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Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via G. Celoria 16, I-20133 Milano, Italy

Olivier Sarbach ‡

Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México
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Recently, there has been quite a lot of interest in static, spherical wormhole spacetimes and the question
of their stability with respect to time-dependent perturbations. The consideration of linearized perturbations
usually leads to a master wave equation with effective potential, which can then be analyzed using standard
tools from quantum mechanics. However, in the wormhole case, particular care must be taken with the
gauge conditions when formulating the master equation. A poor coordinate choice, based for example on
fixing the areal radial coordinate, may lead to singularities at the throat, which complicate the stability
analysis, or might even lead to erroneous conclusions regarding the stability of the underlying wormhole
configuration. In this work, we present a general method for deriving a gauge-invariant wave system of
linearized perturbation equations in the spherically symmetric case, assuming that the matter supporting the
wormhole is a phantom scalar field—that is, a self-interacting scalar field whose kinetic energy has the
reversed sign. We show how this system can be decoupled and reduced to a single master wave equation
with a regular potential, with no intermediate steps involving singularities at the throat. Two applications of
our formalism are given. First, we rederive the master equation for the linearly perturbed Ellis-Bronnikov
wormhole using our new, singularity-free method. As a second application, we derive the master equation
describing the linear perturbations of a certain anti–de Sitter wormhole, provide a detailed analysis of the
spectral properties of the underlying operator, and prove that, as in the Ellis-Bronnikov case, this wormhole
is linearly unstable and possesses a single unstable mode. In the final part of the paper, we consider a
wormhole with de Sitter–type ends, whose spacetime presents horizons and admits a nonstatic extension
beyond them; for this system, we derive partial results of linear instability.
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I. INTRODUCTION

One of the most fascinating features of Einstein’s theory
of general relativity (GR) consists in the fact that spacetime
may be curved and topologically nontrivial, describing
intriguing objects like black holes and wormholes. Black
hole spacetimes appear under rather natural conditions in
GR, and they are expected to form in nature—for instance,
by the collapse of sufficiently massive stars at the end of
their life. Furthermore, there is by now compelling evi-
dence for their existence in our Universe which has recently
been reinforced by the observation of gravitational waves

from binary black hole mergers [1] and the first image of
the shadow of the supermassive black hole in the center
of the galaxy M87 [2]. In contrast to this, the occurrence
of wormholes1 is much more speculative, and so far, there
is no observational evidence for the existence of such
structures. From the theoretical point of view, there are
important constraints, such as the topological censorship
theorem [3]. This theorem implies that asymptotically flat,
globally hyperbolic wormhole spacetimes (including
those relevant to this paper whose Cauchy surfaces have
topology R × S2, representing a throat connecting two
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1In this article, when talking about wormholes, we always refer
to traversable Lorentzian wormhole spacetimes in a metric
theory of gravity.
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asymptotically flat ends) require the existence of “exotic”
matter to support the throat—that is, they require matter
whose stress-energy-momentum tensor violates the (aver-
aged) null energy condition. Intuitively, the need for exotic
matter can be understood by the fact that a light bundle that
traverses a wormhole throat must focus as it approaches the
throat, but then must expand again as it moves away from
the throat, which is opposite to the focusing effect for light
due to ordinary matter [4]. On the other hand, it has also
been shown that an infinitesimally small quantity of matter
violating the averaged null condition is sufficient to support
the throat [5]. This leads to the hope that quantum effects
may give rise to a semiclassical theory in which wormhole
spacetimes are allowed, in a similar way to how quantum
effects (Hawking radiation) induce black hole evaporation
although an area decrease of the event horizon is forbidden
in classical GR with matter fields satisfying the null energy
condition [4]. Nevertheless, it remains to be seen whether
or not such effects are strong enough to give rise to a
traversable wormhole throat of macroscopic size [6].
Instead of invoking quantum effects, an alternative way

to violate the null energy condition (which has received
important motivation from cosmology; see, for example,
Ref. [7]) is the consideration of phantom scalar fields, i.e.,
scalar fields that have a negative kinetic energy (see, for
instance, Ref. [8] and references therein). Due to this
property, such fields may lead to gravitational repulsion,
and hence induce interesting effects like the accelerated
expansion in the Universe, universes with no particle
horizon [9], or the ability of supporting a wormhole throat
[10,11]. On the other hand, the presence of unbounded
negative kinetic energy might cast doubt on the possibility
that any stationary solution found in this theory could ever
be stable.2 Therefore, a pressing question regarding the
relevance of static wormhole solutions in such theories (or
other GR theories involving exotic matter fields) is their
dynamical stability under small perturbations.
The most widely studied wormhole models (including

those analyzed in the present article) are based on static,
spherically symmetric spacetimes in which the world sheet
of the throat consists of spheres of minimal area [13].
Within the context of phantom scalar fields, many such
solutions have been found; the simplest ones are obtained
for a real scalar field and are due to pioneering work by
Ellis [10] and by Bronnikov [11]. Since then, these
solutions have been generalized to arbitrary dimensions
[14,15] and to the following supporting fields: a scalar with
a self-interaction potential [16,17], a complex phantom

scalar [18], a family of conventional and/or phantom
scalars [19–21], a phantom scalar and an electromagnetic
field [22], and, very recently, a k-essence scalar [23]. For
the linear stability analysis of many of these solutions, see
Refs. [17,20,22–26]. All these studies conclude that the
static, spherically symmetric wormhole solutions are lin-
early unstable, with numerical simulations [19,27,28]
revealing that the throat either collapses to a black hole
or expands on timescales comparable to the light-crossing
time of the radius of the throat. Therefore, finding a static,
spherically symmetric wormhole solution in GR with
exotic matter which can be shown to be linearly stable
(or unstable, with a large timescale associated with all the
unstable modes) remains a challenging open problem.3

In this work, we focus on GR minimally coupled to a
single, real phantom scalar field Φ with an arbitrary self-
interaction potential VðΦÞ and provide a general, gauge-
invariant framework to analyze the linear stability of static,
spherically symmetric wormhole solutions in these theo-
ries; the latter is tested in specific applications.
In order to clarify which are the novelties of the paper, it

is necessary to sketch the previous state of the art in this
area. Linearized perturbations of wormhole solutions of the
Einstein equations have been previously discussed, even in
a gauge-invariant language. However, most of the previous
approaches are based on fixing the radial coordinate and
deriving a linearized wave equation for perturbations of the
scalar field; due to the fact that the radial coordinate has a
critical point at the throat, the effective potential appearing
in this wave equation is necessarily singular at the throat.
As explained in Ref. [24] (see also Ref. [25]), this yields an
artificial (mirrorlike) boundary condition at the throat
which prevents perturbations from traversing the worm-
hole. This artificial boundary condition effectively restricts
the class of physically admissible perturbations, and as it
turns out, the unstable modes associated with the wormhole
are precluded from this class, leading to the erroneous
conclusion that the wormhole is linearly stable. To over-
come these problems, a method for transforming the
singular wave equation to a regular one was introduced
in Ref. [24] to treat the linearized perturbations of the
Ellis-Bronnikov wormhole; this approach was sub-
sequently generalized and referred to as the “S-deformation
method” in Ref. [25]. Both Refs. [24,25] refer to (3þ 1)-
dimensional spacetimes; higher-dimensional extensions
were considered in Ref. [15], where the reflection-sym-
metric Ellis-Bronnikov wormhole solution was generalized
to any spacetime dimension dþ 1 (with d ≥ 3) and its
linear stability analysis was performed, using again the S-
deformation method to overcome singularity problems at2However, the presence of unbounded negative kinetic energy

by itself does not imply that any stationary solution in the theory
is necessarily unstable. For example, it turns out that the
Minkowski spacetime is nonlinearly stable in Einstein theory
minimally coupled to a massless scalar field irrespectively of the
sign of the gravitational coupling constant (see the comments and
references in Appendix B.5 of Ref. [12]).

3See also Ref. [29] for the construction of static, spherically
symmetric wormholes in Einstein-dilaton-Gauss-Bonnet theory,
a modified gravity theory, which does not require exotic matter.
However, a careful stability analysis has recently revealed that
these solutions are linearly unstable as well [30].
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the throat and eventually showing that the wormhole under
consideration is unstable in any dimension.
We are now ready to describe the novelties of the present

paper. Here we work in spacetime dimension 3þ 1, in the
framework already outlined (a phantom scalar with self-
interaction minimally coupled to gravity, the spherically
symmetric wormhole solutions arising from this setting,
and their linear stability analysis). Our first result is the
derivation of a coupled, 2 × 2 linear wave system subject to
a constraint, describing the linearized dynamics of time-
dependent perturbations of such solutions in terms of two
gauge-invariant linear combinations of the linearized metric
coefficients and of the scalar field; a key feature of this
system is that it is regular at the throat, provided the scalar
field does not have a critical point there. The second result
of our work is that, provided a nontrivial time-independent
solution of the coupled 2 × 2 system is known, it is possible
to decouple the system, obtaining a single wave equation
for an appropriate, gauge-invariant linear combination of
the perturbed fields, from which all other perturbations can
be reconstructed; in most situations, such a time-indepen-
dent solution can be found by varying the parameters of a
known family of static wormhole solutions. The above two
results provide a general frame for spherically symmetric
wormholes and their linear stability analysis, alternative
to the S-deformation approach of Refs. [15,24,25]: no
S-deformation of the linearized perturbation equations is
necessary in the approach of this paper, since there is no
singularity to be eliminated.
For the Ellis-Bronnikov wormhole, we show that the

master equation obtained by our method agrees precisely
with the one obtained in Ref. [24] by the S-method.
Furthermore, we show that our gauge-invariant method
for obtaining a master equation through the decoupling of
the 2 × 2 system also works for wormhole solutions whose
stability has not been addressed so far. As an explicit
example, we consider a static, spherically symmetric anti–
de Sitter (AdS)-type wormhole which connects two asymp-
totic AdS ends (this is a special case of a family of static
solutions of the Einstein-scalar equations derived by
Bronnikov and Fabris in Refs. [8,31]); we prove that the
above AdS wormhole is linearly unstable, a fact that we
presume to be a third novelty of the present work.
Finally, in this paper we provide a detailed analysis for

the behavior of the solution of the master equations in both
the Ellis-Bronnikov and the AdS case, based on a rigorous
spectral analysis of the Schrödinger operator appearing
therein. A negative eigenvalue of the Schrödinger operator
gives rise to a pair of modes, one exponentially growing
and the other one exponentially decaying with respect to
the time variable; a positive eigenvalue gives rise to a
pair of oscillating modes, while a positive energy level
lying in the continuous spectrum gives rise to a pair of non-
normalizable oscillating modes, corresponding to general-
ized eigenfunctions of the Schrödinger operator. If zero is

an eigenvalue, it gives rise to a pair of normalizable modes,
one of them constant and the other one linearly growing
with time. We show that in the Ellis-Bronnikov case, the
solution can be expanded in terms of an exponentially
growing, an exponentially decaying, a constant, a linearly
growing mode, and a continuum of oscillators associated
with non-normalizable modes. In contrast to this, in the
AdS case the spectrum is a pure point spectrum, giving rise
to an exponentially growing, an exponentially decaying,
and to an infinite, discrete set of oscillating normalizable
modes. This is due to the Dirichlet-type boundary con-
ditions imposed at the AdS boundary, which give rise to a
regular Sturm-Liouville problem.
The AdS wormhole has a de Sitter (dS) analog which,

however, presents horizons; to go beyond the horizons, it is
necessary to consider a Kruskal-type extension of the dS
wormhole spacetime, which, however, is nonstatic and thus
is outside the mainstream of the paper. In any case, in the
final part of the paper we discuss the above issues and
also present a partial result of linear instability, concerning
the static part of the wormhole spacetime (we think this
is another novelty of this article, foreshadowing future
developments).
The article is organized as follows. In Sec. II, we specify

our metric ansatz, make a few general comments regarding
the coordinate conditions that will be relevant in this work,
and derive the field equations for a spherically symmetric,
time-dependent configuration. In Sec. III, we mainly
discuss two static wormhole solutions that will serve as
examples and applications for our perturbation formalism
and stability analysis: the Ellis-Bronnikov solution and the
previously mentioned wormhole between two AdS uni-
verses. In the same section, we spend a few words on the dS
analog of this wormhole, to be reconsidered in the final part
of the article. In Sec. IV, we derive the relevant set of
linearized equations in a gauge-fixed setting in which the
scalar field is held fixed. In Sec. V, we introduce a set of
combinations of the linearized fields which are invariant
with respect to infinitesimal coordinate transformations,
and the linearized field equations are cast into a constrained
wave system for two of these gauge-invariant fields. In
Sec. VI, we show how to decouple this wave system,
provided a static solution of the linearized field equations is
available, in which case a single master wave equation is
obtained. This method is then applied to the examples of
Sec. III, and it is shown that in each case the associated
Schrödinger operator possesses a unique bound state with
negative energy, implying that these wormholes are linearly
unstable. In Sec. VII, we provide a detailed discussion on
the spectral decomposition of the Schrödinger operator and
the corresponding master equations (based on rigorous
techniques from functional analysis) and contrast the Ellis-
Bronnikov case with the one of the AdS wormhole. In
Sec. VIII, we describe the dS wormhole, including the
nonstatic extension beyond the horizons of its spacetime;
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we also derive a linear instability result concerning the
static part of this spacetime. Conclusions, limitations, and
possible future applications of our method are given in
Sec. IX. Technical details regarding the spectral theory of
Schrödinger operators are given in the appendixes.
Throughout this work, we use the signature convention

ð−;þ;þ;þ; Þ and choose units in which c ¼ 1, ℏ ¼ 1.

II. SPHERICALLY SYMMETRIC FIELD
EQUATIONS AND BACKGROUND

We consider a four-dimensional spacetime ðM;gÞ in
which the gravitational field g is minimally coupled to a
massless phantom scalar fieldΦ—that is, a scalar field with
the reversed sign in its kinetic term that self-interacts
according to a potential VðΦÞ. The action functional of
this system is

S½g;Φ� ≔
Z �

R
2κ

þ 1

2
∇μΦ ·∇μΦ − VðΦÞ

�
dv;

where κ ¼ 8πG is the usual coupling constant, while R and
dv ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgμνÞj

p Q
3
μ¼0 dx

μ are the scalar curvature and
the volume element associated with the metric g. The
corresponding field equations are

Rμν ¼ κ½−∇μΦ · ∇νΦþ VðΦÞgμν�; ð1Þ

0 ¼ ∇μ∇μΦþ V 0ðΦÞ; ð2Þ

with∇μ and Rμν denoting the covariant derivative and Ricci
tensor, respectively, associated with g.
In this work, we focus on spherically symmetric space-

times ðM;gÞ of the form M ¼ M̃ × S2 with metric

g ¼ −αðt; xÞ2dt2 þ γðt; xÞ2ðdxþ βðt; xÞdtÞ2
þ rðt; xÞ2ðdϑ2 þ sin2ϑdφ2Þ; ð3Þ

which, in a general spherically symmetric coordinate
system ðt; x;ϑ;φÞ, is parametrized in terms of the four
functions α, β, γ, r on the two-dimensional manifold M̃. Of
course, the number of these functions can be reduced from
four to two by an appropriate choice of the coordinates
ðt; xÞ on M̃. There are several “natural” choices one can
make. For example, given a smooth function f∶M̃ → R
with the property that its gradient is everywhere spacelike,
one can choose an orthogonal coordinate system ðt; xÞ on
M̃ such that x ¼ f and β ¼ 0. [Likewise, if the gradient of
f is everywhere timelike, one can choose ðt; xÞ such that
β ¼ 0 and t ¼ f.] In particular, if the gradient of the areal
radius r is everywhere spacelike, one can choose f ¼ r,
and one is left with the two functions α and γ on M̃.
Usually, however, the gradient of r is not everywhere
spacelike due to the presence of minimal or trapped

surfaces, and the resulting coordinate system is only locally
defined on M̃.
The field equations (1) and (2) for a spherically sym-

metric metric [Eq. (3)] in any gauge such that β ¼ 0 can be
written as

∂
∂t

�
_γ

α

�
−

∂
∂x

�
α0

γ

�
−
γ

α

_r2

r2
þ α

γ

r02

r2
−
αγ

r2
¼ κ

2

�
γ

α
_Φ2 −

α

γ
Φ02

�
;

ð4Þ

∂
∂t

�
γ

α
r_r

�
−

∂
∂x

�
α

γ
rr0

�
¼ αγðκr2VðΦÞ − 1Þ; ð5Þ

∂
∂t

�
γ

α
r2 _Φ

�
−

∂
∂x

�
α

γ
r2Φ0

�
¼ αγr2V 0ðΦÞ; ð6Þ

with the constraints

H ≔
α

γ

�
2
r00

r
þ r0

r

�
r0

r
− 2

γ0

γ

��
−
γ

α

_r
r

�
_r
r
þ 2

_γ

γ

�

−
αγ

r2
−
κ

2

�
γ

α
_Φ2 þ α

γ
Φ02

�
þ καγVðΦÞ ¼ 0; ð7Þ

M ≔ 2
_r0

r
− 2

_r
r
α0

α
− 2

r0

r
_γ

γ
− κ _ΦΦ0 ¼ 0: ð8Þ

Here and in the following, a dot and a prime refer to partial
differentiation with respect to t and x, respectively. In the
conformally flat gauge, in which α ¼ γ, Eqs. (4)–(6) yield a
hyperbolic wave system for the quantities ðα; r;ΦÞ, which
is subject to the constraints (7) and (8). This system (or
slight variants thereof) is suitable for numerical time
evolutions, see for instance Ref. [27].

III. STATIC WORMHOLE SOLUTIONS

In this section, we deal with some examples of static
wormhole solutions that have been considered previously
in the literature. Most of our attention will be devoted to the
Ellis-Bronnikov wormhole connecting two asymptotically
flat ends [10,11] and to a reflection-symmetric wormhole
connecting two AdS ends [8]; these will be the main
applications of the general technique for linear stability
analysis proposed in the present work (Secs. IV–VII). We
will also mention a wormhole with “dS asymptotics” [8];
this case is essentially different from the previous two since
it has horizons, a feature which is essentially outside the
mainstream of the present work. We will return to this dS
wormhole in Sec. VIII, where we will give a first draft of
the treatment of this wormhole, including hints on its linear
stability analysis; we hope to reconsider this subject in
future works.
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A. Ellis-Bronnikov wormhole

Let us assume a zero potential: VðΦÞ ¼ 0. In the static
case, the functions α, γ, and r are t-independent, and one
can further adjust the coordinate x so that αγ ¼ 1. In this
case, the field equations can be reduced to the three
differential equations

½α2r2�00 ¼ 2; ½α2rr0�0 ¼ 1; ½α2r2Φ0�0 ¼ 0;

which arise, respectively, from a recombination of Eqs. (4),
(5), and (7), from Eq. (5), and from Eq. (6). These can
easily be integrated, with the result

α ¼ γ−1 ¼ eγ1 arctan
x
b; r2 ¼ ðx2 þ b2Þγ2;

Φ ¼ Φ1 arctan
x
b
: ð9Þ

Here, b > 0, γ1 and Φ1 are integration constants, and the
Hamiltonian constraint H ¼ 0 enforces the relation κΦ2

1 ¼
2ð1þ γ21Þ (while the momentum constraint M ¼ 0 is
obviously satisfied). This solution was obtained a long
time ago by Ellis [10] and Bronnikov [11], and describes a
traversable wormhole whose throat is located at x ¼ γ1b
(see also Ref. [24] for its physical properties). The
reflection-symmetric case γ1 ¼ 0 for which α ¼ γ ¼ 1
results in a particularly simple form of the wormhole
metric, which has been posed as an exercise in general
relativity in the popular article by Morris and Thorne [13].

B. A wormhole connecting two AdS universes

We now look for a static solution in the gauge αγ ¼ 1,
allowing VðΦÞ to be nonzero. Let us show that a simple
solution of this form can be obtained by setting as before
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
, where b > 0. With these choices, it is easy

to show that the combination [Eq. (5)] þr2 [Eq. (7)] is
satisfied if Φ ¼ ffiffiffiffiffiffiffiffi

2=κ
p

arctanðx=bÞ þΦ0 with Φ0 a con-
stant. With this expression for the scalar field, Eq. (4)
leads to

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kðb2 þ x2Þ þMðb2 þ x2Þ arctan x

b
þ bMx

r
;

where K and M are two constants. The remaining two
equations—Eqs. (5,6) [or, alternatively, Eq. (6,7)]—can be
solved by setting

VðΦðxÞÞ ¼ Kðb2 þ 3x2Þ −Mðb2 þ 3x2Þ arctan x
b − 3bMx

κðb2 þ x2Þ :

Choosing, without loss of generality, Φ0 ¼ 0, we obtain
for VðΦÞ

VðΦÞ ¼ K
κ

�
3 − 2cos2

� ffiffiffi
κ

2

r
Φ
��

−
M
κ

�
3 sin

� ffiffiffi
κ

2

r
Φ
�
cos

� ffiffiffi
κ

2

r
Φ
�

þ
ffiffiffi
κ

2

r
Φ
�
3 − 2cos2

� ffiffiffi
κ

2

r
Φ
���

:

Actually, this solution is exactly the general solution given
by Bronnikov and Fabris in Ref. [31] and reconsidered in
the recent survey [8] (with some reparametrization of the
involved constants).
From here to the end of the paper, we make the choice

M ¼ 0 ð10Þ

corresponding to a wormhole metric which is reflection-
symmetric with respect to the throat; hereafter and in most
of the paper, we also set

K ≡ −k2; ðk > 0Þ: ð11Þ

With the choices in Eqs. (10) and (11), the solution
simplifies to

VðΦÞ ¼ −
k2

κ

�
3 − 2cos2

� ffiffiffi
κ

2

r
Φ
��

;

α ¼ γ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ðx2 þ b2Þ

q
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
;

Φ ¼
ffiffiffi
2

κ

r
arctan

x
b
: ð12Þ

In the limit case b → 0, we should replace the third equality
in Eq. (12) with r ¼ x > 0; the corresponding metric
describes an AdS universe with cosmological constant
Λ ¼ −3k2. From now on, we intend (b > 0, as already
stated and)

x ∈ ð−∞;þ∞Þ; ð13Þ

since rðxÞ ∼ jxj for x → �∞, we can interpret the metric in
Eq. (12) as describing a wormhole connecting two separate
asymptotically AdS universes with the same cosmological
constant Λ ¼ −3k2 and minimal areal radius b at the throat.
For this reason, one could call the solution (12) an
“AdS-AdS wormhole”; in the sequel, this expression will
always be shortened to “AdS wormhole.” Let us note that,
for k → 0, the potential VðΦÞ vanishes and the AdS
wormhole (with b fixed) becomes the reflection-symmetric
Ellis-Bronnikov wormhole [as in Eq. (9), with γ1 ¼ 0].
For further convenience, we introduce the change of

variables
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t ¼ s

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p ; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p

k
tan

u
2
; B ≔ bk;

s ∈ ð−∞;þ∞Þ; u ∈ ð−π; πÞ; ð14Þ

so that in the new coordinate system the metric corre-
sponding to the solution (12) is transformed into a metric
with the form of Eq. (3), with ðt; xÞ replaced by ðs; uÞ and

α ¼ γ ¼ 1

2k cos u
2

; β ¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2 − cos u

p
ffiffiffi
2

p
k cos u

2

;

Φ ¼
ffiffiffi
2

κ

r
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p
tan u

2

B

�
ð15Þ

[of course, VðΦÞ is still as in Eq. (12)]. Let us observe that
the limits x → �∞, describing the far ends of the worm-
hole, are equivalent to the limits u → �π.

C. A dS wormhole

As anticipated in the first paragraph of this section, we
will consider later a dS-type wormhole, differing substan-
tially from the Ellis-Bronnikov and AdS wormholes due to
the presence of horizons. For the moment, we just mention
that this dS wormhole is the caseM ¼ 0,K ¼ k2 > 0 of the
Bronnikov-Fabris solution described at the beginning of
Sec. III B; we will return to this wormhole in Sec. VIII,
after acquiring experience on linearized perturbation theory
through the analysis of the AdS case.

IV. LINEAR PERTURBATIONS AND
THE δΦ= 0 GAUGE

In the sequel, we consider, for an arbitrary potential
VðΦÞ, a family of static solutions ðα; γ; r;ΦÞ of Eqs. (4)–
(8) (without necessarily assuming the gauge condition
αγ ¼ 1). This family may depend on certain parameters
(like the constants b, γ1 in Sec. III A or the parameter B in
Sec. III B). In addition, we consider a (nonstatic) pertur-
bation (δα, δγ, δr, δΦ) of this static solution, which is
treated by linearizing Eqs. (4)–(8); let us recall that
Eqs. (4)–(8) assume β ¼ 0 for the metric [Eq. (3)], so
their linearization corresponds to taking δβ ¼ 0.
For the particular case in which the potential vanishes

(V ¼ 0), it can be shown (see, e.g., Ref. [24]) that the
linearized constraint equations δH ¼ δM ¼ 0 can be
integrated. It turns out this is still the case for solutions
with a nontrivial potential, yielding the conclusion that

σ ≔
αr
γ

�
δr0 −

α0

α
δr − r0

δγ

γ
−
κ

2
rΦ0δΦ

�
ð16Þ

is a constant. This constant indeed describes a zero mode—
that is, a perturbation corresponding to an infinitesimal
variation of the parameters labeling the static solution (see
Sec. 3.1 of Ref. [24] for more details in the V ¼ 0 case).

Since we are mainly interested in dynamical perturbations
(rather than infinitesimal deformations along the static
branch in the solution space), we assume from now on that

σ ¼ 0: ð17Þ

For future use, it is advantageous to introduce the
quantities4

D ≔
δα

α
; A ≔

δγ

γ
; C ≔

δr
r
: ð18Þ

Then, Eqs. (16) and (17) become

σ ¼ 0; σ ≔
αr2

γ

�
C0 −

�
α0

α
−
r0

r

�
C −

r0

r
A −

κ

2
Φ0δΦ

�
;

ð19Þ

moreover, the linearization of Eqs. (4)–(6) and the con-
dition σ ¼ 0 give the following linear system of equations:

γ

α
Ä −

∂
∂x

�
α

γ
D0

�
−
α0

γ
ðD −AÞ0 þ 2

α

γ

r0

r
C0

−
2αγ

r2
ðA − CÞ þ κ

α

γ
Φ0δΦ0 ¼ 0; ð20Þ

γ

α
C̈ −

∂
∂x

�
α

γ
C0
�
−
α

γ

r0

r
ðD −Aþ 4CÞ0

þ 2αγ

r2
ðA − CÞ − καγ½2VðΦÞAþ V 0ðΦÞδΦ� ¼ 0; ð21Þ

γ

α
δ̈Φ −

∂
∂x

�
α

γ
δΦ0

�
− 2

α

γ

r0

r
δΦ0 −

α

γ
Φ0ðD −Aþ 2CÞ0

− αγ½2V 0ðΦÞAþ V 00ðΦÞδΦ� ¼ 0: ð22Þ

All the equations derived so far only assume the orthogonal
gauge β ¼ 0; at the linearized level, there is still liberty
which is related to the choice of a function f on M̃, as
explained in Sec. II. One possible choice is fixing the areal
radius function rðxÞ to its background form, such that
δr ¼ 0 and C ¼ 0. Equations (19) and (21) then allow us to
express the metric fields A and D0 in terms of δΦ, and we
obtain a master equation for the linearized scalar field δΦ
(see, e.g., Ref. [8]).
However, in this article, we are interested in deriving a

master equation describing the dynamics of the linear
perturbations of any one of the two wormholes in the
previous Secs. III A and III B. Since these solutions have
dr ¼ 0 at the wormhole throat, fixing the areal radius
function rðxÞ amounts to forcing the perturbations to vanish

4This choice of notation is somehow awkward; however, the
reason for it is to maintain compatibility with the notation used in
Ref. [32].
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at the throat, which from a physical point of view is much
too restrictive. At the mathematical level, enforcing the
δr ¼ 0 gauge results in a master equation for δΦ with a
potential that is singular at the throat (see Refs. [8,24] for
more details). On the other hand, while dr ¼ 0 at the
wormhole throat, we note from Eq. (9) or Eq. (12) that
dΦ ¼ const: × dx=ðx2 þ b2Þ is everywhere spacelike, and
hence the same will be true for sufficiently small perturba-
tions of the static wormhole solution. As a consequence, we
may choose the coordinates ðt; xÞ such that Φ is given by
exactly the same expression as in Eq. (9) or Eq. (12), even
for the perturbed spacetime. This implies, in particular, that
δΦ ¼ 0. In this gauge, Eqs. (19) and (22) reduce to

σ ¼ 0; σ ≔
αr2

γ

�
C0 −

�
α0

α
−
r0

r

�
C −

r0

r
A
�
; ð23Þ

D0 −A0 þ 2C0 þ 2γ2
V 0ðΦÞ
Φ0 A ¼ 0; ð24Þ

using these equations in order to eliminate C0 andD0 and the
static version of Eq. (6) (from which one can eliminate the
unperturbed quantity Φ00), Eqs. (20) and (21) reduce to

γ

α
Ä−

∂
∂x

�
α

γ
ðA0 − 2C0Þ

�
þ 2

α

γ

�
α0

α
þ r0

r

�
C0 − 2

αγ

r2
ðA− CÞ

þ 2αγV 0ðΦÞ
Φ0 A0 þ 2αγ

�
γ2
V 0ðΦÞ2
Φ02

þ
�
3
α0

α
þ 2

r0

r

�
V 0ðΦÞ
Φ0 þ V 00ðΦÞ

�
A ¼ 0; ð25Þ

γ

α
C̈ −

∂
∂x

�
α

γ
C0
�
− 2

α

γ

r0

r
C0 þ 2

αγ

r2
ðA − CÞ

þ 2αγ

�
r0

r
V 0ðΦÞ
Φ0 − κVðΦÞ

�
A ¼ 0; ð26Þ

which is still subject to the constraint given in Eq. (23).
As a simple example, let us consider the reflection-

symmetric subcase of the Ellis-Bronnikov wormhole,
already mentioned at the end of Sec. III A, corresponding
to the choice V ¼ 0, α ¼ γ ¼ 1, and r as in Eq. (9). In this
case, the difference between Eqs. (25) and (26), along with
Eq. (23), gives

χ̈ − χ00 −
3b2

r4
χ ¼ 0; χ ≔

A − C
r

; ð27Þ

which coincides with Eq. (15) in Ref. [32]. We will return
to this subcase at the end of Sec. V. The generalizations to
the non-reflection-symmetric Ellis-Bronnikov wormhole
and to the AdS wormhole (Secs. III A and III B) will be
discussed in Sec. VI.

V. GAUGE-INVARIANT REINTERPRETATION

In this section, we analyze the behavior of the perturbed
fields under an infinitesimal coordinate transformation

xa ↦ xa þ δxa; ðxaÞ ¼ ðt; xÞ; ð28Þ

parametrized by a vector field δx ¼ δxa∂a ¼ ðδtÞ∂t þ
ðδxÞ∂x on M̃, and try to rewrite the equations from the
previous section in terms of fields which are manifestly
gauge invariant with respect to these transformations.
Under the transformation in Eq. (28), the linear pertur-

bations of the radial part of the metric, g̃abdxadxb ≔
−α2dt2 þ γ2ðdxþ βdtÞ2, of the areal radius r, and of the
scalar field Φ transform according to

δg̃ab ↦ δg̃ab þ £δxg̃ab; δr ↦ δrþ £δxr;

δΦ ↦ δΦþ £δxΦ;

with £δx denoting the Lie derivative with respect to δx.
Parametrizing the metric as in Eq. (3) and assuming that the
background is static, this yields

δα ↦ δαþ α0δxþ αδ_t; ð29Þ

δβ ↦ δβ þ δ_x −
α2

γ2
δt0; ð30Þ

δγ ↦ δγ þ ðγδxÞ0; ð31Þ

δr ↦ δrþ r0δx; ð32Þ

δΦ ↦ δΦþΦ0δx ð33Þ

[where δ_t, δ_x, and δt0 refer to ∂
∂t ðδtÞ, ∂

∂t ðδxÞ, and ∂
∂x ðδtÞ,

respectively; similar notations are used hereafter in relation
to δβ and δΦ]. The following three quantities are invariant
with respect to these transformations:

A ≔
δγ

γ
−
1

γ

�
γ
δΦ
Φ0

�0
; ð34Þ

C ≔
δr
r
−
r0

r
δΦ
Φ0 ; ð35Þ

E ≔
�
δα

α

�0
−
�
α0

α

δΦ
Φ0

�0
þ γ2

α2

�
δ _β −

δΦ̈
Φ0

�
: ð36Þ

In the particular gauge used in the second half of the
previous section, for which δβ ¼ δΦ ¼ 0, it turns out that
A ¼ A, C ¼ C, and E ¼ D0, whereA, C, andD are defined
by Eq. (18). Therefore, in this gauge, we may replace the
quantitiesA, C, andD0 in Eqs. (23)–(26) with the quantities
A, C, E of the present section. Since the linearized field
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equations are gauge invariant, the equations obtained in this
way are valid in any gauge.
Summing up, our gauge-invariant equations are

σ ¼ 0; σ ≔
αr2

γ

�
C0 þ

�
r0

r
−
α0

α

�
C −

r0

r
A

�
; ð37Þ

E − A0 þ 2C0 þ 2γ2
V 0ðΦÞ
Φ0 A ¼ 0; ð38Þ

γ

α
Ä −

∂
∂x

�
α

γ
ðA0 − 2C0Þ

�

þ 2
α

γ

�
α0

α
þ r0

r

�
C0 − 2

αγ

r2
ðA − CÞ þ 2αγV 0ðΦÞ

Φ0 A0

þ 2αγ

�
γ2

V 0ðΦÞ2
Φ02 þ

�
3
α0

α
þ 2

r0

r

�
V 0ðΦÞ
Φ0 þ V 00ðΦÞ

�
A

¼ 0; ð39Þ

γ

α
C̈ −

∂
∂x

�
α

γ
C0
�
− 2

α

γ

r0

r
C0 þ 2

αγ

r2
ðA − CÞ

þ 2αγ

�
r0

r
V 0ðΦÞ
Φ0 − κVðΦÞ

�
A ¼ 0: ð40Þ

As a simple example, consider again the reflection-
symmetric Ellis-Bronnikov wormhole, for which V ¼ 0,
α ¼ γ ¼ 1, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
; i.e., the same example as

the one described at the end of Sec. IV, with Eqs. (23)–(26)
yielding Eq. (27). However, now Eq. (27) can be reinter-
preted in a gauge-invariant framework where χ ¼
ðA − CÞ=r. The interest of this equation is that it involves
only one unknown function χðt; xÞ and reduces the linear
stability analysis of this wormhole to the spectral analysis
of the Schrödinger operator −d2=dx2 − 3b2=ðx2 þ b2Þ2.
Since this has one negative eigenvalue (see Refs. [24,32]),
one concludes that the wormhole is unstable.
In Ref. [32], an attempt was made to provide the

present gauge-invariant formulation of the field equations
in this particular subcase: while the two gauge-invariant
quantities A and C were correctly defined, the quantity
D ¼ δα=α defined in Ref. [32] is only invariant with
respect to the restricted set of gauge transformations for
which δ_t ¼ 0. However, in general, this restricted set is
not sufficient to achieve both conditions δΦ ¼ 0 and
δβ ¼ 0 simultaneously, on which the derivation in
Ref. [32] was based.
Finally, let us observe that the gauge-invariant Eqs. (37),

(39), and (40) (again in the present subcase V ¼ 0,
α ¼ γ ¼ 1, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
) are related to the results

presented in Ref. [26], which are based on the gauge
δα ¼ δβ ¼ 0. For example, Eq. (37), when choosing the
gauge δα ¼ δβ ¼ 0, yields Eq. (3.9) in Ref. [26]. The
analysis of Ref. [26] also yields a final equation similar to

Eq. (27), even though it uses a different approach related to
the chosen gauge.5

VI. DECOUPLING OF THE PULSATION
EQUATIONS

After considering the simple example of the reflection-
symmetric Ellis-Bronnikov wormhole, let us return to the
case of an arbitrary potential VðΦÞ. In this section, we try to
reduce the gauge-invariant equations of Sec. V to one
involving only one unknown function χðt; xÞ [generalizing
the considerations which lead to Eq. (27) in the reflection-
symmetric Ellis-Bronnikov subcase]. To this purpose, we
note the following: setting

F ≔
A − C

r
; G ≔

C
r

ð41Þ

and performing a lengthy calculation, we can reformulate
the system of Eqs. (37), (39), and (40) as the hyperbolic
system of wave equations

� ∂2

∂t2 −
�
α

γ

∂
∂x

�
2

þ
�
Y0 Y0

0 0

�
α

γ

∂
∂xþ

α2

γ2

�
W11 W12

W21 W22

��

×

�
F

G

�
¼ 0; ð42Þ

subject to the constraint

G0 ¼
�
α0

α
−
r0

r

�
Gþ r0

r
F : ð43Þ

Here, the functions Y0 and Wij are given by the following
functions of the background quantities:

Y0 ≔ 2αγ
V 0ðΦÞ
Φ0 ; ð44Þ

W11 ≔
r0

r

�
4
α0

α
þ 3

r0

r

�
− 3

γ2

r2
þ Z11; ð45Þ

W12 ≔ 4
α02

α2
þ Z12; ð46Þ

W21 ≔ 4
r02

r2
þ 2

γ2

r2
þ Z21; ð47Þ

5In Ref. [26], the variables x and b of the present paper are
denoted with l and a; the field R fulfilling the master equation
(3.15) of the cited work is related to the present gauge-invariant
quantities C and E by the relation ∂2

∂t2 ½Rð tb ; xbÞ� ¼ r2

b3 ðrC̈ − r0EÞ.
Using the linearized field equations, this can also be rewritten as
∂2
∂t2 ½Rð tb ; xbÞ� ¼ − 1

br ðA − CÞ, which explains why R satisfies the
same master equation as χ, up to a source term whose second time
derivative vanishes.

CREMONA, PIZZOCCHERO, and SARBACH PHYS. REV. D 101, 104061 (2020)

104061-8



W22 ≔
r0

r

�
−4

α0

α
þ 3

r0

r

�
−
γ2

r2
þ Z22; ð48Þ

where

Z11 ≔ Z12 þ κγ2VðΦÞ; ð49Þ

Z12 ≔ 2γ2
�
γ2

V 0ðΦÞ2
Φ02 þ

�
3
α0

α
þ 2

r0

r

�
V 0ðΦÞ
Φ0 þ V 00ðΦÞ

�
;

ð50Þ

Z21 ≔ 2γ2
�
−κVðΦÞ þ r0

r
V 0ðΦÞ
Φ0

�
; ð51Þ

Z22 ≔ Z21 þ κγ2VðΦÞ: ð52Þ

In deriving the wave system in Eq. (42), we have used the
background equations

r0

r

�
2
α0

α
þ r0

r

�
−
γ2

r2
þ κ

2
Φ02 þ κγ2VðΦÞ ¼ 0; ð53Þ

α00

α
−
α0

α

�
γ0

γ
− 2

r0

r

�
þ κγ2VðΦÞ ¼ 0; ð54Þ

r00

r
−
r0

r

�
γ0

γ
−
α0

α
−
r0

r

�
−
γ2

r2
þ κγ2VðΦÞ ¼ 0: ð55Þ

Observe that in the reflection-symmetric Ellis-Bronnikov
subcase V ¼ 0, α ¼ γ ¼ 1, and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
, it follows

that Y0 ¼ W12 ¼ 0, such that the equation for F in the
system (42) decouples trivially from the remaining ones.
In the following, we describe a general trick which

allows one to decouple the constrained wave system of
Eqs. (42) and (43). Let us suppose that we know a static
solution ðF 0ðxÞ;G0ðxÞÞ of Eqs. (42) and (43) such that
G0ðxÞ ≠ 0 for all x. In this case, based on Leibnitz’s product
rule, it is not difficult to verify that the field

χ̃ ≔ F −
F 0

G0

G

satisfies the decoupled wave equation

� ∂2

∂t2 −
�
α

γ

∂
∂x

�
2

þ Y0

α

γ

∂
∂xþ

α2

γ2
Ṽ
�
χ̃ ¼ 0; ð56Þ

with the potential

Ṽ ≔ W11 −
F 0

G0

W21 − 2
r0

r

�
F 0

G0

�0
þ γ

α

r0

r
Y0

�
F 0

G0

þ 1

�
:

ð57Þ

Let us observe that it is possible to eliminate the first
spatial derivative in Eq. (56). Indeed, let us define

χ ≔
χ̃

a
; aðxÞ ¼ a0e

R
x

x0

Y0ðyÞγðyÞ
2αðyÞ dy

; ð58Þ

where a0 and x0 are two constants.
6 Then, it is found that χ

satisfies the wave equation

� ∂2

∂t2 −
�
α

γ

∂
∂x

�
2

þ α2

γ2
V
�
χ ¼ 0 ð59Þ

with the potential7

V ≔ Ṽ þ 1

4

γ2

α2
Y2
0 −

1

2

γ

α
Y 0
0

¼ r0

r

�
4
α0

α
þ 3

r0

r

�
−
3γ2

r2

þ γ2
�
2γ2

V 0ðΦÞ2
Φ02 þ 4

�
α0

α
þ r0

r

�
V 0ðΦÞ
Φ0

þ V 00ðΦÞ þ κVðΦÞ
�

þ
�
4
r02

r2
−
2γ2

r2
þ 2κγ2VðΦÞ

�
F 0

G0

− 2
r0

r

�
F 0

G0

�0
: ð60Þ

We refer to Eq. (59) as themaster equation; this reduces the
linear stability analysis to the spectral analysis of the linear,
Schrödinger-type operator −ðαγ d

dxÞ2 þ α2

γ2
V.

Once the master equation has been solved for the field
χðt; xÞ, it is possible to reconstruct the gauge-invariant
quantities F and G by integrating the constraint equa-
tion (43). Using the definition of χ and the fact that
ðF 0;G0Þ satisfy the constraint, one obtains

Gðt; xÞ ¼ G0ðxÞ
Z

x

x0

r0ðyÞ
rðyÞ

aðyÞ
G0ðyÞ

χðt; yÞdy; ð61Þ

F ðt; xÞ ¼ aðxÞχðt; xÞ þ F 0ðxÞ
G0ðxÞ

Gðt; xÞ; ð62Þ

and from this, one can also reconstruct the gauge-invariant
fields A and C. Finally, the gauge-invariant field E is
obtained from Eq. (38).

6Note that a satisfies

a0 ¼ Y0γ

2α
a; a00 ¼

��
Y0γ

2α

�0
þ
�
Y0γ

2α

�
2
�
a:

7Here Y 0
0 can be computed by taking a derivative of Eq. (44)

and eliminating Φ00 via the static version of Eq. (6).
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Let us repeat that the above approach requires the
knowledge of a static solution ðF 0ðxÞ;G0ðxÞÞ of Eqs. (42)
and (43). A general strategy to obtain such a static solution
is to make an infinitesimal variation along a static solution
ðα; γ; r;ΦÞ of the Einstein-scalar equations with respect to
its parameters. Since this linearization of the static solution
automatically satisfies the linearized system in Eqs. (4)–(8),
the corresponding gauge-invariant fields A and C [defined
by Eqs. (34) and (35)] fulfill the system in Eqs. (39) and
(40), provided that we have the vanishing condition (37) for
σ; obviously, under the same condition, the fields F and G
associated with A and C represent a static solution of the
wave system in Eqs. (42) and (43). In the following, we
will apply this general strategy to the cases of the Ellis-
Bronnikov and AdS wormholes.

A. Perturbed Ellis-Bronnikov wormhole

The Ellis-Bronnikov solution given in Eq. (9) can be
linearized with respect to the parameters b and γ1, which
yields

δγ

γ
¼ −

�
arctan

x
b

�
δγ1 þ

γ1x
x2 þ b2

δb; ð63Þ

δr
r
¼ −

�
arctan

x
b

�
δγ1 þ

bþ γ1x
x2 þ b2

δb; ð64Þ

δΦ
Φ0 ¼

γ1
1þ γ21

ðx2 þ b2Þ
�
arctan

x
b

�
δγ1
b

− x
δb
b
: ð65Þ

Introduced into Eqs. (34) and (35), this gives rise to the
gauge-invariant quantities

A ¼ −
1

1þ γ21

�
γ1 þ

�
1þ 2γ1

x
b

�
arctan

x
b

�
δγ1 þ

δb
b
;

ð66Þ

C ¼ −
1þ γ1

x
b

1þ γ21

�
arctan

x
b

�
δγ1 þ

δb
b
: ð67Þ

As explained before, the fields A and C automatically
satisfy the system of equations (37), (39), and (40). In this
case, the definition of σ in Eq. (37) gives σ ¼ −δbγ1−
bδγ1 ¼ δðbγ1Þ, so that the condition σ ¼ 0 therein holds if

δb ¼ −
bδγ1
γ1

: ð68Þ

Inserting Eqs. (66)–(68) into the definition (41) of F and G
(and omitting the proportionality factor δγ1), one obtains
the following time-independent solution of the constrained
wave system of Eqs. (42) and (43):

�
F 0

G0

�
≔

1

r

� γ2
1

1þγ2
1

½1þ x
b arctan

x
b�

FðxÞ

�
;

FðxÞ ≔ 1þ γ1
1þ γ21

�
1þ γ1

x
b

�
arctan

x
b
: ð69Þ

Note that the function F∶R → R is smooth and strictly
positive.8

Based on these observations, we can apply the general
method for decoupling the wave system in Eqs. (42) and
(43), choosing the static solution ðF 0ðxÞ;G0ðxÞÞ as in
Eq. (69). Note that in this case, we have Y0 ¼ 0 and can
choose a ¼ 1 as V ¼ 0, which implies that V ¼ Ṽ and
χ ¼ χ̃. One can verify that the function α2

γ2
V appearing in the

master equation (59) agrees up to a rescaling with the
potential defined in Eq. (32) of Ref. [24], denoted therein
with W; more precisely,

�
α2

γ2
V
�
ðxÞ ¼ 1

b2
W

�
x
b

�
: ð70Þ

For future mention, let us point out some features of this
function, following from the analysis of W in Ref. [24].
First of all, α2

γ2
V∶R → R is a C∞ bounded function;

moreover, if γ1 ≠ 0, one has ðα2
γ2
VÞðxÞ ∼ 2e�2πγ1=x2 for

x ↦ �∞. In the reflection-symmetric case γ1 ¼ 0, where
α ¼ γ ¼ 1, one obtains

VðxÞ ¼ −
3b2

ðx2 þ b2Þ2 ¼ −
3b2

r4ðxÞ ; ð71Þ

and the master equation (59) is found to coincide with
Eq. (27).
Let us now sketch some spectral features of the

Schrödinger operator −ðαγ d
dxÞ2 þ α2

γ2
V appearing in the

master equation (59) [which can be regarded as a self-
adjoint operator in L2ðR; γα dxÞ]; these features allow one
to infer the linear instability of the Ellis-Bronnikov worm-
hole both for γ1 ≠ 0 and for γ1 ¼ 0. As shown in Ref. [24],
the “zero energy” equation ½−ðαγ d

dxÞ2 þ α2

γ2
V�χ0 ¼ 0 has a

solution

8For γ1 ¼ 0, F ¼ 1 and the statement is trivial. When
γ1 ≠ 0, one has FðxÞ → þ∞ for x → �∞; thus F has a global
minimum at some x ¼ x0, where 0 ¼ ð1þ γ21ÞbF0ðx0Þ ¼
γ1½γ1 arctanðx0=bÞ þ ðbþ γ1x0Þb=ðx20 þ b2Þ�. Eliminating the
arctan term, one obtains from this ð1þ γ21ÞFðx0Þ ¼
ðx0 − bγ1Þ2=ðx20 þ b2Þ. However, this minimum value must be
strictly positive, since otherwise x0 ¼ bγ1, which would imply
that ð1þ γ21ÞbF0ðx0Þ ¼ γ1ðγ1 arctan γ1 þ 1Þ, which cannot be
zero, since γ1 ≠ 0.
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χ0ðxÞ ¼
x − bγ1
rðxÞFðxÞ ; ð72Þ

which has precisely one zero in the interval ð−∞;þ∞Þ.
According to the Sturm oscillation theorem (see, for
instance, Refs. [33,34] and references therein), it follows
that for each γ1 including γ1 ¼ 0, the Schrödinger operator
in the master equation possesses a single bound state with
negative energy. Note that for γ1 ≠ 0, the function χ0
decays as 1=jxj for large jxj, so that it describes a bound
state with zero energy, while for γ1 ¼ 0 it reduces to
χ0ðxÞ ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, which is not normalizable but still has

a single zero. The existence of a single bound state with
negative energy implies that the master equation (59) for
each Ellis-Bronnikov wormhole possesses a unique mode
diverging exponentially in time, a fact of course sufficient
to infer the instability of the wormhole. In the next section,
we will give more details on the spectral properties of the
Schrödinger operator and on the solution of the master
equation (59) within a rigorous functional setting, also
allowing comparison with the corresponding problem for
the perturbed AdS wormhole.

B. Perturbed AdS wormhole

Next, we analyze the AdS wormhole in the coordinate
system ðs; uÞ, as described by Eq. (15) for arbitrary
parameters k; B > 0, and apply the general framework
presented in this section with ðs; uÞ in place of ðt; xÞ.
Although the static solution formally depends on two
parameters B and k, it is important to note that k also
appears in the potential function VðΦÞ [see Eq. (12)].
However, since we regard the potential to be fixed in our
perturbation analysis, we will exclude the possibility of
varying k. In contrast to k, the parameter B is free, and
variation of the solution [Eq. (15)] with respect to it gives

δα ¼ δγ ¼ 0; ð73Þ

δr
r
¼ 2BδB

1þ 2B2 − cos u
; ð74Þ

δΦ
Φ0 ¼ − sin u

δB
Bð1þ B2Þ : ð75Þ

Equations (73)–(75), introduced into Eqs. (34) and (35),
yields the following expressions for the gauge-invariant
quantities A and C:

A ¼ 1þ cos u
2Bð1þ B2Þ δB; C ¼ δB

B
: ð76Þ

From here and from the definition of σ in Eq. (37), we see
that σ ¼ 0, as required, for every choice of the perturbation
δB. Inserting Eq. (76) into the definition (41) of F and G
(and omitting the proportionality factor δB), one obtains,

also in this case, a static solution of the system [Eqs. (42)
and (43)]:

�
F 0

G0

�
≔

ffiffiffi
2

p
k

B
cos

�
u
2

�
×

0
B@−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2B2−cos u

p
2ð1þB2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2B2−cos u
p

1
CA: ð77Þ

Note that G0 is a strictly positive function of u ∈ ð−π; πÞ,
and that F 0=G0 ¼ −ð1þ 2B2 − cos uÞ=ð2ð1þ B2ÞÞ.
Having found a nontrivial solution, we can now obtain

the master equation governing the spherical symmetric
linearized perturbations of the AdS wormhole, following
the general method explained before. We observe that
Y0 ¼ −2 tan u

2
, and that we can choose the constants a0 and

x0 in Eq. (58) such that a ¼ 1=α2; therefore, Eq. (58) reads

χ ≔
�
F −

F 0

G0

G
�
α2

and the master equation (59) becomes [recalling that
α=γ ¼ 1 for the AdS wormhole in coordinates ðs; uÞ]

� ∂2

∂s2 −
∂2

∂u2 þ V
�
χ ¼ 0; ð78Þ

with the potential

VðuÞ≡ VBðuÞ ¼ −
B2ð2þ B2 þ cos uÞ
ð1þ 2B2 − cos uÞ2 : ð79Þ

For the following, we assume Dirichlet boundary con-
ditions at the two asymptotic AdS ends—that is,

χðs;�πÞ ¼ 0: ð80Þ

Since

χ ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2 − cos u

p δγ

−
1þ cos u

4ð1þ B2Þð1þ 2B2 − cos uÞ δr

for δΦ ¼ 0, a sufficient condition for Eq. (80) to hold is
that, in the gauge δΦ ¼ 0, the perturbed functions δr and δγ
vanish at the far ends u ¼ �π of the wormhole. For general
considerations on boundary conditions for field theories on
AdS spaces, see Refs. [35–37].
Now (following the same scheme of the previous

subsection), let us sketch some spectral features of the
Schrödinger operator −d2=u2 þ VðuÞ with Dirichlet boun-
dary conditions at u ¼ �π (to be regarded as a self-adjoint
operator in L2ðð−π; πÞ; duÞ); these facts will allow us to
infer the linear instability of the AdS wormhole. The zero-
energy Schrödinger equation ½−d2=du2 þ V�χ0 ¼ 0 admits
for each fixed B > 0 the general solution
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χ0ðuÞ ¼ C1

sin u
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B2 − cos u
p þ C2

−2u sin u
2
þ 4B2 cos u

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2 − cos u

p ;

− π < u < π; ð81Þ

with constants C1, C2. The Dirichlet boundary conditions
χ0ð�πÞ ¼ 0 are satisfied only in the trivial case C1 ¼
C2 ¼ 0, which shows that none of these solutions is an
eigenfunction of our Schrödinger operator. For C1 ¼
−2πC2 ≠ 0, the zero-energy solution satisfies the left
boundary condition, i.e., χ0ð−πÞ ¼ 0, and since this sol-
ution has precisely one zero in the interval ð−π; πÞ,9 it
follows from the Sturm oscillation theorem (see Theorem
3.4 in Ref. [34]) that our Schrödinger operator (with
Dirichlet boundary conditions) has a single bound state
with negative energy E < 0. This state gives rise to an
exponentially growing (in time) mode solution of the master
equation (78) which is proportional to e

ffiffiffiffiffi
−E

p
t; this establi-

shes the linear instability of the AdS wormhole. In the
next section, we analyze the spectral properties of the
Schrödinger operator and their implications for the solutions
of the master equation in a rigorous functional setting.

VII. SPECTRAL REPRESENTATION
OF THE SOLUTIONS OF THE

MASTER EQUATIONS

In this section, we provide a rigorous analysis regarding
the spectral properties of the Schrödinger-type operators
involved in the master equations discussed so far. The next
subsection and the related Appendix A concern the
reflection-symmetric Ellis-Bronnikov case; the subsequent
subsection sketches a similar analysis for the nonsymmetric
case. The third subsection and the related Appendix B treat
the corresponding problem for the AdS case (not previously
considered in the literature, to the best of our knowledge);
in the same subsection, we establish bounds on the
eigenvalues of the Schrödinger operator. Brief comments
regarding the timescale associated with the instability are
made in the final subsection.

A. Spectral decomposition of the master equation
and instability of the Ellis-Bronnikov wormhole

in the reflection-symmetric case

Let us consider the reflection-symmetric Ellis-
Bronnikov wormhole and the corresponding master

equation (27), containing the potential VðxÞ ¼ −3b2=
ðx2 þ b2Þ2; this equation can be written as

χ̈ðtÞ þHχðtÞ ¼ 0 ðt ∈ RÞ; ð82Þ

where χðtÞ stands for the function R ∋ x ↦ χðt; xÞ, and H
indicates the operator −d2=dx2 þ V. If we want a rigorous
functional setting for Eq. (82), we are led to consider the
Hilbert space10

H ≔ L2ðR; dxÞ ð83Þ

made of the functions f∶R → C, x ↦ fðxÞ which are
square integrable for the Lebesgue measure dx; we will
write hji and kk for the natural inner product and norm of
this space, defined by hfjli ≔ R

R dxfðxÞlðxÞ and kfk2 ¼
hfjfi for f;l ∈ H. H can be regarded as a self-adjoint
operator in H, if we give for it the precise definition

H ≔ −
d2

dx2
þ V∶D ⊂ H → H; D ≔ ff ∈ Hjfxx ∈ Hg;

ð84Þ

intending all x derivatives in the distributional sense.11 Due
to general facts on Schrödinger operators [39], and to a
specific analysis performed in Ref. [24] for the potential
VðxÞ ¼ −3b2=ðx2 þ b2Þ2, we can state that the spectrum of
H is the union of

(i) the point spectrum, which consists of a unique,
simple eigenvalue μ1 < 0.

(ii) the continuous spectrum ½0;þ∞Þ.
One can construct a generalized orthonormal basis of the
Hilbert spaceH, in the sense explained by Appendix A and
by Ref. [39], using

(i) a normalized eigenfunction e1 for the eigenvalue μ1
(e1 ∈ D, He1 ¼ μ1e1, ke1k ¼ 1; e1 is proved to
be C∞).

(ii) two suitably chosen “improper eigenfunctions” eiλ
(i ¼ 1, 2) for each λ ∈ ð0;þ∞Þ (i.e., for each
nonzero point λ of the continuous spectrum); these
are two linearly independent C∞ functions on R
which fulfill −d2eiλ=dx2 þ Veiλ ¼ λeiλ but do not
belong to H.

Then, one can search for the solution R ∋ t → χðtÞ of
Eq. (82) with appropriate smoothness properties and with
the initial conditions9Let us justify this statement on the number of zeroes of χ0

for the special choice C1 ¼ −2πC2 ≠ 0. In this case we
can write χ0ðuÞ ¼ ð−2C2 cos

u
2
ÞwðuÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2 − cos u

p
, where

w∶ð−π; πÞ → R, u ↦ wðuÞ ≔ ðuþ πÞ tan u
2
− 2B2. The zeroes of

χ0 in ð−π; πÞ coincide with the zeroes of the function w. To find
the zeroes of w, it is useful to note that this function has derivative
w0ðuÞ ¼ ð1

2
sec2 u

2
Þðuþ sin uþ πÞ > 0 for all u ∈ ð−π; πÞ; from

w0 > 0, it follows that w is a strictly monotonic bijection of
ð−π; πÞ to ð−2B2 − 2;þ∞Þ, and thus possesses a unique zero.

10Throughout the paper, the expression “Hilbert space” is an
abbreviation for “complex, separable Hilbert space.”

11The conditions f ∈ H and fxx ∈ H imply fx ∈ H, due to the
Gagliardo-Nirenberg interpolation inequality (see, e.g., Ref. [38]);
D is just the usual Sobolev space W2;2ðRÞ≡H2ðRÞ. Let us also
remark that, for f ∈ H, one has automatically Vf ∈ H due to the
boundedness of V.
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χð0Þ ¼ q; _χð0Þ ¼ p; ð85Þ

where q∶x ↦ qðxÞ and p∶x ↦ pðxÞ are sufficiently regu-
lar functions. For all technical details, we refer again to
Appendix A; here we introduce the self-adjoint operator
jHj1=2∶D1=2 ⊂ H → H and indicate how to regard the
domains D1=2 and D as Hilbert spaces with their own
inner products. One can show that, for any q ∈ D and
p ∈ D1=2, Eqs. (82) and (85) have a unique solution t ↦
χðtÞ in CðR;DÞ ∩ C1ðR;D1=2Þ ∩ C2ðR;HÞ, which is as
follows for all t ∈ R:

χðtÞ ¼
�
he1jqi coshðjμ1j1=2tÞ þ he1jpi

sinhðjμ1j1=2tÞ
jμ1j1=2

�
e1

þ
X2
i¼1

Z þ∞

0

dλ

�
heiλjqi cosðλ1=2tÞ

þ heiλjpi
sinðλ1=2tÞ

λ1=2

�
eiλ: ð86Þ

As explained in Appendix A, the symbols h·j·i in the above
formula indicate usual inner products in H, or suitably
defined generalizations; the integrals over λ are understood
in a weak sense. Of course, we are interested in the case
where χðtÞ is real valued for each t, which occurs if and
only if the data q, p are real-valued functions.
The coefficient of e1 in Eq. (86) diverges exponentially

both for t → −∞ and for t → þ∞ (except for very special
choices of he1jqi and he1jpi)12; this suffices to infer
the (linear) instability of the reflection-symmetric Ellis-
Bronnikov wormhole [24,26,32]. In addition, let us remark
that the integrals over λ in Eq. (86) are superpositions of
“non-normalizable” oscillatory modes, living outside the
space H ¼ L2ðR; dxÞ like the improper eigenfunctions eiλ.

B. Spectral decomposition of the master equation
and instability of the Ellis-Bronnikov wormhole

in the nonsymmetric case

Let us now pass to the non-reflection-symmetric Ellis-
Bronnikov wormhole [as in Eq. (9) with γ1 ≠ 0]. In this
case, the master equation for χðt; xÞ has the form (59),
involving the operator

−
�
α

γ

∂
∂x

�
2

þ α2

γ2
V;

αðxÞ
γðxÞ ¼ e2γ1 arctan

x
b ðx ∈ RÞ: ð87Þ

As noted in Ref. [24], the spectral analysis of this case can
be simplified by introducing the new coordinate

ρ ¼ ρðxÞ ≔
Z

x

0

γðyÞ
αðyÞ dy; ð88Þ

note that the mapping x ↦ ρðxÞ is a diffeomorphism of R
to itself, and ρðxÞ ∼ e∓πγ1x for x → �∞. By construction,
α
γ
∂
∂x ¼ ∂

∂ρ; so, by writing χðt; ρÞ as an abbreviation for
χðt; xðρÞÞ, we can rephrase the master equation (59) as

� ∂2

∂t2 −
� ∂
∂ρ

�
2

þ UðρÞ
�
χðt; ρÞ ¼ 0;

UðρÞ ≔
�
α2

γ2
V
�
ðxðρÞÞ ðt; ρ ∈ RÞ: ð89Þ

The function U∶R → R is C∞; due to the x → �∞
asymptotics of ρðxÞ [see after Eq. (88)] and ðα2

γ2
VÞðxÞ

[see after Eq. (70)], we have UðρÞ ∼ 2=ρ2 for ρ → �∞. A
precise functional setting for Eq. (89) can be obtained by
introducing the Hilbert space and the self-adjoint operator

H ≔ L2ðR; dρÞ; H ≔ −
d2

dρ2
þ U∶D ⊂ H → H;

D ≔ ff ∈ Hjfρρ ∈ Hg ð90Þ

(the ρ derivatives are meant distributionally); hji and kk
indicate in the sequel the natural inner product and norm
of H.13 After giving these prescriptions, we write Eq. (89)
in the form (82), where χðtÞ stands for the function
ρ ↦ χðt; ρÞ; obviously enough, the treatment of this equa-
tion is reduced to a spectral analysis of the Schrödinger
operator H in Eq. (90), which is rather similar to the
discussion of the operator (84) for the reflection-symmetric
wormhole.
The main difference with respect to the symmetric case is

that the operator H in Eq. (90) has a point spectrum
consisting of two simple eigenvalues μ1 < 0 and μ2 ≔ 0—
see the comments below Eq. (72); the continuous spectrum
is ð0;þ∞Þ. Due to these facts, there is a generalized
orthonormal basis made of normalized eigenfunctions e1,
e2 for the eigenvalues μ1 < 0 and μ2 ¼ 0 [e1; e2 ∈ DðHÞ,
He1 ¼ μ1e1, He2 ¼ 0, ke1k ¼ ke2k ¼ 1], plus two
improper eigenfunctions eiλ (i ¼ 1, 2) for each λ in the
continuous spectrum.
As in the symmetric case, one can define Hilbert space

structures for the domains D, D1=2 of the operators H,
jHj1=2. For q ∈ D and p ∈ D1=2, the master equation (82)
with initial conditions (85) is proved again to possess a
unique solution t ↦ χðtÞ in CðR;DÞ ∩ C1ðR;D1=2Þ ∩
C2ðR;HÞ; this has a representation similar to Eq. (86)

12For he1jqi ¼ he1jpi ¼ 0, the coefficient of e1 in Eq. (86)
vanishes. For he1jqi ¼ ξhe1jpi=jμ1j1=2 ≠ 0, with ξ ¼ �1, the
coefficient of e1 diverges for t → ξðþ∞Þ and vanishes for
t → ξð−∞Þ.

13Note that, since dρ ¼ γ
α dx, working with the operator and the

Hilbert space defined in Eq. (90) is equivalent to working directly
with the operator −ðαγ d

dxÞ2 þ α2

γ2
V in the Hilbert space L2ðR; γα dxÞ,

which is the formulation considered at the end of Sec. VI A.
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with an additional term associated with the eigenvalue zero,
namely

χðtÞ ¼ rhs of Eq: ð86Þ þ ½he2jqi þ he2jpit�e2: ð91Þ
So, besides the exponentially divergent term proportional to
e1, the expression of χðtÞ contains a term diverging linearly
for t → �∞ (if he2jpi ≠ 0); in any case, the wormhole is
linearly unstable. Let us note that, as in Eq. (86), the present
expression for χðtÞ contains an integral over λ of non-
normalizable oscillatory modes, proportional to the
improper eigenfunctions eiλ which live outside H.

C. Spectral decomposition of the master equation
and instability of the AdS wormhole

In the AdS case, we introduce the Hilbert space

H ≔ L2ðð−π; πÞ; duÞ ð92Þ
formed by the functions f∶ð−π; πÞ → C, u ↦ fðuÞ which
are square integrable with respect to the Lebesgue measure
du; from now on we denote by hji and kk the natural inner
product and norm of H, so that hfjli ≔ R

−π;π dufðuÞlðuÞ
and kfk2 ¼ hfjfi for f;l ∈ H. In addition, let us consider
the potential V appearing in Eq. (79) (a C∞ function on
½−π; π�). A rigorous setting for the master equation (78)
with boundary conditions (80) can be set up using the space
of Eq. (92) and the self-adjoint operator

H ≔ −
d2

du2
þ V∶D ⊂ H → H;

D ≔ ff ∈ Hjfuu ∈ H; fð�πÞ ¼ 0g: ð93Þ
Here and in the sequel, the u derivatives like fuu are
understood distributionally; a function f ∈ H with fuu ∈
H is in fact in C1ð½−π; π�Þ, so it can be evaluated at
u ¼ �π.14 As an operator in the Hilbert spaceH,H has the
following properties:

(i) It is self-adjoint.
(ii) It is bounded from below.
(iii) It has a purely discrete spectrum.

As known in general for Hilbert space operators satisfying
properties (i)–(iii), it is possible to represent the eigenvalues
of H as an increasing sequence μ1 < μ2 < � � �. In addition,
H has the following properties:
(iv) Any of its eigenfunctions is in the space

C∞ð½−π; π�Þ.
(v) Each one of its eigenvalues is simple.

For future mention, let us recall that the operator H0 ≔
−d2=du2 with domain D as above also has the properties
(i)–(v); in this case, the eigenvalues are μ0n≔n2=4, with nor-
malized eigenfunctions f0nðuÞ≔ð1= ffiffiffi

π
p Þsin½ðn=2ÞðuþπÞ�

(n ¼ 1; 2;…).15

In the remainder of this section, the notations V, H, D,
H, ðμnÞn¼1;2;… will always indicate, respectively, the
potential V in Eq. (79), the Hilbert space in Eq. (92),
the domain and the operator in Eq. (93), and the eigen-
values of this operator in increasing order. Sometimes it
will be useful to emphasize that the potential V depends on
the parameter B ∈ ð0;þ∞Þ, thus originating in a similar
dependence for the corresponding operator and its eigen-
values: V ≡ VB, H ≡HB, μn ≡ μnðBÞ (n ¼ 1; 2;…).
As discussed in Sec. VI B, the analysis of the zero-

energy solutions in Eq. (81) implies that the ground-state
energy is negative, while all other eigenvalues are positive,
such that

μ1 < 0 < μ2 < μ3 < � � � ; ð94Þ

the negative eigenvalue μ1 being associated with a mode of
the master equation (78) growing exponentially in time,
whereas in contrast to this, the eigenvalues μn for n ≥ 2 are
associated with oscillatory modes.
In what follows, we provide estimates for the eigenvalues

of μnðBÞ. We start with an upper bound for the ground-state
energy μ1 ≡ μ1ðBÞ. According to the Rayleigh-Ritz varia-
tional characterization (see, e.g., Ref. [40], pp. 265–266),
one has

14The conditions f ∈ H, fuu ∈ H imply fu ∈ H, due to the
already mentioned Gagliardo-Nirenberg interpolation inequality
[38]. The space ff ∈ Hjfuu ∈ Hg coincides with the standard
Sobolev space W2;2ð−π; πÞ≡H2ð−π; πÞ, which is contained in
C1ð½−π; π�Þ by the Sobolev embedding theorem (see again
Ref. [38]). Let us also remark that, due to the boundedness of
the function V, for each f ∈ H one has automatically Vf ∈ H.

15Let us give more complete information on the above issues
regarding properties (i)–(v). For some general facts about Hilbert
space operators with properties (i)–(iii) (including the possibility
to arrange their eigenvalues in an increasing sequence), see, e.g.,
Ref. [40] (especially pp. 37, 178, and 265–67). To go on, let us
recall the following regularity result: If f is a distribution on an
open interval Ω ⊂ R (with derivatives fðiÞ, i ¼ 0; 1;…) and f
fulfills a homogeneous linear ODE fðkÞ þP

k−1
i¼0 aif

ðiÞ ¼ 0 of any
order k ∈ f1; 2;…g with C∞ coefficients ai∶Ω → C, then f is a
C∞ function on Ω: this follows from Theorem IX in Ref. [41], p.
130. The properties (i)–(v) ofH0 and the expressions given above
for its eigenvalues and eigenfunctions are checked “by hand,”
keeping in mind that the eigenfunctions are smooth due to the
previously mentioned regularity result. Now, consider any func-
tion V ∈ C∞ð½−π; π�;RÞ; then, due to the boundedness of this
function, the multiplication operator by V is a bounded self-
adjoint operator on H. As is well known, the properties (i), or (i),
(ii), or (i)–(iii) of an operator in an abstract Hilbert space are
preserved by the addition of a bounded self-adjoint perturbation
(see again Ref. [40]); therefore, the operator H ≔ H0 þ V ¼
−d2=du2 þ V with domain D fulfills properties (i)–(iii). The
operator H also has the properties (iv) and (v). For the proof of
(iv), one can use again the cited regularity result for distributional,
homogeneous linear ODEs; a derivation of (v) can be found, e.g.,
in Ref. [42], p. 30. All the previous statements apply, in particular,
with V as in Eq. (79).
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μ1ðBÞ ¼ inf
f∈Dnf0g

hfjHBfi
kfk2 : ð95Þ

Choosing in D the function

fðuÞ ≔ cos
u
2
; ð96Þ

we get

hfjHBfi
kfk2 ¼ 1

4
− B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p
ð4B2 − 3Þ
4B

≕ εðBÞ; ð97Þ

which, together with Eq. (95), yields the estimate

μ1ðBÞ ≤ ϵðBÞ

for each B > 0. It can be checked that B ↦ εðBÞ is a
negative, monotonously increasing function on ð0;þ∞Þ
with the properties

lim
B→0þ

εðBÞ ¼ −∞; lim
B→þ∞

εðBÞ ¼ 0−: ð98Þ

Therefore, we obtain the upper bound for the ground-state
energy

μ1ðBÞ ≤ εðBÞ < 0; ð99Þ

which provides an independent proof for the fact that it is
negative, and hence also for the linear instability of the AdS
wormhole.
Next, we provide two-sided bounds on the eigenvalues

μn ≡ μnðBÞ for arbitrary n. In order to achieve this, we
check that for any fixed B > 0, one has

min
u∈½−π;π�

VBðuÞ ¼ VBð0Þ ¼ −
1

4
−

3

4B2
;

max
u∈½−π;π�

VBðuÞ ¼ VBð�πÞ ¼ −
1

4
þ 1

4ð1þ B2Þ : ð100Þ

In the Hilbert space H, let us consider the operators
H ¼ − d2

du2 þ V, H− ≔ − d2

du2 −
1
4
− 3

4B2, and Hþ ≔ − d2

du2 −
1
4
þ 1

4ð1þB2Þ, all of them with the same domain D as defined

in Eq. (93) [and all of them satisfying the properties
(i)–(v) after the cited equation]. Due to Eq. (100), we
have hfjH−fi ≤ hfjHfi ≤ hfjHþfi for all f ∈ D, and this
implies (see, e.g., Ref. [40], pp. 230 and 267) μ−n ≤ μn ≤ μþn
for n ¼ 1; 2;…, where μ∓1 < μ∓2 < � � � are the eigenvalues
of H∓. On the other hand, the eigenvalues of H∓ are
obtained by shifting those of H0 ¼ −d2=du2; i.e., μ−n ¼
n2
4
− 1

4
− 3

4B2 and μþn ¼ n2
4
− 1

4
þ 1

4ð1þB2Þ. In conclusion, the

eigenvalues of H satisfy the two-sided bounds

n2 − 1

4
−

3

4B2
≤ μnðBÞ ≤

n2 − 1

4
þ 1

4ð1þB2Þ ðn¼ 1;2;…Þ:

ð101Þ

Combining this result with Eq. (99), one obtains the
following two-sided bound for the ground-state energy:

−
3

4B2
≤ μ1ðBÞ ≤ εðBÞ ¼ −

1

2B2
þO

�
1

B4

�
: ð102Þ

After these remarks concerning the eigenvalues of the
Schrödinger operator H, we discuss the spectral decom-
position of the master equation. To this purpose, we choose
for each n a normalized eigenfunction en for the (simple)
eigenvalue μn:

en ∈ D; Hen ¼ μnen; kenk ¼ 1; ðn ¼ 1; 2;…Þ:
ð103Þ

Then ðenÞn¼1;2;… is an orthonormal basis of H (in the
ordinary sense), due to the spectral theorem for self-adjoint
operators with a purely discrete spectrum. In comparison
with the previous analysis for the Ellis-Bronnikov worm-
hole, we do not have the technical complications associated
with the continuous spectrum and the related “improper”
eigenfunctions.
Next, we write the master equation (78) in a form similar

to Eq. (82) and add initial conditions as in Eq. (85); in this
way, we obtain the system

χ̈ðsÞ þHχðsÞ ¼ 0 ðs ∈ RÞ; χð0Þ ¼ q; _χð0Þ ¼ p;

ð104Þ
where χðsÞ refers to the function u ↦ χðs; uÞ, the dots
stand for s derivatives, and q∶u ↦ qðuÞ, p∶u ↦ pðuÞ are
functions with appropriate regularity.
A technically precise framework for the discussion of

the system in Eq. (104) is provided by Appendix B, where
we introduce (similarly to the previous treatment for
the Ellis-Bronnikov wormhole) the self-adjoint operator
jHj1=2∶D1=2 ⊂ H → H and indicate how to regard the
domains D1=2 and D as Hilbert spaces with appropriate
inner products. It turns out that, for any q ∈ D and
p ∈ D1=2, the system (104) has a unique solution s ↦
χðsÞ in CðR;DÞ ∩ C1ðR;D1=2Þ ∩ C2ðR;HÞ; using an
orthonormal basis ðenÞn¼1;2;… as in Eq. (103), the solution
can be written as follows for all s ∈ R:

χðsÞ ¼
�
he1jqi coshðjμ1j1=2sÞ þ he1jpi

sinhðjμ1j1=2sÞ
jμ1j1=2

�
e1

þ
Xþ∞

n¼2

�
henjqi cosðμ1=2n sÞ þ henjpi

sinðμ1=2n sÞ
μ1=2n

�
en:

ð105Þ
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The above function χðsÞ is real valued for each s if and only
if the data q, p are real-valued functions.
The coefficient of e1 in Eq. (105) diverges exponentially

both for s → −∞ and for s → þ∞ [except for very special
choices of he1jqi and he1jpi]16; so, the AdS wormhole is
linearly unstable. For each n ≥ 2, the nth term in Eq. (105)
represents a “normalizable” oscillatory mode, living like en
inside the Hilbert space H (indeed, inside the subspace
D ⊂ H). This is a relevant difference with respect to the
“non-normalizable” oscillatory modes that we have found
for the perturbed Ellis-Bronnikov wormhole, associated
with the continuous spectrum and living outside the Hilbert
space of the system [see the comments after Eqs. (86)
and (91)].

D. Instability times

In the Ellis-Bronnikov case, it has been shown [24] that
the timescale τunstable (measured with respect to proper time
at the throat of the unperturbed solution) associated with
the unstable mode is of the order of the throat’s areal radius
rthroat divided by the speed of light. The estimates provided
in Eq. (102) allow us to estimate the corresponding time-
scale for the AdS wormhole, and yield

1ffiffiffi
3

p ≤
τunstable
rthroat

≤
1

2B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−εðBÞp ; ð106Þ

with the function εðBÞ defined in Eq. (97). Since
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−εðBÞp

→
ffiffiffi
2

p
for large B, and since for B → 0 the

AdS wormhole reduces to the reflection-symmetric Ellis-
Bronnikov wormhole,17 it follows also in this case that
τunstable is of the order of the throat’s areal radius (divided by
the speed of light in physical units).

VIII. A dS WORMHOLE WITH HORIZONS AND
ITS LINEARIZED PERTURBATIONS

Let us return to the Bronnikov-Fabris wormhole solution
mentioned at the beginning of Sec. III B, depending on the
parameters M and K. Keeping the assumption of Eq. (10)
that M ¼ 0, we can as well consider, as an alternative to
Eq. (11), the choice

K ≡ k2; ðk > 0Þ: ð107Þ

In this way, we obtain

VðΦÞ ¼ k2

κ

�
3− 2cos2

� ffiffiffi
κ

2

r
Φ
��

; α¼ γ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k2ðx2 þ b2Þ

q
; r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
; Φ¼

ffiffiffi
2

κ

r
arctan

x
b
: ð108Þ

For b → 0, the third equality in Eq. (108) should be read as r ¼ x > 0, and the corresponding metric represents a dS
universe with cosmological constant Λ ¼ 3k2. From now on, we intend

b ∈
�
0;
1

k

�
; ð109Þ

the limitation b < 1
k ensures that the expressions for α and γ in Eq. (108), if taken literally, make sense near the throat

x ¼ 0—or, more substantially, that ∂t is actually timelike and ∂x is actually spacelike near x ¼ 0. We also set

B ≔ bk ∈ ð0; 1Þ; l ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p

k
; ð110Þ

the metric corresponding to the above coefficients reads

g ¼ −½1 − k2ðx2 þ b2Þ�dt2 þ dx2

1 − k2ðx2 þ b2Þ þ ðx2 þ b2Þðdϑ2 þ sin2ϑdφ2Þ

¼ −ð1 − B2Þ
�
1 −

x2

l2

�
dt2 þ dx2

ð1 − B2Þð1 − x2

l2Þ
þ ðx2 þ b2Þðdϑ2 þ sin2ϑdφ2Þ: ð111Þ

By analogy with the terminology of Sec. III B, we refer to this as a “dS wormhole”; let us note that the expressions for Φ,
VðΦÞ, r in Eq. (108) and the expression (111) for g can be obtained formally from the analogous expressions of the AdS
case [see Eq. (12)] by making the replacement k ↦ ik.

16See footnote 12 in the discussion after Eq. (86), which is readily adapted to the present framework.
17See the comment on the limit k → 0 after Eq. (12), keeping in mind that B ¼ bk.
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Let us consider the regions

I ≔ fðt; xÞjt ∈ R; x ∈ ð−l;lÞg;
E− ≔ fðt; xÞjt ∈ R; x ∈ ð−∞;−lÞg;
Eþ ≔ fðt; xÞjt ∈ R; x ∈ ðl;þ∞Þg; ð112Þ

then the expressions for α and γ in Eq. (108) are well
defined in a literal sense over I. More substantially, the
metric (111) is well defined over I × S2, and the vector
fields ∂t and ∂x are, respectively, timelike and spacelike on
this domain. However, Eq. (111) also gives a Lorentzian
metric on each one of the regions E− and Eþ; here ∂t is
spacelike and ∂x is timelike, so the metric is nonstatic. In
the sequel we often refer to I as the internal region and to
E� as the exterior regions in ðt; xÞ space. At x ¼ �l, the
metric seems to be ill defined, but as explained hereafter,
these are just apparent singularities related to the coordinate
system: the hypersurfaces x ¼ �l are indeed cosmological
horizons and the metric is nonsingular across them. Let us
note that the b → 0 limit of the previous statement (with
x > 0) corresponds to well-known features of the dS
universe, having a horizon at x ¼ l ¼ 1

k.
In the next paragraph, we consider an alternative

coordinatization for the internal region I introducing the
analogs of the AdS wormhole coordinates ðs; uÞ [see
Eq. (14)]; in the subsequent paragraphs, we consider
alternative parametrizations yielding a Kruskal-type exten-
sion of the metric (111) which is regular across x ¼ �l.
The extended universe constructed in this way can also be
interpreted as a regular black hole with an expanding
cosmology beyond the horizons, and is hence referred to as
a “black universe” in Ref. [8].

A. Another coordinate system for the internal region I

Let us set

t ¼ l
2ð1 − B2Þ s; x ¼ l tanh

u
2
; ðs; uÞ ∈ R2; ð113Þ

the map ðs; uÞ ↦ ðt; xÞ is one to one between R2

and the inner region I [with inverse s ¼ 2ð1−B2Þ
l t,

u ¼ 2arctanh x
l ¼ logðlþx

l−xÞ]. We can regard ðs; uÞ as an
alternative coordinate system for I; this does not eliminate
the apparent singularities at x ¼ �l but sends them to
infinity, since the limits x → �l correspond to the limits
u → �∞. In the new coordinates, the metric (111) becomes

g ¼ 1

4k2cosh2 u
2

½−ds2 þ du2

þ 2ðcosh u − ð1 − 2B2ÞÞðdϑ2 þ sin2ϑdφ2Þ�; ð114Þ

with radial null geodesics given by the straight lines
s ¼ �uþ const.

To conclude this paragraph, let us remark that the
transformation (113) and the expression (114) for the
metric can be obtained from their AdS analogs [see
Eqs. (14) and (15)] by making the formal replacements
k ↦ ik, B ↦ iB, s ↦ is, u ↦ iu.

B. A first spacetime extension

We start our construction from the internal region I, that
we describe in terms of the coordinates ðs; uÞ. Let us set

s ¼ log

�
−
U
V

�
; u ¼ − logð−UVÞ; U ∈ ð0;þ∞Þ;

V ∈ ð−∞; 0Þ; ð115Þ

the transformation ðU;VÞ ↦ ðs; uÞ is one to one between
the sets ð0;þ∞Þ × ð−∞; 0Þ and R2. By compositions with
Eq. (113), we obtain the transformation

t ¼ l
2ð1 − B2Þ log

�
−
U
V

�
; x ¼ l

1þ UV
1 −UV

; ð116Þ

which is a diffeomorphism between ð0;þ∞Þ × ð−∞; 0Þ
and the inner region I. The first cosmological horizon
x ¼ −l corresponds to U → þ∞ or V → −∞, while the
second cosmological horizon x ¼ l coincides with
UV ¼ 0. Now, the metric (114) reads

g ¼ 1

k2ð1 −UVÞ2 ½−4dUdV þ ðB2ð1 −UVÞ2

þ ð1 − B2Þð1þ UVÞ2Þðdϑ2 þ sin2ϑdφ2Þ�: ð117Þ

It is evident that this metric is regular on the cone UV ¼ 0
and can be extended beyond the corresponding horizon to
the region

ℛ ≔ fðU;VÞ ∈ R2jUV < 1g; ð118Þ

which is bounded by the two branches of the hyperbola
UV ¼ 1, corresponding to the spacelike infinity x ¼ þ∞.
The two branches of the hyperbolaUV ¼ −1 correspond to
the throat x ¼ 0. To go on, let us extend the transformation
[Eq. (116)] setting

t ¼ l
2ð1 − B2Þ log

				UV
				; x ¼ l

1þ UV
1 −UV

ð119Þ

whenever this makes sense. The map ðU;VÞ ↦ x is smooth
throughout the regionℛ, while ðU;VÞ ↦ t is well defined
and smooth on the subregion fðU;VÞ ∈ ℛjUV ≠ 0g. The
correspondence ðU;VÞ ↦ ðt; xÞ gives diffeomorphisms
between the following pairs of regions: ð0;þ∞Þ ×
ð−∞; 0Þ and I (as already shown); ð−∞; 0Þ × ð0;þ∞Þ
and I; fðU;VÞ ∈ ð0;þ∞Þ2jUV < 1g and the exterior
region Eþ; and fðU;VÞ ∈ ð−∞; 0Þ2jUV < 1g and the
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exterior region Eþ. Under each one of these four diffeo-
morphisms, the metric of Eq. (111) takes the form (117). To
conclude, we note that, writingΦ as in Eq. (108) and x as in
Eq. (119), we obtain a smooth extension of the scalar field
Φ to the whole region ℛ.

C. Extending spacetime further

We now consider a “compactification” of the extended
region ℛ [Eq. (118)] based on the reparametrization

U ¼ tanU; V ¼ tanV: ð120Þ

We know that the cone UV ¼ 0 and the limits U → þ∞,
V → −∞ and U → −∞, V → þ∞ correspond to the
horizons x ¼ �l in Eq. (119); according to Eq. (120),
the cone and the indicated limits are associated with finite
values of U and V, so the effect of the above transforma-
tion is to bring both the horizons to finite distances. One
could use U and V as an alternative set of coordinates and
reexpress the metric (117) and so on, but the situation can
be described in a simpler way by making a further trans-
formation (essentially, a rotation of π

4
and a translation of

the axes):

U ¼ T
2
−
X
2
þ π

4
; V ¼ T

2
þ X

2
−
π

4
: ð121Þ

The composition of Eqs. (120) and (121), whenever they
make sense, gives

U ¼ tan

�
T
2
−
X
2
þ π

4

�
; V ¼ tan

�
T
2
þ X

2
−
π

4

�
;

ð122Þ

the application ðT; XÞ ↦ ðU;VÞ is a bijection between the
regions R and ℛ, where ℛ is defined by Eq. (118) and
R≔fðT;XÞ∈R2j− π

2
<T< π

2
;−π

2
<X−T;XþT < 3

2
πg. In

the coordinates ðT; X; ϑ;φÞ, the metric (117) assumes
the form

g ¼ 1

k2 cos2 T
½−dT2 þ dX2 þ ðB2 cos2 T

þ ð1 − B2Þ sin2 XÞðdϑ2 þ sin2 ϑdφ2Þ�; ð123Þ

which clearly admits a further extension to the region
S × S2, where we have defined

S ≔
�
ðT; XÞ ∈ R2j − π

2
< T <

π

2

�
: ð124Þ

Equations (123) and (124) provide the final form of our dS
wormhole spacetime; the strip S is represented in Fig. 1,
which also accounts for some facts illustrated hereafter.
Note that the metric (123) is invariant under the spatial
translation, the spatial reflection, and the time reflection

T∶ðT; XÞ ↦ ðT; X þ πÞ; S∶ðT; XÞ ↦ ðT; π − XÞ;
R∶ðT; XÞ ↦ ð−T; XÞ: ð125Þ

FIG. 1. Penrose diagram showing the strip S in the final extended spacetime of our dS wormhole [Eqs. (124) and (123)]. The dashed
lines are lines with constant x, determined according to Eq. (126). Also indicated are the red diamond region I and the green triangular
regions E� of Eq. (127), which correspond to the original regions of Eq. (112) in the ðt; xÞ coordinate space; the same can be said of the
images of I and E� under any translation T2h∶ðT; XÞ ↦ ðT; X þ 2hπÞ (h ∈ Z). Applying the time reflection R∶ðT; XÞ ↦ ð−T; XÞ to
the triangles E∓ and to the translated triangles mentioned before, one obtains other regions which are isometric to E∓.
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Let us also remark that, in the limit case B → 0, the
expression (123) reduces to the familiar representation of
the dS metric as a conformal factor times the line element of
the static Einstein universe. For any B > 0, the connection
between the spacetime of Eqs. (123) and (124) and the
original setting of Eqs. (111) and (112) is understood by
expressing the original variables ðt; xÞ in terms of the new
variables ðT; XÞ. To this purpose, we note that the compo-
sition of the transformations (119) and (122), whenever
they make sense, gives

t ¼ l
2ð1 − B2Þ log

				 sinT þ cosX
sinT − cosX

				; x ¼ l
sinX
cosT

:

ð126Þ

The map of ðT; XÞ ↦ x is everywhere smooth on S, while
the map of ðT; XÞ ↦ t has singularities at the points of S
where the argument of the logarithm vanishes or diverges;
this occurs at points where sinT ¼∓ cosX, which are
just the points where x ¼∓ l. Moreover, we note that
ðt; xÞ ∘T ¼ ð−t;−xÞ, ðt; xÞ ∘S ¼ ð−t; xÞ and ðt; xÞ ∘R ¼
ð−t; xÞ; the behavior of g, t, x under T implies the
invariance of each one of these three objects under the
translation T2∶ðT; XÞ ↦ ðT; X þ 2πÞ.
To go on, let us now introduce the diamond I and the

triangles E∓ defined by

I ≔
�
ðT; XÞ ∈ R2j − π

2
< T − X; T þ X <

π

2

�
;

E− ≔
�
ðT; XÞ ∈ R2jT <

π

2
; T − X >

π

2
; T þ X > −

π

2

�
;

Eþ ≔
�
ðT; XÞ ∈ R2jT <

π

2
; T − X > −

π

2
; T þ X >

π

2

�

ð127Þ

(see again Fig. 1); then the map ðT; XÞ → ðt; xÞ, described
by Eq. (126), gives isometric diffeomorphisms between I
and I, between E− and E−, and between Eþ and Eþ, where
I and E∓ are, respectively, the internal region and the two
exterior regions of Eq. (112) with the metric (111).
Moreover, we have that x ¼ �l along the sides of I , x ¼
−l and x ¼ −∞ along the sides of E−, and x ¼ l and
x ¼ þ∞ along the sides of Eþ (see once more Fig. 1). It is
easy to construct infinitely many replicas of the previous
statement using the previous information of the behavior of
g, t, x under the transformations of Eq. (125). For example,
using the fact that g, t, x are invariant under all the iterates
T2h∶ðT; XÞ ↦ ðT; X þ 2hπÞ (h ∈ Z), one can readily
show that for each h ∈ Z, the map (126) gives isometric
diffeomorphisms between T2hðIÞ and I, between T2hðE−Þ
and E−, and between T2hðEþÞ and Eþ. Moreover, by
applying the time reflectionR to each one of the translated

triangles T2hðE∓Þ, one gets other regions isometrically
diffeomorphic to E∓.
Finally, let us recall that we have already noted that the

points ðT; XÞ where Eq. (126) gives singularities for t are
just the points at which the same equation gives x ¼ �l;
so, from the viewpoint of the extended manifold S × S2, the
apparent singularities at x ¼ �l of the original metric
(111) are just due to the singularities of t as a coordinate
on S.
Up to now, we have not considered the scalar field Φ.

The prescription

Φ ¼
ffiffiffi
2

κ

r
arctan

x
b
; with x as in Eq: ð126Þ; ð128Þ

gives a smooth function everywhere on S, with the
properties Φ ∘T ¼ −Φ, Φ ∘T2 ¼ Φ, and so on. The triple
S × S2; g;Φ in Eqs. (124), (123), and (128) is a solution to
the Einstein-scalar equations [with field self-potential VðΦÞ
as in Eq. (108)].
Of course, the extended spacetime S × S2 has the top-

ology of R2 × S2. For any fixed p ¼ 1; 2; 3;…, we can
take the quotient of the strip S with respect to the
iterated translation Tp; the quotient S=Tp has the topology
of R × S1, and the metric (123) can be projected on
ðS=TpÞ × S2, thus getting a new spacetime with the top-
ology R × S1 × S2. The function Φ of Eq. (128) is project-
able on this quotient spacetime for p even, since in this case
Φ ∘Tp ¼ Φ; on the contrary,Φ is not projectable for p odd
because Φ ∘Tp ¼ −Φ. Finally, let us mention that all
spacetimes S × S2 and ðS=TpÞ × S2 (p ¼ 1; 2; 3;…) are
time orientable: in fact, ∂=∂T is a smooth timelike vector
field, defined everywhere on S × S2 and projectable on
ðS=TpÞ × S2, both for p even and for p odd. One could
also consider the quotients ðS=ðTp ∘RÞÞ with p ¼
1; 2; 3;… involving the time reflection, which yield smooth
spacetimes which are, however, not time orientable.

D. Linear instability of the dS wormhole
in the inner region

If one confines the attention to the spacetime
ðI × S2;g;ΦÞ, where I is the inner region of Eq. (112)
in ðt; xÞ space and Φ, g are as in Eqs. (108) and (111), the
analysis of linearized perturbations for the Einstein-scalar
equations is rather simple in the framework of this paper.
First of all, one replaces the coordinates ðt; xÞ with the

coordinates ðs; uÞ ∈ R2 defined by Eq. (113). After this,
one should in principle apply the general scheme of
Secs. IV–VI [in the coordinates ðs; uÞ] to the linearized
perturbations of this solution, ultimately yielding a master
equation. As a matter of fact, it is not even necessary to
carry on this construction, and it suffices to use the
following trick: since the dS wormhole under analysis is
connected to the AdS wormhole of Secs. III B and VI B
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through the formal replacement rules ðk; B; s; uÞ ↦
ðik; iB; is; iuÞ [see the comments after Eqs. (111) and
(114)], the master equation for the perturbed dS wormhole
can be obtained making formally the same replacements in
Eqs. (78) and (79) of the AdS case. In conclusion, the
master equation governing linear perturbations of the dS
wormhole, in an unknown function χðs; uÞ, reads

� ∂2

∂s2 −
∂2

∂u2 þ V
�
χ ¼ 0 ð129Þ

and involves the potential

VðuÞ≡ VBðuÞ ≔ −
B2ð2 − B2 þ coshuÞ
ð−1þ 2B2 þ cosh uÞ2 ; ð130Þ

(s; u ∈ R); note that VðuÞ is everywhere negative and
vanishes like −1= coshu for u → �∞. The corresponding
Schrödinger operator

H ≔ −
d2

du2
þ V

is self-adjoint in L2ðR; duÞ, and can be analyzed by
standard methods, including Sturm oscillation theory.18

In this way, the spectrum of H is found to consist of a
unique negative eigenvalue and of the continuous spectrum
½0;þ∞Þ. The situation is similar to that of the reflection-
symmmetric Ellis-Bronnikov wormhole: the system is
linearly unstable, and the general solution of the master
equation has the form given by Eq. (86) [with the variables
ðt; xÞ ∈ R2 appearing therein replaced by the present
variables ðs; uÞ ∈ R2].

E. Linear instability of the extended dS wormhole?

For a full understanding of the subject under discussion,
linearized perturbations of the Einstein-scalar equations
should be treated on the extended spacetime S × S2 of
Sec. VIII C [or on the quotients ðS=TpÞ × S2], possibly in a
gauge-invariant fashion. The discussion of this problem
would bring us outside the scope of the present paper, since
the extended spacetime S × S2 is not static. One can
reasonably expect that the instability result of the previous
subsection about the inner region will eventually produce a
precise statement of linear instability for the extended dS
wormhole. However, we prefer to postpone these matters to
future works; let us also mention that the notion of linear
instability is not so obvious if one perturbs a nonstatic
spacetime, and requires in our opinion a general discussion
before reconsidering the specific case of the extended dS
wormhole.

IX. CONCLUSIONS

In this work, we have analyzed the linear stability of a
class of static, spherically symmetric wormhole solutions
in GR minimally coupled with a self-interacting phantom
scalar field. To this purpose, we have provided a
gauge-invariant perturbation formalism that describes the
dynamics of linearized, spherical but time-dependent per-
turbations of the metric and of the scalar field, resulting in a
coupled 2 × 2 linear wave system subject to a constraint
[see Eqs. (42) and (43)]. Provided that a nontrivial, time-
independent solution is known (as is usually the case when
a family of static solutions is known), we have shown that
this system can be decoupled to yield a master wave
equation which is manifestly gauge invariant and regular at
the throat. This construction relies on a basic requirement
(of course satisfied by the examples that we treat): the
derivativeΦ0 of the (background) scalar field should vanish
nowhere. The relevance of this condition in our approach is
indicated by the almost ubiquitous presence of the recip-
rocal 1=Φ0 in the equations of Secs. IV–VI.
Based on our formalism, we have rederived the regular

master equation first obtained in Ref. [24], describing linear
spherical perturbations of the Ellis-Bronnikov wormhole in
a fully gauge-invariant setting and without intermediate
steps involving singularities at the throat. (For an alter-
native approach which treats the reflection-symmetric case
in a fixed gauge, see Ref. [26].) Furthermore, we have
analyzed the linear stability of an AdS wormhole intro-
duced in Ref. [31], for which the scalar field is subject to a
nontrivial self-interaction term, and we have shown that this
solution is linearly unstable as well. In both examples, the
instability is characterized by a unique mode growing
exponentially in time, associated with a bound state of
negative energy of the Schrödinger operator arising in
the master equation. As discussed in Sec. VII D, the
associated instability times are rather short (of the order

18Application of Sturm theory relies on the zero-energy
Schrödinger equation ½−d2=du2 þ V�χ0 ¼ 0. The general solu-
tion of this equation is obtained from the analogous solution
[Eq. (81)] for the AdS case with the formal replacements
ðu; BÞ ↦ ðiu; iBÞ and reads

χ0ðuÞ ¼ C1

sinh u
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1þ 2B2 þ cosh u
p þ C2

2u sinh u
2
− 4B2 cosh u

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 2B2 þ cosh u

p ;

(C1; C2 ∈ C). One has χ0 ∈ L2ðR; duÞ if and only if
C1 ¼ C2 ¼ 0; thus, zero is not an eigenvalue of H. If C1 ∈
Rnf0g and C2 ¼ 0, it is evident that χ0 has a unique zero in R
(namely, u ¼ 0). If C2 ∈ Rnf0g and C1 ∈ R, one can show that
χ0 possesses two zeroes inR (via an analysis rather similar to that
given for the function χ0 of the AdS case [Eq. (81)]; see, in
particular, the footnote which accompanies this equation). Sum-
ming up, the minimal number of zeroes of the real, non-
identically-vanishing solutions χ0 of the zero-energy equation
is one. The Sturm oscillation theorem (see Theorem 14.8 of
Ref. [33]) states that such a minimal number of zeroes is the
number of negative eigenvalues ofH. So,H has a unique negative
eigenvalue; in addition, due to general facts on Schrödinger
operators (and to the previous remark that 0 is not an eigenvalue),
H has the continuous spectrum ½0;þ∞Þ.
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of a light-crossing time corresponding to the areal radius of
the throat).
Based on spectral analysis, we have also provided a

detailed and rigorous discussion for the mode decompo-
sition of the solutions to the master wave equations in both
the aforementioned examples, which revealed that besides
the modes growing exponentially in time, there might also
be linearly growing modes, while all the remaining modes
are oscillatory. In particular, the AdS wormhole has
infinitely many normalizable, oscillatory modes in addition
to the pair of exponentially growing and decaying modes
associated with the unique bound state of negative energy
of the Schrödinger operator.
In the last section, which is admittedly outside the

mainstream of the present paper, we have also sketched
the discussion of a dS wormhole with horizons, whose
spacetime has a natural nonstatic extension; in this case we
have provided a linear instability result, which, however,
refers only to the static spacetime region within the
horizons.
Let us conclude with some remarks on the possible

future developments of the present work. We have already
mentioned that the linear stability theory for nonstatic
wormhole solutions, and its application to the (extended)
dS wormhole, deserves further work in our opinion.
Sticking to the case of static wormholes and of their
linearized perturbations, we think that the forthcoming
issues are worthy of future investigation:

(i) A basic requirement of our approach, recalled above,
is the condition that Φ have no critical points.
Removing this requirement would be interesting
since, recently, a large class of new wormhole
solutions of the Einstein-scalar equations has been
found [21], generalizing previous work [18], in
which the scalar field Φ has an extremum at the
throat. Since r has a global minimum at the throat
and r0 converges to zero as fast as or faster thanΦ0, it
turns out that the gauge-invariant quantity C defined
in Eq. (35) is still well defined; unfortunately, it is
unclear if a decoupled equation for C can be
obtained that is regular at the throat. In connection
with this problem, one could try to recover the
S-deformation method of Refs. [24,25] (see the
discussion in the Introduction; the formulation of
this method in Ref. [25] indeed considers the gauge-
invariant quantity C). However, when the potential
VðΦÞ is nonzero, this method seems to require the
numerical integration of a Riccati-type equation to
find the regularized potential, and further, one still
needs to justify a posteriori the validity of the
transformed equation at the throat. An alternative
possibility consists in applying a variation of the
approach discussed in this article, in which Φ0 is
absent from all denominators, thanks to the use of
new gauge-invariant quantities in place of the

functions A, C, E of Eqs. (34)–(36); at present, it
is not clear to us whether this will be possible.

(ii) Let us propose the following question: is there a
deep geometrical reason for which our present
approach succeeds, in certain cases, in decoupling
the perturbation equations (42) and (43) and reduc-
ing them to a single, scalar master equation?
Typically, the possibility of reducing to a simpler
form a PDE or a system of PDEs is due to the
presence of a Lie group of symmetries; an inter-
pretation of this kind could perhaps be given for our
decoupling method. As already recalled, our ap-
proach uses a static solution of Eqs. (42) and (43),
arising from variations with respect to the parame-
ters of a family of static wormhole solutions. The
availability of such parametric families could per-
haps be interpreted in terms of a Lie group of
symmetries, acting on the static solutions of the
Einstein-scalar system; if so, it would be interesting
to understand the interplay of these symmetries with
the linearized perturbation equations.
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APPENDIX A: ON THE MASTER EQUATION
FOR THE REFLECTION-SYMMETRIC
ELLIS-BRONNIKOV WORMHOLE

We refer to the master equation for this wormhole in
the formulation (82), based on the Hilbert space H ≔
L2ðR; dxÞ of Eq. (83) and on the self-adjoint operator H of
Eq. (84), of domain D ⊂ H. We keep all notations
introduced after these equations; in particular, hji and kk
are the natural inner product and norm of H.

1. Relevant facts on the operator H
and its spectral features

In the discussion following Eqs. (82)–(84), we have
mentioned a system made by a normalized eigenfunction e1
for the unique eigenvalue μ1 < 0 of H, and by a pair of
improper eigenfunctions eiλ (i ¼ 1, 2) [lying in C∞ðRÞ, but
not in H] for each λ > 0. We have called this system a
generalized orthonormal basis of H, which means that the
following conditions hold [39]:
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(a) Consider the space CcðRÞ≡ C ⊂ H, made of
the continuous functions f∶R → C with compact
support. For f ∈ C, consider the usual inner
product he1jfi ¼

R
R dxē1ðxÞfðxÞ and define in

addition a “generalized inner product” heiλjfi ≔R
R dxēiλðxÞfðxÞ (the integral converges, since
ēiλf ∈ C); then, the maps

ð0;þ∞Þ ∋ λ ↦ heiλjfi ∈ C ði ¼ 1; 2Þ ðA1Þ

are both in L2ðð0;þ∞Þ; dλ).
(b) For i ¼ 1, 2, the linear map C ⊂ H →

L2ðð0;þ∞Þ; dλÞ, f ↦ ðλ ↦ heiλjfiÞ is continuous
with respect to the norms of the Hilbert spacesH and
L2ðð0;þ∞Þ; dλÞ; thus, by the density of C inH, this
map has a unique continuous (and linear) extension
to H, that we write as

H → L2ðð0;þ∞Þ; dλÞ; f ↦ ðλ ↦ heiλjfiÞ:
ðA2Þ

For each f ∈ H, the map λ ↦ heiλjfi is said to give
the “generalized inner products” between the eiλ’s
and f.

(c) Consider the direct sum Hilbert space C ⊕
L2ðð0;þ∞Þ; dλÞ ⊕ L2ðð0;þ∞Þ; dλÞwith its natural
inner product; then the linear map

H → C ⊕ L2ðð0;þ∞Þ; dλÞ ⊕ L2ðð0;þ∞Þ; dλÞ;
f ↦ ðhe1jfi; λ ↦ he1λjfi; λ ↦ he2λjfiÞ ðA3Þ

is a unitary; i.e., it is one-to-one and preserves inner
products:

hfjli ¼ he1jfihe1jli þ
X2
i¼1

Z þ∞

0

dλheiλjfiheiλjli

ðf;l ∈ HÞ: ðA4Þ

The forthcoming items describe some consequences of
conditions (a)–(c):

(i) For F ∈ L2ðð0;þ∞Þ; dλÞ and i ¼ 1, 2, there is a
unique element ofH, indicated with

Rþ∞
0 dλFðλÞeiλ,

such that


Z þ∞

0

dλFðλÞeiλ
				l
�

¼
Z þ∞

0

dλFðλÞheiλjli

for all l ∈ H: ðA5Þ

[Note that the integral on the right-hand side of
Eq. (A5) exists, involving the product of two
functions which are both in L2ðð0;þ∞Þ; dλÞ.]

The element
Rþ∞
0 dλFðλÞeiλ ∈ H is called the weak

integral of the function λ ↦ FðλÞeiλ.
(ii) The inverse of the unitary map in Eq. (A3) can be

expressed in terms of weak integrals; more precisely,
such inverse is the map

C ⊕ L2ðð0;þ∞Þ; dλÞ ⊕ L2ðð0;þ∞Þ; dλÞ → H;

ðα; F1; F2Þ ↦ αe1 þ
X2
i¼1

Z þ∞

0

dλFiðλÞeiλ: ðA6Þ

The fact that the composition of the maps (A3) and (A6) is
the identity map H → H, f ↦ f can be written explicitly
as follows: for each f ∈ H,

f ¼ he1jfie1 þ
X2
i¼1

Z þ∞

0

dλheiλjfieiλ: ðA7Þ

The identity (A7) is said to give the expansion of f in terms
of the generalized orthonormal basis under consideration.
Up to now, we have not used the fact that e1 is an

eigenfunction ofH with eigenvalue μ1 < 0, nor the fact that
eiλ is an “improper eigenfunction” with “eigenvalue” λ for
i ¼ 1, 2 and all λ > 0. These facts yield the following
representation for the operator H and its domain D:

D ¼ ff ∈ Hjðλ ↦ λheiλjfiÞ ∈ L2ðð0;þ∞Þ; dλÞ
for i ¼ 1; 2g:

For f ∈ D∶ he1jHfi ¼ μ1he1jfi;
heiλjHfi ¼ λheiλjfi; i:e:;

Hf ¼ μ1he1jfie1 þ
X2
i¼1

Z þ∞

0

dλλheiλjfieiλ: ðA8Þ

As is well known, a functional calculus exists for self-
adjoint Hilbert space operators (see, e.g., Ref. [40]). This
allows us to define an operator F ðHÞ∶DF ⊂ H → H for
each (Borel-)measurable function F∶σðHÞ → C, where
σðHÞ ¼ fμ1g ∪ ½0;þ∞Þ is the spectrum of H and DF is
a suitable domain, determined by (H and) F ; the operator
F ðHÞ is self-adjoint if F is real valued. Making reference
to the previously mentioned generalized orthonormal basis
of eigenfunctions of H, one can prove the following
statements: e1 ∈ DF and F ðHÞe1 ¼ F ðμ1Þe1; DF ¼
ff ∈Hjðλ↦F ðλÞheiλjfiÞ∈L2ðð0;þ∞Þ;dλÞ for i¼ 1;2g;
for all f ∈ DF , one has he1jF ðHÞfi ¼ F ðμ1Þhe1jfi and
heiλjF ðHÞfi ¼ F ðλÞheiλjfi. For our purposes, it is impor-
tant to consider the choice F ðγÞ ≔ jγj1=2 for all γ ∈ σðHÞ,
producing a self-adjoint operator that we indicate with

jHj1=2∶D1=2 ⊂ H → H ðA9Þ

and that behaves as follows in relation to our generalized
orthonormal basis:
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e1 ∈ D1=2; jHj1=2e1 ¼ jμ1j1=2e1; ðA10Þ
D1=2 ¼ ff ∈ Hjðλ ↦ λ1=2heiλjfiÞ ∈ L2ðð0;þ∞Þ; dλÞ for i ¼ 1; 2g: For f ∈ D1=2∶

he1jjHj1=2fi ¼ jμ1j1=2he1jfi; heiλjjHj1=2fi ¼ λ1=2heiλjfi; i:e:; jHj1=2f ¼ jμ1j1=2he1jfie1 þ
X2
i¼1

Z þ∞

0

dλλ1=2heiλjfieiλ:

ðA11Þ
Finally, let us make explicit the Hilbert space structures for D and D1=2 mentioned before Eq. (86); these are provided by
the (complete) inner products hjiD∶D ×D → C and hjiD1=2∶D1=2 ×D1=2 → C, where

hfjliD ≔ hfjli þ hHfjHli ¼ ð1þ μ21Þhe1jfihe1jli þ
X2
i¼1

Z þ∞

0

dλð1þ λ2Þheiλjfihe1λjfi; ðA12Þ

hfjliD1=2 ≔ hfjli þ hjHj1=2fjjHj1=2li ¼ ð1þ jμ1jÞhe1jfihe1jli þ
X2
i¼1

Z þ∞

0

dλð1þ λÞheiλjfihe1λjfi: ðA13Þ

2. Solution of the master equation

Let us consider Eq. (82) with initial conditions (85)—i.e., χ̈ðtÞ þHχðtÞ ¼ 0, χð0Þ ¼ q, _χð0Þ ¼ p; the unknown is a
function R ∋ t ↦ χðtÞ ∈ D. We first proceed formally, assuming that the initial data q, p are in suitable spaces to be
specified later. Applying he1ji and heiλji to Eq. (82), we obtain ðd2=dt2 þ μ1Þhe1jχðtÞi ¼ 0 and ðd2=dt2 þ λÞheiλjχðtÞi ¼ 0
for i ¼ 1, 2 and all λ > 0. On account of the initial conditions [Eq. (85)] (and recalling that μ1 < 0), these equations imply

he1jχðtÞi ¼ he1jqi coshðjμ1j1=2tÞ þ he1jpi
sinhðjμ1j1=2tÞ

jμ1j1=2
; heiλjχðtÞi ¼ heiλjqi cosðλ1=2tÞ þ heiλjpi

sinðλ1=2tÞ
λ1=2

; ðA14Þ

thus providing a formal justification for the expression (86) of χðtÞ. It can be checked a posteriori that, assuming

q ∈ D; p ∈ D1=2; ðA15Þ

all the previous manipulations make sense, and Eq. (86) describes the unique solution χ∶R ∋ t ↦ χðtÞ of Eqs. (82) and (85)
such that

χ ∈ C2ðR;HÞ ∩ C1ðR;D1=2Þ ∩ CðR;DÞ: ðA16Þ
As an example of the necessary tests, let us consider any t ∈ R and show that χðtÞ defined by Eq. (86) is an element ofD.
Due to the descriptions (A3) and (A6) for H and (A8) for D, χðtÞ in Eq. (86) is in fact in D if we are able to prove the
following for i ¼ 1, 2 (and for fixed t, as already indicated):

λ ↦

�
heiλjqi cosðλ1=2tÞ þ heiλjpi

sinðλ1=2tÞ
λ1=2

�
∈ L2ðð0;þ∞Þ; dλÞ; ðA17Þ

λ ↦ λ

�
heiλjqi cosðλ1=2tÞ þ heiλjpi

sinðλ1=2tÞ
λ1=2

�
¼ λheiλjqi cosðλ1=2tÞ þ λ1=2heiλjpi sinðλ1=2tÞ ∈ L2ðð0;þ∞Þ; dλÞ: ðA18Þ

Indeed, Eq. (A17) follows, noting that

λ ↦ cosðλ1=2tÞ; λ ↦
sinðλ1=2tÞ

λ1=2
∈ L∞ðð0;þ∞Þ; dλÞ; λ ↦ heiλjqi; λ ↦ heiλjpi ∈ L2ðð0;þ∞Þ; dλÞ: ðA19Þ

[The statements on q, p in Eq. (A19) are correct, since Eq. (A15) obviously implies q; p ∈ H.] Moreover, Eq. (A18)
follows noting that

λ ↦ cosðλ1=2tÞ; λ ↦ sinðλ1=2tÞ ∈ L∞ðð0;þ∞Þ; dλÞ; λ ↦ λheiλjqi; λ ↦ λ1=2heiλjpi ∈ L2ðð0;þ∞Þ; dλÞ: ðA20Þ
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[The statements on q, p in (A20) are correct, due to the
assumption (A15) that q ∈ D, p ∈ D1=2, and to the
characterizations in Eq. (A8) for D, and in Eq. (A11)
for D1=2.]

APPENDIX B: ON THE MASTER EQUATION
FOR THE AdS WORMHOLE

1. Facts on the operator H

Let us consider the Hilbert space of Eq. (92), i.e.,
H ≔ L2ðð−π; πÞ; duÞ, with its natural inner product hji;
this is the environment for the self-adjoint operator of
Eq. (93), i.e., H ≔ − d2

du2 þ V∶D ⊂ H → H with domain
D ≔ ff ∈ Hjfuu ∈ H; fð�πÞ ¼ 0g. Let us recall that H
has a purely discrete spectrum with simple eigenvalues
μ1 < 0 < μ2 < μ3 < � � � [see Eq. (94)]; due to Eq. (101),
we have μn ∼ n2

4
for n ↦ þ∞.

In the sequel, we frequently make use of an orthonormal
basis ðenÞn¼1;2;… of H as in Eq. (103), obtained choosing
for each n a normalized eigenfunction en for the eigenvalue
μn. The fact that we have an orthonormal basis ensures that
there is a one-to-one linear map

H → l2; f ↦ ðhenjfiÞn¼1;2;…; ðB1Þ

where l2 is the Hilbert space of complex sequences
ðanÞn¼1;2… such that

Pþ∞
n¼1 janj2 < þ∞, with its obvious

inner product; moreover, hfjli ¼ Pþ∞
n¼1 henjfihenjli for

all f;l ∈ H; i.e., the map (B1) is unitary.
The fact that the orthonormal basis is formed by

eigenfunctions of H ensures the following representation
for this operator and its domain:

D ¼ ff ∈ HjðμnhenjfiÞn¼1;2;… ∈ l2g: For f ∈ D∶henjHfi ¼ μnhenjfi ðn ¼ 1; 2;…Þ; i:e:; Hf ¼
Xþ∞

n¼1

μnhenjfien:

ðB2Þ

In the previous Appendix A, we have already mentioned the functional calculus for self-adjoint Hilbert space operators
[40]; this allows us to define an operatorF ðHÞ∶DF ⊂ H → H for each functionF∶σðHÞ → C where σðHÞ ¼ fμ1; μ2;…g
is the spectrum of H; the operator F ðHÞ is self-adjoint if F is real valued. With the choice F ðγÞ ≔ jγj1=2, we obtain a self-
adjoint operator indicated with

jHj1=2∶D1=2 ⊂ H → H; ðB3Þ

which behaves as follows with respect to the previous orthonormal basis ðenÞn¼1;2;… of eigenfunctions of H:

en ∈ D1=2; jHj1=2en ¼ jμnj1=2en ðn ¼ 1; 2;…Þ; ðB4Þ

D1=2 ¼ ff ∈ Hjðjμnj1=2henjfiÞn¼1;2;… ∈ l2g:

For f ∈ D1=2∶henjjHj1=2fi ¼ jμnj1=2henjfiðn ¼ 1; 2;…Þ; i:e:; jHj1=2f ¼
Xþ∞

n¼1

jμnj1=2henjfien: ðB5Þ

(Here and in the sequel, recall that jμnj ¼ μn for n ≥ 2.) Now, let us give Hilbert space structures to the domains D and
D1=2; these are provided by the (complete) inner products hjiD∶D×D→ C and hjiD1=2∶D1=2 ×D1=2 → C, where19

hfjliD ≔ hHfjHli ¼
Xþ∞

n¼1

μ2nhenjfihenjli; ðB6Þ

19One could as well consider the alternative inner products hji0D∶D ×D → C and hji0
D1=2∶D1=2 ×D1=2 → C, defined by setting

hfjli0D ≔ hfjli þ hHfjHli ¼
Xþ∞

n¼1

ð1þ μ2nÞhenjfihenjli; hfjli0
D1=2 ≔ hfjli þ hjHj1=2fjjHj1=2li ¼

Xþ∞

n¼1

ð1þ jμnjÞhenjfihenjli;

these have structures more similar to those of the inner products for the spacesD andD1=2 in the previous Appendix, see Eqs. (A12) and
(A13). However, in the present situation, hji0D and hji0

D1=2 are equivalent, respectively, to the inner products hjiD and hjiD1=2 of Eqs. (B6)
and (B7).
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hfjliD1=2 ≔ hjHj1=2fjjHj1=2li ¼
Xþ∞

n¼1

jμnjhenjfihenjli: ðB7Þ

2. Solution of the master equation

Let us consider the master equation as written in Eq. (104) with the initial conditions given therein; i.e.,
χ̈ðsÞ þHχðsÞ ¼ 0, χð0Þ ¼ q, _χð0Þ ¼ p; the unknown is a function R ∋ s ↦ χðsÞ ∈ D, and the spaces containing the
data q, p are to be specified. As in the previous Appendix, we first proceed formally. Applying henji to the differential
equation in Eq. (104), we obtain ðd2=ds2 þ μnÞhenjχðsÞi ¼ 0 for n ¼ 1; 2;…; taking into account the initial conditions in
Eq. (104) and the fact that μ1 < 0 < μ2 < μ3 < � � �, we conclude that

he1jχðsÞi ¼ he1jqi coshðjμ1j1=2sÞ þ he1jpi
sinhðjμ1j1=2sÞ

jμ1j1=2
;

henjχðsÞi ¼ henjqi cosðμ1=2n sÞ þ henjpi
sinðμ1=2n sÞ

μ1=2n

ðn ¼ 2; 3;…Þ; ðB8Þ

thus providing a formal justification for the expression (105) of χðsÞ. It can be checked a posteriori that assuming q ∈ D
and p ∈ D1=2, all the previous manipulations make sense and Eq. (105) describes the unique solution R ∋ s ↦ χðsÞ of
Eq. (104) in the spaceC2ðR;HÞ ∩ C1ðR;D1=2Þ ∩ CðR;DÞ. The verification of these statements relies on arguments similar
to those exemplified after Eqs. (A15) and (A16) of the previous Appendix.

[1] B. P. Abbott et al., Observation of Gravitational Waves from
a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[2] K. Akiyama et al., First M87 Event Horizon Telescope
results: I. The shadow of the supermassive black hole,
Astrophys. J. 875, L1 (2019).

[3] J. L. Friedman, K. Schleich, and D. M. Witt, Topological
Censorship, Phys. Rev. Lett. 71, 1486 (1993).

[4] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space Time (Cambridge University Press, Cambridge,
UK, 1973).

[5] M. Visser, S. Kar, and N. Dadhich, Traversable Wormholes
with Arbitrarily Small Energy Condition Violations, Phys.
Rev. Lett. 90, 201102 (2003).

[6] E. E. Flanagan and R. M. Wald, Does backreaction enforce
the averaged null energy condition in semiclassical gravity?,
Phys. Rev. D 54, 6233 (1996).

[7] R. R. Caldwell, A phantom menace? Cosmological conse-
quences of a dark energy component with super-negative
equation of state, Phys. Lett. B 545, 23 (2002).

[8] K. A. Bronnikov, Scalar fields as sources for wormholes and
regular black holes, Particles 1, 56 (2018).

[9] D. Fermi, M. Gengo, and L. Pizzocchero, On the necessity
of phantom fields for solving the horizon problem in scalar
cosmologies, Universe 5, 76 (2019).

[10] H. G. Ellis, Ether flow through a drainhole: A particle model
in general relativity, J. Math. Phys. (N.Y.) 14, 104 (1973).

[11] K. A. Bronnikov, Scalar-tensor theory and scalar charge,
Acta Phys. Pol. B 4, 251 (1973), https://www.actaphys.uj
.edu.pl/fulltext?series=Reg&vol=4&page=251.

[12] M. Dafermos and I. Rodnianski, Lectures on black holes
and linear waves, in Evolution Equations (Amer. Math.
Soc., Providence, RI, 2013) p. 97.

[13] M. S. Morris and K. S. Thorne, Wormholes in spacetime and
their use for interstellar travel: A tool for teaching general
relativity, Am. J. Phys. 56, 395 (1988).

[14] J. Estevez-Delgado and T. Zannias, Wormholes of k-essence
in arbitrary space-time dimensions, Int. J. Mod. Phys. A 23,
3165 (2008).

[15] T. Torii and H. Shinkai, Wormholes in higher dimensional
space-time: Exact solutions and their linear stability analy-
sis, Phys. Rev. D 88, 064027 (2013).

[16] V. Dzhunushaliev, V. Folomeev, R. Myrzakulov, and D.
Singleton, Non-singular solutions to Einstein-Klein-Gordon
equations with a phantom scalar field, J. High Energy Phys.
07 (2008) 094.

[17] K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko,
Instabilities of wormholes and regular black holes sup-
ported by a phantom scalar field, Phys. Rev. D 86, 024028
(2012).

[18] V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J.
Kunz, Wormhole solutions with a complex ghost scalar
field and their instability, Phys. Rev. D 97, 024002
(2018).

GAUGE-INVARIANT SPHERICAL LINEAR PERTURBATIONS OF … PHYS. REV. D 101, 104061 (2020)

104061-25

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevLett.71.1486
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevD.54.6233
https://doi.org/10.1016/S0370-2693(02)02589-3
https://doi.org/10.3390/particles1010005
https://doi.org/10.3390/universe5030076
https://doi.org/10.1063/1.1666161
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=4&page=251
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=4&page=251
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=4&page=251
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=4&page=251
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=4&page=251
https://doi.org/10.1119/1.15620
https://doi.org/10.1142/S0217751X08040536
https://doi.org/10.1142/S0217751X08040536
https://doi.org/10.1103/PhysRevD.88.064027
https://doi.org/10.1088/1126-6708/2008/07/094
https://doi.org/10.1088/1126-6708/2008/07/094
https://doi.org/10.1103/PhysRevD.86.024028
https://doi.org/10.1103/PhysRevD.86.024028
https://doi.org/10.1103/PhysRevD.97.024002
https://doi.org/10.1103/PhysRevD.97.024002


[19] H. Shinkai and S. A. Hayward, Fate of the first traversible
wormhole: Black hole collapse or inflationary expansion,
Phys. Rev. D 66, 044005 (2002).

[20] O. Sarbach and T. Zannias, The propagation of particles and
fields in wormhole geometries, AIP Conf. Proc. 1473, 223
(2012).

[21] B. Carvente, V. Jaramillo, J. C. Degollado, D. Núñez, and O.
Sarbach, Traversable l-wormholes supported by ghost
scalar fields, Classical Quantum Gravity 36, 235005 (2019).

[22] J. A. González, F. S. Guzmán, and O. Sarbach, Instability of
charged wormholes supported by a ghost scalar field, Phys.
Rev. D 80, 024023 (2009).

[23] K. A. Bronnikov, J. C. Fabris, and Denis C. Rodrigues,
On the instability of some k-essence space-times, arXiv:
1908.09126v1.

[24] J. A. González, F. S. Guzmán, and O. Sarbach, Instability of
wormholes supported by a ghost scalar field: I. Linear
stability analysis, Classical Quantum Gravity 26, 015010
(2009).

[25] K. A. Bronnikov, J. C. Fabris, and A. Zhidenko, On the
stability of scalar-vacuum space-times, Eur. Phys. J. C 71,
1791 (2011).

[26] F. Cremona, F. Pirotta, and L. Pizzocchero, On the linear
instability of the Ellis-Bronnikov-Morris-Thorne wormhole,
Gen. Relativ. Gravit. 51, 19 (2019).

[27] J. A. González, F. S. Guzmán, and O. Sarbach, Instability of
wormholes supported by a ghost scalar field: II. Nonlinear
evolution, Classical Quantum Gravity 26, 015011 (2009).

[28] A. Doroshkevitch, J. Hansen, I. Novikov, and A. Shatskii,
Passage of radiation through wormholes, Int. J. Mod. Phys.
D 18, 1665 (2009).

[29] P. Kanti, B. Kleihaus, and J. Kunz, Wormholes in Dilatonic
Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett. 107,
271101 (2011).

[30] M. A. Cuyubamba, R. A. Konoplya, and A. Zhidenko, No
stable wormholes in Einstein-dilaton-Gauss-Bonnet theory,
Phys. Rev. D 98, 044040 (2018).

[31] K. A. Bronnikov and J. C. Fabris, Regular Phantom Black
Holes, Phys. Rev. Lett. 96, 251101 (2006).

[32] J. A. González, F. S. Guzmán, and O. Sarbach, On the
instability of static, spherically symmetric wormholes sup-
ported by a ghost scalar field, AIP Conf. Proc. 1083, 208
(2008).

[33] J. Weidmann, Spectral Theory of Ordinary Differential
Operators, Lecture Notes in Math. Vol. 1258 (Springer-
Verlag, Berlin, 1987).

[34] B. Simon, Sturm oscillation and comparison theorems, in
Sturm-Liouville Theory, edited by D. P. Pearson, W. O.
Amrein, and A. M. Hinz (Birkhäuser, Basel, 2005).

[35] S. J. Avis, C. J. Isham, and D. Storey, Quantum field
theory in anti–de Sitter space-time, Phys. Rev. D 18,
3565 (1978).

[36] C. Kent, Ph.D. thesis, University of Sheffield, 2013.
[37] C. Dappiaggi, H. R. C. Ferreira, and A. Marta, Ground

states of a Klein-Gordon field with Robin boundary con-
ditions in global anti–de Sitter spacetime, Phys. Rev. D 98,
025005 (2018).

[38] R. A. Adams and J. F Fournier, Sobolev Spaces, 2nd ed.
(Academic Press, New York, 2003).

[39] F. A. Berezin and M. A. Shubin, The Schrödinger
Equation (Springer Science+Business Media, Dordrecht,
1991).

[40] K. Schmüdgen, Unbounded Self-adjoint Operators on
Hilbert Space (Springer, New York, 2012).
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