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The detection of axion fields can unfold intriguing facets of our Universe in several astrophysical and
cosmological scenarios. In four dimensions, such a field owes its origin to the completely antisymmetric
Kalb-Ramond field strength tensor. Its invisibility in the Solar System–based tests compels one to look for
its signatures in the strong-field regime. The recent observation of the shadow of the supermassive black
hole in the galaxy M87 ushers in a new opportunity to test for the footprints of axions in the near-horizon
regions of black holes, where the gravity is expected to be strong. In this paper, we explore the impact of
axions on the black hole shadow and compare the result with the available image of M87*. Our analysis
indicates that an axion which violates the energy condition seems to be favored by observations.
The implications are discussed.
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I. INTRODUCTION

Axions are pseudoscalar fields which appear as closed
string excitations in the heterotic string spectrum [1,2].
In four dimensions, the derivative of such a field is
associated with the Hodge dual of the Kalb-Ramond field
strength Hαμν, which plays a significant role in explaining
several astrophysical and cosmological observations. The
field strength tensor Hαμν transforms like a third-rank
completely antisymmetric tensor field and is associated
with a massless second-rank antisymmetric tensor Bμν,
the so-called Kalb-Ramond field. In higher-dimensional
theories, such a field is necessary to unify gravity and
electromagnetism [3,4]. Apart from the emergence of such
3-forms in the effective low-energy action of a type-IIB
string theory [1,2], they play consequential roles in under-
standing leptogenesis [5,6], in explaining the cosmic
microwave background anisotropy [7,8], and in engender-
ing topological defects which are instrumental in imparting
intrinsic angular momentum to galaxies [9,10].
The emergence of superstring theory [1,2] provided a

further incentive to investigate the nature and consequences
of the Kalb-Ramond field. Its compelling resemblance
with spacetime torsion [7,10–18] is noteworthy. In general
relativity, the third-rank torsion tensor Tα

μν is associated
with the antisymmetric part of the affine connection—i.e.,
Tα
μν ¼ Γα

μν − Γα
νμ—and is primarily antisymmetric in two

indices. Its association with the Kalb-Ramond field
strength Hαμν becomes evident only when we consider a
special subclass of the torsion tensor antisymmetrized in all

three indices [11,14–16]. In such a scenario, Einstein
gravity with the Kalb-Ramond field in the matter sector
is equivalent to a modified theory of gravity incorporating
the completely antisymmetric spacetime torsion. Due to
this remarkable analogy between spacetime torsion and the
Kalb-Ramond field, gravity theories based on twistors
necessitate the Kalb-Ramond field [19], and one can show
that such a field can successfully generate optical activity in
spacetime exhibiting birefringence [20,21].
Moreover, the inefficacy of general relativity in

adequately addressing the dark sector [22–25] indicates
the need for either some additional matter fields or some
alteration in the gravity sector, or both. In such a scenario,
inclusion of axions in the matter sector is often considered
[26]. Although working with the Kalb-Ramond field
or completely antisymmetric spacetime torsion corre-
sponds to the same physical scenario, in this work we
will concentrate primarily on modification in the matter
sector due to the addition of the Kalb-Ramond field. Given
the theoretical significance of such a field, it is instructive
to search for the signatures of the Kalb-Ramond field or
axions in the available astrophysical and cosmological
observations. The attempts to detect the presence of
axions in Solar System–based tests—e.g., the bending
of light, perihelion precession of Mercury, etc.—reveal
that such fields cause minuscule changes compared to
general relativity and hence cannot be detected by the
present level of precision in the Solar System–based tests
[27]. A quest for such a field in the spectrum of quasars
has surprisingly revealed that axions which violate the
energy condition seem to be favored by astrophysical
observations related to black hole accretion [28].
Incidentally, the observed spectrum of the same quasars
seems to favor certain classes of alternate gravity theories
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—e.g., extra dimensions, Einstein Gauss-Bonnet gravity
in higher dimensions, etc. [29–31].
The recent observation of the shadow of the supermas-

sive black hole M87* by the Event Horizon Telescope
Collaboration [32–37] has enabled direct observations of
the near-horizon regime of a black hole. This has opened up a
new and independent window to test the nature of strong
gravity. The high spatial resolution of the Event Horizon
Telescope has facilitated polarimetric imaging of supermas-
sive black holes like M87*, which can be a possible probe
to detect the presence of axionic particles [38]. Moreover,
based on the findings of the Event Horizon Telescope
Collaboration, efforts are being made to establish constraints
on the masses of ultralight scalar and vector bosons, which
can act as potential dark matter candidates [39].
The aim of this paper is therefore to examine the

implications and consequences of axions and the Kalb-
Ramond field from the observed shadow of M87*, which
will enable us to understand whether the silhouette of M87*
favors the presence of such a field.
The paper is broadly classified into five sections. In Sec. II,

we study the Einstein field equations with the Kalb-Ramond
field as the source and revisit the static, spherically symmetric,
and asymptotically flat black hole solution of such equations.
Section III is dedicated to investigating the nature of the black
hole shadow—first in a general spherically symmetric back-
ground in Sec. III A, and subsequently in Sec. III B,wherewe
specialize to the spacetime with axionic hairs presented in
Sec. II. In Sec. IV, we investigate the consequences of the
Kalb-Ramond fieldon the recent observationof the shadowof
M87*, the supermassive black hole located at the center of the
galaxy M87, and finally we conclude with a summary of our
findings and implications of our results in Sec. V.
Throughout the paper, the gravitational constant G and

the speed of light c are taken to be unity. The metric
convention adopted is (−;þ;þ;þ).

II. STATIC SPHERICALLY SYMMETRIC
BLACK HOLE SOLUTION IN THE PRESENCE

OF THE KALB-RAMOND FIELD

In this section, we discuss the nature of a static, spheri-
cally symmetric black hole solution in the presence of the
Kalb-Ramond field minimally coupled to gravity [27,40].
The Kalb-Ramond field Bμν, which transforms like a
second-rank skew-symmetric tensor field, can be consid-
ered to be a generalization of the electromagnetic four-
potential Aμ [1,11]. The field strength tensor Hαμν

associated with the field Bμν consists of a third-rank
antisymmetric tensor field and is given by

Hαμν ¼ ∂ ½αBμν� ¼
1

3
½∇αBμν þ∇μBνα þ∇νBαμ�

¼ 1

3
½∂αBμν þ ∂μBνα þ ∂νBαμ�: ð1Þ

The action associated with the Kalb-Ramond field in four-
dimensional Einstein gravity is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

12
HαμνHαμν

�
; ð2Þ

where g is the determinant of the metric tensor, R is
the Ricci scalar, and κ ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

is related to the four-
dimensional gravitational constant G. The factor of −1=12
has been introduced in the Lagrangian so that one can have
the canonical kinetic term as 1=2ð∂tBμνÞ2 in the local
inertial frame. Field equations for the Kalb-Ramond field
can be derived by varying the action in Eq. (2) with respect
to the field Bμν, which yields ∇μHμνρ ¼ 0 as the equations
of motion. By inspecting the equations of motion, it can be
shown that only the spatial components of the field are
dynamical. This reduces the propagating degrees of free-
dom of this field to three, although the Kalb-Ramond
field Bμν possesses six independent components in four
dimensions. A gauge symmetry Bμν → Bμν þ∇½μχν� fur-
ther reduces the degrees of freedom to zero, as the gauge
field χμ has three spatial components. However, the gauge
field χμ exhibits a further invariance χμ → χμ þ ∂μΦ, where
Φ is a scalar field, and in fact this is the scalar propagating
degree of freedom for the Kalb-Ramond field in four
dimensions. Additionally, it can be shown that the Kalb-
Ramond field satisfies the Bianchi identity given by
∇½μHαβγ� ¼ 0. For a more detailed discussion on the
degrees of freedom of the Kalb-Ramond field in arbitrary
dimensions, one is referred to Ref. [13]. Since the Kalb-
Ramond field has a single propagating degree of freedom in
four dimensions, one can express its field strength Hαβμ

(which is a third-rank antisymmetric tensor field) in terms
of the Hodge dual of the derivative of a pseudoscalar field
Φ, known as the axion, where

Hμνρ ¼ ϵμνρσ∂σΦ: ð3Þ
Equation (3) enables us to establish the connection between
the Kalb-Ramond field and the axion, and throughout the
paper, the terms axion and Kalb-Ramond field will be
synonymously used.
The variation of the action in Eq. (2) with respect to the

metric gμν leads to the gravitational field equations

Gμν ¼ 8πGTðKRÞ
μν ; ð4Þ

where Gμν is the Einstein tensor and TðKRÞ
μν is the energy-

momentum tensor for the Kalb-Ramond field given by

TðKRÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
L̃Þ

δgμν

¼ 1

6

�
3HμρσHν

ρσ −
1

2
gμνðHρσδHρσδÞ

�
; ð5Þ
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such that L̃ is the Lagrangian for the Kalb-Ramond
field.
Since our goal in this paper is to explore the impact of

axions on the shadow of the black hole, we first need to
derive the static, spherically symmetric, and asymptotically
flat black hole solution of the Einstien’s equations given
in Eq. (4). This enables us to consider a line element of
the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2; ð6Þ

such that the metric elements eνðrÞ and eλðrÞ satisfying
the Einstein’s equations turn out to be two infinite series in
1=r [27,40]:

eνðrÞ ¼1−
2M
r

þbM
r3

þ2bM2

r4
þ72bM3−27b2M

20r5
þ���; ð6aÞ

e−λðrÞ ¼ 1 −
2M
r

þ 3b
r2

þ 3bM
r3

þ 4bM2

r4
þ 6M3b

r5

−
3b2M
4r5

þ � � � ; ð6bÞ

where r represents the radial distance from the black hole
and b is the axion parameter having units ofM2 (where we
have assumedG ¼ c ¼ 1). In what follows, we will scale b
by M2 and r by M, such that henceforth we will use the
dimensionless parameters b and r throughout this paper.
With the Kalb-Ramond field as the source, the above
solution has been worked out previously in Refs. [27,40].
For brevity, we do not repeat the derivation here but simply
mention the results. From the form of the above metric, it is
clear that the presence of the Kalb-Ramond field does not
lead to an exact black hole solution but results in pertur-
bations over the Schwarzschild scenario by various powers
of the axion parameter b. The solution, however, is valid for
all distances, viz., from the event horizon to infinity. This
can be confirmed directly from the derivation of the above
metric [27]. Since we are considering a spherically sym-
metric scenario, the axion field Φ depends only on the
radial coordinate r. Consequently, from Eq. (3) it is clear
that the only nonzero component of the Kalb-Ramond field
strength tensor is H023. The energy density corresponding
to the Kalb-Ramond field is then given by H023H023 ¼
hðrÞ2. By solving the gravitational field equations and the
equations of motion for the Kalb-Ramond field, it can be
shown that hðrÞ assumes the form [27,40]

hðrÞ¼
ffiffiffiffiffiffi
3b
κ

r
1

r2

�
1þ2

r
þ 4

r2
−
�
8þb
r3

�
þ
�
16þ6b

r4

�
þ�� �

�
:

ð7Þ

From Eq. (7), one can relate that the parameter b in
Eqs. (6a) and (6b) is associated with the energy density

corresponding to the Kalb-Ramond field or the axion. From
Eq. (7), it is clear that at large distances, the Kalb-Ramond
field energy density vanishes and we get back to the general
relativistic scenario, which is also supported by the form of
the solution of the metric [Eqs. (6a) and (6b)]. Therefore,
this parametrization of the metric and the Kalb-Ramond
field energy density is valid for all distances, although its
effect becomes prominent in the near-horizon regime of the
black hole.
It is important to note that in order for Eq. (6) to represent

a black hole solution, there must be an event horizon.
The radius of the horizon rh is given by solving for
grr ¼ e−λðrÞ ¼ 0, which yields

rh ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3b

p
ð8Þ

if we truncate Eq. (6b) up to the leading-order term in b.
The event horizon reh is given by the positive root of
Eq. (8).
In the next section, we will consider the geodesic motion

of the photons in the background given by Eq. (6), which
will enable us to derive the shape and size of the black hole
shadow. It is important to note that the observation of the
shadow directly probes the near-horizon regime of black
holes where r is small. Therefore, although the leading-
order term with the axion appears as a 1=r3 correction to the
Schwarzschild scenario, its impact on the observed shadow
is expected to be significant.

III. GEODESIC MOTION OF PHOTONS
AND THE SHADOW OF A BLACK HOLE

The shadow of a black hole refers to the set of directions
in the local sky from where electromagnetic radiation
just escapes the black hole event horizon and reaches
the observer on Earth [41–45]. When light from a distant
astrophysical object or the accretion disk surrounding the
black hole arrives in the vicinity of the event horizon, a part
of it gets trapped inside the horizon, while another part
escapes to infinity. This results in a lack of radiation in the
observer’s sky, leading to a dark patch in the image of the
black hole, known as the black hole shadow. The outline of
the shadow testifies to the signatures of strong gravitational
lensing of nearby radiation, and hence the shape and size of
the shadow can reveal valuable information regarding the
nature of strong gravity near the black hole [43,46–49].
Consequently, the image of a black hole can be used
as a potential probe to estimate the deviation from general
relativity.
While the shape of the shadow bears imprints of the

background geometry, the size of the shadow scales
directly with its mass, reduces with increase in distance,
and also exhibits dependence on the background spacetime.
For example, a nonspinning black hole always casts a
circular shadow [41,42]. In this case, the size of the
shadow can be used to investigate the deviation from the
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Schwarzschild scenario in general relativity [41,42].
Introducing spin to black holes incurs deviation from the
circular shape, and this has been studied extensively in the
past, in the context of both general relativity and alternative
gravity models [43,46–52]. However, it is important to note
that the deviation from circularity becomes apparent only
when the angle of inclination of the observer with respect
to the rotation axis of the black hole becomes appreciable;
i.e., an observer viewing a rotating black hole with zero
inclination angle will always see a circular shadow [41,42].
In the next section, we will derive the contour of the

black hole shadow in the presence of a general static,
spherically symmetric, and asymptotically flat metric given
by Eq. (6), and subsequently we will consider the special
case with axionic hairs, where the metric components are
given by Eqs. (6a) and (6b).

A. Structure of black hole shadow in a general
spherically symmetric metric

In this section, we will work out the structure of the
black hole shadow in a general static, spherically sym-
metric background given by Eq. (6). For this purpose, we
will study geodesic motion of photons in this spacetime.
We consider a geodesic with an affine parameter λ such that
the tangent vector is uμ ¼ _xμ ¼ dxμ=dλ. The Lagrangian L
corresponding to the motion of test particles assumes the
form

Lðxμ; _xμÞ ¼ 1

2
gμν _xμ _xν; ð9Þ

such that the action S representing the motion of test
particles satisfies the Hamilton-Jacobi equation given by

Hðxμ; pμÞ þ
∂S
∂λ ¼ 0; ð10Þ

where

H ¼ 1

2
gμνpμpν ¼

k
2

ð11Þ

is the Hamiltonian, k is a constant representing the rest
mass of the test particles (which is zero for photons), and pμ

is the conjugate momentum corresponding to the coordi-
nate xμ and is given by

pμ ¼
∂S
∂xμ ¼

∂L
∂ _xμ ¼ gμν _xμ: ð12Þ

Since the metric does not depend explicitly on t and ϕ, the
energy E and the angular momentum L of the photons are
conserved. These constants of motion are given by

E ¼ −gttut ¼ −pt and ð12aÞ

L ¼ gϕϕuϕ ¼ pϕ; ð12bÞ

respectively. The action S in Eq. (12) can therefore be
integrated with the help of Eqs. (12a) and (12b), such that

S ¼ −Etþ Lϕþ S̄ðr; θÞ; ð13Þ

where in the case of a static, spherically symmetrically
metric like Eq. (6), S̄ðr; θÞ turns out to be separable in r and
θ with S̄ðr; θÞ ¼ SrðrÞ þ SθðθÞ. We also note that with the
help of Eq. (12), Eq. (11) can be written as

− e−νðrÞr2E2 þ e−λðrÞr2
�
dSr

dr

�
2

þ L2

¼ −
�
dSθ

dθ

�
2

− L2cot2ðθÞ ¼ −C; ð14Þ

where the separation constant C, known as the Carter
constant, represents a third constant of motion [53].
Therefore, the geodesic equations for r and θ are given by

�
dSr

dr

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eλðrÞ

�
−
C
r2

−
L2

r2
þ e−νðrÞE2

�s

¼ E
ffiffiffiffiffiffiffiffiffiffi
VðrÞ

p
¼ grr _r and ð15Þ

�
dSθ

dθ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − L2cot2 θ

p
¼ E

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
¼ gθθ _θ; ð16Þ

respectively, where

VðrÞ ¼ −
eλðrÞχ
r2

−
eλðrÞl2

r2
þ eλðrÞ−νðrÞ ð17Þ

represents the effective potential in which the photon
moves, while

ΘðθÞ ¼ χ − l2cot2 θ ð18Þ

such that χ ¼ C=E2 and l ¼ L=E. The radius of the photon
sphere rph corresponds to the condition where _r vanishes
and the effective potential VðrÞ has an extremum. This is
generally a maximum, which corresponds to an unstable
equilibrium of the photon. Given a slight perturbation, the
photon either falls into the horizon or escapes to infinity.
Due to this reason, the photon sphere plays a crucial role in
determining the boundary of the black hole shadow.
Therefore, rph is obtained by solving VðrÞ ¼ V 0ðrÞ ¼ 0,

such that the above conditions yield

χ þ l2 ¼ r2phe
−νðrphÞ and ð19Þ

χ þ l2 ¼ 1

2
r3phe

−νðrphÞν0; ð20Þ
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respectively. The photon sphere in an arbitrary spherically
symmetric metric is therefore obtained by solving for r in
the following equation:

rphν0ðrphÞ ¼ 2: ð21Þ

In order to derive the contour of the black hole shadow in
the observer’s sky, one considers the projection of the
photon sphere in the image plane [54]. Note that the largest
positive radius obtained by solving Eq. (21) is relevant for
the computation of the shadow outline [41,42]. The locus of
the shadow boundary is denoted in terms of two celestial
coordinates α and β, which are related to l and χ [42,54].
This can be understood by expressing the metric in terms of
the tetrads, which for a spherically symmetric background
assume the form

gμν ¼ eðaÞμ eðbÞν ηab; where ð22Þ

eðtÞμ ¼ ðeν=2; 0; 0; 0Þ; ð23aÞ

eðrÞμ ¼ ð0; eλ=2; 0; 0Þ; ð23bÞ

eðθÞμ ¼ ð0; 0; r; 0Þ; ð23cÞ

eðϕÞμ ¼ ð0; 0; 0; r sin θÞ: ð23dÞ

Particularly, the apparent velocity vðθÞ of the photon in the θ
direction and vðϕÞ of the photon in the ϕ direction in the
local rest frame are given by

vðθÞ ¼
uμe

μ
ðθÞ

uμe
μ
ðtÞ

¼
pθeθðθÞ
ptetðtÞ

¼ ∓ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp

eν=2

r
and ð24Þ

vðϕÞ ¼
uμe

μ
ðϕÞ

uμe
μ
ðtÞ

¼
pϕe

ϕ
ðϕÞ

ptetðtÞ
¼ −

leν=2

r sin θ
; ð25Þ

respectively. An observer located at a distance r0 with an
inclination angle θ0 will perceive that the celestial coor-
dinates are given by

β ¼ lim
r0→∞

r0vðθÞðr0; θ0Þ ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þ

p
; ð26Þ

α ¼ lim
r0→∞

r0vðϕÞðr0; θ0Þ ¼ −
l

sin θ0
: ð27Þ

Note that r0 does not appear in the expressions for α and β,
since the metric is assumed to be asymptotically flat. Using
Eq. (18), it can be shown that

α2 þ β2 ¼ χ þ l2 ¼ r2sh; ð28Þ

which shows that the shadow is circular in shape, where the
dependence of its radius rsh on rph is given by Eq. (19).
The above discussion clearly elucidates that for any general
static, spherically symmetric, and asymptotically flat met-
ric, the shadow is circular in shape. Further, the radius
of the shadow depends only on the gtt component of the
metric and is independent of the distance r0 and the
inclination angle θ0 of the observer.

B. Structure of black hole shadow in the presence
of the Kalb-Ramond field

In this section, we will compute the contour of the black
hole shadow by considering specifically the spherically
symmetric metric with axionic hairs [Eq. (6), with Eqs. (6a)
and (6b) as metric elements]. As discussed in the previous
section, the radius of the photon sphere is obtained by
solving Eq. (21), which for our specific case leads to

2r3 − 6r2 þ 5b ¼ 0: ð29Þ

Depending on the value of the axion parameter b, Eq. (29)
can have three distinct real roots, one distinct and one
coincident real root, or a single distinct real root. The
conditions for the above are listed below:

8<
:

Three distinct real roots∶ 0 < b < 1.6;

Only one real root∶ b < 0; b > 1.6;

One real and one coincident root∶ b ¼ 0; b ¼ 1.6:

The roots of this equation can be obtained analytically by
using Cardano’s method [55].
When 0 < b < 1.6, the three real roots are given by

r1 ¼ 1þ 2 cos

�
1

3
cos−1B

�
; ð30aÞ

r2 ¼ 1 − cos

�
1

3
cos−1B

�
þ

ffiffiffi
3

p
sin

�
1

3
cos−1B

�
; ð30bÞ

r3 ¼ 1 − cos

�
1

3
cos−1B

�
−

ffiffiffi
3

p
sin

�
1

3
cos−1B

�
; ð30cÞ

with jBj < 1, where B¼−1þ5b=4. In the event that b ¼ 0
or b ¼ 1.6, r2 coincides with r3, while r1 corresponds to
another distinct real root. When b < 0 or b > 1.6, which is
identical to the situation with jBj > 1, there is only one real
root, which is given by

r0¼1þ½fjBjþ
ffiffiffiffiffiffiffiffiffiffiffiffi
B2−1

p
g1=3þfjBjþ

ffiffiffiffiffiffiffiffiffiffiffiffi
B2−1

p
g−1=3�: ð31Þ

The radius of the photon sphere is depicted clearly in
Fig. 1(a). In the figure, the blue solid line corresponds to
the condition jBj > 1, while the red curves constitute the
situation with jBj < 1. Since the latter consists of three
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distinct radii, r1, r2, and r3 are marked with solid, dot-
dashed, and dotted red lines, respectively. Among these, the
greatest positive root is taken for the computation of the
shadow radius. It is important to note that for b > 1.6 only
one real root exists, but the root is always negative (which is
unphysical, since the photon sphere cannot have a negative
radius), and hence we conclude that b can never exceed this
limit. The maximum value of b is further reduced from the
consideration that for the metric to represent a black hole,
the event horizon has to be real, which from Eq. (8) implies
b < 1=3 ¼ bmax. Henceforth, we will consider bmax to be
the upper limit of b.
For the region b < 0, Eq. (29) has only one positive

real root r0, which increases as b decreases. It is important
to note that b cannot assume arbitrarily large negative
values, since when b ≲ −1.48 ¼ bmin, the radius of the
event horizon reh exceeds that of the photon sphere rph.
Consequently, when b is lower than bmin, photon circular
orbits do not exist. This is an interesting feature the
spacetime inherits due to the presence of the Kalb-
Ramond background. Therefore, in the remaining discus-
sion we will limit ourselves to the range −1.48≲ b≲ 1=3.
Once the dependence of the photon sphere on b is under-
stood, we compute the radius of the shadow rsh in terms of
the axionic parameter b using Eqs. (19) and (28). The
variation of rsh with b is plotted in Fig. 1(b), where we have
shaded the theoretically allowed region of b. We also note
that the shadow expands with negative values of b. This
result will have interesting consequences from the observed
shadow of M87*, which we discuss in the next section.
We emphasize once again that since we are probing

the near-horizon regime, even the leading-order correction
to the gtt component of the Schwarzschild metric given
by b=r3 is expected to be significant near the photon
sphere. This is in accordance with our analysis, which
reveals that the axion parameter plays a crucial role in
affecting the radius of the black hole shadow compared to

the Schwarzschild scenario [Fig. 1(b)]. Since we are
interested in the small-r domain, it might appear that
one should also consider the higher-order corrections to
the metric (terms over and above the leading-order cor-
rections in the gtt and the grr components) in Eqs. (6a) and
(6b) to study the impact of axions on the black hole shadow
and the radius of the event horizon. However, the inclusion
of these terms does not significantly affect our results, since
b has a theoretical bound of −1.48≲ b≲ 1=3, and in this
domain b=r < 1 [Fig. 1(a)], which implies that b=r3 or
b=r2 are even less. This enables us to truncate the metric in
Eqs. (6a) and (6b) up to the leading-order term. However,
we verify this approximation explicitly by considering
terms up to 1=r4 in both gtt and the grr components of
the metric, and we find that this has a negligible effect on
our results.

IV. OBSERVED SHADOW OF M87* AND
IMPLICATIONS ON AXIONIC HAIR

Using the techniques of VLBI (very large baseline
interferometry), the Event Horizon Telescope (EHT)
Collaboration has recently released the image of the
supermassive black hole M87* at the center of the galaxy
M87, thereby opening a new window to test gravity in the
strong field regime [32–37]. Their analysis reveals that the
angular diameter of the shadow of M87* is ð42� 3Þμas,
exhibiting a deviation from circularity ΔC < 10% and an
axis ratio ΔA < 4=3 [32]. This implies that the observed
shadow is nearly circular, which is further supported from
the fact that the jet axis makes an angle of 17° to the line of
sight, which is taken to be the inclination angle of the black
hole [32,36,37]. We have already mentioned in Sec. III that
noncircular shadows are only possible if a black hole is
observed at high inclination angle. This, therefore, justifies
our choice of considering the spherically symmetric metric
given by Eq. (6), as a first approximation. Hence, the only

FIG. 1. Dependence of the radius of the photon sphere and the radius of shadow on the axion parameter. (a) Radius of photon sphere vs
b. (b) Radius of shadow vs b.
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relevant observable in our context is the angular diameter of
the shadow, ΔA and ΔC being trivially equal to one and
zero, respectively, satisfying the observed constraint.
The angular diameter of the shadow depends not only on

the background metric but also on the mass M of the black
hole and its distance D from the observer. This has been
illustrated in Fig. 2, which shows that

tan α ≈ α ¼ rsh
D

; ð32Þ

where 2α is the angular diameter. Since the distance
between the black hole and the observer is much greater
than the radius of the shadow (rsh), α is very small, which
justifies the approximation in Eq. (32). We have already
expressed the radius of the shadow in terms of the metric
parameter b in Eq. (6) [e.g., Fig. 1(b)]. Since the radius is in
units of GM=c2, the angular diameter scales directly with
the black hole mass. Further, black holes at larger distances
will cast smaller shadows.

In the previous section, we have computed the depend-
ence of the axion parameter b on the radius of the photon
sphere and the shadow. Therefore, from the magnitude of
the observed angular diameter we can comment on the
observationally favored values of b. We however require
independent measurements of the mass and distance of
M87*. Based on stellar dynamics and gas dynamics
measurements, the mass of M87* is reported to be M ∼
6.2þ1.1

−0.5 × 109 M⊙ [56] and M ∼ 3.5þ0.9
−0.3 × 109 M⊙ [57],

respectively, while the distance of the source is reported
to be D ¼ ð16.8� 0.8Þ Mpc [58–60] from stellar popula-
tion measurements. Moreover, the mass of the object
reported by the EHT Collaboration derived from the
angular diameter of the shadow assuming general rela-
tivity is M ¼ ð6.5� 0.7Þ × 109 M⊙ [32,36,37], and hence
should not be used to constrain the value of b or other
alternate gravity models. Further, the observed emission
ring is actually expected to be ∼10% larger than the true
shadow size, which is supported by multiple simulations of
the accretion flow around M87* [37].
Using these masses and this distance, the theoretical

angular diameter of M87* [Eq. (32)] is plotted with b,
assuming the mass estimated from gas dynamics observa-
tions (M ¼ 3.5þ0.9

−0.3 × 109 M⊙) in Fig. 3 and from stellar
dynamics measurements (M¼6.2þ1.1

−0.5×109M⊙) in Fig. 4.
In Fig. 5, the variation of the angular diameter with b is
plotted consideringM ¼ 6.5� 0.7 × 109 M⊙, which is the
mass of M87* deduced from the angular diameter of the
observed shadow assuming general relativity. Since this is
not an independent mass estimation, it should not be used
for constraining the value of b from observations related
to the shadow, although it can serve the purpose of
comparison with the two independent mass measurements.
In Figs. 3(a), 4(a), and 5(a), the observed angular diameter
of 42 μas is marked with a solid blue line, while the error of
�3 μas about the centroid value is depicted with blue
dashed lines. Figures 3(b), 4(b), and 5(b) are the same as

FIG. 2. Black hole shadow with angular diameter 2α.

FIG. 3. Variation of the angular diameter of M87* [Eq. (32)] with the axion parameter b, assuming M ¼ 3.5þ1.1
−0.5 × 109 M⊙ and

D ¼ 16.8 Mpc. (a) Angular diameter vs b with observed values 42 � 3 μas marked in blue. (b) Angular diameter vs b with observed
values (with 10% offset, 37.8� 2.7 μas) marked in blue.
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Figs. 3(a), 4(a), and 5(a), respectively, except that the
observed angular diameter with a 10% offset (i.e.,
37.8� 2.7 μas) is marked with blue lines. In each of the
six figures, the theoretical angular diameters are plotted
assuming error bars in the masses such that the solid red
line corresponds to the centroid value, the dashed red line
(above the solid line) is associated with the positive error
bar, and the dot-dashed red line (below the solid line)
corresponds to the negative error bar in the mass. It is
important to note that the angular diameter is inversely
proportional to the distance of the source [Eq. (32)], which
turns out to be 16.8� 0.8 Mpc for M87* (estimated based
on stellar population measurements). All the figures
(Figs. 3–5) mentioned above are plotted with the centroid
value of the distance, i.e., 16.8 Mpc. Also, the theoretically

allowed values of b (−1.48≲ b≲ 1=3) are shaded in all six
figures.
Depending on the mass used, the value of b required to

explain the observed angular diameter varies. Table I lists the
valuesofbwhere theobserved angular diameter of42�3μas
(Set 1) and 37.8� 2.7 μas (Set 2) (highlighted in blue in
Table I) are reproduced, assuming the three mass estimations
ofM87* (denoted bySerial Nos. 1, 2, and 3 inTable I). These
values of b are essentially obtained at the points of inter-
section of the blue lines and the red curves in Figs. 3–5.
From Table I, we note that, if M ¼ 3.5þ0.9

−0.3 × 109 M⊙ is
assumed, only negative values of b can explain the
observed angular diameter, even when the 10% offset in
the angular diameter is considered. This is because the
angular diameter scales directly with the mass and the

FIG. 4. Variation of the angular diameter of M87* [Eq. (32)] with the axion parameter b, assuming M ¼ 6.2þ1.1
−0.5 × 109 M⊙ and

D ¼ 16.8 Mpc. (a) Angular diameter vs b with observed values 42� 3 μas marked in blue. (b) Angular diameter vs b with observed
values (with 10% offset, 37.8� 2.7 μas) marked in blue.

FIG. 5. Variation of the angular diameter of M87* [Eq. (32)] with the axion parameter b, assuming M ¼ 6.5� 0.7 × 109 M⊙ and
D ¼ 16.8 Mpc. (a) Angular diameter vs b with observed values 42� 3 μas marked in blue. (b) Angular diameter vs b with observed
values (with 10% offset, 37.8� 2.7 μas) marked in blue.
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shadow radius rsh [Eq. (32)], which increases for a negative
b compared to the general relativistic scenario (b ¼ 0)
[Fig. 1(b)]. Therefore, when a smaller mass of the source is
considered, a more negative value of b is required to
address the observed angular diameter. For the same
reason, when larger masses—i.e., M ¼ 6.2þ1.1

−0.5 × 109 M⊙
or M ¼ 6.5� 0.7 × 109 M⊙—are considered, the obser-
vationally favored values of b are less negative compared to
the case with M ¼ 3.5þ0.9

−0.3 × 109 M⊙. Further, when the
maximum offset of 10% in the angular diameter (i.e.,
37.8� 2.7 μas) is considered or the positive error bar in
the masses are considered, b ¼ 0 comes within the error
bars. It is evident from Table I and Figs. 4(b) and 5(b) that
corresponding to an observed angular diameter of 35.1 μas,
no value of b can explain the data when the positive
errors associated with massesM ¼ 6.2 × 109 M⊙ andM ¼
6.5 × 109 M⊙ are considered. This is because, with these
masses, the value of b required to explain the observed
angular diameter of 35.1 μas is b > 1.6, which is physi-
cally prohibited, since the photon sphere assumes a
negative radius beyond this value (Sec. III B). These entries
in the table are therefore left blank.
While it is apparent from Table I that a negative b

explains the observed angular diameter better, a chi-
squared analysis taking into account the uncertainties in
the mass, distance, and the accretion flow model is
performed to strengthen our conclusion. The chi-squared
value is given by

χ2ðbÞ ¼
X
i

fO − T iðfMkg; fDkg; bÞg2
σ2

; ð33Þ

where O corresponds to the observed angular diameter of
42 μas with a standard deviation σ ¼ �3 μas, while T i
represents the theoretical values of the angular diameter
depending on the mass M, the distance D, and the
axion parameter b. T i is evaluated assuming distances
between 16.8�0.8Mpc and masses in the range M ¼
6.2þ1.1

−0.5 × 109 M⊙ and M¼3.5þ0.9
−0.3×109M⊙. The observed

emission ring is expected to be 10% larger than the true
shadow size if the uncertainties related to the various
accretion flow models are considered. Therefore, taking
into account the 10% offset, O ¼ 37.8� 2.7 μas also
needs to be considered, which is then compared with the
model-estimated values T i.
For a given b, using these allowed values of masses and

distances, the χ2 is computed as in Eq. (33). The variation
of χ2 with the axion parameter b is plotted in Fig. 6, where
the red curve corresponds to the situation when T i is
compared with O ¼ 42� 3 μas, while the magenta curve
represents the scenario whenO ¼ 37.8� 2.7 μas is used to
compute the χ2. The blue curve is associated with the joint
χ2 when bothO ¼ 42� 3 μas andO ¼ 37.8� 2.7 μas are
compared with the theoretical values denoted by T i. All
three curves in Fig. 6 illustrate that χ2 attains the minimum
for a negative value of b, where it is important to note that
the signature of b is crucial to this work, while its exact
magnitude is not so essential to achieve our conclusions.
The shaded region in Fig. 6 represents the theoretically
allowed range of b, −1.48≲ b≲ 1=3. In each of the three
curves, the χ2 decreases monotonically as b is reduced from
bmax ¼ 1=3 to bmin ¼ −1.48, which indicates that within
the domain of the allowed values of b, a negative axionic
parameter seems to explain the observation better. Such

TABLE I. Values of axion parameter b required to explain the observed angular diameters of 42� 3 μas and
37.8� 2.7 μas (highlighted in blue). The latter consists of the deviation in the observed angular diameter when a
maximum offset of 10% is allowed. The masses used for computing the theoretical angular diameter are reported as
Serial Nos. 1, 2 and 3. ForM ¼ 3.5þ0.9

−0.3 × 109 M⊙, the b values are obtained from Fig. 3 when the theoretical angular
diameter equals the observed angular diameter of 42� 3 μas [Fig. 3(a)] and 37.8� 2.7 μas [Fig. 3(b)]. Similarly, for
M ¼ 6.2þ1.1

−0.5 × 109 M⊙, the b values are obtained from Figs. 4(a) and 4(b), while forM ¼ 6.5� 0.7 × 109 M⊙, the b
values correspond to Figs. 5(a) and 5(b).

Serial No. Mass (in units of 109 M⊙)

Value of parameter b for given values of angular diameter

Set 1 Set 2

45 μas 42 μas 39 μas 40.5 μas 37.8 μas 35.1 μas

1 3.5þ 0.9 −42.8 −30.8 −21 −25.2 −17.4 −11.2
3.5 −115 −86.2 −63 −73 −54 −38.4

3.5–0.3 −162.4 −124.2 −91.4 −107 −81 −58.8
2 6.2þ 1.1 −0.2 0.85 1.47 1.25 1.6

6.2 −5.4 −2.65 −0.55 −1.55 0 1.05
6.2–0.5 −10 −6.2 −2.95 −4.5 −2 −0.25

3 6.5þ 0.7 −0.55 0.7 1.4 1.1 1.6
6.5 −3.45 −1.3 0.25 −0.45 0.7 1.4

6.5–0.7 −8.8 −5.3 −2.4 −3.85 −1.45 0.15
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an axion violates the energy condition and has several
interesting consequences, which will be disussed in the
next section. Interestingly, our present results are in
concordance with a previous finding, where we estimated
the observationally favored signature of b based on
the spectral data of quasars. By comparing the observed
spectrum of a set of 80 quasars with the theoretical
spectrum from the surrounding accretion disk, we reported
that the Kalb-Ramond field violating the energy condition
(which is equivalent to a negative axion parameter b) seems
to be favored by observations [28]. Since two independent
astrophysical observations consistently favor a negative
axion parameter, it may be worthwhile to investigate this
scenario in the context of other available observations—
e.g., quasiperiodic oscillations in the power spectrum of
black holes, implications on the signature of b from
gravitational wave observations.

V. SUMMARY

In this paper, we aim to investigate the signatures of the
Kalb-Ramond field or its dual axion from the recent
observations of the shadow of the supermassive black hole
in the center of the galaxy M87. This is important, since the
weak field tests of gravity lack the necessary precision to
discern the presence of such a field while the strong field
tests—e.g., the electromagnetic spectrum emitted from
the black hole accretion disk—have reported that axion
violating the energy condition is observationally favored.
Therefore, it is instructive to subject this finding to further

tests, and the observation of the black hole shadow provides
the appropriate opportunity.
In order to accomplish our goal, we compute the contour

of the black hole shadow first in a general spherically
symmetric background and note that the radius of the
shadow depends only on the gtt component of the metric.
Subsequently, we consider the spherically symmetric sol-
ution of Einstein’s equations solved in the Kalb-Ramond
background. Such a metric exhibits a perturbation over the
Schwarzschild scenario through the axion parameter b.
Since the axion primarily appears as a 1=r3 correction to
the gtt component of the Schwarzschild metric, its effect on
the black hole image which probes the vicinity of the
horizon is expected to be significant. Yet we can safely
ignore the corrections to the metric with large inverse
powers of r due to the theoretical restriction on the axion
parameter −1.48≲ b≲ 1=3, such that in our regime of
interest b=r2 continues to be less than unity. The fact that
the magnitude of b is very small from a theoretical
consideration is further supported from the observations
related to the perihelion precession of Mercury and the
bending of light [27]. The theoretical lower bound on
negative values of b arises from the absence of any photon
circular orbit outside the event horizon. This is an
intriguing feature the spacetime exhibits due to the pres-
ence of the Kalb-Ramond field.
A stationary, axisymmetric black hole solution of

Einstein’s equations minimally coupled to the Kalb-
Ramond field has not been obtained so far. This, however,
does not prevent us from constraining the axion parameter
from the shadow of M87*, as the inclination angle of the
object is very small, i ∼ 17°. Consequently, even if M87* is
a rapidly rotating black hole, it will cast a circular shadow
[41,42,49]. The choice of the spherically symmetric metric
is therefore justified. This is further supported by the fact
that the observed shadow of M87* has an axis ratio ΔA <
4=3 and a deviation from circularity ΔC < 10% [32].
Therefore, the angular diameter, ΔA or ΔC, cannot be
used to constrain the spin of M87*. We have verified this
explicitly in a previous work [49], where the tidal charge
parameter of axisymmetric braneworld black holes could
be constrained from the observed angular diameter, but
nothing could be concluded about its spin from the
observational constraint on ΔC and ΔA. In this context,
we would like to mention that there exists the string-
inspired Einstein-Maxwell dilaton axion gravity, where the
stationary, axisymmetric, and asymptotically flat black hole
solution has been worked out and is known as the Kerr-Sen
solution in the literature [61,62]. The various fields asso-
ciated with this theory—namely, the Maxwell field, the
axion (or Kalb-Ramond) field, and the dilaton field—
depend on r and θ, and the solutions can be found in
Ref. [62]. The prospects of constraining such a metric from
observations related to the shadow of M87* have been
discussed in Ref. [63].

FIG. 6. The figure demonstrates the variation of χ2 with the
axion parameter b obtained by considering the uncertainties in
the distances, masses, and the accretion flow models. The red
and magenta curves correspond to the situation when O ¼
42� 3 μas and O ¼ 37.8� 2.7 μas are used for comparison
with the theoretical models. The blue curve, on the other hand,
represents the scenario when the joint χ2 is computed taking into
account both the aforesaid observations. Interestingly, χ2 attains
the minimum value for a negative b, suggesting that the errors
between theoretical estimates of angular diameter and the
observations minimize when one considers axions with a negative
energy density.
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We evaluate the dependence of the shadow radius on the
axion parameter b and find that the radius of the shadow
decreases with an increase in b, or alternatively, the
Schwarzschild metric perturbed with a negative axion
parameter casts a larger shadow. It turns out that such
an axion or Kalb-Ramond field with a negative energy
density bears a greater potential to reproduce the
observed angular diameter of M87*, assuming the known
distances and masses of the object. We have shown
that when the mass estimations of the object based on
stellar dynamics (M ¼ 6.2þ1.1

−0.5 × 109 M⊙) or gas dynamics
(M ¼ 3.5þ0.9

−0.3 × 109 M⊙) observations are considered,
and the distance obtained from stellar population measure-
ments (16.8� 0.8 Mpc) is used to derive the angular
diameter, a negative axion parameter turns out to be a
better representation of the data. Only when we consider
M ∼ 6.5� 0.7 × 109 M⊙ or allow a 10% offset in the
observed image does the b ¼ 0 model come within the
error bars. One, however, needs to note that the mass of
M87*M ∼ 6.5� 0.7 × 109 M⊙ is deduced from the angu-
lar diameter of its shadow assuming general relativity, and
hence should not be ideally used to constrain the value of b
or other alternative gravity models from shadow-related
observations. Similarly, the actual shadow size can be at
most 10% less than the observed emission ring (due to the
uncertainties in the accretion processes), and we show that
b ¼ 0 becomes viable only when this maximum offset is
considered. To support our results, we perform a chi-
squared analysis taking into account all the uncertainties in
the distances, mass, and accretion models, which explicitly
reveals that for a negative axion parameter the χ2 attains a
lower value.
The axion with a negative charge parameter has several

interesting astrophysical and cosmological implications. It
violates the energy condition, and such a scenario is often
invoked for the removal of singularity in geodesic con-
gruences [64], gains ground in bouncing cosmology to
prevent the big bang singularity [65], plays a crucial role in
altering the Buchdahl’s limit for star formation [13], and
can potentially generate a nonzero cosmological constant in

four dimensions, whose origin is attributed to a bulk Kalb-
Ramond field in a higher-dimensional scenario [66].
Moreover, the suppression of the Kalb-Ramond field has
been discussed in several physical scenarios—e.g., in the
context of warped braneworld models [67] with bulk Kalb-
Ramond fields [68,69] and the related stabilization of the
modulus [70], in the context of higher-curvature gravity
where the associated scalar degrees of freedom diminish the
coupling of such a field with the Standard Model fermions
[71,72], and in the inflationary era induced by higher-
curvature gravity [73,74] and higher dimensions [75].
As a final remark, we mention that in the electromagnetic

domain, there is no dearth of spectral data of supermassive
black holes, while there is only a single observation of the
black hole shadow on which the present result is based. The
real challenge of discerning the nature of strong gravity
from the black hole spectrum lies in appropriately modeling
the spectrum, which depends not only on the background
spacetime, but also on the nature of the accretion flow.
Disentangling the impact of the metric from the spectrum
therefore becomes quite nontrivial. The image of the black
hole, on the other hand, provides a much cleaner environ-
ment to explore the strong gravity regime. However, in this
case, since the angular diameter is highly sensitive to the
mass of the black hole, a precise measurement of the black
hole mass is necessary to establish strong constraints on
the signature of b. This in fact plays a crucial role in
constraining b rather than independent observations of
horizons with similar levels of uncertainties. In addition to
this, the availability of more and more data on black hole
images with reduced uncertainties will further enhance the
scope to constrain the signature of the axion parameter.

ACKNOWLEDGMENTS

The research of S. S. G. is partially supported by the
Science and Engineering Research Board Extramural
Research Grant No. (EMR/2017/001372), Government
of India. The research of S. S. is funded by CSIR,
Government of India.

[1] M. Kalb and P. Ramond, Classical direct interstring action,
Phys. Rev. D 9, 2273 (1974).

[2] M. B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenom-
enology (Cambridge University Press, Cambridge, England,
1988).

[3] Y. A. Kubyshin, V. O. Malyshenko, and D. Marn Ricoy,
Invariant connections with torsion on group manifolds and
their application in Kaluza-Klein theories, J. Math. Phys.
(N.Y.) 35, 310 (1994).

[4] G. German, A. Macias, and O. Obregon, Kaluza-
Klein approach in higher dimensional theories of gravity
with torsion, Classical Quantum Gravity 10, 1045
(1993).

[5] N. E. Mavromatos and A. Pilaftsis, Anomalous Majorana
neutrino masses from torsionful quantum gravity, Phys.
Rev. D 86, 124038 (2012).

[6] J. Ellis, N. E. Mavromatos, and S. Sarkar, Environmental
CPT violation in an expanding universe in string theory,
Phys. Lett. B 725, 407 (2013).

IMPLICATIONS OF AXIONIC HAIR ON THE SHADOW OF … PHYS. REV. D 101, 104057 (2020)

104057-11

https://doi.org/10.1103/PhysRevD.9.2273
https://doi.org/10.1063/1.530877
https://doi.org/10.1063/1.530877
https://doi.org/10.1088/0264-9381/10/5/021
https://doi.org/10.1088/0264-9381/10/5/021
https://doi.org/10.1103/PhysRevD.86.124038
https://doi.org/10.1103/PhysRevD.86.124038
https://doi.org/10.1016/j.physletb.2013.07.016


[7] A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmological
Signature of New Parity Violating Interactions, Phys. Rev.
Lett. 83, 1506 (1999).

[8] D. Maity, P. Majumdar, and S. SenGupta, Parity-violating
Kalb-Ramond-Maxwell interactions and CMB anisotropy
in a braneworld, J. Cosmol. Astropart. Phys. 04 (2004) 005.

[9] O. Chandia and J. Zanelli, Topological invariants, instantons
and chiral anomaly on spaces with torsion, Phys. Rev. D 55,
7580 (1997).

[10] P. S. Letelier, Spinning strings as torsion line spacetime
defects, Classical Quantum Gravity 12, 471 (1995).

[11] P. Majumdar and S. SenGupta, Parity violating gravitational
coupling of electromagnetic fields, Classical Quantum
Gravity 16, L89 (1999).

[12] J. M. Hoff da Silva and R. da Rocha, Torsion effects in
braneworld scenarios, Phys. Rev. D 81, 024021 (2010).

[13] S. Chakraborty and S. SenGupta, Packing extra mass in
compact stellar structures: An interplay between Kalb-
Ramond field and extra dimensions, J. Cosmol. Astropart.
Phys. 05 (2018) 032.

[14] S. Sur and A. S. Bhatia, Weakly dynamic dark energy via
metric-scalar couplings with torsion, J. Cosmol. Astropart.
Phys. 07 (2017) 039.

[15] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M.
Nester, General relativity with spin and torsion: Foundations
and prospects, Rev. Mod. Phys. 48, 393 (1976).

[16] V. de Sabbata and C. Sivaram, Spin and Torsion in
Gravitation (World Scientific, Singapore, 1994), 313 p.

[17] S. Capozziello, G. Lambiase, and C. Stornaiolo, Geometric
classification of the torsion tensor in space-time, Ann. Phys.
(Berlin) 10, 713 (2001).

[18] S. SenGupta and A. Sinha, Fermion helicity flip in a Kalb-
Ramond background, Phys. Lett. B 514, 109 (2001).

[19] P. Howe and G. Papadopoulos, Twistor spaces for hyper-
Kähler manifolds with torsion, Phys. Lett. B 379, 80 (1996).

[20] S. Kar, P. Majumdar, S. S. Gupta, and S. Sur, Cosmic optical
activity from an inhomogeneous Kalb-Ramond field,
Classical Quantum Gravity 19, 677 (2002).

[21] S. Kar, P. Majumdar, S. SenGupta, and A. Sinha, Does a
Kalb-Ramond field make space-time optically active?, Eur.
Phys. J. C 23, 357 (2002).

[22] M. Milgrom, A modification of the Newtonian dynamics:
Implications for galaxies, Astrophys. J. 270, 371 (1983).

[23] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[24] S. Perlmutter et al., Measurements of and from 42 high-
redshift supernovae, Astrophys. J. 517, 565 (1999).

[25] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A.
Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S.
Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss,
B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio,
C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational
evidence from supernovae for an accelerating universe
and a cosmological constant, Astron. J. 116, 1009 (1998).

[26] A. Dashko and R. Dick, The shadow of dark matter as a
shadow of string theory, Eur. Phys. J. C 79, 312 (2019).

[27] S. Kar, S. SenGupta, and S. Sur, Static spherisymmetric
solutions, gravitational lensing and perihelion precession in
Einstein-Kalb-Ramond theory, Phys. Rev. D 67, 044005
(2003).

[28] I. Banerjee, B. Mandal, and S. SenGupta, In quest of axionic
hairs in quasars, J. Cosmol. Astropart. Phys. 03 (2018) 039.

[29] I. Banerjee, S. Chakraborty, and S. SenGupta, Excavating
black hole continuum spectrum: Possible signatures of
scalar hairs and of higher dimensions, Phys. Rev. D 96,
084035 (2017).

[30] I. Banerjee, S. Chakraborty, and S. SenGupta, Decoding
signatures of extra dimensions and estimating spin of
quasars from the continuum spectrum, Phys. Rev. D 100,
044045 (2019).

[31] I. Banerjee, B. Mandal, and S. SenGupta, Does black hole
continuum spectrum signal higher curvature gravity in
higher dimensions?, Phys. Rev. D 101, 024013 (2020).

[32] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. I. The shadow
of the supermassive black hole, Astrophys. J. 875, L1
(2019).

[33] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. II. Array and
instrumentation, Astrophys. J. 875, L2 (2019).

[34] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. III. Data process-
ing and calibration, Astrophys. J. 875, L3 (2019).

[35] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. IV. Imaging the
central supermassive black hole, Astrophys. J. 875, L4
(2019).

[36] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. V. Physical origin
of the asymmetric ring, Astrophys. J. 875, L5 (2019).

[37] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. VI. The shadow
and mass of the central black hole, Astrophys. J. 875, L6
(2019).

[38] Y. Chen, J. Shu, X. Xue, Q. Yuan, and Y. Zhao, Probing
Axions with Event Horizon Telescope Polarimetric Mea-
surements, Phys. Rev. Lett. 124, 061102 (2020).

[39] H. Davoudiasl and P. B. Denton, Ultralight Boson Dark
Matter and Event Horizon Telescope Observations of M87*,
Phys. Rev. Lett. 123, 021102 (2019).

[40] S. SenGupta and S. Sur, Spherically symmetric solutions of
gravitational field equations in Kalb-Ramond background,
Phys. Lett. B 521, 350 (2001).

[41] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong
gravitational lensing: A brief review, Gen. Relativ. Gravit.
50, 42 (2018).

[42] A. de Vries, The apparent shape of a rotating charged black
hole, closed photon orbits and the bifurcation set A4,
Classical Quantum Gravity 17, 123 (2000).

[43] S. E. Gralla, D. E. Holz, and R. M. Wald, Black hole
shadows, photon rings, and lensing rings, Phys. Rev. D
100, 024018 (2019).

[44] A. A. Abdujabbarov, L. Rezzolla, and B. J. Ahmedov, A
coordinate-independent characterization of a black hole
shadow, Mon. Not. R. Astron. Soc. 454, 2423 (2015).

[45] A. Abdujabbarov, M. Amir, B. Ahmedov, and S. G. Ghosh,
Shadow of rotating regular black holes, Phys. Rev. D 93,
104004 (2016).

[46] C. Bambi, K. Freese, S. Vagnozzi, and L. Visinelli, Testing
the rotational nature of the supermassive object M87* from

BANERJEE, SAU, and SENGUPTA PHYS. REV. D 101, 104057 (2020)

104057-12

https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1088/1475-7516/2004/06/005
https://doi.org/10.1103/PhysRevD.55.7580
https://doi.org/10.1103/PhysRevD.55.7580
https://doi.org/10.1088/0264-9381/12/2/016
https://doi.org/10.1088/0264-9381/16/12/102
https://doi.org/10.1088/0264-9381/16/12/102
https://doi.org/10.1103/PhysRevD.81.024021
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2018/05/032
https://doi.org/10.1088/1475-7516/2017/07/039
https://doi.org/10.1088/1475-7516/2017/07/039
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1002/1521-3889(200108)10:8%3C713::AID-ANDP713%3E3.0.CO;2-2
https://doi.org/10.1002/1521-3889(200108)10:8%3C713::AID-ANDP713%3E3.0.CO;2-2
https://doi.org/10.1016/S0370-2693(01)00785-7
https://doi.org/10.1016/0370-2693(96)00393-0
https://doi.org/10.1088/0264-9381/19/4/304
https://doi.org/10.1007/s100520100872
https://doi.org/10.1007/s100520100872
https://doi.org/10.1086/161131
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1086/307221
https://doi.org/10.1086/300499
https://doi.org/10.1140/epjc/s10052-019-6825-1
https://doi.org/10.1103/PhysRevD.67.044005
https://doi.org/10.1103/PhysRevD.67.044005
https://doi.org/10.1088/1475-7516/2018/03/039
https://doi.org/10.1103/PhysRevD.96.084035
https://doi.org/10.1103/PhysRevD.96.084035
https://doi.org/10.1103/PhysRevD.100.044045
https://doi.org/10.1103/PhysRevD.100.044045
https://doi.org/10.1103/PhysRevD.101.024013
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1103/PhysRevLett.124.061102
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.1016/S0370-2693(01)01238-2
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1088/0264-9381/17/1/309
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1093/mnras/stv2079
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.93.104004


the circularity and size of its first image, Phys. Rev. D 100,
044057 (2019).

[47] K. Hioki and K.-I. Maeda, Measurement of the Kerr spin
parameter by observation of a compact object’s shadow,
Phys. Rev. D 80, 024042 (2009).

[48] S. Vagnozzi and L. Visinelli, Hunting for extra dimensions
in the shadow of M87*, Phys. Rev. D 100, 024020 (2019).

[49] I. Banerjee, S. Chakraborty, and S. SenGupta, Silhouette of
M87*: A new window to peek into the world of hidden
dimensions, Phys. Rev. D 101, 041301 (2020).

[50] P. V. P. Cunha, C. A. R. Herdeiro, and M. J. Rodriguez, Does
the black hole shadow probe the event horizon geometry?,
Phys. Rev. D 97, 084020 (2018).

[51] Y.Mizuno,Z.Younsi,C.M.Fromm,O.Porth,M.DeLaurentis,
H. Olivares, H. Falcke, M. Kramer, and L. Rezzolla, The
current ability to test theories of gravity with black hole
shadows, Nat. Astron. 2, 585 (2018).

[52] R. Roy and U. A. Yajnik, Evolution of black hole shadow in
the presence of ultralight bosons, Phys. Lett. B 803, 135284
(2020).

[53] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

[54] J. M. Bardeen, Timelike and null geodesics in the Kerr
metric, in Black Holes (Les Astres Occlus), edited by C.
Dewitt and B. S. Dewitt (Gordon and Breach Science
Publishers, New York, 1973), pp. 215–240.
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