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The particle spectrum for collapse to an extremal Reissner-Nordstrom black hole is solved by use of the
corresponding moving mirror model. The amount of particles and energy flux is symmetric in delayed null
time as received by an observer at infinity. The star emits a total finite amount of energy carried by particles
that are not specified by a temperature. The finite energy limits the evaporation process yet an infinite
amount of particles with zero frequency characterize the radiation. At ultralate times the particle emission

spectrum is that of a uniformly accelerated mirror.
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I. INTRODUCTION

The extremal Reissner-Nordstrom (ERN) black hole has
played an important and fascinating role in fundamental
theoretical physics. It is the only static spherically sym-
metric black hole solution (electrovacuum) to Einstein’s
equations with zero surface gravity (i.e., undefined temper-
ature [1,2]), and has been central to our nascent under-
standing of the classical thermodynamics of black holes.
Furthermore, since extremal black holes have been crucial
for development of a statistical origin of black hole entropy
[3], their study has been fruitful for an understanding of
the quantum statistical mechanics of black holes.

On the experimental side, there is the dynamical Casimir
effect which has empirical confirmation (see [4] for a brief
timely review and numerous references therein), promo-
ting the 50 year old moving mirror model [5], to a labo-
ratory demonstration of spontaneous emission of particles
generated by an accelerated boundary condition. While the
single moving mirror model [6—8] has a long history as an
analog system for understanding late-time Hawking radia-
tion [9], it continues to provide new insights into the
equivalence principle’s impact on the emission of particles
in quantum theory [10,11] and the related Unruh effect [12].

The equivalence principle links both the collapse to an
ERN black hole and an asymptotically uniformly accel-
erating moving mirror [1] because the main property of the
incipient ERN is its zero surface gravity.

An observer moving along with the uniformly accel-
erated mirror will feel constant proper acceleration. This is
similar to the force of gravity upwards felt by a standing
observer on the Earth. Vice versa, by the equivalence
principle, the curved spacetime of the ERN black hole
results in zero acceleration of a static observer near the
horizon as measured at infinity.

A. Early times vs late times

The equivalence principle links the two systems but this
happens asymptotically at late times when the black hole is
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old. Our question is: what happens at early times? This is
where the literal information content concerning collapse,
as contained in the “extremal” radiation, is located. Twenty
years ago Liberati-Rothman-Sonego (LRS) found the late-
time behavior [1,13] of the spectrum of the ERN black
hole. That is, they were the first to see that an incipient
extremal black hole is modeled at late times by a uniformly
accelerated mirror. Our results provide a focus on the early
times by solving for the full all-time spectrum.

More specifically, the beta coefficients found by LRS are
those of the uniformly accelerated mirror (e.g., [8,14]), and
thus, only reveal that soft particles are created at some time
in the late stages of collapse, which does not necessarily
mean that particles carrying energy are emitted at late
times. In fact, the results of LRS demand there is no energy
radiated at late times. The soft particle production by itself
does not contain the energy or information relevant to
details of collapse, nor does it mean that particle creation
takes place at a steady rate. We shall demonstrate the
creation rate of all particles at all times, extracting infor-
mation about the collapse. We do this by time evolving the
particle creation with wave packet localization.

B. No-hair theorem and cosmic censorship conjecture

The spectra resulting from the 1 + 1 dimensional mir-
ror’s worldline is the same as that of the ERN black hole,
up to gray-body factors due to the unique ds*> of ERN
spacetime and due to the extra space dimensions of 3+1
geometry. LRS concluded that incipient extremal RN black
holes create particles with a nonthermal spectrum, and we
demonstrate that the full nonasymptotic solution does
indeed possess a nonthermal spectrum' for the ERN black
hole, even during early collapse. With an exact analytic
form of the global beta coefficients, the spectrum for all
times, both past and future, reveals the particle production

'"The thermal spectrum (eternal) is that from the trajectory of
Carlitz-Willey [15,16].
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evolution leading to the damping at late stages of collapse,
concluding that the no-hair theorem is preserved because
there is no way to extract information from infinite soft
particles at late times.

One should suspect the cosmic censorship conjecture
(CCC) to be violated because neutral scalar particles
evaporating leads to a lessening of mass, M, all the while
the star maintains a fixed charged Q, eventually leading to a
flippening where the overbalance Q% > M? results in a
naked singularity. However, we shall see that asymptoti-
cally the energy flux is zero, and only a finite amount of
energy is evaporated, so that an old ERN black hole does
not lose any more mass, despite the emission of particles.
The CCC is actually preserved by the quantized fields [17],
even though infinite particles (soft) are radiated. The results
answer the question of how, in the presence of quantum
radiation, the formation of a naked singularity is prevented.

This paper is organized as follows: Section II contains
the ERN metric and matching condition for collapse.
Section III constructs a moving mirror trajectory that
models the null shell collapse to an ERN black hole,
interpolating between vanishing velocity at early times
and constant acceleration at late times. In Sec. IV we
compute the stress tensor and total evaporation energy.
Section V demonstrates both the time-localized and
time-nonlocalized spectrum, particle count, a symmetry
in time, and compares with the eternally uniform accel-
erated mirror. In Sec. VI we discuss limitations and
extensions of the model, and in Sec. VII, we conclude.
Unitsare G =hA=c = 1.

II. EXTREMAL REISSNER-NORDSTROM

The outside metric of the ERN collapse system, see
Fig. 1, is given by the ERN geometry,

M\? M\ 2
ds2=—<l—> dt2+<1—> dr* +r2dQ*, (1)
r r

which is most simply interpreted as the exterior field of a
spherically charged dust cloud in equilibrium between
gravitational attraction and electrostatic repulsion [18].
Using the double null coordinate system (u,v), and
u=t—r* and v =1+ r*, with the appropriate tortoise
coordinate [19],

lr—M| M
* = 2MIn——— — 2
rf=r+ n—v 7 (2)
one has the metric for the outside collapse geometry,
ds> = —f(r)dudv + r*dQ?, (3)

where

FIG. 1. A Penrose conformal diagram of a collapse of a null
shell to form an extremal Reissner-Nordstrom black hole. The red
dashed line is the irremovable timelike singularity. The black-red-
dashed line is the position at » = 0 where modes pass through
r =0 but get lost nevertheless, never reaching Z*. The thin
dashed black line marks the last null ray that passes through r = 0
without hitting the singularity. The green line is the null shell, »,.
See Balbinot et al. [20], Fabbri-Navarro-Salas [19] and Carter
[18] for illustrative ERN diagrams.

= (1-4)" (@)

As can be seen, the horizon is at r = M, and near it,
spacetime looks like an infinite throat, see Fig. 2. The
surface gravity is calculated to be f'(r)|,_,; = 0. Perhaps
then, with this special “equilibrium,” one would be led to
think there is a temperature and that collapse may evolve to
absolute zero, but what then is the spectrum of radiation
during collapse? As is known, thermodynamics is not at
play here (or at least categorically different), and we will
show explicitly, the all-time spectrum is not Planckian.
Even though the system temperature is left undefined, it is
possible to find the nonthermal extremal Hawking radiation
spectra.

The matching condition (see e.g., [1,19-21]) between
the flat inside geometry, described by inside coordinates,
U=T-r,andV =T + r, s the trajectory of the incipient
black hole origin, expressed in terms of the outside
function, u(U), dependent on inside coordinate, U:

—4M1n <”H2;4U> . 65)

4M?

The matching happens along the shell, »y, where
vy — vy = 2M. Regularity of the field at r = 0 ensures
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FIG. 2. Infinite throat, r — M, with an asymptotically flat
region for the spatial geometry of the ERN metric, Eq. (1). Setting
r= M(1 + ¢), where ¢ is small, ds> ~ —*dt* + (M?*/e?)de* +
M?dQ?. The first two terms are AdS,, the last term is Sz,
The spacelike distance between an outside point and r = M
horizon 1is infinite as computed by the proper length,
L = [ f~'/2dr. Timelike curves (and null rays) reach the horizon
crossing the throat in a finite affine time. Evaluated at the horizon,
Eq. (1) has zero surface gravity: “float in the throat.”

the form of field modes, such that U <> v identification can
be made for the redshifting right movers. The mirror
trajectory, f(v) <> u(U), is then known, which we examine
in the 2next section in the more simple background of flat
space.

III. TRAJECTORY AND DYNAMICS

For a massless scalar field in 1 4 1 flat spacetime, the
corresponding  ERN moving mirror trajectory, where
k=1/(2M), and k(vy — vy) =1, is

1 2

——In(x(vy —v)).  (6)

f)=v+ vy —v) &

expressed in null coordinates (u, v) with u-function, f(v),
as a function of null coordinate advanced time v. The
inverse is the usual advanced time v-function, p(u), which
is a function of retarded time u. Perhaps more intuitively,
we express this motion in spacetime coordinates as a time,
t(x), function of coordinate space, x,

1

W —X. (7)

t(x) = vy —

*The geometry is not technically Minkowski because of the
presence of the mirror.

FIG. 3. The trajectory Eq. (7), in a spacetime plot, with different
scaling for asymptotic future proper acceleration, x. The red,
blue, green, black curves correspond to k = 1/2, 1,2,4, respec-
tively. The horizon has been set to v; = 0 for all the motions. The
mirror starts asymptotically static, but has uniform acceleration in
the far future.

The trajectory in spacetime coordinates is plotted in
a spacetime plot Fig. 3. A conformal diagram of the
accelerated boundary is given in Fig. 4.

The rapidity, #, as defined through [22],

f1(w) = e > n(v) = —%ln d];(:), 8)

as a function of advanced time, is

n(v) = In <1 _m) 9)

The limit in the far past, v - —o0 is # — 0; the mirror is
past asymptotically “static.” That is, only in the sense that
velocity approaches zero; but technically, the Minkowski
spatial coordinate, x =1 (v — u) diverges in the far past,
X — 400, as v - —oo. The early time behavior of the
trajectory underscores the nonuniform acceleration and
striking difference in past vs future states. The future limit
as advanced time v — vy, from below, is # - —c0. The
mirror rapidly travels left, off to the speed of light. The
proper acceleration [22], through

(10)

is a notably simple monotonic function of v,
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FIG. 4. The trajectory Eq. (7), in a Penrose conformal diagram,
with different scaling for asymptotic future proper acceleration, .
The red, blue, green, black curves correspond to k = 1/2,1,2,4,
respectively. This is the same color scheme of Fig. 3. The horizon
has been set to vy = 0 for all the motions.

O = o= 17 (1)

In the limit that advanced time approaches the horizon,

lim a = —«. (12)

v=vy

This character is the key defining dynamic trait of the
mirror, i.e., the mirror becomes uniformly accelerating in
the far future. Both the magnitudes of rapidity and

n.a

10

-10 -8 -6 -4 -2 v
FIG.5. The rapidity, |7(v)| of Eq. (9), is illustrated in a log plot
by the blue line that diverges (the mirror approaches the speed of
light) at the vy = 0 horizon, where x = 1 units. The proper
acceleration, |a(v)|, of Eq. (11), is illustrated in red, and
asymptotically approaches x which has been set to k = 1.

acceleration are plotted in Fig. 5 as a function of advanced
time, —oo < v < vy = 0.

IV. STRESS TENSOR AND TOTAL ENERGY

A. Stress tensor

Balbinot et al. [23] found that the stress energy tensor of
the nonextremal RN black hole stays regular in the extremal
limit and smoothly transitions to that of nonextreme black
holes. Contrary to previous studies, it was shown that the
expectation values of the quantum stress energy tensor for
our massless scalar field living on a 1 4+ 1 dimensional
ERN black hole background are indeed completely regular
on the horizon [20]. These results provide confidence to
utilize the stress tensor in the moving mirror model,
integrated to the horizon, which we use to find total
evaporation energy. The moving mirror stress-energy
tensor resulting from point splitting [6,7,22] in light cone
coordinates is (T,,) = (T,,) = (T,,) = 0, with the only
nonzero component being the Schwarzian derivative of
Eq. (6) [24],

(Tu) = F(o) =51 ()0} )2 (13)

where the Schwarzian brackets are defined as

vo. =52 (%) (14

which yields

K (k(vy —v))*

F) = e teton — o) £ 1

(15)

The maximum flux, F,, = (3842M?)~", is half as much as
the usual Hawking flux for a Schwarzschild black hole,
Fy = (768zM?)~!, comparing equal mass stars (“‘charged”
vs uncharged). Even though charged black holes are colder
than neutral black holes, recall that the ERN cannot be
characterized by temperature [1,2], so it is not actually
cooler, in spite of the intuitive result, Fp = 2F,,.

It is worth mentioning there is no transient negative
energy flux. Recall that advanced time ranges from
—o0 < v < vy. This range is illustrated in Fig. 6, and
one observes the flux is always positive. This is a relatively
unusual trait among solved moving mirrors, as all currently
(2020) solved drifting mirrors are accompanied by negative
energy flux (e.g., [25]). Negative energy flux is a require-
ment for mirrors that are asymptotically static or drifting
[26]. To look across space, we can express the flux in
spacetime coordinates via

1 t///(trz _ 1) _ 3t/l‘”2

P = v 7 (16)
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F(v)

1.0 —0.8 —06 —04 ~02 00 V

FIG. 6. The energy flux, F(v), Eq. (15), radiated by the ERN
moving mirror is illustrated in advanced time with horizon at

v = vy = 0. The units are k = /384, so that the maximum flux
is normalized to F,, = 1. The time is v = —1/k = —2M, when
the flux is maximum.

where primes are derivatives with respect to space coor-
dinate x. One gets

B 452 W(% e—K)C)3
o) = S awe ™) L 18

(17)

This form is more intuitive, since there is no bound in
space, i.e., the mirror covers the space, +00 > x > —o0,
i.e., it travels the entire Minkowski grid, but starting from
X = 400, moving left. The flux, F(x), is plotted in Fig. 7.

B. Total energy

The total energy observed by our observer at 75 (see
e.g., [27]) is worth calculating, even though the mirror
accelerates forever, using Eqgs. (15) and (6),

F(x)

k

-1.0 -0.5 0.0 0.5

1.0 X

FIG.7. The energy flux, Eq. (17), radiated by the ERN moving
mirror is illustrated in space, F(x), by the blue line, in units where
k = v/384x, so that the maximum flux is normalized to F,, = 1.
The location this happens at is x = —1/(2x) = —M. Recall that
the mirror moves to the left, so that x = 400 is asymptotic past
times, t = —oo. By plotting in space, x, we have extended the
coordinate variable to all oo, in contrast to Fig. 6.

E= /_”” F(v) dj;(:) dv, (18)

(e8]

where we integrate over delayed time, du, necessitating the
introduction of the Jacobian f’(v), and only up to the
horizon, vy. The spacetime result, Egs. (17) and (7), is also
convenient via numerical integration,

E= /;” F(x) (%— l)dx, (19)

because the bounds are infinite, remembering the mirror
moves to the left starting at x = 4+o0. The total energy
result is analytic,

hx

E = T (20)
While positive flux is accordant, finite energy is more than
welcome. All known asymptotically drifting mirrors emit a
finite amount of energy (see e.g., [28-30]). In contrast,
most known null mirrors, i.e., those that attain the speed of
light, produce an infinite amount of energy. This mirror
maintains finite nonzero energy and asymptotic light speed
with its eternal asymptotic constant acceleration.’ The finite
energy, E, of Eq. (20), prevents the formation of a naked
singularity by the emission of neutral scalar particles, since
the evaporation of the energy carrying particles is strictly
limited.

V. SPECTRUM AND PARTICLE COUNT

As we have mentioned, LRS [1] are well aware that the
quantum radiation emitted by an incipient extremal black
hole is not characterized by a temperature at any time
during collapse, which has been backed up by Anderson-
Hiscock-Taylor who found that macroscopic zero temper-
ature black hole solutions do not exist [2]. The radiation is
not characterized by temperature or a Planck distribution at
all. Our results confirm these findings, and we extend this
program of investigation further by solving for and ana-
lyzing the nonthermal spectrum. The beta Bogolubov
coefficient can be found via

ﬁww’ = dve—ia)'v—iwf(v) (C()f/(’lJ) - COI), (21)

—1 / vy
davow' J-x
by setting the horizon vy = 0 for convenience and defi-

niteness (horizon position will not affect the spectrum
because of complex conjugation). The result is

*One unsolved mirror that has finite energy but accelerates to
infinite proper acceleration is investigated in [31].
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K

—ie % o [ w\% 2
)= —(— K,| - , 22
oo (2) & (Cvam ). @2

K (l)P a)p

where 0, =w+ o',and a = 2’7‘” + 1. On our way to obtain
the spectrum, the complex conjugate is taken,

2
K, . ow,

which is the particle count per mode squared. The spec-
trum, which is the main result of this paper, along with its
time localization Eq. (28), is then

_2”_10/

e « @
Bour I* = .
P

@

N, = /°° |ﬁww’|2da)/’ (24)
0

plotted in Fig. 8. An infrared divergence, signaling soft
particles [32], and infinite total particle count,

M= / " o [Pdarda. (25)
0

is illustrated. The divergence of global particle count at zero
frequency is unsolved in the moving mirror model for
nonasymptotically static mirrors [33,34]. At this juncture, it
is good to test our intuition, that the particles (even though
infinite) carry the energy [35]. A consistency check is
warranted on the result, Eq. (23). Summing up all the
energies of each particle should yield the total finite energy:

00 h
E :/ | oy [Pdrder’ =~ (26)
0

361"

Indeed, this is not hard to check. The result confirms the
answer, Eq. (20), obtained by use of the stress tensor.

. . . w
0.001 0.010 0.100 1

FIG. 8. The particle spectrum, Eq. (24), in a log-log plot,
demonstrating an infrared divergence, for @ — 0. This signals
infinite total particle count due to the soft particles at @ = 0.

A. Time evolution of particle production

The time dependence of particle creation can be com-
puted via wave packet analysis suggested by Hawking [9],
and elaborated by others [26,36]. Wave packet localization,
particularly via orthonormal and complete sets in the
moving mirror model is described in detail in several
works [25,37-39]. A plot of the particle creation in time
is given in Fig. 9. The rate of emission of particles is finite
in a given time and frequency interval which can be
seen by constructing a complete orthonormal family of
wave packets from the beta Bogolubov coefficients.
Following Hawking’s notation, we let

1 (j+1)e

_ dweZn’ia)n/eﬂww, , (27)
\/E Jje

ﬂjna}’

where j > 0 and n are integers. These packets are built at
future right null infinity, I,Jg, and peak at delayed exterior
time, u = 2zn/e, with width 2z /¢. Therefore the vertical
axis in Fig. 9 has a discrete and intuitive physical
interpretation, giving the counts of a particle detector
sensitive only to frequencies within € of w; = je, for a
time 2z/e at u = 2zn/e. Late times correspond to large
quantum number n. For excellent time resolution, only one
frequency bin is needed, where the particles pile up, j = 0,
and a relatively large value of € resolves the count in time.
Following the text of Fabbri-Navarro-Salas [19], Fig. 9 may
be reconstructed by first packetizing the beta coefficient as
done in Eq. (27), second numerically integrating over o’
from 0 to oo as in Eq. (24), and third, computing the
results, N,

j=0, k=1, €=2.
N,
0.030
0.025
0.020
0.015

0.010

0.005

0.000

-

FIG.9. The particle count in time, via wave packet localization.
The detector is set with ¢ = 2. The scale of the system is k = 1
and the frequency bin is in the lowest possible j = 0 value, where
most of the particle production occurs, and finer resolution in
time is possible. This emission includes the “phantom radiation”
of [1]. It is symmetric in delayed time, u, centered around time
bin n = 0.
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+o00
Njn = /O dwllﬂjnw’ 27 (28)

for each individual time bin, n, for a set frequency bin, j (in
our fine-grained time resolution case, j = 0).

The symmetric distribution of particle production in
Fig. 9 looks at odds with the asymmetric energy flux
production of F(x) and F(v) in Figs. 6 and 7, respectively.
The energy is carried by the particles, as we have seen, but
is it carried asymmetrically in time? The time bins n
correspond to delayed time u = ¢ — x. This compels a third
look at the flux, now as F(u), to confirm suspicion that the
asymmetry is a coordinate artifact. This can be done
numerically, by an inverse function technique applied to
f(v), Eq. (6). Using asymptotic acceleration units, the
result for the flux is

p(u)’

P = = ol =1

(29)

plotted in Fig. 10. The result is symmetric in delayed time
u, and the total integrated flux,

E= /ﬂo F(u)du, (30)

o

is in agreement with the total energy, Eq. (20). The
symmetry here confirms the energy is carried symmetri-
cally in delayed time, u, as also observed by a detector at
T}, receiving the particles, delayed in time, u.

F(u)

1.

-20 -10 0 10 20 u
FIG. 10. The energy flux, F(u), Eq. (29), radiated by the ERN
moving mirror is illustrated in delayed time u with horizon at
v = vy = 0. The units are k = /384, so that the maximum flux
is normalized to F,, = 1. The time is u = 0, when the flux is
maximum. This plot demonstrates symmetry in delayed time,
reflecting the symmetry of particle production in delayed time
bins, n, of Fig. 9.

B. Uniform acceleration spectra

To ensure consistency of the results at late times, it is
necessary to compare the spectra of uniform acceleration
with the ERN spectra, Eq. (23). The uniformly accelerated
mirror, & = —K,

u
= , 31

p(w) = = (31)

with early-time horizon positioned at uy = —x~!, has a

spectrum that is solved via

ﬂa){u' = due—iuw—ia)’p(u) (a)’p’(u) - C()), (32)

1 / o
dzvow' S
via a simple substitution, 1 + xu = kX, so that the range of
integration can be extended over X. A Heaviside theta
function assists in further extension to cover (—oo, +00)
integration. The result is

. iw-o’)

x 2
ﬁww’ = « Kl <_ a)w/> . (33)
K

7K
The phase vanishes upon complex conjugation,

1

|ﬂa)w’|2 = F

K K

K, <2 \/a)—a/> '2. (34)

This is the spectrum of a uniformly accelerated mirror,
distinctly nonthermal [7,8,14]. It is straightforward to
compare Eq. (34) with Eq. (23) at late times to leading
order, using the high frequency limit [9], @’ > ®, and one
finds identical spectra. The qualitative idea connecting late
times to this high frequency limit is that in the far future
incoming modes that reflect off the mirror become
extremely redshifted by the very fast (near the speed of
light) receding boundary. The main contribution to the beta
coefficient comes from very high frequency incoming
modes, and therefore are governed by the asymptotic form,
Eq. (34), for high @' > @ which is independent of the
details of the collapse.

VI. DISCUSSION

The connection between the moving mirror in flat
spacetime and the collapsing star in curved space is most
closely characterized by the matching condition, Eq. (5),
and the moving mirror position, Eq. (6). The matching
condition is the delayed outside light coordinate position,
u(U), of the origin of the incipient black hole expressed as
a function of the delayed inside light coordinate, U. In the
moving mirror case, this is the delayed light coordinate
position, f(v), of the boundary as a function of the
advanced light coordinate position, ». It is the regularity
condition on the field modes that allows the curved
spacetime system to be described in the more simple
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setting of flat spacetime by an accelerated perfectly
reflecting boundary. The fact that the origin effectively
reflects the modes, where no field exists behind r < 0,
assists in the exact calculation of the resulting particle
creation from the beta Bogolubov coefficients, Eq. (22). In
the following two subsections we address some immediate
and interesting limitations and extensions of this
connection.

A. Limitations

Our approach has been to keep everything as simple as
possible by utilizing the moving mirror model, but the need
to accept complications when clearly unavoidable is
obviously present with respect to numerous physical
aspects. While conceptually clear, the extremal RN moving
mirror model is ultimately extremely limited, for instance:

(1) Gray-body factors: The spectra will be altered by
backscattering [1,19] and the nontrivial metric co-
efficients of spacetime. These affects are not ac-
counted for in the moving mirror model.

(i) Dimensionality and spherical symmetry: In order to
appropriately generalize to 3 4+ 1 dimensions, the
powerful simplification due to spherical symmetry
apparently severally restricts utilization of the
model; however some aspects have carry-over
[40], e.g., zero surface gravity.

An additional important caveat here is the nature of the
fine-tuned collapse. LRS assumed that models can be found
in which collapse leads to a black hole with maximum
charge [1]. The fine-tuning required to produce
extremal solutions makes the question of their existence
nontrivial [41]. The fine-tuning exists because of the
extreme sensitivity to effects of backreaction [42] of the
quantum radiation on the metric or the mirror. Nevertheless,
as we have shown, interesting information can be
found by assuming collapse occurs and deducing the
consequences.

B. Extensions

Immediate extensions are possible. First, a calculation of
the variance of the stress tensor is warrented. The asym-
ptotic value of the two-point function does not tend to zero
which is the thermal emission value. This could shed light
on the information contained in the stress energy above and
beyond what is apparent from the tensor alone, i.e.,
exponential fast damping exhibited by nonextreme collapse
vs power law damping exhibited by the ERN solution [1].

Second, and particularly interesting, is a better under-
standing of the @ = 0 singularity responsible for the soft
particle divergence [32]. Removal by radiative corrections
analogous to bremsstrahlung cross section cancellation
may be possible [1], accounting for momentum transfer
from field to mirror (recoil). It may also be possible to
simply regularize the spectrum by the uniform acceleration

contribution, since only soft particles are characterized by
these colors.

Third, a concrete demonstration of the (in)stability
[41,43,44] of the moving mirror dynamics would be useful,
as early collapse emission could cause asymptotic runaway
acceleration or asymptotic zero acceleration, pushing the
system out of gravitational-electrical equilibrium. Different
dynamics can lead to a calculation of radiation for the
nonextreme RN mirror. We will demonstrate this spectrum
in a separate paper.

VII. CONCLUSIONS

We have solved the ERN black hole-moving mirror
correspondence.4 In particular we have made progress on
several fronts:

(i) Trajectory: We have identified a flat spacetime
moving mirror trajectory that models the collapse
of a null shell to an ERN black hole. The accel-
eration is not uniform: it increases from zero at
asymptotically early times to a nonvanishing con-
stant at asymptotically late times. Measurement of
particle production at early times can violate the no-
hair theorem, demonstrating details specific to the
form of collapse.

(ii) Finite energy: Despite reaching asymptotic light
speed, with never ending uniform acceleration, the
evaporation process finishes. This is signaled by the
computed finite energy, E = (72zM)".

(iii) Spectra: We have derived the analytic global (time-
nonlocalized) beta coefficients for evaluation of the
spectra. Detection, even if possible, of arbitrarily low
frequency soft particles at late times registering
nonzero detector probability, will not allow one to
determine the spectra of collapse. Having the time-
nonlocalized spectra, in the form |f,,,|>, means we
can possibly screen our detector from the nonin-
formative (no information-carrying) flux of soft
particles.

(iv) Time evolved particle count: The evolution (time
localized) of particle creation is demonstrably non-
thermal, and in fact peaks in out-of-equilibrium early
time. The nonsteady rate explicitly verifies a non-
Planckian distribution. The particle count is damped
in the far past and far future. The ERN black hole
releases information (e.g., [49]) quickly (before late
times) and the half-way point of collapse is remi-
niscent of [50] where the black hole acts like a
quantum information mirror.

With respect to (1) the cosmic censorship conjecture (CCC)
and (2) the no-hair theorem: (1) we have shown that
quantized fields can preserve the CCC, preventing the
formation of a naked singularity analog in the mirror

*The Schwarzschild mirror is solved here: [45-48].
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system, by demonstrating the limiting energy emission and
late-time zero energy flux. The ERN does not lose mass at
late times. Thus, we maintain cosmic censorship. (2) The
no-hair theorem is seemingly violated because the particle
spectrum (as computed from the global beta coefficients),
valid for nonlocalized and localized times, is dependent on
the evolution of initial collapse. The key difference is the
late-time behavior, which in fact does not depend on the
details of early collapse, actually preserves the late-time no-
hair theorem. You lose hair when you are old.
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