right and jψ 0

outi at
t ¼ ∞ on the left:

ð59Þ

(ii) Assign momenta kμi to each internal line, with k0i ¼
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k⃗2i

q
the on-shell energy.

(iii) Start at the far left of the diagram (t ¼ ∞), and move
a vertical cut rightwards time until a vertex is
crossed. After each vertex is crossed, include a
factor of

−i
ðE0

out − niεÞ − Ecut
; ð60Þ

where Ecut ¼
P

ωcut is the total energy of the
particles in the cut, E0

out ¼
P

ω0
out is the total energy

of the particles in jψ 0
outi, and n is the number of

vertices that have already been crossed in the asymp-
totic region. Note that the−iε comes from aþiε from
the t ¼ þ∞ region, and is then complex conjugated.

(iv) For each vertex, add a factor of ð2πÞ3δ3ðP p⃗iÞ to
impose three-momentum conservation and −ig for
the interaction (or whatever the interaction is, just as
in regular Feynman rules, complex conjugated).

(v) Integrate over
Q

i

R d3ki
ð2πÞ32ωi

for the momentum of
each internal line.

The Feynman rules for hψ 0
injΩas

− jψ ini are identical except
that the diagrams go from t ¼ −∞ on the right to t ¼ 0 on
the left

ð61Þ
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and the propagators are

−i
ðE0

in − inεÞ − Ecut
; ð62Þ

where E0
in ¼

P
ω0
in is the total energy of the particles

in jψ 0
ini.

B. Cross-check in ϕ3 theory

To validate the Feynman rules, consider the case where
Has ¼ H. In this case, the hard S-matrix is trivial SH ¼ 1.
Perturbatively, this means that diagrams with all vertices in
the central region should be exactly canceled by diagrams
involving vertices in the asymptotic regions. Moreover, the
cancellation should occur for each time-ordered diagram on
its own. We can check this cancellation in any theory and
any diagram, so we take ϕ3 theory with Lagrangian L ¼
− 1

2
ϕ□ϕþ g

3!
ϕ3 for simplicity and consider the diagram

ð63Þ

We sum over diagrams with t1 and t2 going from 0 to
−∞ to ∞ and back to 0. Let us call the initial energy as
ωi ¼ ωp, the final energy ωf ¼ ωp, and the energy of the
intermediate state ωc ¼ ωp−k þ ωk.
The usual time-ordered perturbation theory loop (i.e., the

contribution from S to SH with all vertices in the central
region) is

ð64Þ

To see this cancel other diagrams, it is helpful to break this diagram down further, into the contribution into three regions:
first −∞ < t1 < t2 < 0, then −∞ < t1 < 0 < t2 < ∞, and finally 0 < t1 < t2 < ∞,

S1 ¼
ðigÞ2
2

Z
d3k

ð2πÞ34ωkωp−k

�
i

ωi−ωcþ iε
i

ωi−ωf þ 2iε
þ i
ωi −ωcþ iε

i
ωf −ωcþ iε

þ i
ωf −ωcþ iε

i
ωf −ωiþ 2iε

�
: ð65Þ

In this decomposition, we have employed the careful treatment of the distributions discussed around Eq. (58).
Contributions from the loop in the asymptotic region are given by

ð66Þ

and contributions from the loop divided between the two asymptotic regions are

ð67Þ

Last, there are contributions from diagrams with one vertex in the asymptotic region:
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ð68Þ

Adding these contributions up, we find

X6
i¼1

Si ¼ 0: ð69Þ

Similarly, all the contributions to the other time ordering
of the diagram in Eq. (63) sum up to zero. Note that for
the cancellation to occur, it was important to keep track of
the distributional nature of the diagrams as encoded in the
factors of ε.

IV. QED: DEEP INELASTIC SCATTERING

As a first real application, we consider the e−γ⋆ → e− in
QED with a massless electron. We call this deep inelastic
scattering (DIS) in reference to the analogous process in
QCD at the parton level, although obviously there is

nothing inelastic about this scattering. We want to establish
two facts about this process: that the hard S-matrix is IR
finite and what its value is. To compute the value for SH it is
most sensible to use dimensional regularization. In dim reg,
all the diagrams with interactions in the asymptotic region
give scaleless integrals that formally vanish, so the bare SH-
matrix element is determined by the S-matrix element
alone. However, in pure dimensional regularization, it is
difficult to separate UV from IR singularities. Therefore to
check the cancellation of IR divergences, we use explicit
cutoffs in the asymptotic regions.

A. SH using cutoffs on Has

In this section, we look at the diagram where a photon is
exchanged between the two electron legs. The Feynman
diagram in Feynman-’t Hooft gauge is given by [68]

ð70Þ

with μ̃2 ¼ 4πe−γEμ2 and M0 ¼ −eūfγαui the tree-level
matrix element. To get a cancellation of the IR divergent
terms, we need to add contributions to SH from graphs with
vertices in the asymptotic regions. We would like to avoid
the possible double counting of the soft and collinear
degrees of freedom in Has. Working in pure dimensional
regularization, the soft-collinear overlap always gives
scaleless integrals that vanish. Indeed, the method-of-
regions approach is to simply discount the overlap region
all together. If one works with regulators that separate the
UV from IR, one can explicitly remove the overlap through
a zero-bin subtraction procedure [69]. In SCET, this is done
by computing the soft contribution and the collinear

contribution then subtracting the soft-collinear overlap
through a soft-collinear power expansion at the diagram
level. If one formulates SCET in terms of operators with
full theory fields, as in [23], the zero-bin subtraction
appears as an operator-level subtraction. In this section,
we take the pragmatic approach of [23]: we exclude by
hand the soft-collinear region in Has. So we compute soft
contributions fromHas by power expanding in the soft limit
rather than integrating photon momenta up to some ωmax.
We compute the collinear contributions by power expand-
ing in the collinear limit and including only those photons
with energy greater than ωmax that are within θmax of one of
the collinear directions. Similar calculations showing IR
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divergence cancellations for thrust and jet broadening can
be found in [70].
To check IR divergence cancellations, we only need to

look at a subset of time-ordered perturbation theory
diagrams. For example, the diagrams

ð71Þ

are not IR divergent. Although these diagrams give finite
contributions to SH, they do not need to be analyzed for the
purposes of demonstrating IR finiteness.
It is natural to work in the Breit or “brick-wall” frame,

where the off-shell photon has no energy, qμ ¼ ð0; 0; 0; QÞ,
and pi and pf are back to back. Defining θ as the angle

between k⃗ and Q, we have

pμ
i ¼ ðωi; 0; 0;ωiÞ; pμ

f ¼ ðωf; 0; 0;−ωfÞ;
kμ ¼ ðωk; 0;ωk sin θ;ωk cos θÞ ð72Þ

and

ωi−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i − 2ωiωk cos θ þ ω2

k

q
;

ωf−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i þ 2ωiωk cos θ þ ω2

k

q
: ð73Þ

If we were to impose overall energy conservation, then we
would also have ωi ¼ ωf ¼ Q

2
. However, in time-ordered

perturbation theory graphs involving vertices in the asymp-
totic regions, energy conservation is not guaranteed, so for
those diagrams we leave ωi and ωf more general until
energy conservation can be established. With these kin-
ematics the phase space integral becomes

Z
dd−1k
ð2πÞd−1 ¼

Ωd−2

ð2πÞd−1
Z

dωkω
d−2
k

Z
1

−1
dcosθð1− cos2 θÞd−42 ;

ð74Þ

where Ωd−2 ¼ 2π
d−2
2 =Γðd−2

2
Þ is the (d − 2)-dimensional

solid angle.

The graph with all the vertices in the central region is

ð75Þ

This graph is UVand IR divergent. But since this is the only IR-divergent time ordering, we know its result must reproduce
the IR divergences of the sum over all time orderings, i.e., the Feynman diagram in the full theory. So we can then read the
IR divergences directly off of Eq. (70):

SA ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
−

2

ϵ2IR
−

4

ϵIR
−
2 ln μ̃2

Q2

ϵIR
þ IR-finite

�
: ð76Þ

The contribution with both interactions in an asymptotic region is given by soft photon exchange alone; there are no
collinear photons that couple to both the incoming and outgoing electrons since these are back-to-back. Thus, we need to
power expand the integrand in Eq. (70) at small ωk and restrict to ωk < ωmax. Before power expanding, the time-ordered
perturbation theory amplitude has the form
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ð77Þ

Note that the overall energy-conserving δ-function δðωi − ωfÞ from Eq. (70) is replaced with δðωi−k − ωf−kÞ. In Eq. (77),
however, at leading power the two δ-functions agree. In the soft limit, the energies of the intermediate electrons are

ωi−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i − 2ωiωk cos θ þ ω2

k

q
≅ ωi − ωk cos θ; ð78Þ

ωf−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
f þ 2ωfωk cos θ þ ω2

k

q
≅ ωf þ ωk cos θ; ð79Þ

and the numerators are expanded as

ūfγμuf−kūf−kγαui−kūi−kγνuið−gμνÞ ≅ −4pi · pfūfγαūi ¼ −8ωiωfūfγαūi: ð80Þ

Inserting the power expansion, the amplitude reduces to

SB ¼ −iM0ð2πÞdδdðpi þ q − pfÞ
Ωd−2

ð2πÞd−1 μ
2ϵ

Z
ωmax

0

dωkω
1−2ϵ
k

Z
1

−1
dxð1 − x2Þ−ϵ 1

ωkð1 − xÞ − iε
1

ωkð1þ xÞ − iε
; ð81Þ

where x ¼ cos θ. Performing the integrals gives

SB ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
−

2

ϵ2IR
þ
2 ln ð2ωmaxÞ2

μ̃2

ϵIR
þ π2

2
− ln2

ð2ωmaxÞ2
μ̃2

�
: ð82Þ

The remaining two graphs are

ð83Þ

These have one vertex in the asymptotic region and one in the central region. In the first graph, the asymptotic vertex forces
the exchanged photon to be either soft or collinear to the direction of the outgoing electron. In the second graph, the photon
can be soft or collinear to the incoming electron. We must therefore power expand each in soft and collinear limits
separately.
Before doing any expansion the first graph is

SC ¼ ð−ieÞ2ðieÞμ4−d
Z

dd−1k
ð2πÞd−1

1

2ωk

1

2ωi−k

1

2ωf−k

−i
ωi−k þ ωk − ωi − iε

i
ωf − ωf−k − ωk þ iε

× ūfγμuf−kūf−kγαui−kūi−kγνuið−gμνÞð2πÞdδd−1ðp⃗i þ q⃗ − p⃗fÞδðωi−k þ ωk − ωfÞ: ð84Þ
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In the soft limit, this reduces to the same integral as in SB
up to a sign flip since only one vertex is anti–time ordered.
SD is similar. So we get

Ssoft
C ¼ Ssoft

D

¼ iM0ð2πÞdδdðpiþq−pfÞ

×
α

4π

�
2

ϵ2IR
−
2 ln ð2ωmaxÞ2

μ̃2

ϵIR
−
π2

2
þ ln2

ð2ωmaxÞ2
μ̃2

�
: ð85Þ

These will cancel the double poles of SA þ SB.
The graph SC has a collinear singularity when θ → 0.

For the collinear graphs, as mentioned above, we consider
collinear photons to be collinear but not soft, so they have
energies ωk > ωmax and angles 0 < θ < θmax. In the
collinear limit, kkpi, the energies expand to

ωi−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i − 2ωiωk cos θ þ ω2

k

q
≅ ωi − ωk þ

ωiωk

ωi − ωk
ð1 − cos θÞ; ð86Þ

ωf−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
f þ 2ωfωk cos θ þ ω2

k

q
≅ ωf þ ωk: ð87Þ

Since these expansions are valid only in the regime where
the electron does not recoil against the photon, i.e., for
ωk < ωi, we putωi as an upper cutoff on the photon energy.
The spinors in the numerator are on-shell, so in the
collinear limit the numerator can be approximated using
pi−k ≅

ωi−k
ωi

pi and pf−k ≅
ωf−k
ωf

pf, and hence

ūfγμuf−kūf−kγαui−kūi−kγνuið−gμνÞ
≅ −4pi · pf

ωi−kωf−k

ωiωf
ūfγαui

≅ −8ωi−kωf−kūfγαui: ð88Þ

Then Scoll
C reduces to

Scoll
C ¼ −ie2M0ð2πÞdδdðpi þ q − pfÞ

Ωd−2

ð2πÞd−1 μ
2ϵ

Z
ωi

ωmax
dωkω

1−2ϵ
k

Z
θmax

0

dθsin1−2ϵθ
1 − ωk

ωi

ωkð1 − cos θÞ − iε
1

−2ωk þ iε

¼ iM0ð2πÞdδdðpi þ q − pfÞ

×
α

4π

�
2

ϵIR
þ
ln ð2ωmaxÞ2

Q2

ϵIR
þ
�
2þ ln

ð2ωmaxÞ2
Q2

��
2 − ln

ðθmaxωmaxÞ2
μ̃2

�
þ 1

2
ln2

ð2ωmaxÞ2
Q2

�
: ð89Þ

Note that this graph has a single 1
ϵ pole corresponding to the collinear-but-not-soft region. The amplitude Scoll

D is the same
as Scoll

C .
In summary, extracting just the IR poles

SA ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
−

2

ϵ2IR
−

4

ϵIR
−
2 ln μ̃2

Q2

ϵIR
þ IR-finite

�
; ð90Þ

SB ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
−

2

ϵ2IR
þ
2 ln ð2ωmaxÞ2

μ̃2

ϵIR
þ IR-finite

�
; ð91Þ

SC ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
2

ϵ2IR
þ 2

ϵIR
þ
ln ð2ωmaxÞ2

Q2

ϵIR
−
2 ln ð2ωmaxÞ2

μ̃2

ϵIR
þ IR-finite

�
; ð92Þ

SD ¼ iM0ð2πÞdδdðpi þ q − pfÞ
α

4π

�
2

ϵ2IR
þ 2

ϵIR
þ
ln ð2ωmaxÞ2

Q2

ϵIR
−
2 ln ð2ωmaxÞ2

μ̃2

ϵIR
þ IR-finite

�
; ð93Þ

with M0 ¼ −eūfγαui the tree-level matrix element.
Summing these graphs, the IR divergences all cancel.
Note that this is a different mechanism from the way the

cancellation happens in a matching calculation for the DIS

Wilson coefficient in SCET [68]. There, the soft graph is
subtracted from the full theory graph (SA − SB) to achieve
the cancellation. Here those graphs are added, and addi-
tional graphs come in to effect the cancellation.
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B. SH in dimensional regularization

Imposing cutoffs on the asymptotic Hamiltonian is useful
for showing the cancellation of IR divergences. In practice,
however, the calculations are much simpler using pure
dimensional regularization. Dimensional regularization
respects both Lorentz and gauge invariance, while explicit
cutoffs do not. Moreover all one-particle irrreducible graphs
involving vertices in the asymptotic region are scaleless and

formally vanish. This follows from simple power counting
arguments: in the soft limit, we take all hard scales to infinity
so there are no scales left for the amplitude to depend on. In
collinear limits, only lightlike momenta in one direction are
relevant and no Lorentz-invariant scale can be constructed
from collinear lightlike momenta.
For an explicit example, consider the soft graph SB,

from Eq. (81)

ð94Þ

The integral over ωk is scaleless and formally vanishes in
dimensional regularization. Note that there is also a IR
divergence in this case in the angular, x, integral, so the
final result has an overlapping UV/IR 1

ϵUV
1
ϵIR

singularity.
Such singularities never occur in renormalizable theory, but
they do occur in SCET. However, since when one adds up
all the diagrams we know that the IR divergences cancel,
the overlapping UV/IR divergences must cancel as well.
These cancellations have been studied extensively in SCET
(see the reviews [56,57]).
Thus the only nonvanishing graphs in pure dimensional

regularization are those with all vertices in the central
region. In the central region, hard interactions are present,
and these are associated with particular scales. In d ¼
4 − 2ϵ dimensions, in Feynman gauge, the result for the
loop is given in Eq. (70). For this diagram, the UV and IR
divergences can be unambiguously separated since the UV
divergences are known separately to be canceled by the
ordinary QED counterterms. For SH diagrams, such a
separation is also possible, but much more difficult,
since there can be overlapping UV and IR singularities
(see [69–71] for some discussion).
In any case, since the other diagrams contributing to SH

are scaleless and since SH is IR finite, we can immediately
write down the bare SH amplitude using Eq. (70). Writing,
for jψouti ≠ jψ ini,

hψoutjSHjψ ini ¼ ð2πÞdδdðpin − poutÞiM̂ ð95Þ
we then have

M̂bare ¼ M0

�
1þ αðμÞ

4π

�
−

2

ϵ2UV
−
2 ln μ̃2

Q2 þ 3

ϵUV
− ln2

μ̃2

Q2

− 3 ln
μ̃2

Q2
− 8þ π2

6

�
þOðα2Þ

�
: ð96Þ

The renormalized SH-matrix element is related to the
bare one by operator renormalization. To remove the UV
divergences, we can rescale the S-matrix by

Z ¼ 1þ αðμÞ
4π

�
−

2

ϵ2UV
−
2 ln μ̃2

Q2 þ 3

ϵUV

�
þOðα2Þ: ð97Þ

So that the renormalized matrix element in MS is then

M̂¼
�
1

Z4

M̂bare

�

¼M0

�
1þαðμÞ

4π

�
−ln2

μ̃2

Q2
−3 ln

μ̃2

Q2
−8þπ2

6

�
þOðα2Þ

�
;

ð98Þ
which is UV and IR finite.
It may seem surprising that Z can depend on the scaleQ:

normally Z-factors are just numbers. In fact, the Q depen-
dence is just shorthand for a more formal dependence of
the SH-matrix elements on the labels of the collinear fields.
In the label formalism, the S-matrix for e−ðp1Þγ⋆ðqÞ →
e−ðp2Þ can depend on its labels, which are the large
components of the momenta of the collinear particles, p−

1 ¼
n̄1 · p1 ∼Q and pþ

2 ¼ n̄2 · p2 ∼Q. These labels are non-
dynamical, and so the Z-factor can depend on them. Thus,
one could more pedantically write

Zp−
1
pþ
2
¼ 1þ αðμÞ

4π

�
−

2

ϵ2UV
−
2 ln μ̃2

p−
1
pþ
2

þ 3

ϵUV

�
þOðα2Þ

ð99Þ

and SH;bare
p−
1
pþ
2

¼ Zp−
1
pþ
2
SHp−

1
pþ
2

. But writing the dependence as

on Q or more generally sij ¼ ðpi þ pjÞ2 is simpler.
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It is perhaps worth commenting on why SH needs to be
renormalized in the first place. The traditional S-matrix is
also an operator; however, it does not normally get an
operator renormalization: its UV divergences are canceled
by rescaling the interaction strengths in the Lagrangian and
the fields. The reason SH needs to be renormalized is due to
diagrams that have both interactions in the asymptotic
regions and hard momentum flowing through the graph due
to interactions in the central region. The soft particles inHas
cannot resolve the hard scales, and there are no interactions
in Has which could be renormalized to remove the asso-
ciated UV divergences. While S-matrix elements are
smooth, differentiable functions of momenta, the smooth-
ness is lost in the soft power expansion generating SH. Thus
hard scattering, from the point of SH looks instantaneous
and nonlocal, such as a sharp, nondifferentiable cusp at the
hard vertex. In other words, the additional renormalization
required in SH is the same as the need for renormalization
associated with cusps in Wilson line matrix elements. The
nonlocality of SCET (on hard length scales) and cusp
renormalization is discussed more in [56,57].

V. QCD: e+ e− → JETS

To illustrate the use of SH to compute infrared-safe
observables, we will explore as an example, the compu-
tation of thrust in eþe− events to NLO in QCD.

The hard matrix element for γ⋆ → q̄q is the same as for
DIS, up to a crossing. Explicitly,

M̂ ¼ M0

�
1þ αsðμÞ

4π
CF

�
−ln2

μ̃2

−Q2 − iε

− 3 ln
μ̃2

−Q2 − iε
− 8þ π2

6

�
þOðα2Þ

�
: ð100Þ

Due to the lnð−Q2 − iεÞ term, this SH-matrix element is
complex. The imaginary part is the leading order expansion
of the Coulomb/Glauber phase, and it is present in
processes with more than one charged particle in the initial
or final state.

A. Glauber graph

It is perhaps illuminating to see the origin of the
imaginary part from the relevant asymptotic-region graphs.
Part of the reason this question is interesting in our
framework is because Glauber gluons are normally asso-
ciated with purely off-shell modes, with entirely transverse
momentum. In time-ordered perturbation theory one has
only on-shell modes. So how is the Glauber contribution
going to be reproduced? Before power expanding in the
soft region, the relevant time-ordered diagram is (up to
some prefactors)

ð101Þ

If we were to enforce three-momentum and energy con-
servation in the central region, this would force ω1þk ¼
ωp2þk ¼ ω1 ¼ ω2 ¼ Q

2
. Then k⃗ must have exactly zero

energy, as expected for an off-shell mode, and the integrand
appears ill-defined. The problem, however, is not that k is
off-shell, but that we have not been sufficiently careful
handling the product of distributions.
To properly evaluate the integral, we must be patient in

enforcing the energy conservation in the central region.

Recall that energy conservation comes from integrating
over −∞ < t < ∞. If we break the central region up into a
−∞ to 0 region and a 0 to ∞ region, then the hard vertex
can be in only one of the regions. Let us also pretend for
now that Has is the same as H with the exception of the
hard vertex. Then, if the hard vertex is at t < 0, the
evolution from e−iHt from 0 to ∞ will exactly be canceled
by the evolution from t ¼ ∞ to 0 in the asymptotic region.
That is,

ð102Þ
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In equations, the cancellation occurs point-by-point in phase space as

�
i

ωf − ωi þ 2iε
i

ωf − ωc þ iε
−

i
ωc − ωi þ iε

−i
ωc − ωf − iε

þ −i
ωi − ωc − iε

−i
ωi − ωf − 2iε

�
i

Q − ωi þ iε
¼ 0; ð103Þ

where ωi ¼ ω1þk þ ω2−k, ωc ¼ ω1þk þ ω2−k þ ωk, and ωf ¼ ω1 þ ω2. In the real case, where Has is not exactly the same
as H without the hard vertex, these graphs will not sum to precisely zero, but to something that is IR finite.
The cancellation of the graphs with the hard vertex at t < 0 implies that the nonzero contribution of the graph in Eq. (101)

comes from the region where the hard vertex is at t > 0. So we must look at

ð104Þ

Now we only have three-momentum conservation, not energy conservation. So, p⃗1 þ p⃗2 ¼ 0 and thus ω1 ¼ ω2, but
nothing forces ω1 ¼ Q

2
. Defining the angle between k⃗ and p⃗1 as θ, in the soft limit ω1þk ≅ ω1 þ ωk cos θ and

ω2−k ≅ ω2 þ ωk cos θ, so performing the power expansion results in

MG ∼
i

ω1 þ ω2 −Qþ iε

Z
dd−1k
ð2πÞd−1

1

ω3
k

1

cos θ − 1 − iε
1

cos θ − iε
ð105Þ

∼
i

ω1 þ ω2 −Qþ iε

Z
dωkω

d−5
k

�
1

ϵIR
− iπ þ � � �

�
: ð106Þ

Theωk integral is scaleless, being both UVand IR divergent.
The iπ in this expression corresponds to the imaginary part in
Eq. (100) and is known to exponentiate into the Coulomb/
Glauber phase. The third graph in Eq. (102) is similar,
leading to the same result as in Eq. (106) with i

ω1þω2−Qþiε

replaced by i
Q−ω1−ω2þiε. The two graphs combine to produce

the expected δðω1 þ ω2 −QÞ factor.
So we see that the Glauber phase is indeed reproduced by

asymptotic diagrams with on-shell modes. Moreover,
energy is conserved in this process. The key was to
carefully handle the imaginary parts of the propagators
and δ distributions. There are of course many other ways to
compute this imaginary part (cf. [59]), but this approach
clarifies the importance of carefully treating energy con-
servation in SH computations.
In more complicated processes, such as q̄q → q̄q

in QCD at two-loops, it is known that the Glauber
contribution from the full graph (the central region) is
not reproduced by the eikonal approximation [72].
Consequences of this failure include collinear-factorization
violation [73] and the emergence of superleading loga-
rithms [74]. For SH this means that the IR divergences of
the central region will not be canceled by an asymptotic

Hamiltonian with soft and collinear gluons alone.
Fortunately, it has been shown that one can add to the
SCET Lagrangian a set of Glauber operators [58] and
remedy the failure of the soft limit. A detailed discussion of
when these operators are relevant and how they resolve
issues such as collinear-factorization violation can be found
in [75]. The Glauber interactions, such as soft interactions,
are long distance and persist well after the hard scattering.
Although they violate factorization, in the sense that they
are long-distance interactions that depend on multiple
directions, they are still independent of the hard scattering.
To connect the Glauber graph MG to the Glauber

operator, we can massage the imaginary part of the integral
in Eq. (105) into a more familiar form. We first drop the iϵ
in the denominator 1

cos θ−1−iϵ, since the end-point singularity
at cos θ ¼ 1 is regulated for ϵ < 0 by the ð1 − cos2 θÞ−ϵ
factor in the measure [see Eq. (74)]. Rewriting the integral
in terms of kz ¼ ωk cos θ and k⃗⊥ gives

MG∼
Z

∞

−∞
dkz

Z
dd−2k⃗⊥
ð2πÞd−2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zþ k⃗2⊥

q 1

kz−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zþ k⃗2⊥

q 1

kz−2iε
:

ð107Þ
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To take the imaginary part we now use Im½ 1
kz−2iϵ

� ¼ πδðkzÞ
and integrate over kz to get

Im½MG� ∼ −iπ
Z

dd−2k⃗⊥
ð2πÞd−2

1

k⃗2⊥
: ð108Þ

This 1

k⃗2⊥
integrand is exactly what comes out of the

ξ̄n1
n2
2
ξn1

1
P2⊥

ξ̄n2
n1
2
ξn2 Glauber operators [58,59,76]. In other

words, tree-level exchange in the asymptotic region cor-
responds to the Glauber region expansion, except it has an

opposite sign. Note that since kz ¼ 0 the on-shell energy of
the Glauber gluon is ωk ¼ jk⃗⊥j. So the 1

k⃗2⊥
is not coming

from an off-shell mode but rather from energy not being
conserved in time-ordered perturbation theory. Alternative
ways of understanding the Glauber phase can be found in
[52,53,77,78].
For completeness, we list the IR divergent parts of the

various contributions to SH for this process cutting off the
UV divergence of the soft integrals at ωmax, as in Sec. IVA.
Writing SH ¼ iM̂ð2πÞdδdðq − p1 − p2Þ, the contributions
to M̂ are

ð109Þ

ð110Þ

ð111Þ

ð112Þ

with μ̃2¼4πe−γEμ2 and M0¼ ū1γαv1 the tree level matrix
element. Summing these graphs, the IR divergences all
cancel.
Note that while the imaginary part of the Glauber graph,

Eq. (110), cancels against the S-matrix graph, Eq. (109), the
real part of the Glauber graph has the same sign as the S-
matrix graph, and the sum of the two cancels against the cut
graphs. This is different from how the cancellation occurs

in matching to a 2-jet operator in SCET, where a single soft
graph cancels both the real and the imaginary parts of the
divergences of the full-theory graph.

B. Thrust

Next, let us use the hard S-matrix to compute the thrust
observable [79]. Thrust is a particularly simple infrared-
safe eþe− observable. It is defined as
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T ≡max
n⃗

P
jjp⃗j · n⃗jP
jjp⃗jj

: ð113Þ

It is convenient to use τ ¼ 1 − T rather than T. Thrust has
the property that for events that consist of two highly
collimated jets τ ≪ 1. At small τ, thrust is approximated by
the sum of the masses of these two jets τ ≅ 1

Q2 ðm2
J1 þm2

J2Þ,
with Q the center of mass energy. Events that are more
spherical have values of τ ∼ 0.2–0.5.
To compute dσ

dτ in perturbation theory using SH, we start
at lowest order, where the hard S-matrix element is

M̂0ðγ⋆ → q̄qÞ ¼ ūiðpqÞγμvjðpq̄Þ: ð114Þ

At next to leading order we need the hard matrix element
for q̄q final states at NLO, as given in Eq. (100),

M̂ðγ⋆ → q̄qÞ ¼ M̂0

�
1þ αsðμÞ

4π
CF

�
−ln2

μ2

Q2

− ð3þ 2πiÞ ln μ2

Q2
− 8 − 3πiþ 7π2

6

�

þOðα2sÞ
�
: ð115Þ

We also need the matrix elements for γ⋆ → q̄qg where
we treat the gluon as hard. Treating it as hard, the only

contribution at order gs is from diagrams with all vertices in
the central region. Then this amplitude is identical to the S-
matrix element for the same process

M̂ðγ⋆ → q̄qgÞ

¼ −gsTa
ijūiðpqÞ

�
γα

1

pq þ pg
γμ − γμ

1

pq̄ þ pg
γα
�

× vjðpq̄Þϵ⋆αðpgÞ: ð116Þ

To compute the observable, we must then evolve these final
states to t ¼ þ∞ using Has, as discussed in Sec. II B. On
the formal level, this additional evolution exactly cancels
the entire effect of Has, so the cross section predicted is
identical to that using the original S. On the practical level,
however, one can gain additional insight into the distribu-
tion by actually using the SH-matrix elements we have
computed, rather than simply discarding them and starting
over. To this end, it is helpful to contemplate the small τ and
moderate τ regions separately.
For small τ, the gluon is necessarily soft or collinear.

Thus we can disregard the hard M̂ðγ⋆ → q̄qgÞ contribu-
tion. Instead, we should start with M̂0ðγ⋆ → q̄qÞ and then
evolve the q̄q final state toward a 2-jet state with nonzero τ
using Has. To compute the cross section, we need to sum
the cut graphs

ð117Þ

In these graphs each dotted green line represents a separate
contribution where the measurement function at t ¼ ∞ is
inserted. The first two graphs have only soft contributions
and the second two soft and collinear contributions (although
the soft ones vanish in Feynman gauge).
The middle cuts in these graphs using soft interactions in

the asymptotic regions corresponds to soft real-emission
processes. The amplitude for soft emission using Has is the
eikonal limit of Eq. (116), with an opposite sign and
without the hard matrix element,

Msoft ¼ gsTa
ij

�
pα
q

pq · pg
−

pα
q̄

pq̄ · pg

�
ϵ⋆αðpgÞ: ð118Þ

Then the contribution to the differential thrust cross section
at order αs from these four cuts is

�
dσ
dτ

�
soft;R

¼ σ0

Z
d3pg

ð2πÞ3
1

2ωg
jMsoftj2

×

�
δ

�
τ −

pq̄ · pg

Q2

�
θðp⃗g · p⃗q̄Þ

þ δ

�
τ −

pq · pg

Q2

�
θðp⃗g · p⃗qÞ

�
: ð119Þ

In this expression, the θ-functions project onto the appro-
priate hemisphere defined by the thrust axis (which aligns
with the q̄ − q axis at leading power). The first and third
cuts in all the graphs, using soft interactions, give the virtual
contributions. Summing all of them, the result is the same
as the contribution to thrust from the thrust soft function
[75,80]:

S-MATRIX FOR MASSLESS PARTICLES PHYS. REV. D 101, 105001 (2020)

105001-23



1

σ0

�
dσ
dτ

�
soft;R

þ 1

σ0

�
dσ
dτ

�
soft;V

¼ δðτÞ
�
1þ CF

αs
4π

�
π2

3

��
− 16CF

αs
4π

�ln τQ
μ

τ

�
þ

þOðα2sÞ: ð120Þ

Although the real and virtual contributions are separately
infrared divergent, the final contribution to the cross section
is not.
Similarly, the contribution from collinear graphs gives

the jet functions. The net contribution is

1

σ0

�
dσ
dτ

�
coll

¼ δðτÞ þ CF
αs
4π

�
δðτÞð7 − π2Þ þ

�−3þ 4 ln τQ2

μ2

τ

�
þ

�
þOðα2sÞ: ð121Þ

Multiplying these by the SH-matrix element squared, the
sum is

1

σ0

�
dσ
dτ

�
softþcoll

¼ δðτÞþCF
αs
2π

�
δðτÞ

�
π2

3
− 1

�
− 3

�
1

τ

�
þ
−4

�
lnτ
τ

�
þ

�
:

ð122Þ

This agrees with the exact NLO thrust distribution at
leading power (see [81]). Note that the μ dependence of
SH-matrix elements exactly cancels against the μ depend-
ence of the soft and collinear contributions in the asymp-
totic region.
For values of τ that are not small, one should necessarily

treat the gluon as hard. The measurement function in this
region is therefore only sensitive to hard particles. Since
there are no asymptotic interactions between hard gluons
and hard quarks, the SH-matrix element in this regime is the
same as in Eq. (116). Integrating the square of this matrix
element against the thrust measurement function gives for
τ > 0

1

σ0

�
dσ
dτ

�
3-jet

¼ CF
αs
2π

�
3ð1þ τÞð3τ − 1Þ

þ ½4þ 6τðτ − 1Þ� lnð1 − 2τÞ
τð1 − τÞ

−
½4þ 6τðτ − 1Þ� ln τ

τð1 − τÞ
�
: ð123Þ

Near τ ¼ 0 this contribution coming from M̂ðγ⋆ → q̄qgÞ is
singular, and the phase space integral is IR divergent.

However, at τ ¼ 0 there is also the contribution from
M̂ðγ⋆ → q̄qÞ. Although we can define the measurement
function so that it is not sensitive to any gluon that couples
inHas, we cannot remove the soft and collinear gluons from
Has. These gluons still contribute to the cross section
through loops and affect the thrust distribution at τ ¼ 0.
The virtual graphs are the first and third cuts in all the
diagrams in Eq. (117). These graphs are IR divergent. If we
work in 4 − 2ε dimensions, the full phase space integral
over the 3-jet contribution jM̂ðγ⋆ → q̄qgÞj2 generates 1

ϵ2IR

and 1
ϵIR

poles that exactly cancel the 1
ϵ2IR

and 1
ϵIR

from the

virtual graphs. The result is that

1

σ0

�
dσ
dτ

�
3-jet

þ 1

σ0

�
dσ
dτ

�
2-jet

¼ δðτÞþCF
αs
2π

�
δðτÞ

�
π2

3
−1

�

þ
�
3ð1þ τÞð3τ−1Þþ ½4þ6τðτ−1Þ� lnð1−2τÞ

1− τ

��
1

τ

�
þ

−
4þ6τðτ−1Þ

1− τ

�
lnτ
τ

�
þ

�
; ð124Þ

which is the exact NLO thrust distribution in QCD.
So we see that SH is capable of both reproducing

distributions in fixed order QCD and, through the asymp-
totic expansion, reproducing just the leading-power parts of
those distributions. An advantage of the leading-power
approach is that one is not forced to compute the SH-matrix
elements and the asymptotic evolution to the same order in
αs. Instead, one can use exponentiation properties of the
soft and collinear emission to evaluate the asymptotic
evolution to all orders in perturbation theory. In particular,
one can perform resummation with the renormalization
group, since the soft and collinear contributions each are
associated with only a single scale. Doing so in this
example reproduces the resummed thrust distribution
computed using SCET [75,80].

VI. N = 4 SUPER-YANG-MILLS

To further illustrate the features of SH, we now consider
amplitudes in N ¼ 4 SYM theory. N ¼ 4 SYM is a
superconformal SUðNcÞ gauge theory in which scattering
amplitudes have been studied quite extensively. To leading
order in 1

Nc
, the only Feynman diagrams that contribute have

planar topology, and each loop order gives an additional
factor of the ’t Hooft coupling λ ¼ g2sNc. Since only one
color structure is relevant at large Nc, it is convenient to
factor out the group theory factors. In addition, the
amplitude for n-gluon scattering is totally symmetric in
the permutation of the external legs. With these observa-
tions, it is conventional to write the L-loop amplitude with
n external legs as

HANNESDOTTIR and SCHWARTZ PHYS. REV. D 101, 105001 (2020)

105001-24



AðLÞ
n ¼ gn−2s

�
ð4πe−γÞϵ g

2
sNc

8π2

�
L

×
X
ρ

TrðTaρð1Þ � � �TaρðnÞ ÞAðLÞ
n ðρð1Þ; ρð2Þ;…; ρðnÞÞ;

ð125Þ

where the sum is over noncyclic permutations ρ of the
external legs. The arguments ρð1Þ, etc., refer to the
permutation of the momenta and helicities of the legs. It
is furthermore convenient to scale out the kinematic
dependence of the tree-level amplitude by defining

MðLÞ
n ðϵÞ≡ AðLÞ

n ðϵÞ
Að0Þ
n ðϵÞ

: ð126Þ

In addition, we will find it useful to discuss the terms of
each order in ϵ separately, so we write

MðLÞ
n ðϵÞ ¼

X
ϵrMðLÞ

n ðϵrÞ ð127Þ

and decompose other quantities analogously.
In general, the bare n-leg L-loop amplitude is an

extremely complicated function of the external momenta,
even for planar maximal-helicity violating (MHV) ampli-
tudes. What is interesting though is that there seems to be
structure in the L-loop amplitude after the one-loop
amplitude is subtracted. More precisely, the Anastasiou-
Bern-Dixon-Kosower (ABDK)/Bern-Dixon-Smirnov (BDS)
ansatz proposes that the L-loop amplitude should be
expressible in terms of the one-loop amplitude and some
transcendental constants [82,83]. More precisely, the full
matrix element with n legs has the form

MBDS
n ¼ exp

�X
L

�
ð4πe−γÞϵ g

2
sNc

8π2

�
L
ðfðLÞðϵÞ

×Mð1Þ
n ðLϵÞ þ CðLÞ þ EðLÞ

n ðϵÞÞ
�
; ð128Þ

where fðLÞðϵÞ is independent of n and related to the cusp
anomalous dimension [explicitly fð1ÞðϵÞ ¼ 1 and fð2ÞðϵÞ¼
−ζ2−ζ3ϵ−ζ4ϵ

2þ���]. The numbers CðLÞ are also indepen-
dent of n and represent the part of the L-loop amplitude not
given by the exponentiation of the first term. By explicit
computation it is known that Cð1Þ ¼ 0 and Cð2Þ ¼−1

2
ζ22.

Finally, EðLÞ
n ðϵÞ has only positive powers of ϵ, so that

EðLÞ
n ð0Þ ¼ 0.
It turns out the BDS ansatz was not quite correct:

there is more structure to the amplitudes than just the
numbers CðLÞ for n > 4. Thus, it is common to express
amplitudes as ratios of the bare amplitudes and the
BDS ansatz. More precisely, the remainder function is
defined as

Rn ¼ ln

�
Mn

MBDS
n

�
; ð129Þ

and one can expand Rn order-by-order in gs.
While the remainder functions have some nice properties,

such as respecting dual conformal invariance, they violate
other conditions, such as the Steinmann relations [84]. To
preserve the Steinmann relations, the BDS ansatz is modified
to the “BDS-like” ansatz [85]. For certain amplitudes (n ¼ 8
for example), it has been shown that both the Steinmann
relations and dual conformal invariance cannot be satisfied
simultaneously [86]. That the BDS ansatz violates the
Steinmann relations is due to the additional subtraction of
finite, Oðϵ0Þ, terms in Eq. (128) in addition to the IR
divergences. A more conservative ansatz is the “minimally
normalized” amplitude Mmin

n defined as [87]

Mmin
n ¼ exp

�X
L

�
ð4πe−γÞϵ g

2
sNc

8π2

�
L
ðfðLÞðϵÞ

×Mð1;divÞ
n ðLϵÞ þ CðLÞÞ

�
; ð130Þ

where the IR divergences of Mð1Þ
n are

Mð1;divÞ
n ðϵÞ ¼ −

1

2ϵ2
Xn
i¼1

�
μ2

−si;iþ1

�
ϵ

: ð131Þ

The ratio Mn
Mmin

n
of the full amplitude to the minimally

normalized amplitude is IR finite, just as the BDS remainder
function in Eq. (129), but the finite parts of Mn

Mmin
n

and Mn
MBDS

n
are

different.
In this section we relate some of these observations to the

hard S-matrix element. We will see that the hard S-matrix
element computed in MS corresponds closely to the
minimally normalized amplitude.

A. Four-point amplitude

We begin by discussing the MHV amplitude with four
external legs. The IR divergences of the one-loop amplitude
for n ¼ 4 are known to agree with the divergences of

Cð1Þ
4 ðϵÞ ¼ −

eγϵ

Γð1 − ϵÞ
1

ϵ2

��
μ2

−s

�
ϵ

þ
�
μ2

−t

�
ϵ
�
; ð132Þ

and the divergences of the two-loop amplitude agree with
the divergences of

Cð2Þ
4 ðϵÞ ¼ 1

2
ðCð1Þ

4 ðϵÞÞ2 þ Cð1Þ
4 ðϵÞðMð1Þ

4 ðϵÞ − Cð1Þ
4 ðϵÞÞ

− ðζ2 þ ϵζ3Þ
e−ϵγΓð1 − 2ϵÞ

Γð1 − ϵÞ Cð1Þ
4 ð2ϵÞ: ð133Þ
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These formulas are due to Catani [88] (see also [89]). Note

that Cð2Þ
4 ðϵÞ depends on the complete one-loop amplitude

Mð1Þ
4 ðϵÞ. Thus, although the quantity Mð2Þ

4 ðϵÞ − Cð2Þ
4 ðϵÞ is

IR finite, more terms are being subtracted this way than
those determined by the universality of IR divergences.

These extra terms depend on quantities such as Mð1Þ
4 ðϵ2Þ

which are not fixed by factorization alone. Although

factorization does not determine Mð1Þ
4 ðϵÞ, its appearance

in the universal formula can be understood from the point
of view of effective field theory [90]: it comes from a cross

term between the nonuniversal one-loop Wilson coefficient
and the universal one-loop divergences. An equivalent
mechanism explains its appearance during the computation
of SH, as we now show.
With four legs (n ¼ 4), the one-loop amplitude is

M1
4ðϵÞ ¼ −

2

ϵ2
þ 1

ϵ
Mð1Þ

4 ðϵ−1Þ þMð1Þ
4 ðϵ0Þ þOðϵÞ; ð134Þ

where

Mð1Þ
4 ðϵ−2Þ ¼ −2; ð135Þ

Mð1Þ
4 ðϵ−1Þ ¼ − ln

μ2

−s
− ln

μ2

−t
; ð136Þ

Mð1Þ
4 ðϵ0Þ ¼ − ln

μ2

−t
ln

μ2

−s
þ 2π2

3
; ð137Þ

Mð1Þ
4 ðϵ1Þ ¼ −

π2

2
ln
−s
u

−
1

3
ln3

−s
u

þ π2

12
ln

μ2

−s
−
1

6
ln3

μ2

−s
þ π2

4
ln
μ2

u

þ 1

2
ln2

−s
u
ln
μ2

u
−
1

2
ln
−s
u
ln
−t
u
ln
μ2

u
− ln

−s
u
Li2

−s
u

þ Li3
−s
u

þ 7

3
ζ3 þ ðs ↔ tÞ; ð138Þ

Mð1Þ
4 ðϵ2Þ ¼ 5π2

24
ln2

−s
u

þ 1

8
ln4

−s
u

þ 3

8
ln
−s
u
ln
−t
u
þ 1

6
ln3

−s
u
ln
−t
u

−
1

4
ln2

−s
u
ln2

−t
u
þ π2

24
ln2

μ2

−s
−

1

24
ln4

μ2

s
−
π2

2
ln
−s
u
ln
μ2

u
−
1

3
ln3

−s
u
ln
μ2

u

þ π2

8
ln2

μ2

u
þ 1

4
ln2

−s
u
ln2

μ2

u
−
1

4
ln
−s
u
ln
−t
u
ln2

μ2

u
þ 7

3
ζ3 ln2

μ2

−s
þ 1

2
ln2

−s
u
Li2

−s
u

− ln
−s
u
ln
μ2

u
Li2

−s
u

þ ln
μ2

u
Li3

−s
u

− ln
−s
u
Li3

−t
u
− Li4

−s
u

þ 49π4

720
þ ðs ↔ tÞ: ð139Þ

In these expressions, s ¼ ðp1 þ p2Þ2, t ¼ ðp1 þ p3Þ2,
u ¼ −t − s, and the convention is that incoming momenta
are treated as outgoing with negative energy. Note that the ϵ
are all ϵIR since N ¼ 4 SYM is UV finite.
At two-loops, the amplitude can be written as

Mð2Þ
4 ¼ 2

ϵ4
−

2

ϵ3
Mð1Þ

4 ðϵ−1Þ

þ 1

ϵ2

�
π2

12
þ 1

2
Mð1Þ

4 ðϵ−1Þ2 − 2Mð1Þ
4 ðϵ0Þ

�

þ 1

ϵ

�
−
π2

12
Mð1Þ

4 ðϵ−1Þ þMð1Þ
4 ðϵ−1ÞMð1Þ

4 ðϵ0Þ

− 2Mð1Þ
4 ðϵ1Þ þ ζ3

2

�
þMð2Þ

4 ðϵ0Þ þOðϵÞ; ð140Þ

where

Mð2Þ
4 ðϵ0Þ ¼ 1

2
½Mð1Þ

4 ðϵ0Þ�2 − π2

6
Mð1Þ

4 ðϵ0Þ − π4

120

þMð1Þ
4 ðϵ−1Þ

�
Mð1Þ

4 ðϵ1Þ − ζ3
2

�
þMð1Þ

4 ðϵ−2ÞMð1Þ
4 ðϵ2Þ: ð141Þ

Although there is some hint of exponentiation in this expres-
sion, it is not particularly simple. That is, if one defines an IR
finite two-loop amplitude by dropping all the singular terms in

ϵ and then taking ϵ → 0, the result,Mð2Þ
4 ðϵ0Þ, is complicated,

with all the polylogarithms from Eqs. (138) and (139).
The appearance of theOðϵ1Þ andOðϵ2Þ terms fromMð1Þ

4

in the two-loop amplitude hints at a relationship between
them. Indeed, the BDS/ABDK ansatz notes that if we

subtract Cð2Þ
4 ðϵ0Þ in Eq. (133) from Mð2Þ

4 ðϵ0Þ, the result is
relatively simple,
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Mð2Þ
4 ðϵ0Þ − Cð2Þ

4 ðϵ0Þ ¼ 1

2
ðMð1Þ

4 ðϵ0Þ − Cð1Þ
4 ðϵ0ÞÞ2

− ζ2ðMð1Þ
4 ðϵ0Þ − Cð1Þ

4 ðϵ0ÞÞ − 21

8
ζ4:

ð142Þ

Recall that Cð2Þ
4 ðϵÞ is not fixed by the IR structure alone, but

includes additional terms. Although this relation works
well for the four-point amplitude, it is somewhat ad hoc and
requires modification for n > 5 legs and higher loops.
Now let us consider the hard S-matrix elements. We

define them analogously to S-matrix elements, adding a

hat. So ÂðLÞ
n is the color-stripped hard-S-matrix element for

n legs at L loops. This amplitude is IR finite, but UV

divergent. Denoting M̂ðLÞ
n ðϵÞ≡ ÂðLÞ

n ðϵÞ=Âð0Þ
n ðϵÞ in analogy

to Eq. (126), the one-loop bare hard matrix element is the
same as Eq. (134) with ϵIR replaced by ϵUV. The renor-
malized matrix element is then

M̂ð1Þ
4 ¼

�
1

Z4

ðM̂4Þbare
�

1-loop
color-stripped

¼ − ln
μ2

−t
ln

μ2

−s
þ 2π2

3
þOðϵÞ; ð143Þ

where, with minimal subtraction (MS),

ZMS
4 ¼ 1þ ð4πe−γÞϵ g

2
sNc

8π2

�
−

2

ϵ2
þ 1

ϵ

�
− ln

μ2

−s
− ln

μ2

−t

��
þOðg4sN2

cÞ ðMSÞ: ð144Þ

Note that M̂ð1Þ
4 is finite as ϵ → 0, since the IR divergences

are absent in hard S-matrix elements and the UV diver-
gences are removed through renormalization. There are
nevertheless terms of OðϵÞ and Oðϵ2Þ in the matrix
elements in d dimensions. These terms are the same as

the OðϵÞ and Oðϵ2Þ terms in Mð1Þ
4 . Then the two-loop hard

S-matrix element gets a contribution from both the two-

loop graphs, giving Mð2Þ
4 ðϵ0Þ after renormalization, as well

as a contribution from the cross terms between the 1
ϵ2
and 1

ε

terms in Z4 and the OðϵÞ and Oðϵ2Þ terms in M̂ð1Þ
4 . The

result is that

M̂ð2Þ
4 ¼ 1

2

�
M̂ð1Þ

4 −
π2

6

�
2

−
π4

45
þ ζ3

2

�
ln

μ2

−s
þ ln

μ2

−t

�
ðMSÞ:

ð145Þ

This matrix element is significantly simpler than Mð2Þ
4 ðϵ0Þ

in Eq. (141) and does not require any ad hoc subtractions.

B. Scheme choice

Dimensional regularization and minimal subtraction is
the most widespread scheme in use in SCET. We must keep
in mind, however, that due to renormalization there is
scheme dependence in SH. This is not a problem per se,
since SH itself is not directly observable. One expects that
once SH-matrix elements are combined into observables the
scheme dependence will cancel. Indeed, the cancellations
that occur will be similar to the cancellations that occur in
SCET. For example, Ref. [91] showed that physical
observables agree when conventional dimensional regu-
larization, four-dimensional helicity scheme, or dimen-
sional reduction are used, despite the fact that the hard,
jet, and soft functions are different in the different schemes.
In a normal, local field theory, the counterterms are strongly
constrained: they must just be numbers. In SCET the
counterterms can depend on the labels for the various
collinear directions which translate to dependence of hard
kinematical quantities, such as s and t, as in Eq. (144).
However, one cannot choose an arbitrary function of labels,
as the dependence must be canceled by contributions from
soft and jet functions. Roughly speaking the combination
H ⊗ J ⊗ S must be scheme independent, where the hard
function H corresponds to the square of our hard S-matrix
elements. More discussion of these constraints can be
found in [91].
Let us suppose that adding a finite part to the counterterm

is not problematic. More precisely, suppose we can add a
finite part δ4ðϵÞ to the Z4 renormalization constant. Then
the color-stripped hard S-matrix element at one-loop shifts

from the MS version by δð1Þ4 ðϵÞ:

M̂δ;ð1Þ
4 ¼ M̂ð1Þ

4 − δð1Þ4 ðϵÞ: ð146Þ

At two-loops, the shift picks up a cross term between δð1Þ4

and the divergent parts of the bare amplitude ðM̂4Þbare,

M̂δ;ð2Þ
4 ¼ M̂ð2Þ

4 −
X2
j¼0

M̂bare;ð1Þ
4 ðϵ−jÞδð1Þ4 ðϵjÞ − δð2Þ4 ; ð147Þ

so that

M̂δ;ð2Þ
4 ¼ 1

2

�
M̂δ;ð1Þ

4 −
π2

6

�
2

−
π4

45
− δð1Þ4 ðϵ1ÞM̂bare;ð1Þ

4 ðϵ−1Þ

− δð1Þ4 ðϵ2ÞM̂bare;ð1Þ
4 ðϵ−2Þ− π2

6
δð1Þ4 ðϵ0Þ− 1

2
½δð1Þ4 ðϵ0Þ�2

þ ζ3
2

�
ln
μ2

−s
þ ln

μ2

−t

�
− δð2Þ4 : ð148Þ

This motivates choosing a “BDS” subtraction scheme,
where
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δð1Þ4 ¼ −
π2

6
−
ζ3
2
ϵ; δð2Þ4 ¼ −

π4

120
þOðϵÞ; ð149Þ

or equivalently

ZBDS
4 ¼ 1þ ð4πe−γÞϵ g

2Nc

8π2

�
−

2

ϵ2
þ 1

ϵ

�
− ln

μ2

−s
− ln

μ2

−t

�

−
π2

6
−
ζ3
2
ϵ

�
þOðg4Þ ðBDS schemeÞ: ð150Þ

Then we get simply

M̂BDS;ð2Þ
4 ¼ 1

2

�
M̂BDS;ð1Þ

4 −
π2

6

�
2

ðBDS schemeÞ: ð151Þ

There are two things to note about this result. First, it is
nontrivial that one can pick pure numbers for δ4 to cancel
the explicit s and t dependence in Eq. (145). This was

possible only because the ln μ2

−s þ ln μ2

−t factor in Eq. (145) is

the same as in M̂ð1Þðϵ−1Þ. Second, it is impossible to choose
δ4 to remove the π2

6
in Eq. (151). Thus there is a sense in

which the constant term π2

6
¼ ζ2 of the second order

amplitude is scheme independent. This term gives the
constant C2 ¼ 1

2
ζ22 from Eq. (128).

The BDS ansatz implies that to all orders, the four-gluon
planar amplitude exponentiates in the BDS subtraction
scheme. In the language of the hard S-matrix, this means
that the finite parts of the counterterms will be pure
numbers to all orders. Indeed, for dual-conformal invari-
ance to be respected by the four-point amplitude, we should
not be adding extra dependence on s and t into the
counterterms. Equivalently, we can say that the dual-
conformal anomaly is manifest in the BDS subtraction
scheme but somewhat obscure in MS.

C. Six-point amplitude

The amplitude with six external particles is more
interesting because it can depend on more kinematic
invariants. The hard MHV S-matrix element with six legs
in MS is

M̂ð1Þ
6 ðϵÞ

¼
X
cycles

�
−
1

2
ln2ð−s12Þ− ln

−s12
−s123

ln
−s23
−s123

þ1

4
ln2

−s123
−s234

�
ðMSÞ

−Li2ð1−uÞ−Li2ð1−vÞ−Li2ð1−wÞþ6ζ2þOðϵÞ;
ð152Þ

where the three dual-conformal cross ratios are

u¼ s12s45
s123s345

; v¼ s23s56
s234s123

; w¼ s34s61
s345s234

: ð153Þ

The notation here is that s123 ¼ ðp1 þ p2 þ p3Þ2 and sum
over cycles means sum over the six rotations of the labels,
e.g., s123 → s234 and so on. This amplitude is simply the
bare one-loop MHVamplitude [92,93] with IR divergences
converted to UV divergences by the diagrams involving
Has and then removed by counterterms:

Z6 ¼ 1þ ð4πe−γÞϵ g
2Nc

8π2

�
−

2

ϵ2
−
1

ϵ

X
cycles

�
ln

μ2

−s12

��
þOðg4sÞ ðMSÞ: ð154Þ

The “BDS-like” ansatz adds to this amplitude the terms on
the second line plus another cyclic sum,

Y6 ¼ Li2ð1 − uÞ þ Li2ð1 − vÞ þ Li2ð1 − wÞ

þ 1

2
ðln2 uþ ln2 vþ ln2 wÞ: ð155Þ

If we are free to shift the counterterm, ZBDS-like
6 ¼ Z6 − Y6,

then the matrix element has a somewhat simpler form,

M̂ð1Þ
6 ðϵÞ ¼

X
cycles

�
− lnð−s12Þ lnð−s23Þ þ

1

2
lnð−s12Þ lnð−s45Þ

�
þ 6ζ2 ðBDS-like schemeÞ: ð156Þ

In particular, it is a function of only two-particle invariants.
This means that when the amplitude is exponentiated, it
cannot violate the Steinmann relations (these require three
particle invariants) [94,95].
Note, however, that we do not know how to specify this

BDS-like subtraction scheme at higher order. More impor-
tantly, we do not know if it is consistent. As mentioned
above (see [91]), there are constraints on the scheme from
self-consistency of SCET. Since we also do not know
general constraints on the finite parts of the counterterms, it
is safest to restrict to conventional dimensional regulari-
zation with minimal subtraction, where SCET at least is
believed to be consistent. In MS, the counterterm is in
Eq. (154) and the hard matrix element is in Eq. (152). In
MS, the hard matrix elements agree with the minimally
normalized amplitudes discussed in [87] up to at least two-
loops and preserve the Steinmann relations.

VII. SUMMARY AND OUTLOOK

The traditional S-matrix is only well-defined if time
evolution of a theory is well-approximated by free evolu-
tion at early or late times. Indeed, the free Hamiltonian H0

is part of the definition of S used for perturbative calcu-
lations. When a theory has massless particles, the inter-
actions do not die off fast enough at asymptotic times,
resulting in a poorly defined, divergent S-matrix. We argue
that a sensible, finite S-matrix is obtained by replacing H0

in its definition with an asymptotic Hamiltonian Has that
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correctly accounts for all the asymptotic interactions. Our
key principle for choosing Has is that the states should
evolve before and after they scatter independently of how
they scatter. That such anHas exists and makes the S-matrix
finite is guaranteed by theorems of hard-collinear-soft
factorization. Capitalizing on these theorems, we define
Has as the leading power expansion of the full Hamiltonian
in soft and collinear limits, and we call the corresponding
S-matrix the hard S-matrix, SH. SH is finite order-by-order
in perturbation theory, as we have verified through a
number of explicit examples in QED, QCD, and N ¼ 4
super-Yang-Mills theory.
While the traditional S-matrix is IR divergent, it can still

be used to compute IR-finite observables. This is done by
summing over a broad enough set of processes so that the
sum is finite even though individual contributions are
divergent. With SH, the same physical predictions result
using the matrix elements of a scattering operator that are
finite process-by-process.
We presented a method and Feynman rules for the

perturbative calculation of SH-matrix elements. The
method involves separating SH into three parts: An asymp-
totic part evolving the state from t ¼ 0 to t ¼ −∞, the
evolution from t ¼ −∞ to t ¼ ∞, and an asymptotic part
evolving from t ¼ ∞ to t ¼ 0. Each asymptotic part is
calculated using Feynman rules similar to those in time-
ordered perturbation theory but without overall energy
conservation, and the middle part consists of conventional
Feynman diagrams. The three part picture is presented for
calculational convenience, since it breaks up calculations
into essentially usual time-ordered perturbation theory and
Feynman diagrams, and bypasses the need to derive a new
interaction picture with modified propagators.
The hard S-matrix has numerous advantages over the

traditional S-matrix. The first advantage is the obvious one:
SH exists. Second, matrix elements of SH have a rich
structure with diverse interpretations. One can interpret
the asymptotic evolution as dressing the states, so that an
initial Fock state with a finite number of particles evolves
into a dressed state with an infinite number of particles at
asymptotic times. This connects our construction to pre-
vious work on coherent states, such as by Chung [24] or
Faddeev and Kulish [33]. Alternatively, SH-matrix elements
can be interpreted as Wilson coefficients in soft-collinear
effective theory. Finally, SH-matrix elements are closely
related to finite remainder functions studied in the amplitude
community. Indeed, much of the progress in understanding
scattering amplitudes over the past few decades has com-
prised results about an object, the S-matrix, that formally
does not exist. Since there is somuch interest in the S-matrix
itself (as opposed to cross sections), it is logical to try to put
this object on a firmer theoretical footing. Doing so was one
of the main motivations of this paper.
There are a number of new, to the best of our knowledge,

ideas contained in this paper. These include the following:

(i) The first explicit calculation of a finite S-matrix in
theories with massless particles. While other authors
have introduced similar concepts in QED, there are
no explicit calculations in the literature of actual
matrix elements. The majority of papers focuses on
just the IR divergence cancellation. Issues such as
regulator dependence, renormalization, subtraction
schemes, phase space integrals, computation of
observables, completeness of the Hilbert space,
etc., are all glossed over unless one is able to do
explicit computations.

(ii) We present a new rationale for choosing the asymp-
totic Hamiltonian. While others have argued that the
asymptoticHamiltonian shouldmake theS-matrix IR
finite, we argue that such a criterion is not restrictive
enough: one could choose Has ¼ H to satisfy that
requirement. Instead we argue that one should use
that the asymptotic evolution is independent of the
hard scattering. That there exists an asymptotic
Hamiltonian with this property in gauge theories is
nontrivial and follows from factorization theorems.

(iii) We connect the literature on coherent states to that of
factorization and that of scattering amplitudes. In
particular, the hard S-matrix elements can be iden-
tified as S-matrix elements of coherent states, as
Wilson coefficients in SCET, and as finite remainder
functions in N ¼ 4 SYM fields corresponding to
BDS-inspired subtraction schemes.

(iv) We provide an explicit set of Feynman rules to
evaluate SH elements in perturbation theory. These
rules involve distributions and products of distribu-
tions that must be handled with some care.

(v) We provide a number of examples of SH-matrix
element calculations, both using pure dimensional
regularization and with explicit cutoffs on Has.

(vi) We examine how the Glauber/Coulomb phase arises
in asymptotic-region diagrams. In particular, energy
nonconservation in the asymptotic regions allows
the Glauber contribution to be reproduced (and
canceled) without off-shell modes.

(vii) We demonstrate that infrared-safe observables com-
puted with SH will agree with those computed using
the normal S-matrix and, to leading power, with those
computed using SCET or other factorization frame-
works.We are not aware of any paper on dressed states
that makes a physical prediction using them. In our
framework, one can see how the dressing occurs, but
also how the states get “undressed” in the final
asymptotic evolution before themeasurement ismade.

(viii) Although predictions using SH reduce (almost trivi-
ally) to predictions using S, matrix elements of SH
can be studied as interesting objects on their own.
These matrix elements are scheme- and scale-
dependent, but still have physical interpretations,
just as the MS couplings αsðμÞ.
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These last two bullets are perhaps worth some additional
discussion. The incontrovertible truth is that cross sections
computed with S, despite coming from IR-divergent
amplitudes, are in perfect agreement with observations.
Thus, no matter how one attempts to make scattering
amplitudes finite, the framework must reproduce these
cross sections exactly. In other words, it is foolhardy to try
to make different predictions at the cross section level with
a new S-matrix. That being said, there are situations, in
particular those with charged initial states such as
eþe− þ photons → Z þ photons, where it is not entirely
clear what the physical cross section is supposed to be [14].
In such situations, a finite SH may provide some clarity.
Although we cannot expect SH to revolutionize the

computation of physical cross sections, having a finite
S-matrix is still enormously beneficial for the study of
scattering amplitudes themselves. Indeed, the majority of
research of scattering amplitudes focuses on S-matrix
elements themselves, not on observables. So it is this
community that might benefit first from SH. As an example,
we showed that certain SH elements in a supersymmetric
theory naturally satisfy the Steinmann relations, at least to
two-loops. In contrast, S-matrix elements are IR divergent
and, depending on how the IR divergences are subtracted,
the Steinmann relations may or may not be satisfied. More
broadly, because SH corresponds to the matrix elements of
a single unitary operator, rather than a ratio of such matrix
elements, it should automatically satisfy any constraints
that follow from unitarity. One might also imagine that
properties stemming from analyticity would be more
transparent in matrix elements of a single operator rather
than a ratio.

Finally, let us briefly discuss how to think about SH
nonperturbatively. In this paper, we have advocated for
computing SH in dimensional regularization with MS
subtraction. At each order in perturbation theory, one can
computeSH elements thisway. Itmay seemcounterintuitive,
but perturbation theory has historically been the best way to
orient investigation into nonperturbative physics, and a
perturbative approach could be similarly successful for
SH. One can also resum SH using renormalization group
techniques to examine its all-orders behavior. Alternatively,
one could (in principle) compute SH numerically with hard
cutoffs, but to compare to the perturbative results in dimen-
sional regularization, onewould have to convert between the
cutoff scheme andMS. Through various approaches such as
these, it should be possible to explore the analytic structure
of SH. It would be interesting to look at its properties in the
Borel plane, for example, orwhether a renormalon-freemass
scheme naturally emerges. More generally, since SH is IR
finite, it resemblesmore closelyS in a theorywith amass gap
than the IR-divergent S. Thus one might hope that when
massless particles are present, the S-matrix bootstrap pro-
gram might make more progress with SH than it has on S.
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