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An effective Lagrangian approach, based on an extended Einstein-Aether (EA) model, is proposed. This
model is presented as an alternative to GR and mimetic gravity models in order to deal with the big bang
cosmological singularity issue. In particular, working on non flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) space-time, a generalized Friedmann equation is derived, and it is shown that, for a suitable choice
of the action within the extended EA theory, a regular bounce solution is present, generalizing the bounce
solution obtained in quantum loop cosmology (QLC) in the flat case. Furthermore, perturbation theory of
the extended model is investigated, and the main perturbation quantities are evaluated and the conditions to
avoid physical (superluminarity) and mathematical instabilities are discussed. Finally, the static spherically
symmetric (SSS) case is also investigated. It is found that, with the same action proposed for the FLRW
space-time, a Schwarschild like solution with a correction is obtained.
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I. INTRODUCTION

The theory of general relativity (GR) with the presence
of a suitable cosmological constant and the addition of cold
dark matter, the so called ΛCDM model, describes remark-
ably well a large part of the history of the Universe,
including the acceleration (or dark energy dominated) era.
In fact, the ΛCDM model has been recently tested with
high accuracy [1,2].
However, GR admits solutions corresponding to singular

space-times, namely metrics whose scalar curvature invar-
iants have singularities, or, equivalently, geodesic incom-
plete metrics exist. For instance, in the cosmological
context, the so-called big bang singularity occurs. But,
with unconventional equation of state for the matter
content, it is not difficult to propose models with bounce
solutions at t ¼ 0. In fact, consider the (spatially) curved
Friedmann–Lemaitre–Robertson–Walker (FLRW)

ds2 ¼ −N2ðtÞdt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

2

�
; ð1Þ

where aðtÞ is the scale factor, NðtÞ is the lapse function, k is
the spatial curvature (k ¼ 0 is the flat case) and dΩ2 is the
two dimensional sphere metric. If we reduce to the flat case,
where k ¼ 0, the usual first Friedman equation is

3H2 ¼ ρ; HðtÞ ¼ _a
a
; ð2Þ

and the matter conservation equation

_ρ ¼ −3ðρþ pÞH; ð3Þ

where we consider the units 8πGN ¼ 1, the dot denotes
derivatives with respect to the time t, HðtÞ ¼ _a=a is the
Hubble factor, ρ and P are respectively the energy density
and pressure of the matter content fluid. From the two
equations above we can obtain the second Friedmann
equation

_H ¼ −
1

2
ðρþ pÞ: ð4Þ

As a result, assuming an equation of state

p ¼ ωρ; ð5Þ

and using the Friedmann equations, we find

HðtÞ ¼ 2

3

1R ð1þ ωÞdt : ð6Þ

In the ΛCDM model, the equation of state parameter ω is
constant and we obtain the GR singular big bang solution.
However, assuming a time dependent ω we can obtain
regular solutions. For example, considering (see for
example [3] and references therein),
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1þ ωðtÞ ¼ c1 −
c2
tα
; ð7Þ

we find

HðtÞ ¼ 2

3

ðα − 1Þtα−1
c2 þ ðα − 1Þc1tα

; ð8Þ

where c1, c2 and α are fixed parameters. Consequently, a
bounce solution exists when c1; c2 > 0 and α > 1, such
that Hð0Þ ¼ 0 and _Hð0Þ > 0. However, one should note
that the singularity here is present at t ¼ 0 in the pressure p.
More realistic cosmological bounces models have been
studied, see for example [4,5].
Another approach to solve the singularity issue is based

on quantum corrections to GR. In fact, in the context of
cosmology, an effective modified Friedman equation has
been obtained in the so called quantum loop cosmology
theory (QLC), whose solution in a flat Friedmann–
Lemaître–Robertson–Walker space-times admits a bounce,
a solution without the GR big bang singularity [6–9].
In this paper we present a theory which avoids the

drawbacks of the first approach, related to the singularity of
matter observables, and provides the framework to extend
QLC results to the curved case. We consider a specific class
of modified Lorentz-violating gravitational models called
Einstein-Aether (EA) models [10,11], whose implementa-
tion, similarly to mimetic gravity, can be performed with
the addition of a Lagrange multiplier to the action. The
original EA model contains four parameters which describe
deviation fromGR via the Aether vector field coupling with
the metric. These parameters can be constrained using
several experimental results, see for example references
quoted in [12]. In the original model, the problem of initial
singularity has not been fully solved (see Refs. [13,14]).
The EA models have also been studied in other works, see
for instance Refs. [15–19].
In particular, we propose an extension of EA theory

which can extend QLC bounce solutions for curved FLRW
space-times, providing the QLC Friedmann equations in
the flat case, and that can be easily reduced to the original
EA model. Extended EA models have also been studied in
several works, see for example Refs. [20–22].
The content of this paper is the following. First, in Sec. II

we review the standard mimetic gravity theories in order to
show similarities and differences with respect to the EA
theory. In Sec. III we present a specific extended EAmodel,
and show that its associated generalized Friedmann equa-
tions admit nonsingular solutions. We also provide the first
order perturbation equations and show the condition to
avoid superluminarity and gradient instabilities. Finally, we
study the model on a static spherical symmetric (SSS)
space-time, and provide the solutions for some choices
of the extended EA action. In Sec. IV we draw the
conclusions.

Note that both the original EA model and the mimetic
gravity model, and their respective extensions, contain
vector and scalar fields with fixed four norm. As already
mentioned, in our approach this constraint is implemented
using a Lagrangian multiplier approach.
If not otherwise stated, in this paper we fix the con-

vention c ¼ 1 and 8πGN ¼ 1.

II. EXTENDED MIMETIC
GRAVITATIONAL MODEL

In this section we provide a brief review of extended
mimetic gravity, in order to show the similarities between
these models and our proposed extended EA models. We
follow Refs. [23,24]. The relevance of mimetic models
consists in the fact is one of the theories in four dimensions
which provides second order differential equations on
FLRW space-time [25–42], among with the Horndeski
model [43], DOHST models [44,45], or nonpolynomial
gravity models [46,47]. In this review, by means of the
Lagrangian mini-superspace approach within the non flat
FLRW space-times in Eq. (1), we study an extended
mimetic model introduced in Ref. [48].
The action reads

I ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ λ

�
X −

1

2

�
þ f½χðϕÞ�

�
þ Im; ð9Þ

where g is the determinant of the metric gμν,
X ≡ − 1

2
gμν∂μϕ∂νϕ, λ is a Lagrange multiplier field, ϕ is

the mimetic scalar field, and Im is the usual matter-radiation
action. The higher order differential term in ϕ, depends on
χðϕÞ ¼ −∇μ∇νϕ=3. With the metric (1), the action is a
functional of aðtÞ, NðtÞ and λðtÞ. We assume ϕ ¼ ϕðtÞ, i.e.,
an homogeneous field which depends only on t. We obtain
the Lagrangian

L¼ −6
_a2a
N

þ 6kaN þNa3f½χðϕÞ�

þNa3λ

�
_ϕ2

2N2
−
1

2

�
þ a3ðρþpÞ

N
−Na3ðρ−pÞ; ð10Þ

where ρ and p are the energy density and pressure of matter
and the dot denotes the derivative with respect to t.
Furthermore we have

χðϕÞ ¼ −
1

3
∇μ∇μϕ ¼ H − _N=ð3NÞ

N2
_ϕ: ð11Þ

The variation with respect to λ gives the so-called
mimetic constraint X ¼ 1=2, and therefore ϕ ¼ t. The
variation with respect to the lapse function N, where we
replace N ¼ 1 and _ϕ ¼ 1 after the computation, gives the
generalized first Friedmann equation
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6

�
H2 þ k

a2

�
þ fðHÞ−H

dfðHÞ
dH

¼ 2ρþ 2λ−
1

3

d
dt
dfðHÞ
dH

;

ð12Þ

where f is now a function ofH, as we can see from Eq. (11)
evaluated with N ¼ 1. The variation with respect to the
field ϕ leads, after integration, to [48],

λ ¼ C
a3

þ 1

6

d
dt

dfðHÞ
dH

; ð13Þ

where C is an integration constant mimicking dark matter
contribution. In the following we fix C ¼ 0. Thus the first
Friedmann equation (12) becomes

6

�
H2 þ k

a2

�
þ fðHÞ −H

dfðHÞ
dH

¼ 2ρ: ð14Þ

Finally, the variation with respect to the a gives the
generalized second Friedmann equation,

3H2 þ 2 _H þ fðHÞ
2

−
H
2

dfðHÞ
dH

−
1

6

d
dt

dfðHÞ
dH

¼ −p: ð15Þ

Deriving the Friedmann equation and making use of the
above results, we get the matter conservation equation

_ρ ¼ −3Hðρþ pÞ: ð16Þ

As a result, when p ¼ ωρ with ω constant, we obtain the
well-known solution

ρðtÞ ¼ ρ0aðtÞ−3ð1þωÞ: ð17Þ

Consider the following choice for the arbitrary function
f [48–50],

fðHÞ ¼ 6H2 þ 12

α2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2H2

p
− αH arcsin ðαHÞ

i
;

ð18Þ

where α is a dimensional positive parameter. Since fðHÞ
goes to zero when α → 0, in this limit we recover GR. Thus
fðHÞ may represent a “correction” to Einstein gravity. The
first Friedmann equation (14) with this choice of the
function becomes

6

α2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2α2

p i
¼ ρ −

3k
a2

; ð19Þ

which is equivalent to

3H2 ¼
�
ρ −

3k
a2

��
1 −

ðρ − 3k
a2Þ

ρc

�
; where ρc ¼

12

α2
: ð20Þ

An alternative Lagrangian derivation within a mimetic
approach, with k ≠ 0, is available in Ref. [49] and
references therein.
In the flat case, we obtain the QLC Friemann equation

3H2 ¼ ρ

�
1 −

ρ

ρc

�
: ð21Þ

For an equation of state p ¼ ωρ, it admits a bounce solu-
tion. Here the critical density is given by ρc. Furthermore,
in the case ω ¼ −1, namely ρ ¼ ρ0, the above equation
admits a flat k ¼ 0 de Sitter solution. For other cosmo-
logical bounce solutions see Refs. [51,52] and references
therein.
However, although mimetic models admit nonsingular

bounce solutions, they are plagued by gradient and/or ghost
instabilities, see for example Refs. [53,54]. This motivates
an investigation of alternative models. In the following we
consider an alternative with similar mimetic structure but
different main tensor field rank. In particular, we replace
the scalar field ϕ with a vector field. These models are the
aforementioned extended EA models.

III. THE EINSTEIN-AETHER EXTENDED MODEL

In this section we propose an extended EA models
defined on non flat FLRW. We denote by uμ the time-like
Aether 4-vector field. Analogously to the mimetic gravity
case, where the evolution of the scalar field ϕ is fixed by the
mimetic constraint via a Lagrange multiplier, this field
norm will be constrained with a similar action addition.
The original and the extended model depend on the

invariant

K ¼ c1ð∇μuνÞ2 þ c2ð∇μuμÞ2 þ c3∇μuν∇νuμ

þ c4uαuβ∇αuμ∇βuμ: ð22Þ

On a curved FLRW, the value of the invariant is K ¼ 3βH2

with β≡ c1 þ 3c2 þ c3, where c1;2;3;4 are adimensional
quantities. Regarding the background field equations of
motion, this justifies the replacement of K with another
main variable defined as θ ¼ −∇μuμ ¼ −3H. In other
words, K ¼ βθ2=3. In the following we consider a generic
space-time with θ≡ −∇μuμ, and then study specific space-
times applications.
The action of the proposed EA extended model reads

I ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ λðuμuμ þ 1Þ − fðθÞ

�
þ Im; ð23Þ

where Im is the matter action. With respect to the original
work of Ref. [10], where the fðθÞ ¼ 3K ¼ βθ2 is fixed, in
our extended approach the function can be generic. The
equations of motions for the theory are
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Gμν −
1

2
fðθÞgμν −

1

2
λ½2uμuν þ gμνð1þ uρuρÞ�

þ 1

2
gμν

�
∇ρuρ

dfðθÞ
dθ

þ uρ∇ρ∇σuσ
d2fðθÞ
dθ2

�
¼ 0; ð24Þ

2λuμ − gρσ∇μ∇σuρ
d2fðθÞ
dθ2

¼ 0; ð25Þ

1þ uμuμ ¼ 0; ð26Þ

which was obtained varying the action respectively with
respect to the metric gμν, the vector field uμ and the mimetic
scalar field λ.
In the following sections we consider this theory on two

different cases: the FLRW and static spherical symmetric
space-times.

A. Friedmann–Lemaître–Robertson–Walker solutions

In this section we present the main results for a FLRW
metric (1). In order to find the equations of motion, we can
proceed in two ways. One way is to evaluate the equations
of motion (24)–(26). We instead propose again the min-
isuperspace method which was applied to the extended
mimetic model in Sec. II.
We consider the time-like Aether 4-vector uμ ¼

ðb; 0; 0; 0Þ, whose norm is given by uμuμ ¼ −N2b. In
the metric (1) with k ≠ 0, we have

θ ¼ −∇μuμ ¼ −
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
uμÞ ¼ 3Hbþ b

_N
N
þ d
dt

b:

ð27Þ

The related minisuperspace Lagrangian reads

L ¼ −6
_a2a
N

þ 6kaN − Na3fðθÞ þ Na3λð1 − N2b2Þ

þ a3ðρþ pÞ
N

− Na3ðρ − pÞ: ð28Þ

The variation with respect to λ leads to b ¼ 1=N. Therefore
the Aether field norm is uμuμ ¼ −1, is compatible with
(26). This confirms the goodness of our choice for the form
of uμ.
Making the variation with respect to N, and then

considering N ¼ 1 and b ¼ 1, we obtain the generalized
Friedmann equation

θ2

3
þ 3k

a2
−
fðθÞ
2

þ θ

2

d
dθ

fðθÞ ¼ ρþ λ −
d
2dt

dfðθÞ
dθ

;

where θ ¼ 3
_a
a
¼ 3H: ð29Þ

The variation with respect to b leads to,

2λ ¼ d
dt

dfðθÞ
dθ

; ð30Þ

such that Eq. (29) simply becomes

θ2

3
þ 3k

a2
−
fðθÞ
2

þ θ

2

d
dθ

fðθÞ ¼ ρ; where θ ¼ 3
_a
a
¼ 3H:

ð31Þ

Finally, the variation with respect to a is the second
Friedmann equation

2_θ

3
−
2k
a2

¼ −ðρþ pÞ − 1

2

d
dt

d
dθ

fðθÞ: ð32Þ

From the equations above we can derive the matter
conservation law

_ρ ¼ −3Hðρþ pÞ: ð33Þ

In fact, this equation follows by deriving the first
Friedmann equation (29) with respect to the time t and
making use of the second Friedmann equation (32). We
note that the matter conservation law is identical both in GR
and in the mimetic extended model considered in Sec. II.

1. Original model solution

In this section we consider the choice

fðθÞ ¼ βθ2 ð34Þ

This is the same as considering the original model with
fðθÞ ¼ 3K, as in Ref. [10]. With this choice the first
Friedmann equation reads

3H2

�
1þ β

2

�
þ 3

k
a2

¼ ρ: ð35Þ

We note that in order to obtain a positive matter energy
density, we have to assume β þ 2 > 0. This is the
Friedmann equation for the original EA model, whose
solutions have been investigated in Refs. [13,14], where
singular solutions have been found. In fact, as in GR, we
can easily integrate the equation of motion when k ¼ 0.
In this case, using the matter conservation law (33) with a
barotropic matter fluid, i.e., a matter fluid with an equation
of state p ¼ ωρ with ω constant, we obtain

_ρ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
6

β þ 2

s
ð1þ ωÞρ3

2: ð36Þ

The solution of this equation is
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ρðtÞ ¼ 2ðβ þ 2Þ
3ð1þ ωÞt2 : ð37Þ

Therefore, similarly to GR, we obtain a big bang singularity
at t ¼ 0.

2. A regular bounce solution

In this section we present a regular bounce solution
within the extended EA theory. The proposed function is
similar to the one made in the extended gravitational
mimetic model in Eq. (18), namely

fðθÞ ¼ −
2θ2

3
−

4

3α2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2θ2

p
− αθ arcsin ðαθÞ

i
:

ð38Þ

It should be noted that assuming the dimensional parameter
α very small, one has

fðθÞ ¼ 1

18
α2θ4 þ � � � : ð39Þ

Thus, with a small parameter α, fðθÞ represents a correction
to GR which starts with a second order contribution in the
invariant K2.
Furthermore, with the f function choice (38), the first

Friedmann equation is

3H2 ¼
�
ρ −

3k
a2

�
−
3α2

4

�
ρ −

3k
a2

�
2

; ð40Þ

where the critical density is defined as ρc ≡ 4=3α2. This is
the same form of the modified Friedmann equation
obtained in the extended mimetic gravity theory,
Eq. (20). Again, for k ¼ 0 we obtain

3H2 ¼ ρ

�
1 −

ρ

ρc

�
: ð41Þ

namely the QLC modified Friedmann equation in flat
FLRW space-time.
For k ¼ 0 is also possible to integrate the matter

conservation law. In fact, writing p ¼ ωρ, we obtain

_ρ ¼ −
ffiffiffi
3

p
ð1þ ωÞρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρ2=ρc

q
; ð42Þ

whose solution is

ρðtÞ ¼ ρc
1þ 3ρc

4
ð1þ ωÞ2t2 : ð43Þ

We note that the GR limit is recovered when ρc → ∞,
or α → 0.

Using Eq. (43) and the matter conservation law, we find
the known bounce solution for ω ≠ 1,

aðtÞ ¼
�
ρ0
ρc

þ 3

4
ρ0ð1þ ωÞ2t2

� 1
3ð1þωÞ

; ð44Þ

where ρ0 is an integration constant. Furthermore, in the
case ω ¼ −1, namely ρ ¼ ρ0, the above Eq. (41) admits a
k ¼ 0 dS solution.
On the other side, when k ≠ 0, we should use Eq. (40),

which may be rewritten as

3H2 ¼ ρ −
3k
a2

−
ðρ − 3k

a2Þ2
ρc

: ð45Þ

In general we can show that the big bang singularity
at t ¼ 0 is absent. First, we consider an example of
exact solution. Consider the barotropic equation of state
p ¼ −ρ=3, i.e., the equation of state parameter is
ω ¼ −1=3, and therefore, ρðtÞ ¼ ρ0aðtÞ−2. It is convenient
to introduce the quantity yðtÞ ¼ a2ðtÞ. In this case, Eq. (40)
becomes

3

4
_y2 ¼ ðρ0 − 3kÞy − ðρ0 − 3kÞ2

ρc
: ð46Þ

The related solutions are

yðtÞ≡ a2ðtÞ ¼ ρ0 − 3k
ρc

þ
�
C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0 − 3k

3

r
t

�2

; ð47Þ

where C is an arbitrary dimensionless integration constant.
Moreover we assume ρ0 > 3k in order to obtain a real
solution. These are regular bounce solutions, with
að0Þ ≠ 0. When C ¼ 0, the regular solutions become a
unique symmetric bounce solution, namely

aðtÞ2 ¼ ρ0 − 3k
ρc

þ ρ0 − 3k
3

t2; ð48Þ

and the related density is also regular. When ρc goes to
infinity, we recover the GR solution, admitting the big bang
singularity.
For a generic ω, it is not easy to find an exact solution.

Alternatively, we may start separating the variable in
Eq. (40) with y ¼ a2, namely

Z
dyffiffiffiffiffiffiffiffiffiffi
YðyÞp ¼ t; ð49Þ

where we used the matter conservation law and defined
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YðyÞ ¼ 4ρ0
3

�
y1=2−3ω=2 −

ρ0
ρc

y−ð1þ3ωÞ −
3ky
ρ0

þ 6k
ρc

y−ð1=2þ3ω=2Þ −
9k2

ρcρ0

�
: ð50Þ

If k is not vanishing, the above integral can be solved
analytically only for ω ¼ −1=3.
However, if we make an expansion around the critical

point defined by Yðy�Þ ¼ 0, namely

y1=2−3ω=2� −
ρ0
ρc

y−ð1þ3ωÞ
� −

3ky�
ρ0

þ 6k
ρc

y−ð1=2þ3=2ωÞ
� −

9k2

ρcρ0
¼ 0;

ð51Þ

we can look for an approximate solution, valid for small t,
which is given by

yðtÞ ≃ y� þ
Y 0�
4
t2; ð52Þ

where

Y 0� ¼
4ρ0
3

�
1 − 3ω

2
y−1=2−3ω=2� þ ρ0ð1þ 3ωÞ

ρc
y−ð2þ3ωÞ
� −

3k
ρ0

−
3kð1þ3ω

2
Þ

ρc
y−ð3=2þ3ω=2Þ
�

�
: ð53Þ

In the above equation, y� is the solution of the transcen-
dental equation (51). It is easy to show that for ω ¼ −1=3,
we get the approximate solution related to the exact
solution found before. Moreover, if k ¼ 0 we recover
y� ¼ ðρ0=ρcÞ2=ð3ð1þωÞÞ, such that

yðtÞ ≃
�
ρ0
ρc

� 2
3ð1þωÞ þ 1

2
ρ0ð1þ ωÞ

�
ρ0
ρc

�−1−3ω
3ð1þωÞ

t2; ð54Þ

which is consistent with the result in Eq. (44).
Thus, from Eq. (52) we can conclude that we obtain a

regular symmetric bounce when y� > 0 and Y 0� > 0. In the
limit ρc → ∞, with parameters k ¼ 0 and ω ≠ −1, we find
y� ¼ 0 and the big bang singularity appears.

3. Cosmological perturbation theory

In this section we present the cosmological pertur-
bation theory results in extended EA models within curved
FLRW space-times, which has been also investigated in
Refs. [55,56]. We first study the scalar perturbations, and
we refer to the perturbed FLRWmetric in Newtonian gauge

ds2 ¼ −½1þ 2Ψðt; r⃗Þ�dt2 þ aðtÞ2½1þ 2Φðt; r⃗Þ�

×

�
dr2

1 − kr2
þ r2dΩ2

2

�
; ð55Þ

where Ψ and Φ are the nonhomogeneous and nonisotropic
Newtonian potentials. Moreover we choose to split the
perturbation of the Aether 4-vector as

δuμ ¼ ðδ0u; δuiÞ: ð56Þ
We notice that the perturbation of θ and K at first order

are not the same. In fact the perturbation of θ2 at the first
order is

δθ2 ¼ 18H2δu0 þ 6Hδ _u0 þ 6H _Ψþ 18H _Φ; ð57Þ

where δu0 is the perturbation of the first component of the
Aether 4-vector field. On the contrary, the first order
perturbation of 3K is given by

3δK ¼ 18βH2δu0 þ 18c2Hδ _u0 þ 18c2H _Ψþ 18βH _Φ:

ð58Þ

Since at the background level we identified 3K ¼ βθ2 ¼
ðc1 þ 3c2 þ c3Þθ2, we can conclude that the theory for-
mulated in terms of K and θ are equivalent at the first
order perturbation level only if we consider c1 þ c3 ¼ 0,
i.e., β ¼ 3c2.
We can now proceed to perturb the theory (23). At first

order in the perturbations, the mimetic constraint (26) on
the FLRW metric becomes the constraint

δu0 ¼ −Ψ: ð59Þ

From the spatial part of the equations of motion (25) we
find the relation

_H
d2f
dθ2

δui ¼ ½∂i
_Φ −H∂iδu0�

d2f
dθ2

; ð60Þ

where we substituted Ψ and λ using respectively the
constraint (59) and the Eq. (30). This equation can be
used to find δui once we know δu0 and Φ.
If we consider no anisotropic stress (no perturbation of

the Tj
i components of the standard matter stress-energy

tensor), we obtain an equation for the evolution of the δu0

perturbation which is in the form
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δü0 þ…δ _u0 −
�
c2s
a2

�
∇δu0 þ…δu0 ¼ fðδρ; δPÞ; ð61Þ

where the dots are different coefficients which depend of
background quantities (H; ρ;…), while f is a function of
the perturbations of the energy density δρ and pressure δP.
The velocity c2s is given by

c2s ¼
1

1 − 3
4
d2f
dθ2

: ð62Þ

In general, to avoid gradient instabilities, we require this
quantity to be positive. Moreover, c2s < 1 in order to avoid
superluminarity. This means that fðθÞ should satisfy

d2f
dθ2

< 0 for any value of θ: ð63Þ

We have also generalized the propagation speed of
gravitational waves to nonflat FLRW space-times. The
result is

c2T ¼ 1

1þ ðc1 þ c3Þ df
dK

; ð64Þ

which in our case, where c1 þ c3 ¼ 0, reduces to c2T ¼ 1.
Therefore, every model which uses θ instead of K will
always satisfy cT ¼ 1 regardless of the choice of fðθÞ.

B. Static spherical symmetric solutions

In this section, we briefly investigate the existence of
static spherical symmetric solutions in a specific extended
EA models. We also provide the explicit solutions for
particular choices of the function f.
We consider the SSS space-time in the following form,

ds2 ¼ −AðrÞ2BðrÞdt2 þ dr2

BðrÞ þ r2dΩ2; ð65Þ

where dΩ2 is the two dimensional sphere metric, and A≡
AðrÞ; B≡ BðrÞ are functions of the radial coordinate r
only. By assuming uμ ≡ uμðrÞ, the Lagrange multiplier
constraint (25), among with the field equations (24), gives
uμ ¼ ð0; ffiffiffiffiffiffiffi

−B
p

; 0; 0Þ. Therefore, in general the vector field
is imaginary on SSS space-times, similarly to the static case
of mimetic gravity, see for example Ref. [57]. Thus we have

θ2 ¼ −
1

4r2
ð2rA0=Aþ 2Bþ rB0Þ2

B
< 0: ð66Þ

As mentioned before, for simplicity we restrict our EA
static models to depend only on the scalar K ¼ −θ2, θ
being an imaginary quantity. Furthermore, it is convenient
to work with θ instead of K, but with fðθÞ a real quantity.

From (24)–(25) we obtain the equations of motion

1 − BðrÞ − r
dB
dr

− r2f þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−BðrÞ

p df
dθ

�
2þ r

A
dA
dr

þ r
2B

dB
dr

�

þ d2f
dθ2

�
2B − r

dB
dr

þ r2B
A2

�
dA
dr

�
2

−
r2

2A
dA
dr

dB
dr

þ r2

4B

�
dB
dr

�
2

−
r2B
A

d2A
dr2

−
1

2
r2
d2B
dr2

�
¼ 0; ð67Þ

1 − BðrÞ − 2r
B
A
dA
dr

− r
dB
dr

− r2f þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−BðrÞ

p df
dθ

�
2þ r

A
dA
dr

þ r
2B

dB
dr

�
¼ 0: ð68Þ

In the following we present two examples with different fðθÞ function choices.

1. Linear case

In this first example we consider the Schwarzschild
gauge with AðrÞ ¼ 1, and f linear in

ffiffiffiffi
K

p
, i.e., fðθÞ ¼ γθ.

We investigate this model to prove the goodness our
formalism. In fact, this model corresponds to the additive
term

ffiffiffiffi
K

p
, which by definition is a divergence of a 4-vector.

Therefore we expect this choice to be a trivial correction
to GR.
With this choice, the equations of motions reduce to the

single equation

1 − BðrÞ − r
dB
dr

− r2f þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−BðrÞ

p df
dθ

�
2þ r

2B
dB
dr

�
¼ 0:

ð69Þ
Since

θ ¼ −
4Bþ r dB

dr

2r
ffiffiffiffiffiffiffi
−B

p ; ð70Þ

and fðθÞ ¼ γθ, the last two terms cancel and one has
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1 − BðrÞ − r
dB
dr

¼ 0: ð71Þ

Therefore, the exact solution is given by the Schwarzschild
solution

BðrÞ ¼
�
1 −

C
r

�
; ð72Þ

where C is a mass term.

2. Quartic case

In this section we consider a quadratic model in K. In
particular, the function fðθÞ is given by the first term of (39)

fðθÞ ¼ 1

18
α2θ4; ð73Þ

which is the first term of the expansion of Eq. (38),
discussed in Sec. II. In fact, at the zeroth order in α, the
model coincides with GR, thus admitting the Schwarzschild
solution.At the second order inα onemay look for a solution
in the form,

A2 ¼ 1þ α2ÃðrÞ; BðrÞ ¼ 1 −
C
r
þ α2B̃ðrÞ; ð74Þ

where we consider Ã and B̃ as perturbations of
the main functions. Evaluating the first equation of (67)
for this choice, we find that the second order contri-
bution in α of the equation does not depend on ÃðrÞ.
This simplifies the equation and provides the solution
for B̃ðrÞ

B̃ðrÞ ¼ C0

r
þ 1

96r

�
81C2

r3
−
261C
r2

þ 249

r
þ 3

r − C
þ 4

C
log

�
r

r − C

��
; ð75Þ

where C0 is a new integration constant.
Furthermore, using the second equation in (67) at the second order, we obtain the expression for ÃðrÞ through the

solution for Ã0ðrÞ,

ÃðrÞ ¼ 1

96C

�
3C2

2ðr − CÞ4 þ
3ð3þ CÞ
ðC − rÞ2 þ 44 − 19C

CðC − rÞ þ
108Cð5þ CÞ

r3

þ 54 − 72C
r2

þ 90 − 111C
Cr

þ Cð16þ 3CÞ
3ðr − CÞ3 þ

−
2

C2ðr − CÞ log
�

r
r − C

��
23rð2C − 1Þ þ Cð27 − 44CÞ þ 2ðC − rÞ log

�
r

r − C

���
; ð76Þ

where we consider C0 ¼ 0. We note that these functions are
badly divergent for r → C, and their regime of validity is in
the limit α2C ≪ r, for which we recover the corrections to
GR. Thus, these results cannot be used to find corrections
to the GR horizon. Moreover, we note that, for r → ∞, we
obtain Ã; B̃ → 0, i.e., the large r asymptotically flat GR
limit.

IV. CONCLUSIONS

In this paper we have proposed an effective Lagrangian
approach based on an extended Einstein-Aether (EA)
model in a generic spatially non flat FLRW space-time.
After showing the similarities between the EA model and
the mimetic gravity, which are respectively based on the
presence of an additional vector and scalar, whose norms
are fixed, we have investigated an extended EA model,
based on the presence of a generic function depending on
the invariant K.
Furthermore, making a suitable choice for the action,

namely the Einstein-Hilbert one with the addition of non

polynomial fðKÞ, a generalized Friedmann equation has
been obtained. The additional term may be interpreted as an
effective quantum correction, inspired by quantum loop
cosmology and depending on an arbitrary parameter α.
This generalized Friedmann equation admits a non-

singular bounce solution at t ¼ 0. Furthermore, we have
shown that this nonpolynomial contribution, for small α,
leads to a correction to GR which is of order θ ∼ ðHÞ4 and
becomes negligible at small curvature.
We have also investigated the cosmological perturba-

tions of the model, providing the necessary conditions to
avoid superluminarity and gradient instabilities.
We have also studied the static spherically symmetric

solutions. We have found that the Schwarzschild solution
can be recovered with a suitable choice of Lagrangian.
Finally, the correction to GR given by fðθÞ ∼ α2θ4,

namely the aforementioned small α limit used in the
FLRW cosmological case, has been considered. As a result,
small corrections to Schwarzschild solution, valid only for
large r, have been presented.
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