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Using a dynamical system approach we study the cosmological phase space of the generalized hybrid
metric-Palatini gravity theory, characterized by the function fðR;RÞ, where R is the metric scalar curvature
andR the Palatini scalar curvature of the spacetime. We formulate the propagation equations of the suitable
dimensionless variables that describe FLRW universes as an autonomous system. The fixed points are
obtained for four different forms of the function fðR;RÞ, and the behavior of the cosmic scale factor aðtÞ is
computed. We show that due to the structure of the system, no global attractors can be present and also that
two different classes of solutions for the scale factor aðtÞ exist. Numerical integrations of the dynamical
system equations are performed with initial conditions consistent with the observations of the cosmological
parameters of the present state of the Universe. In addition, using a redefinition of the dynamic variables,
we are able to compute interesting solutions for static universes.
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I. INTRODUCTION

A great number of modifications and extensions of
general relativity have been proposed to explain both
inflation and the accelerated expansion of the Universe.
Among those proposals a class of theories in which the
gravitational Lagrangian contains higher order terms has
received much attention. One of the most extensively
studied higher order theories is the so-called fðRÞ-gravity
theory, where the action depends on an arbitrary function f
of the scalar curvature R; see e.g., [1–3].
There are two approaches to obtain the field equations

from the Lagrangian of this theory. One is the metric
approach, where the metric gμν is considered to be the only
dynamical variable in the action. The other is the Palatini
approach, where both the metric gμν and the connection Γα

μν

are considered to be independent dynamical variables. Both
approaches have been used to study cosmological models
which contain accelerated expansion periods [4–6].
In spite of their success in reproducing the accelerated

behavior of the Universe, the metric and the Palatini
approaches of fðRÞ present some shortcomings. In the
metric approach, the theory is not proven to be able to
reproduce the observed dynamics of objects in the solar
system due to the appearance of instabilities [7,8]. In
addition, cosmological issues related to the background
expansion [9,10] and structure formation [11,12] have been

pointed out. The use of the Palatini approach can solve the
problems with the solar system dynamics, but at the same
time other issues related to physics of compact stars [13]
and with the evolution of cosmological perturbations
[14,15] are known to appear. Since we expect any modi-
fication of general relativity to work at multiple scales, a
number of mechanisms have been proposed to solve these
problems [16–18]. See also [19,20] for detailed reviews on
these matters.
A new class of modified theories of gravity that is able to

solve these difficulties has been proposed. It is called
hybrid metric-Palatini gravity. In this class of theories a
nonlinear Palatini-like term fðRÞ is added to the usual
Einstein-Hilbert action to get an action with the terms
Rþ fðRÞ, whereR is the Palatini scalar curvature defined
in terms of an independent connection [21]. In this theory,
not only cosmological solutions consistent with both the
large scale acceleration and the solar system dynamics have
been found [22] but also wormhole solutions [23] and other
astrophysical and cosmological applications such as a
solution for a static universe [24], models for galactic
rotational curves [25], and the virial theorem [26]. The
phase space of the hybrid metric-Palatini gravity was
studied in the Einstein frame through a dynamical system
analysis and shown to have attractors related to exponential
solutions [27]. Recently, it was also shown that the
inclusion of a Higgs field in the Palatini formulation of
pure R2 gravity required the use of a hybrid metric-Palatini
formalism in order to preserve Weyl invariance [28].
A natural generalization of the hybrid metric-Palatini

theory is to consider that the action can be an arbitrary
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function of both the scalar curvature R and the Palatini
curvature R as fðR;RÞ [29]. This generalized hybrid
metric-Palatini theory allows for the study of models such
as products between R and R which were not covered by
the nongeneralized version of the theory. Now, the majority
of the studies on nongeneralized and generalized hybrid
metric-Palatini theories are performed by the definition of a
scalar field representation, by which one transforms the
geometrical fðR;RÞ action into the action of an equivalent
scalar-tensor theory with one or two scalar fields [29,30]
(see also [21]). The advantage of doing so is that the order
of the field equations is reduced when the scalar fields are
introduced, thus simplifying the study of the equations of
motion [31].
Whatever the representation, the cosmology of general-

ized hybrid metric-Palatini theories can be efficiently
analyzed using the dynamical systems approach [32,33].
This method consists in the definition of a set of specific
variables by which the cosmological equations can be
converted into an autonomous system of first order differ-
ential equations. The analysis characteristic of the phase
space of this system can then offer some semiquantitative
information on the evolution of the cosmology. The first
phase space analysis of the scalar tensor representation of
hybrid metric-Palatini theories was performed in detail in
[21]. However, both the definition of the scalar field and the
one of the dynamical system variables, which correspond to
a rearrangement of the degrees of freedom of the theory,
might hide some features of this class of theories both at the
level of the phase space and of the space of solutions. In
[27], instead, the phase space of this theory was analyzed
without introducing scalar fields. See also [34] for a review
of this technique in a variety of cosmological models.
Obtaining the orbits over the entire phase-space requires

in the hybrid metric-Palatini, as in other theories, to
perform a numerical integration. To do so we need to set
numerous initial conditions. Here, these are taken from the
observable cosmological parameters, such as the scalar
curvature k, the energy density Ω, and the derivatives of the
scale factor a. Some of these parameters have been
measured experimentally [35], but others corresponding
to third-order derivatives of the scale factor, and beyond,
are still poorly constrained and model dependent [36]. In
general, the orbits may approach an attractor, but some-
times other behaviors can occur; for instance the orbit can
tend to a big rip scenario [37]. There are other important
ways to compare a given cosmological model to observa-
tions. For instance, supernovae Ia data have given precise
distance modulus to constrain the parameters of the theory;
for an example of how to deal with these data see [38].
The objective of this paper is to perform a dynamical

system analysis of the cosmology of the generalized hybrid
metric-Palatini without using the scalar-tensor representa-
tion. The paper is organized as follows: In Sec. II, we derive
the field equations in the geometrical representation for a

FLRW, i.e., a Friedmann-Lemaître-Robertson-Walker, met-
ric, characterized by the scale factor aðtÞ, where t is the
cosmological time, and define the needed variables to write
the Friedmann and the Raychaudhuri equations in a simple
form. In Sec. III, we define the dynamical variables of the
system, compute their respective dynamical equations, and
show how to obtain a given solution for aðtÞ for a specific
fixed point. In Sec. IV, we obtain the fixed points for four
different models for the function f. In Sec. V we perform a
numerical integration of one fourth-order and one second-
order models subjected to initial conditions consistent with
cosmological observations. In Sec. VI, we perform an
analysis of the solutions with the Hubble parameterH set to
zero, H ¼ 0, i.e., static universes are analyzed. In Sec. VII,
we give the conclusions.

II. BASIC EQUATIONS

A. Fundamentals

Consider the action of the generalized hybrid metric-
Palatini modified theory of gravity, given by

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR;RÞd4xþ Smðgab; χÞ; ð1Þ

where κ2 ≡ 8πG=c4,G is the gravitational constant, c is the
velocity of light, g is the determinant of the metric gab, f is
a function of R andR, and Sm is the matter action, in which
matter is minimally coupled to the metric gab, and χ
collectively denotes the matter fields. R is the metric
Ricci scalar and R≡ gabRab is the Palatini scalar curva-
ture, with Rab being defined in terms of an independent
connection Γ̂c

ab as

Rab ¼ ∂cΓ̂c
ab − ∂bΓ̂c

ac þ Γ̂c
cdΓ̂d

ab − Γ̂c
adΓ̂d

cb: ð2Þ

We set G ¼ 1=8π, c ¼ 1, and so κ2 ¼ 1.
Varying the action in Eq. (1) with respect to the metric

gab and the independent connection Γ̂c
ab yields the follow-

ing field equations:

∂f
∂RRab þ

∂f
∂RRab −

1

2
gabfðR;RÞ

− ð∇a∇b − gab□Þ ∂f∂R ¼ Tab; ð3Þ

and

∇̂c

� ffiffiffiffiffiffi
−g

p ∂f
∂R gab

�
¼ 0; ð4Þ

respectively, where ∇a and ∇̂a are the covariant derivatives
of the connections Γ and Γ̂ respectively, □ is the
d’Alembert operator, and Tab is the matter stress-energy
tensor. The equation of motion (4) implies that the
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independent connection Γ̂ is the Levi-Civita connection of
a new metric tensor hab which is conformally related
to gab by

hab ¼ gab
∂f
∂R : ð5Þ

The independent connection Γ̂ can then be written in terms
of the metric hab as

Γ̂a
bc ¼

1

2
hadð∂bhdc þ ∂chbd − ∂dhbcÞ; ð6Þ

and the relation between R andR is given by the dynamical
equation,

□

�
ln

∂f
∂R
�
þ 3

2

�
∇a ln

∂f
∂R
��

∇a ln
∂f
∂R
�
þ R −R ¼ 0:

ð7Þ

Thus, the new metric hab is an auxiliary metric related to
the independent connection, that was used to define the
Palatini Ricci tensor, given by Eq. (2). We emphasize that
matter is coupled to the physical metric gab, so that only the
Levi-Civita connection ΓðgabÞ should be used in the
geodesic equation applied to the metric-Palatini theory.
Note also that since the matter action Sm does not depend
on the connection Γ̂, the equation of motion for this
connection is independent of the stress-energy tensor,
whereas the same does not happen to the equation of
motion for the metric gab.
Using the definition of the Einstein tensor,

Gab ¼ Rab −
1

2
Rgab; ð8Þ

and introducing an Einstein tensor for the Palatini field
given by

Gab ¼ Rab −
1

2
Rgab; ð9Þ

we can write Eq. (3) in a more useful way as

∂f
∂RGab þ

∂f
∂RGab −

1

2
gab

�
fðR;RÞ − ∂f

∂RR −
∂f
∂RR

�

− ð∇a∇b − gab□Þ ∂f∂R ¼ Tab: ð10Þ

We also define the auxiliary variables E and F as

EðR;RÞ ¼ ∂f
∂R ; ð11Þ

FðR;RÞ ¼ ∂f
∂R ; ð12Þ

to obtain

EGab þ FGab −
1

2
gab½fðR;RÞ − ER − FR�

− ð∇a∇b − gab□ÞE ¼ Tab: ð13Þ

We shall be working with functions f that satisfy the
Schwartz theorem, and therefore their crossed derivatives
are equal, which is also true for the functions E and F. This
feature imposes the following constraints on the derivatives
of the functions E and F:

ER ¼ FR; FRR ¼ FRR ¼ ERR; ERR ¼ ERR ¼ FRR;

ð14Þ

where the subscripts R and R denote derivatives with
respect to R and R, respectively.
The set of equations derived from Eq. (13) are in

principle of order 4 in the metric tensor. However, there
are functions f for which these field equations contain only
terms of order 2. This happens if the following conditions
are satisfied:

F2
R − FRER ¼ 0;

F2
RFRR − 2FRFRFRR þ F2

RFRR ¼ 0;

F3
RERR − 3F2

RFRFRR þ 3FRF2
RFRR − F3

RFRR ¼ 0: ð15Þ

We assume these conditions hold. A class of functions that
are solutions of the conditions (15) is

f ¼ αþRg

�
R
R

�
þ Rh

�
R
R

�
; ð16Þ

where α is a constant and here g and h denote functions of
their arguments. In the following we will examine in detail
a member of this class of functions.

B. The cosmological geometry

From this point on, we consider the FLRW spacetime. In
spherical comoving coordinates ðt; r; θ;ϕÞ the line element
can be written as

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sin2θdϕ2

�
;

ð17Þ

where aðtÞ is the scale factor, and k spatial curvature
parameter, which can assume three values, k ¼ 1; 0;−1, for
spherical, flat, and hyperbolic geometries, respectively. A
quantity that appears quite often is the Hubble parameter
defined by
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H ¼ _a
a
; ð18Þ

where a dot denotes a derivative with respect to t. We define
an auxiliary variable ā as ā ¼ ffiffiffiffi

F
p

aðtÞ and a new time
variable τ ¼ ffiffiffiffi

F
p

t, where F is given in Eq. (12). Then a
modified Hubble parameterH defined asH ¼ _̄a

ā is given by

H ¼ H þ
_F
2F

: ð19Þ

We consider a fluid for which the stress-energy tensor is
of a perfect fluid,

Ta
b ¼ ð−ρ; p; p; pÞ; ð20Þ

where ρ is the fluid’s energy density and p its isotropic
pressure. We also impose an equation of state for the fluid
of the form,

p ¼ wρ; ð21Þ

where w is a constant. For w ¼ 0 the fluid is dust,
i.e., p ¼ 0.
With the definitions given above and the characterization

of the fluid we can write the Friedmann equation and the
Raychaudhuri equation for this system as�

_a
a

�
2

þ k
a2

�
1þ F

E

�
þ F

E
H2

þ 1

6E
ðf − ER − FRÞ þ _a _E

aE
−

ρ

3E
¼ 0; ð22Þ

ä
a
−
F
E

�
k
a2

þH2

�
þ 1

6E
ðf − REÞ þ 1

6E
ðρþ 3pÞ

þ _a _E
2aE

þ Ë
2E

¼ 0; ð23Þ

respectively. These two equations are the relevant compo-
nents of Eq. (13). Note that in defining these equations we
have divided by E. This operation will introduce a
divergence when E ¼ 0. Such divergence will become
relevant in the analysis. The conservation of the stress
energy tensor given by ∇aTab ¼ 0 becomes here

_ρþ 3
_a
a
ð1þ wÞρ ¼ 0: ð24Þ

The equation of state Eq. (21) together with the three
equations of motion Eqs. (22)–(24) are the four equations
that close the system.
In cosmological models it is useful to define, besides the

Hubble parameter as given in Eq. (18), three other
cosmological parameters, called deceleration, jerk, and
snap, as

q ¼ −
ä

aH2
; ð25Þ

j ¼ ⃛a
aH3

; ð26Þ

s ¼ ⃜a
aH4

; ð27Þ

respectively.

III. DYNAMICAL SYSTEM APPROACH

A. Equations for the dynamical system

In dealing with dynamical systems, one must study the
dimensional structure of the theory, because the number of
dynamical variables and equations needed to describe the
system will depend on the number of dimensional constants
present in the theory. Therefore, we introduce a new non-
negative constant R0 such that the quotients R=R0 and
R=R0 are dimensionless. In addition, we also introduce
dimensionless parameters in the form of starred greek
letters, such as α� and so on, which will represent the
product between the coupling constant of the additional
invariants and a power of R0. With these considerations, we
can write Eq. (1) as

S ¼
Z
Ω

ffiffiffiffiffiffi
−g

p
f
�
R
R0

;
R
R0

; α�;…
�
d4xþ Smðgμν; χÞ; ð28Þ

where the function f retains the same properties as in the
action of Eq. (1). The advantage of this formalism is that
instead of needing one dynamical variable for each dimen-
sional constant, we only need a dynamical variable related
to R0, since the starred parameters become dimensionless.
Note that the cosmological equations, Eqs. (22) and (23),

depend nontrivially on time derivatives of the functions F
and E. These functions can be taken as general functions of
R and R, so that their time derivatives can be written as
functions of time derivatives of the curvature scalars, which
are themselves functions of time. We therefore compute the
time derivatives of R and R. To do so, we first define the
dimensionless time variable,

N ¼ log

�
a
a0

�
; ð29Þ

where a0 is some constant with dimensions of length to
guarantee that the argument of the logarithm is dimension-
less. We also define

O0 ¼
_O
H
; ð30Þ

for any quantity O, where the prime 0 denotes a derivative
with respect to N and H is the Hubble parameter of
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Eq. (18). We further redefine the acceleration, jerk, and
snap parameters given in Eqs. (25)–(27), as new dimen-
sionless parameters q, j, and s, as

q ¼ H0

H
; ð31Þ

j ¼ H00

H
; ð32Þ

s ¼ H000

H
: ð33Þ

Using the previous definitions, the Ricci tensor R and its
derivatives with respect to t become

R ¼ 6

�
ðqþ 2ÞH2 þ k

a2

�
; ð34Þ

_R ¼ 6H
�
ðjþ qðqþ 4ÞÞH2 −

2k
a2

�
; ð35Þ

R̈ ¼ 6H2

�
ðsþ 4jð1þ qÞ þ q2ðqþ 8ÞÞH2 þ 2ð2 − qÞ k

a2

�
:

ð36Þ

Now we obtain expression for R and its derivatives. We
use again the variable ā ¼ ffiffiffiffi

F
p

aðtÞ and the time variable
τ ¼ ffiffiffiffi

F
p

t so that ā† is defined as ā† ¼ _̄affiffiffi
F

p , † denoting a

derivative with respect to τ. Then the Palatini scalar
curvature R is R ¼ 6F½ā††ā þ ðā†ā Þ2 þ k

ā2� which then yields

R ¼ 6

�
_HþH2 þHH þ k

a2

�
: ð37Þ

To find expressions for the derivatives ofRwe compute the
total derivative of F with respect to t and then use Eqs. (19)
and (37) to solve with respect to _R. We obtain

_R ¼ 1

FR
½ðH −HÞ2F − FR

_R�; ð38Þ

R̈ ¼ −
1

F2
R
ðFRR

_Rþ FRR
_RÞ½ðH −HÞ2F − FR

_R�

þ 2F
FR

�
R
6
−H2 −HH −

k
a2

− qH2

�

þ 1

FR
½2ðH −HÞðFR

_Rþ FR
_RÞ − FRR̈

− _RðFRR
_Rþ FRR

_RÞ�; ð39Þ

where _R, R̈, and _R have already been computed in
Eqs. (35), (36), and (38), respectively. These results

completely determine the forms of the first and second
time derivatives of F and E.
Let us now define a set of dynamical dimensionless

variables as

K ¼ k
a2H2

; X ¼ H
H
; Y ¼ R

6H2
;

Z ¼ R
6H2

; Q ¼ q; J ¼ j; S ¼ s;

Ω ¼ ρ

3H2E
; A ¼ R0

6H2
: ð40Þ

For consistency of notation, let us also redefine s as

S ¼ s: ð41Þ

Note that S is not a dynamic variable. This is because since
the theory is fourth-order, S can be obtained from the field
equations, and we do not need to write a dynamical
equation for it. The Jacobian J of the definition of
variables (40) can be written in the form,

J ¼ 1

108a2H9E
; ð42Þ

which means that it has a different form for each choice of
the function f. In order to guarantee that the variables in
Eq. (40) cover the entire phase space of the cosmological
equations, i.e., they constitute a global set of coordinates
for it, J must always be regular, i.e., finite and nonzero,
J ≠ 0;∞. When the Jacobian is not regular the definition in
Eq. (40) is not invertible, and therefore there can be features
of the field equations which are not preserved in the phase
space of Eq. (40) and features of the phase space of Eq. (40)
which are spurious, including fixed points. From Eq. (42) it
is evident that a regular Jacobian corresponds to E ≠ 0;∞.
The case J ¼ 0, E ¼ ∞, corresponds to a true singu-
larity in Eqs. (22)–(23) as well as in Eq. (13). The case
J ¼ ∞, E ¼ 0, instead, corresponds to a singularity for
Eqs. (22)–(23) but not for Eq. (13). This implies that the
solutions of Eq. (13) associated to E ¼ 0 will not be
represented in the phase space. In the following the fixed
points for which J ¼ 0;∞ will not be included in our
analysis unless they are attractors in the phase space. The
only exception to this choice will be the fixed points
representing static universe solutions which we will con-
sider later. Wewill see that these points haveE ¼ 0, but it is
easy to prove via Eq. (13) that they represent true solutions
for the field equations.
We also define a set of auxiliary dimensionless func-

tions as
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A ¼ F
E
; B ¼ f

6EH2
; C ¼ FR

FR
; D ¼ F

3H2FR
; E ¼ 3H2FRR

FR
;

F ¼ 3H2FRR

FR
; G ¼ 3H2FRR

FR
; H ¼ 3H2ERR

FR
; I ¼ ER

FR
: ð43Þ

These definitions allow us to rewrite the cosmological equations, Eqs. (22) and (23), as

1 − Y þ Bþ K þA½K þ X2 þ 2CðX − 1Þ − Z� þ 2A
D

ðI − C2Þ½J þQðQþ 4Þ − 2K� − Ω ¼ 0; ð44Þ

1þQ − Y þ Bþ 1þ 3w
2

ΩþA

�
−ðK þ X2Þ þ C½Z − ðX2 þ 1Þ − K −Q�

þ I − C2

D
½Jð5þ 4QÞ þQð4þ 9QþQ2Þ þ 2Kð1 −QÞ þ S�

þ2ðX − 1Þ½ðED −GCDþ CÞðX − 1Þ þ 2ðJ þQðQþ 4Þ − 2KÞðFþGC2 − 2ECÞ�

þ 2

D
½J þQðQþ 4Þ − 2K�2ðH − 3CFþ 3C2E −C3GÞ

�
¼ 0; ð45Þ

respectively, and also to rewrite the definitions of R and R given by Eqs. (34) and (37) as

Y ¼ K þQþ 2; ð46Þ

Z ¼
_H
H2

þ XðX þ 1Þ þ K; ð47Þ

respectively. The derivatives with respect to the dimensionless time variable N of these variables become

K0 ¼ −2KðQþ 1Þ; X0 ¼ Z − XðX þ 1þQÞ − K; Y 0 ¼ J þQðQþ 4Þ − 2K − 2YQ;

Z0 ¼ DðX − 1Þ þ C½2K − J −QðQþ 4Þ� − 2ZQ; Q0 ¼ J −Q2; J0 ¼ S −QJ;

Ω0 ¼ −Ω
�
3ð1þ 3wÞ þ 2Qþ 2A

�
CðX − 1Þ þ I −C2

D
ðJ þQðQþ 4Þ − 2KÞ

��
; A0 ¼ −2AQ; ð48Þ

where S ¼ H000
H , see Eqs. (33) and (41), can be written as

S ¼ D
I −C2

�
−
1

A

�
1þQ − Y þBþ 1þ 3w

2
Ω
�
þ ðK þ X2Þ −C½Z − ðX2 þ 1Þ − K −Q�

−2ðX − 1Þ½ðED −GCDþ CÞðX − 1Þ þ 2ðJ þQðQþ 4Þ − 2KÞðFþGC2 − 2ECÞ�

−
2

D
½J þQðQþ 4Þ − 2K�2ðH − 3CFþ 3C2E − C3GÞ

�
− Jð5þ 4QÞ −Qð4þ 9QþQ2Þ − 2Kð1 −QÞ: ð49Þ

Now, Eqs. (44) and (46) allow us to eliminate two variables from the system. For simplicity, we chose to eliminateQ and
J, leaving a simplified system of the form,

K0 ¼ 2KðK − Y þ 1Þ; X0 ¼ Z−XðXþ Y − 1Þ þKðX − 1Þ;

Y 0 ¼ 2Yð2þK − YÞ þ D
2AðC2 − IÞ f1þBþK − Y þA½Kþ 2CðX − 1Þ þX2 −Z�−Ωg;

Z0 ¼ 1

2AðC2 − IÞ f4AC2ð2þK − YÞ−2AI½DðX − 1Þ þ 2Zð2þK − YÞ�−CD½1þBþK − Y −ΩþAðKþX2 −ZÞ�g;

Ω0 ¼ −Ω½−2þ 3w−B− 3ðK − YÞ−AðKþX2 −ZÞ þΩ� A0 ¼ 2Að2þK − YÞ: ð50Þ
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In the above system we have implemented the constraints
given in Eqs. (44) and (46) to keep the equation to a
manageable size. The implementation of the constraints
introduces some nontrivial structural changes in the system,
like the cancellations of the divergences.
In the following we will use the above Eqs. (50) to

explore the phase spaces of models with a given form of the
function fðR;RÞ. We will apply the general method
presented above to a number of different functions f.
Some of the models are chosen for their simplicity and the
analogy with some interesting fðRÞ gravity theories. These
are RnRm, αRn þ βRm, expðRRÞ. Others, as R expðRRÞ, are
chosen for the special form assumed by their field equa-
tions and the connection with the work done in [30].

B. Solution associated to a fixed point

Before we delve into specific examples of application of
the above formalism, we can give the general solution
associated to a given fixed point. Such a solution can be
found by computing the value of S in Eq. (49) using the
values of the dynamic variables and functions at that given
fixed point. At the fixed point S is a constant. Then, S ¼ H000

H ,
defined in Eqs. (33) and (41), becomes a differential
equation for the scale factor aðtÞ. The equation has two
possible forms one for S ¼ 0, the other for S ≠ 0.
For S ¼ 0 the equation is

_a
a
¼ H0 þH1 ln

�
a
a0

�
þH2

�
ln

�
a
a0

��
2

; S ¼ 0: ð51Þ

Equation (51) for S ¼ 0 can be solved analytically and the
result is

aðtÞ ¼ a0 exp

�
−

H1

2H2

�
exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2H2

× tan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2

ðt − t0Þ
��

; S ¼ 0; ð52Þ

where t0 is a constant representing some free initial time.
This solution for S ¼ 0 will have three different behaviors
depending on the values of the integration constantsHi. For
the case S ¼ 0 with 4H2H0 −H2

1 > 0 the scale factor aðtÞ
behavior is displayed in Fig. 1, where it is seen that a finite
time singularity will appear; see also Eq. (51) or Eq. (52).
For the case S ¼ 0 and 4H2H0 −H2

1 ¼ 0, the solution for
the scale factor aðtÞ will be a constant, and it is not
physically relevant; see Eq. (52). For the case S ¼ 0 with
4H2H0 −H2

1 < 0 the scale factor aðtÞ behavior is such that
the solution does not have a starting point in time, i.e., it
does not present a big bang; it is asymptotically static to the
past with a finite scale factor, and it is asymptotically zero
to the future. See Eq. (51) or Eq. (52). This solution does
not have any physical relevance given the observational fact
that the Universe is undergoing a period of accelerated
expansion. The presence of attractors with this character

therefore might be a sign of a potential instability of the
model for a certain set of initial conditions.
For S ≠ 0 the equation is

_a
a
¼ H0

�
a
a0

�
−p

þ
�
a
a0

�p
2

�
H1 sin

�
p
ffiffiffi
3

p

2
ln

�
a
a0

��

þH2 cos

�
p
ffiffiffi
3

p

2
ln

�
a
a0

���
; S ≠ 0; ð53Þ

where p ¼ −
ffiffiffi
3

p
S, H0, H1, and H2 are constants of

integration, and a0 is some constant with dimensions of
length. Note that Eq. (51) for S ¼ 0 can be obtained from
the limit S → 0 of Eq. (53) with some reworking of the
constants H0, H1, and H2. Equation (51) for S ≠ 0 can be
solved numerically only. We plot in Fig. 2 the behavior of
the scale factor aðtÞ for the case S ≠ 0, where it is seen that
the time evolution of the solution will approach a constant
value of the scale factor; see also Eq. (53).
The two possible physical relevant solutions, namely

S ¼ 0 with 4H2H0 −H2
1 > 0 and S ≠ 0, have clearly

crucial differences; the former develops a finite time
singularity, i.e., a big rip, whereas the latter is asymptoti-
cally constant.

FIG. 1. Scale factor aðtÞ for S ¼ 0, see Eq. (51) or Eq. (52), for
4H2H0 −H2

1 > 0 with H0 ¼ H1 ¼ H2 ¼ 1, a0 ¼ 1, t0 ¼ 0.

FIG. 2. Scale factor aðtÞ for S ≠ 0, see Eq. (53) with
H0 ¼ H1 ¼ H2 ¼ 1, S ¼ −8 so p ¼ 2, a0 ¼ 0.01, t0 ¼ 0.
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C. An S= 0 analytical solution consistent with measured
cosmological parameters

It is interesting to find an analytical solution with
zero snap parameter, i.e., s ¼ 0 or S ¼ 0, consistent with
measured cosmological parameters. According to the
standard model of cosmology together with the inflationary
model, our Universe started from a big bang, suffered an
initial period of accelerated expansion called inflation, then
decelerated during the radiation and matter domination
eras, and afterwards resumed an accelerated expansion
period when dark energy became dominant over the
remaining contributions to the density parameter. An
analysis of the S ¼ 0 solution given in Eq. (52) and plotted
in Fig. 1 shows that this solution qualitatively presents all
these behaviors, with the exception that the standard model
of cosmology does not predict a finite-time singularity. This
is an indication that the solution in Eq. (52) might be of
cosmological interest. The constants of integration Hi can
be tuned in such a way that the solution reproduces the
observed values for the Hubble parameter H and the
deceleration parameter q, and also provides a prediction
for the jerk parameter jðtÞ given by Eqs. (25)–(26).
We use the solution for aðtÞ given in Eq. (52) which is

analytic and valid for s ¼ 0. The moment of the big bang
corresponds to the time for which the scale factor vanishes.

For simplicity, we set t0 ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2−H2

1

p , in such a way that

the big bang occurs at the instant t ¼ 0. This corresponds
simply to a translation in time of the solution. The scale
factor aðtÞ found in Eq. (52), can then be used to find the
Hubble parameter given in Eq. (18), the acceleration
parameter given in Eq. (25), and the jerk parameter given
in Eq. (26). The scale factor and the cosmological param-
eters then become

aðtÞ ¼ a0 exp

�
−

H1

2H2

�
exp

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2H2

× tan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2

t −
π

2

!#
; ð54Þ

HðtÞ ¼ 4H0H2 −H2
1

4H2

1

cos2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H0H2−H2
1

p
2

t − π
2


 ; ð55Þ

qðtÞ ¼ 2H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2

t −
π

2

�
− 1;

ð56Þ

FIG. 3. Scale factor aðtÞ (blue, upper left), Hubble parameter HðtÞ (red, upper right), deceleration parameter qðtÞ (green, lower left),
and jerk parameter j̄ðtÞ (orange, lower right), for the solution satisfying the observational constraints on Hp and qp. The vertical lines
represent the present time.
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jðtÞ ¼ 1þ H2

4H0H2 −H2
1

�
6H2 þ 4H2

× sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2

t −
π

2

�

þ 2H2 sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

q
t −

π

2

�

− 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

q
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H0H2 −H2

1

p
2

t −
π

2

��
:

ð57Þ

The present values for H and q, which we denote by Hp

and qp respectively (and not byH0 and q0 as it is usual in the
literature becausewe have defined other parameterswith such
labels), have been measured experimentally and are
Hp ∼ 67.4 km s−1Mpc−1 ∼ 2.19 × 10−18 s−1, with a relative
uncertainty of less than 1%, and qp ∼ −0.55. Also, the age of
the Universe, or the time passed since the big bang, has also
been measured and has a value of tp ∼ 13.787 × 109 y∼
4.35 × 1017 s. Inserting tp in Eqs. (55) and (56), putting
HðtpÞ ¼ Hp and q̄ðtpÞ ¼ qp, and using the known values of
Hp and qp yields a system of two equations for the two

unknowns, namely,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2H0 −H2

1

p
and 2H2, which can be

solved to give
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2H0 −H2

1

p
∼ 6.584 × 10−18 s−1 and

2H2 ∼ 1.012 × 10−17 s−1. These values can then be inserted
in the jerk parameter j of Eq. (57) to predict the present value
of the cosmological jerk parameter, giving jðtpÞ ¼ jp ∼
4.47, i.e., a value not much greater than one. One can also
compute the expected time for the finite time singularity to
occur, which is given by ts ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H0H2−H2
1

p ∼ 9.54 × 1017 s∼

2.21tp. In Fig. 3 we plot aðtÞ, HðtÞ, qðtÞ and jðtÞ for this
model. The model does not provide a prediction for the snap
parameter sðtÞ as we are considering a solution with S ¼ 0 at
a given fixed point. This corresponds to an approximation to
the real solution.

IV. EXAMPLES

A. The case of RnRm gravity

In this section we consider that the function f has the
form f ¼ αRnRm, for some constant α and free exponents
n and m which can be put in the form f ¼ α� Rn

Rn
0

Rm

Rm
0

, with α�
and R0 constants, and so the action S�, say, is
S� ¼ R ffiffiffiffiffiffi−gp

α� Rn

Rn
0

Rm

Rm
0

d4xþ S�m, with S�m the matter action.

Note that in this case α� can be factored out of the action
without loss of generality by defining Sm ¼ α−1� S�m, so that

S ¼
Z ffiffiffiffiffiffi

−g
p Rn

Rn
0

Rm

Rm
0

d4xþ Sm: ð58Þ

As a consequence, there will be no need for the variable A
associated to the constant R0, which means that this is a
degenerate case, much in the same way of the case fðRÞ ¼
Rn studied in [27]. The Jacobian given in Eq. (42) for this
case can be written in terms of the dynamic variables and
parameters as

J ¼ Y1−nZ−m

n21þnþm32þnþmH7þ2ðnþmÞa2
: ð59Þ

For this Jacobian to be finite, we must exclude the value
n ¼ 0 from the analysis and also constrain our results for
the fixed points to have values for the variables Y and Z
different from zero.
The dynamical functions in Eq. (43) in this case are

A¼mY
nZ

; B¼Y
n
; C¼ nZ

ðm−1ÞY ; D¼ 2Z
m−1

; E¼ n
2Y

;

F¼ nðn−1ÞZ
2ðm−1ÞY2

; G¼m−2

2Z
; H¼nðn−1Þðn−2ÞZ2

2mðm−1ÞY3
;

I¼ nðn−1ÞZ2

mðm−1ÞY2
; ð60Þ

and, once the constraints (46) and (47) are implemented,
the dynamical system from Eq. (50) becomes

K0 ¼ 2KðK − Y þ 1Þ;
X0 ¼ Z − XðX þ Y − 1Þ þ KðX − 1Þ;

Y 0 ¼ Y

�
2ð2þ K − YÞ þ ðm − 1Þ

nþm − 1

�
1þ Y

�
1

n
− 1

�
þ K þmY

nZ

�
K þ 2

nZ
ðm − 1ÞY ðX − 1Þ þ X2 − Z

�
− Ω

��
;

Z0 ¼ ðm − 1Þ
2ðnþm − 1Þ

�
4nmð2þ K − YÞ − 2ðn − 1Þ

�
2Z

m − 1
ðX − 1Þ þ 2Zð2þ K − YÞ

�
−

2nZ
ðm − 1Þ

�
1þ Y

�
1

n
− 1

�

þ K −ΩþmY
nZ

ðK þ X2 − ZÞ
��

;

Ω0 ¼ −Ω
�
−2þ 3w −

Y
n
− 3ðK − YÞ −mY

nZ
ðK þ X2 − ZÞ þΩ

�
: ð61Þ
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The set of equations given in (61) presents divergences for
specific values of the parameters for n ¼ 0 or m ¼ 1 and
for any nþm ¼ 1, which implies that our formulation is
not valid for these cases. Indeed, when this is the case the
functions in (60) are divergent, and the analysis should be
performed starting again from the cosmological equations
given by Eqs. (22) and (23). The dynamical system also
presents some divergences for Y ¼ 0 and Z ¼ 0, which are
due to the very structure of the gravitation field equations
for this choice of the action. Because of these singularities
the dynamical system is not Cð1Þ in the entire phase space,
and one can use the standard analysis tool of the phase
space only when Y; Z ≠ 0. We will pursue this kind of
analysis here.
The system also presents the K ¼ 0 and Ω ¼ 0 invariant

submanifolds together with the invariant submanifold
Z ¼ 0. The presence of the latter submanifolds allows us
to solve partially the problem about the singularities in the
phase space. Indeed the presence of the Z ¼ 0 submanifold
implies that no orbit will cross this surface. However the
issue remain for the Y ¼ 0 hypersurface. The presence of
this submanifold also prevents the presence of a global
attractor for this case. Such an attractor should have Z ¼ 0,
K ¼ 0 and Ω ¼ 0 and therefore would correspond to a
singular state for the theory. This feature also allows us to
discriminate sets of initial conditions and of parameters
values which will lead to a given time-asymptotic state for
the system.
The fixed points of the set of equations given in Eq. (61)

are at most ten. Six of them, call them A, B, C, D, Eþ, E−,
have Y ≠ 0 and are shown in Table I. The fixed pointsA, C,
and D are always unstable. The fixed points B, Eþ, and E−
can be stable or unstable depending on the parameters n,m,
and w. It is very difficult to present in a compact way all the
general results, but, by inspection, one can indeed check
that only the points B and E� can be (local) attractors in the

phase space, whereas the other points are always unstable.
Moreover, point B corresponds to a solution of the type
shown in Eq. (52) and therefore can lead to a singularity at
finite time. Points E� represent a solution approaching a
constant scale factor. Note also that E� are only defined in a
specific region of the parameters n and m where the
coordinates are real. This region is shown in Fig. 4. The
points B and C are also only defined in a specific region of
the parameters as can be worked out from Eqs. (44)
and (46). The remaining four points out of the ten have
Y ¼ 0 and are unstable, and therefore will be excluded by
our analysis. In Tables II and III one can find an explicit
analysis of the specific cases n ¼ 1, m ¼ 3, w ¼ 1, and
n ¼ −1, m ¼ 3, w ¼ 0.

B. The case of αRn + βRm gravity

In this section we consider that the function f has the
form f ¼ αRn þ βRm, for some constants α and β and free
exponents n and m which can be put in the form
f ¼ α�ð RR0

Þn þ β�ðRR0
Þm, with α�, β�, and R0 constants,

and so the action S�, say, is S� ¼ R ffiffiffiffiffiffi−gp ½α�ð RR0
Þnþ

β�ðRR0
Þm�d4xþ S�m, with S�m the matter action. Since multi-

plying the action by a constant does not affect the resultant
equations of motion, we can take α� out of the action and
write

S ¼
Z ffiffiffiffiffiffi

−g
p ��

R
R0

�
n
þ γ�

�
R
R0

�
m
�
d4xþ Sm; ð62Þ

for some constant γ� ¼ α�=β� and defined Sm ¼ α−1� S�m.
Note that γ� is a parameter that allows us to select which of
the two terms is dominant. For γ� ≪ 1 we have a dominant
fðRÞ term and for γ� ≫ 1 we have a dominant fðRÞ term.
The Jacobian from Eq. (42) for this f can be written in
terms of the dynamic variables and parameters as

J ¼ AnY1−n

18na2H7
: ð63Þ

For this Jacobian to be finite, we must exclude the value
n ¼ 0 from the analysis and also constrain our results for
the fixed points to have values for the variables Y and A
different from zero.
The dynamical functions in Eq. (43) become

A ¼ γ�mZm−1An−m

nYn−1 ; B ¼ Y
n
þ γ�ZmAn−m

nYn−1 ;

D ¼ 2Z
m − 1

; G ¼ m − 2

2Z
;

H ¼ nðn − 1Þðn − 2ÞYn−3Am−n

2γ�mðm − 1ÞZn−2 ;

I ¼ nðn − 1ÞYn−2Am−n

γ�mðm − 1ÞZm−2 ; C ¼ E ¼ F ¼ 0; ð64Þ

FIG. 4. Region of the space fn;mg where the fixed points E�
are defined, for the system given by Eq. (61).
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TABLE I. Fixed points for the system given by Eq. (61). The solution for the parameter S in the fixed point E� cannot be represented in
an easy way because of its complexity. The same happens for the additional conditions arising from the constraints (44) and (46).

Point Coordinates Existence Stability Parameter S

A K ¼ 2n2 þ 2nðm − 1Þ − 1 3nþm ≠ 3 Saddle −1
X ¼ 2 − n −m

Y ¼ 2nðnþm − 1Þ
Z ¼ ðnþm − 1Þ½mþ 3ðn − 1Þ�

Q ¼ −1
J ¼ 1
Ω ¼ 0

B K ¼ 0 nþm ¼ 2
2nþm ≠ 2

Saddle or attractor 0
X ¼ 1

Y ¼ 2n
2nþm−2

Z ¼ 2
Q ¼ 0
J ¼ 0
Ω ¼ 0

C K ¼ 0 nþ 3n3 þ 8n2mþ 7nm2

þ2mð1þm2Þ2 − 5ðnþmÞ2 ¼ 0
n ≠ 0

nþm ≠ 0

nþm ≠ 1
2

Saddle −1
ðnþmÞ3

X ¼ 1
nþm

Y ¼ 2ðnþmÞ−1
nþm

Z ¼ 1
nþm

Q ¼ − 1
nþm

J ¼ 1
ðnþmÞ2

Ω ¼ 0

D K ¼ 0 w ≠ f1
3
; 0g

nþm ≠ 0
4ðnþmÞ ≠ 3ð1þ wÞ

ðnþmÞð3wþ 1Þ ≠ 3ð1þ wÞ

Saddle − 27
8
ð1þw
nþmÞ3

X ¼ ðnþmÞð3wþ1Þ−3ðwþ1Þ
2ðnþmÞ

Y ¼ 4ðnþmÞ−3ð1þ3wÞ
nþm

Z ¼ ð3w−1Þ½ðnþmÞð3wþ1Þ−3ðwþ1Þ�
4ðnþmÞ

Q ¼ − 3ðwþ1Þ
2ðnþmÞ

J ¼ 9ðwþ1Þ2
4ðnþmÞ2

Ω ¼ Wðn;m; wÞ

E� K ¼ 0 nþm ≠ 0
nþm ≠ 1

þ
additional conditions

Saddle or attractor � � �
X ¼ mþnðnþmþ2Þ−½2�fðn;mÞ�

2n½2ðnþmÞ−1�
Y ¼ 2 − 1�fðn;mÞ

2nðnþm−1Þ þ 3ð1−nÞ�2fðn;mÞ
2n½2ðnþmÞ−1�

Z ¼ g�ðn;mÞ
Q ¼ m−½2�fðn;mÞ�þn½4−3ðnþmÞ�

2nðnþm−1Þ½2ðnþmÞ−1�
J ¼ h�ðn;mÞ

Ω ¼ 0

Wðn;m; wÞ ¼ 1
2ð3w−1Þ

n
8m

n−2½11þ3wþnð−4þ9wþ9w2Þ�
n

− 9ð1þwÞ2
ðnþmÞ2 þ

3ð1þwÞ½4þð3þ9wÞn�
nðnþmÞ

o
fðn;mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2þ nð5n − 8Þ�2 þ 2m½ðn − 1Þnð33n − 38Þ − 2� þm2½1þ nð57n − 62Þ� þ 16nm3

p
g�ðn;mÞ ¼ 1

8n2

n
1 − 12nþ 15n2 þ 8nm − 4½1�fðn;mÞ�ðn−1Þ

nþm−1 þ 3ðn−1Þ½3ð1−nÞ�2fðn;mÞ�
½2ðnþmÞ−1�2 þ 3ðn−2Þðnþ1Þ�fðn;mÞðn−5Þ

2ðnþmÞ−1
o

h�ðn;mÞ ¼ 17n4þðm−2Þ2þn3ð42m−52Þ�fðn;mÞ½2−mþnð3ðnþmÞ−4Þ�þ2nðm−2Þ½6þmð4m−9Þ�þn2½56þmð33m−86Þ�
2n2ðnþm−1Þ2½2ðnþmÞ−2�2
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and, using the constraints from Eqs. (46) and (47), the
dynamical system from Eq. (50) becomes

K0 ¼ 2KðK − Y þ 1Þ;
X0 ¼ Z − XðX þ Y − 1Þ þ KðX − 1Þ;

Y 0 ¼ Y

�
2ð2þ K − YÞ þ 1

1 − n

�
1þ nðn − 1ÞYn−2Z2−m

mðm − 1Þγ�An−m

þ K − Y þmγ�Y1−nZm−1

nAm−n ½K þ X2 − Z� −Ω
��

;

Z0 ¼ 2Z

�
X − 1

m − 1
þ 2þ K − Y

�
;

Ω0 ¼ −Ω
�
−2þ 3w −

Y
n

�
1þ γ�Zm

YnAm−n

�
− 3ðK − YÞ

−
γ�mZm−1

nYn−1Am−n ðK þ X2 − ZÞ þ Ω
�

A0 ¼ 2Að2þ K − YÞ: ð65Þ

The system of equations in Eq. (65) presents divergences
for specific values of the parameters form ¼ 0,m ¼ 1, and

n ¼ 1, which implies that our formulation is not valid for
these cases. Indeed, when this is the case the functions in
Eq. (64) are divergent and the analysis should be performed
starting again from the cosmological Eqs. (22) and (23).
The dynamical system also presents some divergences for
Y ¼ 0 and Z ¼ 0 which are due to the very structure of the
gravitation field equations for this choice of the action.
Because of these singularities the dynamical system is not
Cð1Þ in the entire phase space, and one can use the standard
analysis tool of the phase space only when Y; Z ≠ 0. We
will pursue this kind of analysis here.
The system given in Eq. (65) presents the K ¼ 0 and

Ω ¼ 0 invariant submanifolds together with the invariant
submanifolds Z ¼ 0 and A ¼ 0. The presence of the latter
submanifolds allows us to solve partially the problem about
the singularities in the phase space. The presence of the
Z ¼ 0 submanifold implies once again that no orbit will
cross this surface. However the issue remains for the Y ¼ 0

hypersurface. The presence of this submanifold would
prevent the existence of a global attractor for this case
but, as we will see, this model does not have any finite
attractors. Knowing this, it is possible again to analyze
discrete sets of initial conditions and parameters and verify
the time-asymptotic state for the system.
Much in the same way of the fðRÞ-gravity for this

model, the Jacobian J vanishes for all but one of the
eighteen fixed points. Since one can prove that all of these
fixed points correspond to singular states of the field
equations and that they are unstable, we will ignore them.
Therefore the theory has only one relevant fixed point
which we will call B. As from Table IV the existence of B

TABLE II. Fixed points for the system given by Eq. (61) in the specific case α ¼ 1, m ¼ 3, w ¼ 1.

K X Y Z Q J Ω Stability Parameter S

A 5 −2 6 9 −1 1 0 Saddle −1
D 0 − 5

4
5
4

5
4

− 3
4

9
16

− 41
16

Saddle − 27
63

E− 0 1
14
ð7 − ffiffiffiffiffiffiffiffi

385
p Þ 1

42
ð77 − ffiffiffiffiffiffiffiffi

385
p Þ 23

7
−

ffiffiffiffi
55
7

q
1
42
ð−7 − ffiffiffiffiffiffiffiffi

385
p Þ 1

126
ð31þ ffiffiffiffiffiffiffiffi

385
p Þ 0 Saddle −301−19

ffiffiffiffiffiffi
385

p
2646

Eþ 0 1
14
ð7þ ffiffiffiffiffiffiffiffi

385
p Þ 1

42
ð77þ ffiffiffiffiffiffiffiffi

385
p Þ 23

7
þ

ffiffiffiffi
55
7

q
1
42
ð−7þ ffiffiffiffiffiffiffiffi

385
p Þ 1

126
ð31 − ffiffiffiffiffiffiffiffi

385
p Þ 0 Attractor −301þ19

ffiffiffiffiffiffi
385

p
2646

TABLE III. Fixed points for the system given by Eq. (61)
specific case n ¼ −1, m ¼ −3, w ¼ 0.

K X Y Z Q J Ω Stability Parameter S

A −3 0 −2 −3 −1 1 0 Saddle − 1
27

B 0 1 2 2 0 0 0 Attractor 0
D 0 1

4
5
4

1
8

− 3
4

9
16

− 9
8

Saddle − 27
64

TABLE IV. Fixed points for the system given by Eq. (65).

Set Coordinates Existence Stability Parameter S

B K ¼ 0 n ≠ f0; 1g Saddle 0
X ¼ 1 If n ¼ m ≠ 2, then γ� ¼ −1
Y ¼ 2 If n ≠ m, then n −m ¼ odd
Z ¼ 2
Q ¼ 0
J ¼ 0
Ω ¼ 0

A ≠ 0, if n ¼ m
A ¼ −2ð n−2

γ�ðm−2ÞÞ
1

n−m, if n ≠ m
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depends on the values of the parameters n, m and γ�, and
the point is always a saddle point. If n ≠ m it only exists if
m − n is an odd number. For m − n ¼ 0, the equation for
the variable A decouples from the rest of the system.
However, the equation for A can be considered as an extra
constraint for the system which carries a memory of the
properties of the complete system, such as divergences for
A ¼ 0 and specific values of γ� that allow the existence of
point B. More specifically, if m ¼ n ¼ 2, B exists for any
value of γ�, whereas for m ¼ n ≠ 2 then B exists only
for γ� ¼ −1.
For any value of the parameters, B is associated to S ¼ 0,

and therefore it corresponds to a solution of the type shown
in Eq. (52). This implies that the theory can incur in a
singularity at finite time.

C. The case of expðRRÞ gravity
In this section we consider that the function f has the

form f ¼ α� expðRRÞ, for some constant α�, and so the
action S�, say, is S� ¼ R ffiffiffiffiffiffi−gp

α� expðRRÞd4xþ S�m, with S�m
the matter action. Since multiplying the action by a constant

does not affect the resultant equations of motion, we can
take α� out of the action and write

S ¼
Z ffiffiffiffiffiffi

−g
p

exp

�
R
R

�
d4xþ Sm; ð66Þ

where Sm ¼ α−1� S�m is the dimensionless matter action. The
motivation to test a model of the form of Eq. (66) is that
exponential functions are quite general and lead to inter-
esting results. The Jacobian from Eq. (42) for this case
can be written in terms of the dynamic variables and
parameters as

J ¼ e
Y
ZZ

18a2H7
: ð67Þ

For this Jacobian to be finite, we must constrain our results
for the fixed points to have values for the variable Z
different from zero. The dynamical functions in Eq. (43)
become in this case,

A ¼ −
Y
Z
; B ¼ Z; C ¼ −

ZðY þ ZÞ
YðY þ 2ZÞ ; D ¼ −

2Z2

Y þ 2Z
; E ¼ Y2 þ 4YZ þ 2Z2

2Y2Z þ 4YZ2
;

F ¼ −
1

2Y
; G ¼ −

Y2 þ 6YZ þ 6Z2

2Z2ðY þ 2ZÞ ; H ¼ Z
2Y2 þ 4YZ

; I ¼ Z2

Y2 þ 2YZ
; ð68Þ

and the dynamical system from Eq. (50) becomes

K0 ¼ 2KðK − Y þ 1Þ;
X0 ¼ Z − XðX þ Y − 1Þ þ KðX − 1Þ;

Y 0 ¼ Y

�
2ð2þ K − YÞ þ

�
2þ Y

Z

��
1þ Z þ K − Y −

Y
Z

�
K −

2ZðY þ ZÞ
YðY þ 2ZÞ ðX − 1Þ þ X2 − Z

�
−Ω

��
;

Z0 ¼ 2ðY þ ZÞ2
Z2

ð2þ K − YÞ − 2Y
Z

ðY þ 2ZÞ
�
−
ZðX − 1Þ
Y þ 2Z

þ 2þ K − Y

�

þ ðY þ ZÞ
�
1þ Z þ K − Y − Ω −

Y
Z
ðK þ X2 − ZÞ

�
;

Ω0 ¼ −Ω
�
−2þ 3w − Z − 3ðK − YÞ þ Y

Z
ðK þ X2 − ZÞ þ Ω

�
A0 ¼ 2Að2þ K − YÞ; ð69Þ

where we have used the constraints in Eqs. (46) and (47).
The system of equations in Eq. (69) has divergences for

specific values of Y and Z. These divergences occur for
Y ¼ 0, Z ¼ 0, and Y þ 2Z ¼ 0, and are due to the very
structure of the gravitation field equations for this choice of
the action. Because of these singularities the dynamical
system is not Cð1Þ in the entire phase space, and one can

use the standard analysis tool of the phase space only when
Y; Z ≠ 0 and Y ≠ −2Z. We will pursue this kind of analysis
here. The system also presents the usual K ¼ 0 and Ω ¼ 0
invariant submanifolds together with the invariant subma-
nifold Z ¼ 0. The presence of the latter submanifolds
allows us to solve partially the problem about the singu-
larities in the phase space. The presence of the Z ¼ 0
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submanifold implies again that no orbit will cross this
surface. However the issue remains for the Y ¼ 0 hyper-
surface. The presence of global attractors is also prevented
in this case due to the existence of this submanifold. Such
attractor should have Z ¼ 0, K ¼ 0 and Ω ¼ 0, which
would correspond to a singular state for the theory. We can
once again use this information to discriminate sets of
initial conditions and of parameters values to analyze the
time-asymptotic state for the system.
The system given by Eq. (69) presents at most three fixed

points, which are shown in Table V with their stability and
associated solution.

D. The case of R expðRRÞ gravity
In this section we consider that the function f has the

form f ¼ α�R expðRRÞ, for some constant α�, and so the
action S�, say, is S� ¼ R ffiffiffiffiffiffi−gp

α�R expðRRÞd4xþ S�m, with
S�m the matter action. Since multiplying the action by a
constant does not affect the resultant equations of motion,
we can take α� out of the action and write

S ¼
Z ffiffiffiffiffiffi

−g
p

R exp

�
R
R

�
d4xþ Sm; ð70Þ

where Sm ¼ α−1� S�m is the dimensionless matter action. This
particular form of f satisfies Eq. (15), and therefore the
field equations are effectively of order 2.
In terms of Eq. (43), the set of equations (15) read

C2 − I ¼ 0; ð71Þ

FþGC2 − 2EC ¼ 0; ð72Þ

H − 3CFþ 3C2E −C3G ¼ 0; ð73Þ

and the cosmological equations, Eqs. (22) and (23), can be
written as

1

Y − Z
½Yð1þ 2K þ X2 − ΩÞ þ Zð1 − Z − 2X þ ΩÞ� ¼ 0;

ð74Þ

1

Y − Z
fY½2ðQ − K þ Z − 1Þ þ 2Xð4 − 3XÞ

þ ð1þ 3wÞΩ� − Z½2ð2 − K þ ZÞ þ 2XðX − 4Þ
þ ð1þ 3wÞ�g ¼ 0; ð75Þ

respectively. At this point, using Eq. (46), we can write Y, Z
in terms of X, K, Ω and substituting in the of equations
given in Eq. (48) we obtain

K0 ¼ −2Kð1þQÞ;
X0 ¼ −K − ð1þQÞX − X2 þ Z;

Ω0 ¼ Ω
Y − Z

½Zð1þ 3wþ 2Qþ 2XÞ − Yð3þ 3wþ 2QÞ�;
ð76Þ

where Y ¼ YðX;K;ΩÞ, Z ¼ ZðX;K;ΩÞ and Q ¼
QðX;K;ΩÞ have not been fully substituted for the sake
of simplicity. The Jacobian in Eq. (42) for this case can be
written in terms of the dynamic variables and parameters as

J ¼ Ye−
Z
Y

108a2H9ðY − ZÞ : ð77Þ

For this Jacobian to be regular, we must exclude the fixed
points that have values of Y ¼ Z or Y ¼ 0, which also
represent divergences for the system in Eq. (76) and the
very gravitation field equations for this choice of the action.
Because of these singularities the dynamical system given
in Eqs. (76) is not Cð1Þ in the entire phase space, and one
can use the standard analysis tool of the phase space only
when Y ≠ Z and Z ≠ 0. We will pursue this kind of
analysis here. The system given in Eqs. (76) also presents
the usualK ¼ 0 andΩ ¼ 0 invariant submanifolds together
with the invariant submanifold Z ¼ 0. The presence of this
last submanifold allows us to solve partially the problem
about the singularities in the phase space. The analysis is
the same as before; i.e., the presence of the Z ¼ 0
submanifold implies that no orbit will cross this surface,
which also prevents the presence of a global attractor for
this case. Such attractor should have Z ¼ 0, K ¼ 0, and
Ω ¼ 0 and therefore would correspond to a singular state
for the theory. We can therefore discriminate sets of initial
conditions and of parameters values which give rise to a
given time-asymptotic state for the system.
The system given in Eq. (76) presents at most three fixed

points, which are shown in Table VI with their stability and

TABLE V. Fixed points for the system given by Eq. (69).

Point Coordinates Stability Parameter S

A K ¼ −6 Saddle −1
X ¼ 2
Y ¼ −5
Z ¼ −2
Q ¼ −1
J ¼ 1
Ω ¼ 0

E� K ¼ 0 Eþ: Saddle
E−: Attractor

1
2
ð259� 45

ffiffiffiffiffi
33

p Þ
X ¼ − 1

2
ð5� ffiffiffiffiffi

33
p Þ

Y ¼ 1
2
ð11� ffiffiffiffiffi

33
p Þ

Z ¼ −ð5� ffiffiffiffiffi
33

p Þ
Q ¼ 1

2
ð7� ffiffiffiffiffi

33
p Þ

J ¼ 1
2
ð41� ffiffiffiffiffi

33
p Þ

Ω ¼ 0
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associated solution. These points are all nonhyperbolic; i.e.,
linear analysis cannot be used to ascertain their stability. A
standard tool for the analysis for this type of points is the
analysis of the central manifold [32]. The method consists
in rewriting the system given in Eq. (76) in terms of new
variables ðU1; U2; U3Þ in the form,

U0
1 ¼ AU1 þ F1ðU1; U2; U3Þ;

U0
2 ¼ BU2 þ F2ðU1; U2; U3Þ; ð78Þ

U0
3 ¼ CU3 þ F3ðU1; U2; U3Þ; ð79Þ

where A, B, and C are constants and the functions Fi, with
fi; jg ¼ 1, 2, 3, respect the conditions Fið0; 0; 0Þ ¼ 0 and
∂Fi∂Uj

ð0; 0; 0Þ ¼ 0. Supposing that the quantity A has a zero

real part, the variables U2 and U3 can be written as

U2 ¼ h2ðU1Þ;
U3 ¼ h3ðU1Þ; ð80Þ

and the center manifold can be defined by the equations,

h02ðU1Þ½AU1 þ F1ðU1; h2ðU1Þ; h3ðU1ÞÞ�
− Bh2ðU1Þ − F2ðU1; h2ðU1Þ; h3ðU1ÞÞ ¼ 0;

h03ðU1Þ½AU1 þ F1ðU1; h2ðU1Þ; h3ðU1ÞÞ� − Ch3ðU1Þ
− F3ðU1; h2ðU1Þ; h3ðU1ÞÞ ¼ 0; ð81Þ

which can be solved by series. The stability of the non-
hyperbolic point will be then determined by the structure of
the equation,

U0
1 ¼ AU1 þ F1ðU1; h2ðU1Þ; h3ðU1ÞÞ: ð82Þ

For point A, the variable transformation is

U1 ¼ K; ð83Þ

U2 ¼ X −
1

2
; ð84Þ

U3 ¼ Ω; ð85Þ

and Eq. (82) takes the form,

U0
1 ¼

8

5
U2

1 þOðU3
1Þ; ð86Þ

which implies that this point is a saddle. For point B,
instead, the variable transformation is

U1 ¼ K þ 1; ð87Þ

U2 ¼ X −
1

2
ð1 − 3wÞ; ð88Þ

U3 ¼ Ωþ 1þ 3w; ð89Þ

and Eq. (82) takes the form,

U0
1 ¼ 2U2

1 þOðU3
1Þ; ð90Þ

which implies again that this point is a saddle. Finally, for
point C the variable transformation is

U1 ¼ K: ð91Þ

U2 ¼ X þ 3

2
ðw − 1Þ; ð92Þ

U3 ¼ Ω − 2þ 3w; ð93Þ

and Eq. (82) takes the form,

U0
1 ¼ 2

�
1

3ð1 − wÞ þ
1

9w − 5

�
U2

1 þOðU3
1Þ: ð94Þ

For 0 < w < 1 also this point is a saddle.
The solutions associated to the fixed points can be found

by the relation,

_H
H2

¼ Q; ð95Þ

and using Q ¼ QðX;K;ΩÞ obtained by Eqs. (74) and (75)
and evaluated at the fixed point. In general we have

aðtÞ ¼ a0 exp ðH0tÞ; q ¼ 0;

aðtÞ ¼ a0ðt − t0Þ−
1
q; q ≠ 0; ð96Þ

TABLE VI. Fixed points for the system given by Eq. (76).

Point Coordinates Stability Parameter Q

A K ¼ 0 Saddle −2
X ¼ 1

2

Y ¼ 0

Z ¼ − 1
4

Ω ¼ 0

B K ¼ −1 Saddle −1
X ¼ 1

2
ð1 − 3wÞ

Y ¼ 0

Z ¼ 3
4
ð1þ 3wÞðw − 1Þ

Ω ¼ −ð3wþ 1Þ
C K ¼ 0 Saddle −2

X ¼ − 3
2
ðw − 1Þ

Y ¼ 0

Z ¼ 3
4
ð3w − 1Þðw − 1Þ
Ω ¼ 2–3w
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whereH0, a0 and t0 are constants of integration and q is the
value ofQ at the fixed point. Notice that the fixed points are
characterized by only two different values of q, i.e., −1 and
−2. Using Eq. (96), we verify that the solution for q ¼ −1
corresponds to a linearly growing scale factor, whereas the
solution for q ¼ −2 corresponds to a solution for the scale
factor that grows with

ffiffi
t

p
.

One of the motivations behind the choice to analyze an
action of the form of Eq. (70) was the comparison with the
results recently obtained in [30]. Indeed, in [30] some forms
of the function fðR;RÞ, including the one of Eq. (70), were
obtained by reconstruction from a given cosmological
solution. The phase space analysis we have performed
allows us to understand the stability of such solutions,
which was impossible to obtain by the reconstruction
method of [30]. In particular, point A corresponds to the
solution found in [30], i.e., a flat K ¼ 0, vacuum Ω ¼ 0,
universe with aðtÞ proportional to ffiffi

t
p

, and we determined
here that such solution is unstable. This shows that we can
use the phase space to determine the stability of the solutions
obtained in our previous work even if these results were
obtained using a nontrivial redefinition of the action. It
should be stressed, however, that it is not necessarily true
that an exact solution found for the cosmological equation of
a given theory corresponds to a fixed point of our phase
space. For example, in [30], an exact nonflat vacuum
solution was found for a theory with an action of the form
of Eq. (70) which does not correspond to a fixed point of the
phase space. However, in general phase space analysis it is
useful to understand in a deeper way not only the stability of
the solution, but also the consequences of the reorganization
of the degrees of freedom that is often employed to analyze
this class of theories.

V. CONNECTION WITH OBSERVATIONAL DATA

A. The fourth-order model Eq. (58)

The analysis above might appear of mathematical
interest only, and of course relevant physical information
is required. We now show that, although there are some
intrinsic difficulties, the results above can be used to deduce
nontrivial features of the cosmologies of hybrid metric-
Palatini theories. Here we select a suitable model from the
previous section, the one of order 4, and deduce by
numerical integration of the dynamical system equations
the behavior of the cosmological parameters consistent
with a set of initial condition consistent with observations.
Thus, let us analyze a particular form of the action given

in Eq. (58) and the system of equations given in Eq. (61)
with n ¼ m ¼ 2. Furthermore, we consider the matter
distribution to be dust, i.e., w ¼ 0, as in cosmology galaxies
are often considered to be the matter elements, and they do
not interact with each other apart from their gravitational
interaction. In this particular case, the dynamical system
given in Eq. (61) is simplified to

K0 ¼ 2Kð1þK − YÞ;
X0 ¼ ð1þKÞXþZ−K −XðXþ YÞ;

Y 0 ¼ Y
6

�
Yð2Kþ 2X2 − 15ZÞ

Z
þ 2ð9þ 7Kþ 4X −ΩÞ

�
;

Z0 ¼ 1

3
½−2X2Y − 2KðY − 2ZÞ− 2XZþZð12− 3Y þ 2ΩÞ�;

Ω0 ¼ Ω
2Z

½2X2Y þ 2KðY þ 3ZÞ þZð4− 7Y − 2ΩÞ�: ð97Þ

To find the initial conditions fK0; X0; Y0; Z0;
Q0; J0;Ω0g for the integration, we proceed as follows.
The spacial curvature of the Universe has been measured,
and it is approximately zero; i.e., the Universe seems to be
flat, and thus we assume K0 ¼ 0 [35]. Let us take the value
for q the observationally measured value, i.e., q ¼ −0.6.
Comparing Eq. (25) with Eq. (31), we verify that the
assumed value for q imply the value Q0 ¼ −0.4 For the
parameter j, we note that it as not been measure to date,
although the value j ¼ 1 is consistent with a few models
explored recently [36], and so we take this value.
Comparing Eq. (26) with (32), we verify that the assumed
values for j imply the value J0 ¼ 4.8. Now, from Eq. (46)
we can compute that Y0 has the value Y0 ¼ 1.6.
Equation (44) can be put in the form 1þ K ¼ ΩþΩΛ,
where ΩΛ ≡ 4ð1 − XÞ þ 3

Y ½J − 2K þQð4þQÞÞ� þ 3Y
2
−

Y
Z ðK þ X2Þ is the dark energy density. The values of the
parameters Ω and ΩΛ have been measured, and they are
roughlyΩ0 ¼ 0.3 andΩΛ0

¼ 0.7. Under these assumptions
the latter equation defining ΩΛ becomes an equation for Z
as a function of X as Z ¼ 4X2

30−10X. As there are no other
constraints in the problem, Z and X do not have a unique
value consistent with the observations. Much in the same
way of what it is done in the case of scalar field
cosmologies we will set a specific, but arbitrary, value
for either X0 or Z0 and obtain the other variable via the
above relation. A limitation inherent of the approach that
we have used to construct the dynamical system equations
is that the phase space is not compact. Such choice was
forced by the high generality of the classes of theories we
considered. In terms of the numerical integration this issue
induces the appearance of spurious divergences in the
numerical integration of the dynamical equations. We thus
have to carefully select a pair fX0; Z0g for which the orbit
in the phase space stays regular. A combination that
preserves this regularity is fX0; Z0g ¼ f2.7; 9.72g. This
completes our set of initial conditions, and we are now
ready to proceed to the numerical integration of the system
in Eq. (97). The results for the numerical integration for the
matter density Ω, the dark energy density ΩΛ, and the
deceleration parameter q are plotted in Fig. 5.
It is clear that this model is consistent with the late-time

cosmic acceleration as q becomes eventually negative, and
stays negative, just before the present era. Notice that the
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dark energy component is always dominating over the
matter component, but this does not imply q < 0 at all time.
This implies that ΩΛ does not always act as a dark
component. It would be interesting to understand how this
features influences the formation of large scale structures.
Another consequence of the early q > 0 phase is that this
model cannot describe early time inflation, suggesting that
this type of model might need some form of early time
correction. This is interesting as it appears that the Palatini
terms are able to neutralize the effect of the higher order
terms, which notoriously produce inflationary behavior at
early time.
One could try other ways to compare our cosmological

model to observations. In the case of the supernovae Ia, for
example, it is possible to make a statistical analysis of the
distance modulus in order to constrain the parameter of the
theory; for an example in another context see [38]. We will
not attempt such analysis here for, essentially, two reasons.
First because our aim in the following will be only to show
that there is a clear connection between our very general
phase space analysis and observations. Second, such
analysis is not necessarily immediate. The statistical
analysis mentioned above, for example, would require

finding an expression of H from the Friedmann equation,
Eq. (22), which is a nonlinear equation in H.

B. The second-order model Eq. (70)

In order to proceed extracting interesting physical
information on the mathematical analysis of the previous
section, we select another suitable interesting model, the
one of second-order. Again, we are committed to find
nontrivial results from cosmologies provided by hybrid
metric-Palatini theories and work out through numerics on
the dynamical system equations the behavior of the
cosmological parameters consistent with a set of initial
condition consistent with the observations.
Let us now consider the action given in Eq. (70). Again, we

shall consider w ¼ 0, and the dynamical system will be the
one given in Eq. (76). As can be seen from Eq. (75), in this
case the Raychaudhuri equation does not depend on the snap
parameter s anymore, and thus it can be used as an extra
constraint to cancel the indetermination between X and Z
from thepreviousmodel. In thiswaywehaveX0 ∼ −5.06 and
Z0 ∼ 3.68. We can now proceed to the numerical integration,
whose results for Ω, ΩΛ and q are plotted in Fig. 6.

FIG. 5. Results for the numerical integration of the system in Eq. (97), a simplified version of Eq. (61), with w ¼ 0 and under initial
conditions consistent with the observational constraints. The parameters Ωm, ΩΛ, and q are plotted as functions of time.

FIG. 6. Results for the numerical integration of the system in Eq. (76) with w ¼ 0 and under initial conditions consistent with the
observational constraints. The parameters Ωm, ΩΛ, and q are plotted as functions of time.
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In this model, the qualitative behavior of both Ω and ΩΛ
is very similar to the previous fourth-order case, although
the decrease in the value of the dark energy parameter
occurs for later times and its minimum is in the near future
instead of in the near past. We also verify that q is
monotonically decreasing in this case, starting from a large
value in the far past and growing to a large negative value in
the far future. This is again consistent with a late-time
cosmic acceleration period, but in this case, instead of
approaching a constant value, the acceleration is increasing.
The behavior of q also implies that this model cannot
describe inflation, and that a dark energy dominated era is
not directly related to accelerated rates of expansion. Notice
that the behavior of q implies that the model will accelerate
faster and faster possibly leading to a big rip [37].

VI. STATIC H = 0 UNIVERSES: SOLUTIONS AT
THE INFINITE BOUNDARY OF THE PHASE

SPACE AND THEIR STABILITY

The variables we have defined in the previous section are
efficient in determining the fixed points corresponding to a
finite value of the quantities they represent. However, since
variables have a term H or H2 in the denominator, our
setting excludes an interesting case which is connected with
the existence of solutions characterized by H ¼ 0, i.e.,
static universes. In particular, fixed points, if any, associ-
ated to this kind of solution would be at the infinite
boundary of the phase space. In order to look for solutions

with H ¼ 0 one has, therefore, to investigate the asymp-
totics of the dynamical system.
There are many approaches that can be adopted for this

purpose. One could employ, for example, stereographic
projections by which the infinite boundary is mapped to a
finite radius sphere [33]. In the following we will use a
different strategy which allows us to analyze the stability of
a static universe without having to explore the entire
asymptotics. More specifically we will redefine all the
variables and functions in such a way to bring the static
fixed point into the finite part of the phase space. As said,
the exploration of this extended phase space, is clearly not a
complete analysis of the asymptotia, but it will allow an
easier analysis of the stability of these solutions.
The cosmological parameters appearing in Eqs. (31)–

(33) are redefined as

q̄ ¼ H0

ðH þ cÞ ; ð98Þ

j̄ ¼ H00

ðH þ cÞ ; ð99Þ

s̄ ¼ H000

ðH þ cÞ ; ð100Þ

respectively, where c is an arbitrary constant with units of
H. The set of dynamical dimensionless variables in Eq. (40)
is also redefined as

K̄ ¼ k
a2ðH þ cÞ2 ; X̄ ¼ H

ðH þ cÞ ; Ȳ ¼ R
6ðH þ cÞ2 ; Z̄ ¼ R

6ðH þ cÞ2 ;

Q̄ ¼ q̄; J̄ ¼ j̄; S̄ ¼ s̄; Ω̄ ¼ ρ

3ðH þ cÞE ; Ā ¼ R0

6ðH þ cÞ2 ; T̄ ¼ H
ðH þ cÞ : ð101Þ

The Jacobian J of this definition of variables can be written in the form,

J ¼ 1

108a2ðH þ cÞ9E : ð102Þ

This means that, for each specific model, the constraints that arise from imposing that the Jacobian must be finite and
different from zero are the same as in the analysis of the previous section. The evolution equations become in this case,

K̄0 ¼ −2K̄ðQ̄þ T̄Þ; X̄0 ¼ Z̄ − X̄ðQ̄þ X̄ þ T̄Þ − K̄; Ȳ 0 ¼ J̄ − 2K̄ T̄ þQ̄ð4T̄ − 2Ȳ þ Q̄Þ;
Z̄0 ¼ −CðJ̄ þ Q̄2 − 2K̄ T̄ þ4Q̄ T̄Þ þDT̄2ðX̄ − T̄Þ − 2Q̄ Z̄; Q̄0 ¼ J̄ − Q̄2; J̄0 ¼ S̄ − J̄ Q̄;

Ω̄0 ¼ Ω̄
DT̄

f−DT̄2½2Q̄þ 3T̄ð1þ wÞ� þ 2A½ðC2 − IÞðJ̄ þ Q̄2 − 2K̄ T̄þ4Q̄ T̄Þ þ CDT̄2ðT̄ − X̄Þ�g; ð103Þ

and the Friedmann equation,

A½2ðI−C2ÞðJ̄þQ̄2−2K̄ T̄−4Q̄T̄Þþ2DCT̄2ðX̄− T̄ÞþDTðK̄þ X̄2− Z̄Þ�þDT̄½K̄þð1þBÞT̄2− Ȳ− Ω̄�¼0: ð104Þ

The Raychaudhuri equation is too long to be reported here but can be computed easily.
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Using this new system of equations we can investigate
the extended phase space. As we will see, we will be able to
find all the previously discovered fixed points as points
with T̄ ¼ 1 plus extra sets of fixed points withH ¼ 0which
will have T̄ ¼ 0. As an example of how to apply the new
dynamical system approach, we will perform the analysis
for the models given in Eqs. (58), (62), and (66), with the
model given in (70) being so long that we skip its
presentation. In all the three cases, there is only one fixed
point with H ¼ 0, which corresponds to the origin, i.e.,

O ¼ fK̄ ¼ 0; X̄ ¼ 0; Ȳ ¼ 0; Z̄ ¼ 0; Q̄ ¼ 0;

J̄ ¼ 0; Ω̄ ¼ 0; T̄ ¼ 0g: ð105Þ
This result is somewhat expected. The fact that we are
looking for fixed points with H ¼ 0 implies directly that
T̄ ¼ 0. Then, both K̄ ¼ 0 and Ω̄ ¼ 0 are invariant sub-
manifolds. Now, if H ¼ 0, then a is a constant and
_a ¼ ä ¼ 0, from which Q̄ ¼ J¼̄ 0. Since k ¼ 0 from
K̄ ¼ 0, then we also have R ¼ 0, and therefore Ȳ ¼ 0.
This been said, the only values of both Z̄ and X̄ that make
X̄0 ¼ 0 and Z̄0 ¼ 0 using the results explained in this
paragraph are Z̄ ¼ 0 and X̄ ¼ 0, and the fixed point is
the origin. We now briefly comment on each model.
Model RnRm: For the model from Eq. (58) the fixed

point O is always unstable, but might correspond to a
saddle point or to a repeller depending on the parameters n
and m. In fact, if 1 −m < n < 0 or −m > n > 0, this point
corresponds to a repeller. Any other combination of the
parameters gives rise to a saddle point.
Model Rn þRm: For the model from Eq. (62), note that

we have one extra variable Ā which also vanishes in this
calculation. This implies that not all values of m and n are
allowed, since the power of Ā must be positive for the
system to converge. Despite that, the analysis of the
stability in this case reveals that, for all the combinations
of the parameters m, n and γ� for which the fixed point
exists, it is always a saddle point.
Model expðRRÞ: For the model from Eq. (66), the analysis

of the stability of the fixed point O reveals that it is
unstable, since the eigenvalues associated to it are all either
positive or zero. However, to verify if the fixed point is a
saddle point or a repeller, one would have to make use of
the central manifold theorem again. For our purposes
however, it is enough for us to note that, since all the
other eigenvalues of the point are of alternate sign, we can
conclude directly that the point is unstable.
Model R expðRRÞ: For the model from Eq. (70) there

appear to be no fixed points corresponding to an Einstein
static universe.

VII. CONCLUSIONS

In this work we have applied the methods of dynamical
systems to analyze the structure of the phase space of the

generalized hybrid metric-Palatini gravity in a cosmologi-
cal frame. Using the symmetries in the curvatures R andR
we obtained the cosmological equations of the theory.
Then, defining the appropriate dynamical variables
and functions, we derived a closed system of dynamical
equations that allows us to study the phase space of
different forms of the function fðR;RÞ. We studied four
different models of the function f, namely, the ones given
in Eqs. (58), (62), (66), and (70).
Independently of the model, the solutions for the scale

factor can only be of two different kinds, depending on the
cosmological snap parameter S being zero or nonzero. We
have shown that, if we assume that the Universe presents a
vanishing snap parameter, i.e., S ¼ 0, then the solution for
the scale factor is analytical and presents a set of three
integration constants that can be fine-tuned to yield the
observed results for the Hubble parameter, the deceleration
parameter, and the time interval since the big bang. This
solution can also qualitatively model the inflation and the
late-time cosmic acceleration periods. Furthermore, this
solution also provides a prediction for the cosmological jerk
parameter of j ∼ 4.47. This prediction is of the same order of
magnitude as the constraints imposed by the data of the
Hubble parameter [36]. We should however emphasize that,
as we have assumed that S ¼ 0, this solution corresponds to
an approximation of the real solution which, in general, will
present a nonvanishing cosmological snap parameter.
The structure of the phase space is similar in all the four

studied cases. In none of the particular cases there were
global attractors due to the fact that one of the invariant
submanifolds present in all the cases,Z ¼ 0, corresponds to a
singularity in the phase space, and therefore a global attractor
which would have to be in the intersection of all the invariant
submanifolds would correspond to a singular state of the
theory.On the other hand, the presence of these submanifolds
allows us to discriminate sets of initial conditions and predict
the time asymptotic states of the theory.
A fixed point that we denoted by B features in the

theories given in Eqs. (58), (62), and (70), but not in the
case (66). This fixed point stands in the intersection of two
of the invariant submanifold, Ω ¼ 0 and K ¼ 0, with a
positive value Z ¼ 2. In the model from Eq. (58) B is an
attractor for some particular values of n and m; see Table I.
This means that all the orbits starting with a positive value
of Z and with a value of Y with the same sign as the one
arising from the particular choice of parameters in B, can
eventually reach this fixed point. Note that it is even
possible to chose sets of parameters such that B is the
only finite attractor for the system; see Table III. The
solution associated to point B is characterized by s ¼ 0 and
contains three constants of integration H0, H1, and H2.
Depending of the values of these constants it can have two
different types of asymptotic limit, namely, a constant or a
finite type singularity. Thevalueof the constantsH0,H1, and
H2, and therefore the possibility of the occurrence of the
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singularity depends on observational constraints on higher
order cosmological parameters (e.g., jerk, snap, and so on).
This suggests that models for which B is an attractor in
generalized hybrid-metric Palatini theories, like in many
fðRÞ-gravity models, can incur in finite time singularities. In
the model of Eq. (62)B is always unstable. Note also that for
this case given in Eq. (62), no finite nor asymptotic attractors
were found. One explanation for this result is that the orbits in
the phase space do not tend asymptotically to a given solution
but could instead be closed upon themselves. A structure
similar to this one occurs for example in the frictionless
pendulum, where the orbits are closed and there are no
attractors in the phase space. This structure could indicate that
the solutions represented by orbits in the phase space actually
correspond to cyclic universes. In the model of Eq. (70) the
system simplifies further; see below for comments.
The fixed points E� are the other possible attractors in

the phase space of the theories we have analyzed. They
appear in the case of Eqs. (58) and (66). The fixed points
E� have always a solution S ≠ 0 which asymptotically
tends to a constant scale factor, a feature that is absent for
the fixed point B. Moreover, the fixed points E� also lie in
the intersection of the Ω ¼ 0 and K ¼ 0 invariant sub-
manifolds; thus we expect that some of the orbits should
reach this fixed point. For the model in Eq. (58) we have
shown that it is possible to choose sets of parameters such
that Eþ is the only finite attractor for the system; see
Table II. On the other hand, for the model in Eq. (66) E− is
always the only finite attractor of the system, and all the
orbits starting from a positive value of Y and a negative
value of Z might reach this fixed point.
For the specific case shown in Eq. (70), the system of

dynamical equations becomes much simpler since only
three variables are needed to fully describe the phase space
and the solutions. However, the study of the stability
becomes more complicated because the fixed points are
not hyperbolic and their stability analysis requires the use
of central manifolds. The behavior of the solutions reduces
to simple power-laws or exponentials. Our analysis con-
nects directly with the paper [30] in which some pairs
function-exact solution were found via a reconstruction
method. One of the limitation of the reconstruction tech-
nique was the impossibility to understand the stability of
the solution obtained. The phase space analysis gives us a
tool to determine this stability. In particular, we determined
that the solutions found in [30] are actually unstable.
We have also performed a numerical integration of the

dynamical equations, starting from an initial condition
consistent with the observations of the cosmological
parameters, for both a fourth-order particular case of
Eq. (58) and the second-order case of Eq. (70), motivated
by Ref. [30]. In the fourth order case we verified that, since
there are no observational constraints on the cosmological
snap parameter S, a degeneracy between the variables Z and
X arises. In the second-order model, the cosmological

parameter S does not appear in the dynamical system,
and thus there are no degeneracies between dynamical
variables in the initial state. Both the numerical integrations
performed show that the dark energy contribution to the
energy density is dominant both in the far past and into the
future. However, there is a period for which the dark energy
contribution decreases and the matter contribution
increases. In the fourth-order model, this happens in the
near past, whereas in the second-order model it happens in
the near future. We have also shown that a dark-energy
domination is not directly related to an accelerated expan-
sion, as we have obtained that in the far past the deceleration
parameter is positive and in the far future the deceleration
parameter is negative, although both phases are associated
to dark energy domination eras. Furthermore, we have
verified that for our set of initial conditions the second-order
model leads to a solution for which the deceleration
parameter is negative and monotonically decreasing in
the future, possibly leading to a big rip scenario.
The static H ¼ 0 universes were studied separately since

the variables in the set of equations given in Eq. (40) haveH
in the denominator. Indeed, the staticH ¼ 0 fixed points are
located at the asymptotic boundary of the phase space. In
order to study these static universe solutions, we generalized
Eq. (40) in such a way to move possible static fixed points to
the finite part of the phase space. This is different from a
complete asymptotic analysis, but it allows us to obtain
information on static universes in an easier way. All the
theories we have considered with Eq. (40) turn out to present
a static fixed point which is always unstable. Therefore, as in
general relativity, in thesemodels the static universe is always
unstable. However, differently from general relativity, the
solution associated to these points is spatially flat and empty,
i.e., with no cosmological constant. Such a peculiar form of
static universes is the result of the action of the nontrivial
geometrical terms appearing in the field equations. The
existence of unstable static solutions in the phase space
points to the existence in the context of generalized hybrid
metric-Palatini gravity to phenomena such as bounces,
turning points, and loitering phases, which are represented
by the orbits bouncing against the static fixed points. These
open the way to a series of scenarios which could be
interesting to investigate further.
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