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Einstein’s equations in matter are gravitational analogues of Maxwell’s equations in matter, providing an
effective classical description of gravitational fields. We derive Einstein’s equations in matter for relativistic
fluids, and use them to illustrate how the Tolman-Oppenheimer-Volkoff equations are modified by the
matter’s response to curvature. For a gas of massive fermions, we evaluate how the effective Newton’s
constant and other susceptibilities depend on the temperature and density. In anti–de Sitter space, we study
the Oð1=ðTlÞ2Þ corrections to the geometries sourced by perfect fluids, and illustrate the breakdown of
hydrostatics in AdS at small temperatures.
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I. INTRODUCTION

Matter affects the dynamics of both electromagnetic and
gravitational fields. For electromagnetism, the effective
classical description in many materials is provided by the
so-called Maxwell’s equations in matter [1]. In the effective
description, the microscopic Maxwell’s equations∇νFμν ¼
Jμ are replaced by ∇νHμν ¼ Jμfree, where the tensor Hμν

differs from Fμν by substituting the electric field E → D,
and the magnetic field B → H. The current Jμfree is the
current of “free” charges, and the vectors D, H are to be
expressed in terms of E, B through the so-called con-
stitutive relations that are specific to a given material. The
constitutive relations reflect the existence of both electric
and magnetic polarization. As a simple example, consider
the Maxwell action in flat space, Seff ¼ − 1

4

R
d4xFμνFμν, or

in terms of the electric and magnetic fields

Seff ¼
1

2

Z
d4xðE2 −B2Þ: ð1Þ

In the presence of matter, boost invariance is broken by the
matter rest frame, and a more general action is allowed by
rotation invariance:

Seff ¼
1

2

Z
d4x

�
εeE2 −

B2

μm

�
: ð2Þ

The coefficients εe (electric permittivity) and μm (magnetic
permeability) can in principle be calculated from the
fundamental microscopic theory. The action gives rise to
the constitutive relations D ¼ εeE and B ¼ μmH (see

e.g., [2] for a covariant discussion). This leads to the
refractive index

ffiffiffiffiffiffiffiffiffiffi
εeμm

p
for electromagnetic waves propa-

gating through matter.
One can ask similar questions about gravity. While the

naive notions of electric and magnetic polarizations do not
have a gravitational analogue, one can ask about the
effective description of gravitational fields in matter. Just
like in electromagnetism the definition of the macroscopic
tensor Hμν boils down to the structure of the macroscopic
current Jμ, one can ask about the structure of the macro-
scopic energy-momentum tensor Tμν in the Einstein’s
equations Gμν ¼ κ2Tμν, where Gμν is the Einstein tensor,
and κ2 ≡ 8πG, with G the Newton’s constant. As an
example, consider the following effective action for equi-
librium gravity-matter configurations,

Seff ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ pðTÞ

�
; ð3Þ

where R is the Ricci scalar, and pðTÞ is the pressure as a
function of temperature, given by the equation of state. As
we will show shortly, this action gives rise to Einstein’s
equations sourced by the perfect fluid energy-momentum
tensor, Gμν ¼ κ2½ðϵþ pÞuμuν þ pgμν�, where ϵ≡ −pþ
T∂p=∂T is the energy density, derived from the pressure
by the standard Euler relation of thermodynamics.
However, in curved space, there is more to thermodynamics
than just the equation of state. The perfect fluid model of
matter ignores the fact that the energy-momentum tensor of
macroscopic matter in general depends on curvature, which
is true even for an ideal (quantum) gas of spinless particles.
As an example, note that the action (3) is only an effective
macroscopic action, and the coefficient in front of R is not
required to be constant due to the presence of matter. More
generally, one can have
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Seff ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p ½fðTÞRþ pðTÞ�; ð4Þ

where fðTÞ plays the role of a gravitational susceptibility.
Just like the pressure pðTÞ, the susceptibility coefficient
fðTÞ can in principle be evaluated from the fundamental
microscopic theory, and will depend on temperature. The
vacuum contributions to pðTÞ and fðTÞ have to be matched
to the cosmological constant and the Newton’s constant
respectively, pðTÞ ¼ ð−2ΛÞ=2κ2 þ pmatterðTÞ, fðTÞ ¼
1=2κ2 þ fmatterðTÞ. As the temperature T depends on the
metric,1 the Einstein’s equations obtained by varying (4)
with respect to the metric will be sourced by the energy-
momentum tensor which is not of the perfect fluid form,
due to fmatterðTÞ.
In what follows, we will make the above intuition

precise. Focusing on the simplest form of relativistic matter
which is locally rotation-invariant (that is, a fluid), we will
derive the Einstein equations which govern the effective
gravitational fields. Among other things, we will explicitly
evaluate fmatterðTÞ for an ideal gas of massive fermions at
nonzero temperature and density. We will then consider an
application of the formalism to spherical equilibria of
gravitating matter. [Convention: We work in natural units
c ¼ ℏ ¼ 1. The metric signature is mostly plus.]

II. EINSTEIN’S EQUATIONS IN MATTER

We consider a macroscopic system that has degrees of
freedom which couple to the metric gμν and to an Abelian
gauge field Aμ. Our procedure for deriving the effective
Einstein-Maxwell equations will be as follows. (I) We first
consider the matter in thermal equilibrium, subject to
external, time-independent gμν and Aμ. The system is then
characterized by the grand canonical partition function Z,
and the generating functional W½g; A� ¼ −i lnZ. The gen-
erating functional (which is the grand canonical potential,
up to a factor of T) is extensive in the thermodynamic limit,
and can be written as an integral of a local density. (II) We
identify the equilibrium generating functional with the
equilibrium effective action, W½g; A� ¼ Seff ½g; A�. With
the fields g and A now dynamical, the equations of motion
which follow from the equilibrium effective action will
describe equilibrium configurations of the metric and the
gauge field. (III) We then argue that for time dependent
processes that are sufficiently slow, the equations of motion
that describe equilibrium configurations may serve as a
useful approximation to describe near-equilibrium configu-
rations. The resulting Einstein-Maxwell equations will
contain perfect fluid dynamics, electromagnetic polariza-
tion, and the gravitational susceptibilities that parametrize
the response of the matter’s pressure to curvature.

The resulting equations clearly do not include any dis-
sipative processes; the latter, parametrized by the dissipa-
tive transport coefficients such as the electrical conductivity
and the viscosity, can be introduced in the constitutive
relations a posteriori. Step (III) is just the standard
construction of fluid dynamics as an extension of local
equilibrium thermodynamics. If we choose to keep only g
(but not A) dynamical, we have the Einstein (rather than
Einstein-Maxwell) equations in matter, with A as a back-
ground field which can couple for example to the baryon
number current.

A. The generating functional

Consider matter in thermal equilibrium, described by the
generating functional W½g; A�. The generating functional
encodes equilibrium (zero-frequency) correlation functions
of the energy-momentum tensor and the conserved Uð1Þ
current which couple to the external metric gμν and the
external gauge field Aμ. In the context of relativistic
hydrodynamics such equilibrium generating functionals
were first discussed in [4,5]; the present discussion makes
use of the setup in [5–8].
Thermal equilibrium is characterized by a timelike

Killing vector Vμ, which in suitable coordinates (local rest
frame of the fluid) takes the form Vμ ¼ ð1; 0Þ. The matter
velocity uμ, temperature T, and the chemical potential μ are
defined via

uμ¼ Vμ

ffiffiffiffiffiffiffiffiffi
−V2

p ; T¼ 1

β0
ffiffiffiffiffiffiffiffiffi
−V2

p ; μ¼VρAρþΛVffiffiffiffiffiffiffiffiffi
−V2

p ; ð5Þ

where the constant β0 sets the normalization of temper-
ature, and ΛV is a gauge function introduced to ensure the
gauge invariance of the chemical potential. The fact that the
system is in equilibrium is captured by the conditions

LVgμν ¼ 0; LVAμ þ ∂μΛV ¼ 0; ð6Þ

where LV denotes the Lie derivative with respect to the
timelike vector Vμ.
The generating functional is extensive in the thermody-

namic limit, and can therefore be expressed as an integral of
a local density,

W½g; A� ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
F ½g; A�; ð7Þ

where F ½g; A� is a local function of the external sources
gμν; Aμ. The variation of the generating functional with
respect to the sources defines the energy-momentum tensor
and the conserved current of the fluid,

Tμν ¼ 2ffiffiffiffiffiffi−gp δW
δgμν

; Jμ ¼ 1ffiffiffiffiffiffi−gp δW
δAμ

: ð8Þ1For matter in equilibrium, one has T ¼ T0=
ffiffiffiffiffiffiffiffiffiffi−g00

p
in suitable

coordinates, see e.g., [3].
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Provided that the system of interest does not have any
anomalies, the generating functional is both diffeomor-
phism and gauge invariant. As a consequence of this we
have the conservation laws

∇μTμν ¼ FνλJλ; ð9aÞ

∇μJμ ¼ 0; ð9bÞ

with Fμν ≡ ∂μAν − ∂νAμ.
When the sources gμν; Aμ vary on length scales much

longer than the correlation length of the system, the density
F ½g; A� admits an expansion in terms of the derivatives of
the external sources. Thus, finding the generating func-
tional up to a given order in derivatives boils down to
finding the diffeomorphism- and gauge-invariant objects
made out of the sources gμν; Aμ, as well as the hydro-
dynamic variables of Eq. (5).
Being in thermal equilibrium implies certain constraints

on the hydrodynamic variables, such as

uλ∂λT ¼ 0; uλ∂λμ ¼ 0; ð10Þ

i.e., the temperature and the chemical potential are time
independent. The expansion ∇ · u and the shear tensor
σμν ¼ ΔμαΔνβð∇αuβ þ∇βuα − 2

3
Δαβ∇ · uÞ both vanish in

equilibrium, ensuring that there is no entropy production
due to the bulk or shear viscosities in equilibrium. The
spatial projector is Δμν ≡ gμν þ uμuν.
For the derivative expansion of the generating functional,

we follow the notation of [8]. In four spacetime dimen-
sions, and up to second order in derivatives of the sources,
the equilibrium generating functional takes the form

W½g; A� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
pþ

X9
n¼1

fns
ð2Þ
n

�
þ � � � ð11Þ

where the dots denote terms that are cubic or higher order in
derivatives. The pressure p ¼ pðT; μÞ is a function of
temperature and chemical potential, given by the equation

of state. There are no first-order invariants. The sð2Þn denote
the nine independent second-order invariants appearing
in the generating functional [4], and the fn ¼ fnðT; μÞ
denote the corresponding thermodynamic susceptibilities.
Table I summarizes the nine invariants, along with their
transformation properties under parity P, charge conjuga-
tion C, and time reversal T . The notation in the table is as
follows: the acceleration is aμ ≡ uν∇νuμ, the electric field
is Eμ ¼ Fμνuν, the magnetic field is Bμ ≡ 1

2
ϵμναβuνFαβ, and

the vorticity vector is Ωμ ≡ ϵμναβuν∇αuβ. The pressure and
the susceptibilities have to be determined from the under-
lying microscopic theory. See [8–14] where some of these
susceptibilities have been computed for free quantum
fields.

B. The energy-momentum tensor

We can now compute the energy-momentum tensor
following from the variation of the generating functional
Eq. (11). Isolating the Einstein tensor, we have

Tμν ¼ −
1

κ2eff

�
Rμν −

1

2
Rgμν

�
þ Tμν

m ; ð12Þ

which defines the “matter” contribution Tμν
m , and 1=κ2eff ≡

2f1ðT; μÞ. We can decompose Tμν
m with respect to the fluid

velocity uμ as

Tμν
m ¼ Emuμuν þ PmΔμν þQμ

muν þQν
muμ þ T μν

m ; ð13Þ

where the “matter” energy density is Em ≡ uμT
μν
m uν, the

pressure is Pm≡ 1
3
ΔμνT

μν
m , the energy fluxQμ

m≡−Δμ
αT

αβ
m uβ

is transverse to uμ, and the stress T μν
m ≡ Thμνi

m is transverse
to uμ, symmetric, and traceless. The brackets denote the
symmetric transverse traceless part, Xhμνi ≡ 1

2
ðΔμαΔνβþ

ΔναΔμβ − 2
3
ΔμνΔαβÞXαβ.

For matter that is not coupled to external electric or
magnetic fields, the only relevant two-derivative invariants
are f1;2;3. The matter energy-momentum tensor Eq. (13)
coming from the variation of the generating functional
Eq. (11) then has the form

Em ¼ ϵþ f01Rþ ð4f01 þ 2f001 − f2 − f02Þa2
þ ðf01 − f2 − 3f3 þ f03ÞΩ2 − 2ðf01 − f2ÞuαRαβuβ;

ð14aÞ

Pm ¼ p −
1

3
ð2f01 þ 4f001 − f2Þa2 −

1

3
ð2f01 þ f3ÞΩ2

þ 4

3
f01u

αRαβuβ; ð14bÞ

Qmμ ¼ ðf01 þ 2f03ÞϵμναβaνuαΩβ þ 4f3Δν
μRνσuσ; ð14cÞ

T mμν ¼ ð4f01 þ 2f001 − 2f2Þahμaνi −
1

2
ðf01 − 4f3ÞΩhμΩνi

þ 2f01u
αRαhμνiβuβ; ð14dÞ

TABLE I. The nine second-order invariants appearing in the
derivative expansion Eq. (11). P; C; T respectively denote the
eigenvalues under parity, charge conjugation and time reversal of
the corresponding invariant.

n 1 2 3 4 5 6 7 8 9

sð2Þn R a2 Ω2 B2 B ·Ω E2 E · a B · E B · a

P þ þ þ þ þ þ þ − −
C þ þ þ þ − þ − þ −
T þ þ þ þ þ þ þ − −
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with

f0n ¼ T
∂fn
∂T þ μ

∂fn
∂μ ;

f00n ¼ T2
∂2fn
∂T2

þ 2μT
∂2fn
∂μ∂T þ μ2

∂2fn
∂μ2 ; ð15Þ

and ϵ ¼ −pþ T∂p=∂T þ μ∂p=∂μ is the zeroth-order
energy density.

C. The effective Einstein’s equations

We now promote the equilibrium generating functional
to be the equilibrium effective action for the metric,
W½g; A� ¼ Seff ½g; A�. This makes the metric a dynamical
variable whose equations of motion are determined by the
variational principle δgSeff ½g;A�¼0, or simply Tμν½g;A�¼0.
According to the definition of the “matter” contribution in
Eq. (12), the equations of motion are

Rμν −
1

2
Rgμν ¼ κ2effT

μν
m ; ð16Þ

where Tμν
m contains the perfect fluid, as well as the

curvature-dependent contributions. The coefficient κ2eff ¼
1=ð2f1Þ should be interpreted as (8π times) the effective
Newton’s constant which now depends on temperature and
chemical potential due to the presence of matter. For a fluid
not subject to external electric and magnetic fields, Tμν

m is
given by Eqs. (13) and (14).
Equations (16) are the effective Einstein’s equations in

equilibrium matter, analogous to the Maxwell’s equations
in matter for electro- and magnetostatics. The susceptibil-
ities f1;2;3ðT; μÞ characterize the leading-order (in deriva-
tives) equilibrium response of the energy-momentum
tensor to curvature. We emphasize that the effective
Einstein’s equations (16) do not arise from any modifica-
tion of Einstein’s gravity, but are simply a reflection of the
gravitational properties of normal matter.
We do not write down the three-derivative and higher-

order terms in Tμν
m which would come with their own

susceptibilities, as in the standard effective field theory.
The nonequilibrium terms in the constitutive relations of
Tμν
m do not follow from the equilibrium generating func-

tional, and have to be added separately, as is done in
standard relativistic hydrodynamics.
In practice, one expects the effect of the susceptibilities

on the gravitational dynamics to be very small. Indeed,
p¼ð−2ΛÞ=2κ2þpmðT;μÞ, f1¼ 1

2
M2

Plþf1;mðT;μÞ, where
MPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass, and the subscript “m”

denotes the matter contribution. For noncosmological
applications one usually sets Λ ¼ 0, while the temperatures
and densities are such that T; μ ≪ MPl. On the other hand,
the susceptibilities are more relevant for nongravitational
dynamics of relativistic fluids where f1;2;3 show up as

thermodynamic transport coefficients, see e.g., [8]. When
studying matter in anti–de Sitter space, one has to keep Λ
nonzero, and the gravitational susceptibilities lead to
interesting phenomena, as we discuss below.
Let us now discuss the application of the above theory to

nonrotating spherically symmetric equilibrium states of
gravitating matter.

III. SPHERICAL EQUILIBRIA

We are interested in equilibrium states of gravitating
matter. The simplest way to find such equilibria in classical
general relativity is by solving the Einstein’s equations

Gμν ¼ κ2Tμν; ð17Þ

given a certain equation of state that determines the
energy-momentum tensor Tμν on the right-hand side.
The problem has been explored extensively, starting with
the treatment by Tolman many years ago [15]. Spherical
equilibrium for a perfect fluid with the equation of state
given by free fermions at zero temperature was studied by
Oppenheimer and Volkoff [16], and is by now textbook
material [17]. Let us briefly review the setup.
The most general rotationally invariant static metric can

be written as

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2; ð18Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the line element on the
unit two-sphere. The metric is assumed to be sourced by the
perfect fluid energy-momentum tensor. In the above static
coordinates, Tμ

ν ¼ diagð−ϵ; p; p; pÞ, where the energy
density ϵ and the pressure p are functions of r. The metric
Eq. (18) can be written in terms of the “potential” ΦðrÞ and
the “mass function” mðrÞ as

ds2 ¼ −e2ΦðrÞdt2 þ
�
1 −

2GmðrÞ
r

�
−1
dr2 þ r2dΩ2: ð19Þ

The tt and rr components of the Einstein’s equations give,
respectively

dm
dr

¼ 4πr2ϵ; ð20Þ

dΦ
dr

¼ Gm
r2

1þ 4πr3p=m
1 − 2Gm=r

: ð21Þ

Due to the spherical symmetry of the problem, the θθ and
φφ components of the Einstein’s equations carry the same
information. The θθ equation contains d2Φ=dr2, which can
be eliminated by combining it with the r derivative of
Eq. (21). This gives the equation
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dp
dr

¼ −
Gm
r2

ϵþ p
1 − 2Gm=r

�
1þ 4πr3p

m

�
: ð22Þ

We thus have three Eqs. (20)–(22) for four functions
mðrÞ, ΦðrÞ, ϵðrÞ, and pðrÞ, which are the Tolman-
Oppenheimer-Volkoff (TOV) equations. The conservation
of the energy-momentum tensor is automatic thanks to
∇μGμν ¼ 0, and does not have to be imposed as an
independent condition. The extra equation must therefore
come from the equation of state.
If we can express ϵ ¼ ϵðpÞ from the equation of state,

then Eqs. (20) and (22) give two coupled equations for the
two unknown functions mðrÞ and pðrÞ. These can be
solved for mðrÞ, pðrÞ with appropriate boundary condi-
tions, and the resulting solutions inserted into Eq. (21) to
determine the potential ΦðrÞ.
However, the equation of state can not usually be written

in the form ϵ ¼ ϵðpÞ. Namely, in the grand canonical
ensemble we have ϵ ¼ ϵðT; μÞ, p ¼ pðT; μÞ, where T is the
temperature and μ is the chemical potential (assuming one
species of particles). In other words, p is a function of two
independent variables, while ϵ is just one combination of
the two variables. So we have three equations, and four
unknown functions T, μ, m, Φ. To address this issue, note
that Eqs. (21) and (22) imply dp=dr ¼ −ðϵþ pÞdΦ=dr.
Extensivity in the grand canonical ensemble implies
ϵþ p ¼ T ∂p

∂T þ μ ∂p
∂μ, so that

∂p
∂T

�
dT
dr

þ T
dΦ
dr

�
þ ∂p

∂μ
�
dμ
dr

þ μ
dΦ
dr

�
¼ 0:

As ∂p=∂T and ∂p=∂μ are independent functions, this is
solved by

TðrÞ ¼ T̄e−ΦðrÞ; μðrÞ ¼ μ̄e−ΦðrÞ; ð23Þ

where T̄ and μ̄ are constants of integration. This is a
particular manifestation of the general statement that in
equilibrium both T and μ must be proportional to 1=

ffiffiffiffiffiffi
g00

p
[18]. Thus both T and μ are expressed in terms ofΦ, and we
in fact have only two unknown functions mðrÞ and ΦðrÞ,

for which we have the two Eqs. (20) and (21). Alternatively,
Eq. (23) implies that τ≡ T=μ is a constant that does not
depend on r. Then, for a given equation of state
pðT; μÞ ¼ pðτμ; μÞ, we have

dm
dr

¼ 4πr2
�
−pþ T

∂p
∂T þ μ

∂p
∂μ

�
; ð24aÞ

dμ
dr

¼ −μ
Gm
r2

1þ 4πr3p=m
1 − 2Gm=r

: ð24bÞ

At the origin r ¼ 0 we set mð0Þ ¼ 0, and μð0Þ ¼ μ0 to
some constant which determines the pressure at the center.
The Eqs. (24) are then integrated numerically starting
from the origin. If there is a point r ¼ R where the pressure
drops to zero, we have a star. The metric Eq. (19) then
describes the star for r < R, and has to be matched to the
Schwarzschild metric at R, so that mðRÞ ¼ M is the total
mass of the star. If the pressure never drops to zero, this
means the equation of state does not allow for stars, and we
have a spherical distribution of matter that fills the
whole space.
Another way to look at the TOV equations is to note

that for the general spherically symmetric metric Eq. (18),
the Einstein tensor is schematically of the form Gμ

ν ¼
diagðX; Y; Z; ZÞ, which has to be matched to Tμ

ν ¼
diagð−ϵ; p; p; pÞ. The TOV equations arise by enforcing
Y ¼ Z. On the other hand, for matter subject to a radial
gravitational field one in general expects Tr

r ≠ Tθ
θ. This is

because the r-dependent metric makes the radial and the
angular directions inequivalent, and there is no symmetry
that would enforce Tr

r ¼ Tθ
θ, or Y ¼ Z. This difference

between Tr
r and Tθ

θ which is not captured by the perfect
fluid model of matter is precisely what is described by the
effective Einstein’s equations (16) in a systematic way.
Let us now incorporate the effects of the gravitational

susceptibilities. Substituting the metric Eq. (19) into the
effective Einstein’s equations (16), with the matter energy-
momentum tensor given by Eqs. (13) and (14), the
equations for the potential and the mass function are

r2½ϵðf1 − f01Þ þ pðf2 − 2f01Þ� þ f1ð2f01 − f2Þ
2Gm
r

þ ½f1ð2f01 þ f2Þ − 2ðf021 þ f21Þ�2G
dm
dr

þ ½f1ð4f01 þ 2f001 − f2 − f02Þ þ f01ð2f001 − 3f2 þ f02Þ þ f2ðf2 − 2f001Þ�rðr − 2GmÞ
�
dΦ
dr

�
2

þ 2ðf01 − f1Þð2f01 − f2Þðr − 2GmÞ dΦ
dr

¼ 0; ð25aÞ

r3pþ 4f1Gmþ ðr − 2GmÞ
�
4ðf01 − f1Þ þ ð2f01 − f2Þr

dΦ
dr

�
r
dΦ
dr

¼ 0: ð25bÞ
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Here f1 ¼ 1=16πGþ f1;mðT; μÞ, where f1;mðT; μÞ is the
matter contribution. The susceptibility f3ðT; μÞ does not
contribute for a nonrotating configuration. The primes are
defined by Eq. (15), as before. It is easy to see that on
taking the zeroth order values for the susceptibilities,
f1 ¼ 1=16πG; f2 ¼ 0 in Eqs. (25a) and (25b) above,
one recovers the standard TOV equations (20) and (21).
The temperature and the chemical potential are still given
by Eq. (23), thanks to the general definition (5). Thus
Eqs. (25) are the leading-order modification of the TOV
equations by the matter’s response to curvature.

IV. FREE FERMIONS

For a given microscopic theory, the susceptibilities
f1;2;3ðT; μÞ that appear in the effective Einstein’s equa-
tions may be computed from equilibrium two-point
functions of the energy-momentum tensor, as derived
for example in [8]. In a noninteracting theory, the
energy-momentum tensor is quadratic in the fundamental
fields, and the susceptibilities are given by one-loop
diagrams that can be readily evaluated in the Matsubara
formalism [8–14].
The loop integrals will contain ultraviolet divergences,

reflecting the need to renormalize the susceptibilities.
Regulating the ultraviolet divergences with a large-
momentum cutoff, we have fn ¼ fn;UV þ fn;mðT; μÞ,
where the matter contributions fn;mðT; μÞ do not depend
on the cutoff and vanish as T, μ → 0. The cutoff-dependent
contributions fn;UV renormalize the parameters of the
effective action. Clearly, as f1 multiplies the Ricci scalar
in the effective action, f1;UV renormalizes the vacuum
Newton’s constant, so that f1 ¼ 1=2κ2 þ f1;mðT; μÞ. The
effective Newton’s constant that appears in the effective
Einstein’s equations (16) is then determined by

1

2κ2eff
¼ 1

2κ2
þ f1;mðT; μÞ: ð26Þ

The ultraviolet divergences in f2, f3, on the other hand,
have no physical meaning in a Lorentz-invariant micro-
scopic theory.2 As the presence of the terms a2, Ω2 in the
effective action is thermal state-specific, so must be the
susceptibilities f2, f3. Thus in the gravitational effective
action we have f2 ¼ f2;m, f3 ¼ f3;m.
For concreteness, let us consider free Dirac fermions

of mass mf in 3þ 1 dimensions. At T ¼ 0, the suscep-
tibilities fn are only nonzero for jμj > mf, just like the
pressure pðμÞ. Evaluating the one-loop diagrams, one finds
(see e.g., [14])

f1;m ¼ −
m2

f

48π2

�jμj
m2

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

q
− ln

�jμj þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

p
mf

��
;

ð27Þ

f2;m ¼ jμj
24π2

ð2m2
f − 3μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

p ; ð28Þ

f3;m ¼ −
jμj
96π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

q
: ð29Þ

At μ ¼ 0, we have fn;mðTÞ ¼ T2hnðmf=TÞ with dimen-
sionless functions hnðxÞ. Evaluating the one-loop dia-
grams, for T ≪ mf one finds asymptotic expansions

h1ðxÞ ∼ −
e−x

4
ffiffiffi
2

p
�
x1=2

3
þ x−1=2

8
−
5x−3=2

128
þ…

�
; ð30Þ

h2ðxÞ ∼ −
e−x

4
ffiffiffi
2

p
�
x5=2

3
þ 9x3=2

8
þ 235x1=2

128
þ…

�
; ð31Þ

h3ðxÞ ∼ −
e−x

16
ffiffiffi
2

p
�
x3=2

3
þ 5x1=2

8
þ 35x−1=2

128
…

�
: ð32Þ

At high temperatures, h1ð0Þ ¼ −1=144, h2ð0Þ ¼ −1=24,
h3ð0Þ ¼ −1=288 [8]. The functions hnðxÞ are shown
in Fig. 1.
At the leading order in the nonrelativistic semiclassical

limit mf
T ≫ mf−μ

T ≫ 1, the susceptibilities are proportional
to the particle number density n ¼ ðmfT=2πÞ3=2eðμ−mfÞ=T.
Restoring the factors of ℏ, we have

f1;m ∼ −
ℏ2

12

n
mf

; f2;m ∼ −
ℏ2

12

nmf

T2
; f3;m ∼ −

ℏ2

48

n
T
:

ð33Þ

At nonzero T and μ, the susceptibilities fn;m are plotted
in Fig. 2.

V. MATTER IN ANTI–DE SITTER SPACE

Consider uncharged conformal matter at temperature T
in four dimensions. The pressure is pmðTÞ ¼ c0T4, while
the gravitational susceptibilities are f1;mðTÞ ¼ 1

6
f2;mðTÞ ¼

φ0T2, where the constants c0 and φ0 are dimensionless in
the natural units ℏ ¼ c ¼ 1. For the conformally coupled
real massless scalar field c0 ¼ π2

90
, and φ0 ¼ 0.3 For free

massless Dirac fermions c0 ¼ 7
8
4π2

90
, and φ0 ¼ − 1

144
. For the

black-body radiation (gas of noninteracting photons)2For Lorentz-violating matter that breaks the Lorentz invari-
ance through a preferred timelike vector, f2;UV, f3;UV would
renormalize the corresponding coefficients in the gravitational
effective action. Tuning the Lorentz breaking parameter to zero
gets rid of the coefficients.

3For a massless scalar field in 3þ 1 dimensions, φ0 is
proportional to ð1 − 6ξÞ, where ξ is the coupling to curvature,
ξ ¼ 1=6 for the conformal coupling [8].
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c0 ¼ 2π2

90
, and φ0 ¼ − 1

36
. See Ref. [8] for a summary of the

calculations of f1;m and f2;m in free theories. For N ¼ 4

supersymmetric SUðNcÞ Yang-Mills theory at infinite
coupling and large Nc, a holographic calculation [19] gives
c0 ¼ π2

8
N2

c, φ0 ¼ − 1
16
N2

c. While c0 must be positive for
positive pressure, we are not aware of a general argument
that would fix the sign of φ0.
Let us now study the effects of conformal matter on

the anti–de Sitter space AdS4, with the cosmological
constant Λ ¼ −3=l2 < 0. Einstein’s equations in matter
are applicable when

lPl ≪ λth ≲ l; ð34Þ

where lPl ¼ 1=MPl is the Planck length, and λth ¼ 1=T is the
thermal wavelength. The first inequality is the applicability
of classical gravity, and the second is the applicability of the
derivative expansion for the matter’s generating functional.

Using α ¼ c0T4

M2
Pl=l

2, and γ ¼ φ0T2=M2
Pl, Einstein’s equations

in matter are applicable when jγj ≪ 1 and jγj ≲ α. We will
see below that violating the inequalities (34) will lead
to quantitative criteria of the breakdown of hydrostatics,
which are invisible for perfect-fluid matter.
The parameterα can be thought of as the ratio of the energy

density in matter to the energy density in the cosmological
constant. Thus the configuration is “matter-dominated”

for α ≫ 1 and “cosmological constant-dominated” for
α ≪ 1. A matter-dominated configuration implies ðTlÞ2 ≫
M2

Pl=T
2 ≫ 1, and thus the effects of the gravitational sus-

ceptibilities are small. In fact, for Tl ≫ 1 the configuration
would be on the high-temperature (black hole) side of the
Hawking-Page phase transition [20]. On the other hand, a
configuration that is cosmological constant-dominated with
α ¼ c0ðTlÞ2ðT=MPlÞ2 ≪ 1 can have Tl ∼ 1, and thus the
effect of the gravitational susceptibilities can be noticeable.
Note that the “thermal AdS” phase of the Hawking-Page
transition exists for Tl≲ 1

π, while the perfect-fluid approxi-
mation in AdS is valid for Tl ≫ 1. Hence the low-
temperature phase of the Hawking-Page transition cannot
be described by a perfect fluid in AdS. Perfect radiation fluids
in AdS4 were studied in Ref. [21]. Einstein’s equations in
matter (16) allow for a systematic calculation of the 1=ðlTÞ2
corrections to the perfect-fluid approximation.
The static metric takes the form (18), and the equilibrium

temperature is TðrÞ ¼ T0=
ffiffiffiffiffiffiffiffiffi
AðrÞp

. Using ρ≡ r=l, effec-
tive Einstein’s equations (16) give two equations for AðρÞ
and BðρÞ:

ρA0 þ A − ABð1þ 3ρ2Þ − α0
ρ2B
A

þ γ0

�ðρA0 − 2AÞ2
2A2

− 2B

�
¼ 0; ð35Þ

FIG. 2. Thermodynamic susceptibilities fn;mðT; μÞ=T2 for a gas of free Dirac fermions of mass mf , at various values of μ=mf . The
curves of different color correspond to the values μ=mf ¼ 0, 0.9, 1.1, 2.0, from top to bottom in each plot. As T → 0, all curves go to
zero for μ < mf, and diverge for μ > mf.

FIG. 1. The thermodynamic susceptibilities fn;mðTÞ=T2 for a gas of free Dirac fermions of mass mf at μ ¼ 0. The blues lines are the
exact values from the one-loop diagrams, the dashed lines are the low-temperature approximations of Eqs. (30)–(32).
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ρB0 − Bþ B2ð1þ 3ρ2Þ − α0
3ρ2B2

A2

þ γ0
A2

�
5ρ2A02B

2A
− 2AðρB0 þ B2 − BÞ

− 4ρBA0 þ ρ2A0B0 − 2ρ2A00B
�

¼ 0; ð36Þ

where α0 ≡ c0ðT0lÞ2ðT0=MPlÞ2, and γ0 ≡ φ0T2
0=M

2
Pl.

Note that Eq. (35) is an algebraic equation for BðrÞ, which
can be used to derive a second-order differential equa-
tion for AðrÞ. Without matter we have α0 ¼ γ0 ¼ 0, and
Eqs. (35) and (36) are immediately solved to give

BðrÞ ¼ 1

1 − a0
r þ r2

l2
; AðrÞ ¼ a

�
1 −

a0

r
þ r2

l2

�
; ð37Þ

where the integration constant a0 determines the mass of the
AdS-Schwarzschild black hole. We will set a0 ¼ 0 and
consider matter at temperature T in AdS, without the black
hole. The integration constant a can be absorbed into a
rescaling of time.
When γ0 ¼ 0 and α0 ≠ 0, Eqs. (35) and (36) describe the

backreaction of conformal matter, approximated as a
perfect fluid, on AdS. The solution for AðrÞ which is
regular as r → 0 has the following expansions

Aðr → 0Þ ¼ aþ
�
aþ α0

a

�
r2

l2
þ α0ða2 þ α0Þ

5a3
r4

l4
þ…;

ð38Þ

Aðr → ∞Þ ¼ b0
r2

l2
þ b0 − b1

l
r
þ…; ð39Þ

with integration constants a, b0, b1. The constant a
determines the temperature at the center, Tðr ¼ 0Þ ¼
T0=

ffiffiffi
a

p
. The constant b0 can be set to one by a normali-

zation of time. The remaining constant b1 determines the
mass of the configuration. The full solution for AðrÞ can be
constructed numerically to determine the large-r asymp-
totics of the metric and thus the mass of the configuration
for different α0 [21]. For a solution that is regular at the
center, the mass of the matter configuration (in units of
l=ð2GÞ ∼M2

Pll) is mðaÞ ¼ b1=b0.
With both γ0 and α0 nonzero, Eqs. (35) and (36) describe

the backreaction of conformal matter, taking into account
the leading 1=ðTlÞ2 correction to the perfect fluid model of
equilibrium matter. The solution for AðrÞ which is regular
as r → 0 has the following expansions

Aðr → 0Þ ¼ aþ a2 þ α0 − 4γ0a
a − 6γ0

r2

l2

þ ðα0 þ 2aγ0Þða2 þ α0 − 4aγ0Þða − 18γ0Þ
5aða − 6γ0Þ3

r4

l4

þ…; ð40Þ

Aðr → ∞Þ ¼ b0
r2

l2
þ b0 − b1

l
r
þ…: ð41Þ

The leading-order large-r asymptotics are not modified
compared to the perfect-fluid case, and the difference
between Eqs. (39) and (41) only comes at order
Oðl2=r2Þ and higher. The equation for AðrÞ can then be
integrated numerically starting with the initial condition
(40) in order to obtain the mass mðaÞ ¼ b1=b0.
The constants a and α0 must be positive, while the sign

of γ0 is not a priori determined. The third term in the
expansion (40) vanishes for γ0 ¼ −α0=ð2aÞ. In fact, for this
value of γ0, all the terms in the expansion (40) except for
the first two vanish identically, and one can easily check
that the AdS space AðρÞ ¼ að1þ ρ2Þ, BðρÞ ¼ ð1þ ρ2Þ−1
is an exact solution to Eqs. (35) and (36).4

The total mass is positive for γ0 > −α0=ð2aÞ, and
negative for γ0 < −α0=ð2aÞ, as illustrated in Fig. 3.
Correspondingly, the energy density of matter T00

m in the
right-hand side of Eq. (16) turns from being positive
everywhere in space to being negative everywhere in
space, as γ0 crosses the critical value −α0=ð2aÞ. Thus
we see that for matter with negative φ0 (such as free
photons), the mass of the static configuration of matter
becomes negative for

Tðr ¼ 0Þ < 1

l

�
2jφ0j
c0

�
1=2

: ð42Þ

Of course, one does expect on physical grounds that the
macroscopic fluid description of matter should become
physically inadequate when the temperature is sufficiently
small, Tl≲ 1. However, one has to go beyond the perfect-
fluid approximation of matter in order to see a quantitative
criterion for the breakdown of hydrostatics, Eq. (42).
This breakdown corresponds to the violation of the second
inequality in Eq. (34).
Another point to note is that the small-r expansion (40) is

really an expansion in ðr=lÞ=ða − 6γ0Þ, and therefore its
radius of convergence shrinks to zero as γ0 approaches a=6
from below. For γ0 > a=6, the equation for AðρÞ can still be
integrated numerically by using the expansion (40) and
starting at a sufficiently small value of ρ. The result appears

4Similarly, when a2 þ α0 ¼ 4γ0a, one finds an exact solution
AðρÞ ¼ a, BðρÞ ¼ ð1þ 2ρ2Þ−1, which is not asymptotically AdS.
This can happen for γ20 > α0=4, and at sufficiently high central
temperature, a < 4γ0.

PAVEL KOVTUN and ASHISH SHUKLA PHYS. REV. D 101, 104051 (2020)

104051-8



to be a solution which has b0 ¼ 0, and therefore the space
that is not asymptotically AdS. This happens for

Tðr ¼ 0Þ > MPl

ð6φ0Þ1=2
; ð43Þ

which we interpret as the breakdown of the classical
description at high temperatures. The criterion (43) arises
for matter with φ0 > 0, and corresponds to the violation of
the first inequality in Eq. (34).

VI. CONCLUDING COMMENTS

Starting with the equilibrium generating functional, we
have set up a framework to describe classical gravitational
fields with matter present. Equations (16) with the energy-
momentum tensor (13) and (14) are the gravitational
analogues of the electro- and magnetostatics in matter.
The temperature- and density-dependent correction to the
Newton’s constant is given by Eq. (26), with f1;m for Dirac
fermions plotted in Fig. 2, leftmost panel.
For normal quantum matter in flat space the effects of the

gravitational susceptibilities will be small. Consider the
example of the TOV equations. For the perfect fluid
approximation, the Einstein’s equations are schematically
of the form 1=L2 ≃m4=M2

Pl where L is a length scale, with
L2 coming from the two derivatives in the Einstein tensor,
1=M2

Pl ¼ 8πG, and m is the energy scale of the matter (this
gives L ≃MPl=m2, an estimate of a neutron star size for
m ≃ 1 GeV). With the gravitational susceptibilities taken
into account, schematically

1

L2
≃

1

M2
Pl

�
m4 þm2

L2

�
;

and the corresponding effects are ðm=MPlÞ2 suppressed.
This is expected, as the gravitational susceptibilities fn are

quantum-mechanical in nature—for classical particles in
external gravitational field the equilibrium partition func-
tion does not depend on the Riemann curvature.
The implications are more interesting in anti–de Sitter

space, where we have studied hydrostatic configurations of
uncharged conformal matter, such as a gas of free photons.
The perfect fluid model of matter is only physically
applicable for Tl ≫ 1, where l is the AdS radius.
However the Einstein equations coupled to perfect-fluid
matter exhibit no pathologies even for Tl≲ 1, and one
might be tempted to treat matter in AdS as a perfect fluid
even at low temperatures. The gravitational susceptibilities
studied in this paper allow for a systematic study of the
1=ðTlÞ2 corrections to the perfect-fluid approximation.
For free photons and fermions (as well as for the strongly
coupled supersymmetric Yang-Mills theory), the effect of
the gravitational susceptibilities is to reduce the total mass
of the hydrostatic configuration, and eventually to drive the
mass negative at small Tl, see Eq. (42). We interpret the
negative mass as the breakdown of macroscopic hydro-
statics. For example, for black-body radiation in AdS4,
macroscopic hydrostatics explicitly breaks down for

Tðr ¼ 0Þl <

ffiffiffiffiffiffiffiffi
5=2

p
π

≈ 0.5: ð44Þ

For the strongly coupled supersymmetric Yang-Mills
theory in AdS4, hydrostatics breaks down for

Tðr ¼ 0Þl <
1

π
: ð45Þ

Curiously, the last expression formally coincides with the
onset of the Hawking-Page transition. It is satisfying to see
how basic thermal physics of gravitational susceptibilities
“restores justice,” and explicitly disallows for the macro-
scopic hydrostatics at small Tl.

FIG. 3. Left: The metric component AðrÞ ¼ −g00ðrÞ as a function of z≡ 1=ð1þ r=lÞ for a ¼ 1 and α0 ¼ 1, obtained by solving
Eqs. (35) and (36) numerically. From top to bottom, the curves correspond to γ0 ¼ 0.1; 0;−0.1;−0.5;−1. The mass is determined by the
behavior of the curve at small z. As the value of γ0 falls below −α0=ð2aÞ, the curve changes from concave to convex, and the mass turns
negative. Right: the mass of the matter configuration at α0 ¼ 1 as a function of the constant a which determines the central temperature,
Tðr ¼ 0Þ ¼ T0=

ffiffiffi
a

p
. From top to bottom at large a, the curves correspond to γ0 ¼ 0.1; 0;−0.1;−0.5. For the perfect fluid (γ0 ¼ 0) the

mass is bounded from above by a number of order one [21]. For 0 < a < 6γ0, the space is no longer asymptotically AdS, and the curve is
cut off.
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