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In the early 1980s, R. Rüdiger published a pair of articles in which the most general conserved charges
associated to the motion of particles with spin moving in curved spacetime were found. In particular, it was
shown that besides the well-known conserved quantity associated to Killing vectors, it is also possible to
have another conserved quantity that is linear in the spin of the particle if the spacetime admits a Killing-
Yano tensor. However, in these papers it was proved that in order for this new scalar to be conserved, two
obscure conditions involving the Killing-Yano tensor and the curvature must be obeyed. In the present
paper we try to shed light over these conditions and end up proving that this conserved quantity is useless
for most physically relevant spacetimes. Notably, for particles moving in vacuum (Einstein spacetimes) this
conserved scalar constructed with the Killing-Yano tensor will not help on the integration of the equations
of motion. Moreover, we prove that, as a consequence of these obscure conditions, the Killing-Yano tensor
must be covariantly constant.
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I. INTRODUCTION

It is well known that in Einstein’s gravitational theory,
point particles that are free, i.e., interacting just with the
gravitational field through the curved spacetime, moving
along geodesics. However, if the particle has a finite size, as
all classical particles certainly do, it can carry internal
angular momentum which, in turn, couples to the gravi-
tational field and deviates the particle from the geodesic
path. Indeed, energy can be stored in the form of angular
momentum and, due to the Equivalence principle, any form
of energy will respond to the gravitational field. Here we
shall refer to this internal angular momentum that stems
from the rotation of the particle around its own center of
mass as “spin.” The equations that dictate the motion of a
test particle with spin are called Mathisson-Papapetrou-
Dixon (MPD) equations and are given by [1–3]

� _Pμ ¼ − 1
2
Rμ

ναβV
νSαβ

_Sαβ ¼ PαVβ − VαPβ
: ð1Þ

In these equations, P is the linear momentum of the particle,
and Sαβ ¼ S½αβ� is its intrinsic angular momentum, whereas
Vμ is the normalized velocity, VμVμ ¼ 1. The dot repre-
sents a covariant derivative along the movement of the
particle. For instance, _Pμ ¼ Vν∇νPμ. In particular, if a
particle is pointlike, its moment of inertia vanishes, which
in the classical realm implies that it cannot store energy in

its spin. In the latter case we would have S ¼ 0, so that the
second equation above implies that P and V are propor-
tional to each other, whereas the first equation yields that
the movement is geodesic, as it should be. It is worth
pointing out that these equations assume the so-called pole-
dipole approximation, where multipoles of the energy-
momentum tensor with order higher than 1 in the deviation
from the center of mass are neglected. In the case of highly
inhomogeneous gravitational fields and high spins, the
quadrupole degree of freedom can be as important as
the dipole term [4]. For a nice summary of some of the
advances and lines of research on this topic up to the year
2007, see Ref. [5]. For a more recent review on the theme,
the reader is referred to [6].
If a spacetime admits a Killing vector field K then it

follows that the scalar PμKμ is conserved along a geodesic
vector field P with affine parametrization. Likewise, if
Nμν ¼ NðμνÞ is a Killing tensor then the quadratic scalar in
the momentum PμPνNμν is also conserved along geodesics.
Moreover, if Yμν ¼ −Yνμ is a Killing-Yano (KY) tensor
then Nμσ ¼ YμνYν

σ is a Killing tensor, so that KY tensors
can be used to generate conserved charges along the
geodesics that are quadratic on the momentum. These
conserved charges are of central importance in the inte-
gration of the geodesic equation and, therefore, for
obtaining the path followed by pointlike free test particles.
For instance, the geodesic motion on Kerr background can
be fully integrated thanks to the existence of two Killing
vector fields and a KY tensor [7,8]; see also [9,10] for
higher-dimensional examples. However, it turns out that
Killing tensors and KY tensors are also associated to the
separability of field equations other than the geodesic
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equation, as Klein-Gordon, Maxwell, and Dirac equations
[11,12], as well as the gravitational perturbation equation
[13,14]. Therefore, it is natural to wonder whether Killing
vectors and KY tensors lead to conserved charges for the
movement dictated by Eq. (1).
Concerning Killing vectors, it is well known that they

yield conserved charges for the MPD equations. More
precisely, if K is a Killing vector field then the scalar

QK ¼ PμKμ þ
1

2
Sμν∇μKν

is such that _QK ¼ 0 whenever Eq. (1) is assumed to hold.
Regarding the role of Killing tensors and KY tensors as
generators of conserved charges for the MPD equations,
some important results are not widespread in the literature.
Important conclusions on this matter have been attained by
R. Rüdiger in two articles published in early 1980s [15,16].
In spite of obtaining solid and useful results, these works
got little attention and have very few citations. In particular,
it has been proven there that if Y is a KY tensor then the
scalar

QY ¼ SαβỸαβ ð2Þ

can be a conserved charge for the MPD equations, where Ỹ
stands for the Hodge dual of Y, which is a closed conformal
KY tensor. The interesting thing about the conserved scalar
QY is that it is linear in the angular momentum, whereas for
the geodesic motion, KY tensors are associated to con-
served charges that are quadratic on the linear momentum.
However, the conservation of QY holds only if a pair of
additional conditions involving Ỹ, its derivative and the
curvature, are obeyed. However, as presented in Ref. [15],
these additional conditions are very obscure and their
consequences have not been worked out so far. The aim
of the present article is to shed light over those conditions.
More precisely, by manipulating these additional con-
straints along with the integrability conditions necessary
for the existence of KY tensors, we will conclude that in
most physical scenarios the charge QY will be of no
practical relevance.
The outline of the present article is the following. In

Sec. II the procedure used by Rüdiger to obtain the scalar
QY and the additional conditions necessary for it to be
conserved is shown. Some improvements on the deduction
are done as well as a sign correction in one of Rüdiger’s
equations. Then, in Sec. III KY tensors and their integra-
bility conditions are reviewed. Section IV then presents the
main results of this article. There the additional conditions
for the conservation of QY are worked out along with the
integrability conditions necessary for the existence of a KY
tensor. It is then obtained that the range of spacetimes,
such that QY lead to a useful conserved charge, is very
narrow. Some examples of spacetimes allowing a nontrivial

conserved scalar QY are then found in Sec. V. Finally,
conclusions are summed up in Sec. VI.
Before proceeding, let us establish some notational

conventions. Indices enclosed by round brackets are
assumed to be symmetrized, whereas square brackets
denote antisymmetrization of indices, so that TðabÞ ¼
ðTab þ TbaÞ=2 and T ½ab� ¼ ðTab − TbaÞ=2; in addition,
the tilde over a skew-symmetric tensor stands for the
Hodge dual operation, S̃μν ¼ 1

2!
Sαβϵαβμν. In what follows

it a four-dimensional spacetime endowed with a metric and
the Levi-Civita connection is always assumed.

II. RÜDIGER’S CONSERVED CHARGE

In this section, we follow the steps adopted by Rüdiger in
Ref. [15] in order to obtain the most general conserved
scalar for the spinning particle that is linear in its momenta
(linear and angular). However, in order to attain the desired
result it is first necessary to digress about the supplemen-
tary condition required in order to complement MPD.
Note that the unknowns of Eq. (1) comprise thirteen

degrees of freedom, four from Pμ, six from Sμν and three
from Vμ, since the velocity is assumed to be normalized,
VαVα ¼ 1. However, MPD equations amount to ten con-
straints. Thus, three further constraints are necessary. The
two most popular supplementary conditions adopted in the
literature are the Pirani condition, defined by SαβVβ ¼ 0,
and the Tulczyjew condition, defined by SαβPβ ¼ 0. Note
that, although both conditions seem to impose four con-
straints, since there is one free index in these equations, the
skew symmetry of Sαβ implies that just three directions of
this free index yield actual constraints. For instance,
projecting the constraint SαβVβ ¼ 0 in the direction Vα

yields 0 ¼ 0, which represents no constraint. From the
physical point of view, the nonuniqueness of the supple-
mentary condition stems from the fact that our particle is
assumed to be finite, so that there are an infinitude of points
inside the body that one can use to define the orbit of the
body, each choice leading to a different trajectory and a
different velocity. However, the orbits predicted by the
several options are all close to each other for small spin;
actually, they are all contained in the world tube of the
particle [5]. The two choices mentioned above are just two
popular ones due to the fact that the vectors Vα and Pα are
naturally defined in the theory. Thus, in a sense, these
choices do not break covariance. Following Rüdiger’s
choice, here we adopt Tulczyjew condition, namely,
SαβPβ ¼ 0. This is the usual choice for massive particles,
since in flat spacetime it is associated to a unique trajectory,
whereas Pirani’s condition allows some freedom.
Assuming SαβPβ ¼ 0, it follows that μ2 ¼ PαPα and

SαβSαβ are both conserved along the orbit. But, for the goal
of the present work, the most relevant feature of the latter
condition is that it implies a relation in which the velocity is
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explicitly written in terms of the linear momentum P and
spin vector Σ, as we shall prove in Eq. (6).
It is worth mentioning that for massless particles,

however, the condition SαβVβ ¼ 0 seems to be more
adequate, as argued, for example, in Refs. [17,18].
Beyond the two supplementary conditions above, a relaxed
version of the Tulczyjew condition, SαβPβ ∝ Pα, was
proposed in [19] for massless particles.
Contracting the spin equation in (1) with Pβ and using

the derivative of the supplementary condition SαβPβ ¼ 0,
we eventually arrive at

Vν ¼ m
μ2

Pν −
1

2μ2
SναRαβγδVβSγδ; ð3Þ

where m ¼ PμVμ and μ2 ¼ PαPα. Then, defining

a≡ m
μ2

; and Dν
β ≡ −

1

2μ2
SναRαβγδSγδ;

it follows that the above expression can be written as

Vν ¼ aPν þDν
βVβ:

This expression can be iterated by inserting itself in the
right-hand side, so that we end up with

Vν ¼ aPν þDν
β½aPβ þDβ

σVσ�
¼ aPν þDν

β½aPβ þDβ
σðaPσ þDσ

ρVρÞ�
¼ a½Pν þDν

β1P
β1 þDν

β1D
β1

β2P
β2 þ � � ��: ð4Þ

Thus, we have just found an expression for V in terms of
the momenta, although in the form of an infinite series. It
would be nice to sum this series and attain a finite formula
on the right-hand side, as we shall do in the sequel.
The supplementary condition SαβPβ ¼ 0 implies that

there exists some vector Σμ, dubbed spin four-vector, such
that

Sαβ ¼ ϵαβμνΣμPν: ð5Þ

Moreover, since the transformation Σμ → Σμ þ λPμ does
not change the above expression for Sαβ, for an arbitrary λ,
and since we are assuming that μ2 ¼ PμPμ ≠ 0, it follows
that we can impose that ΣμPμ ¼ 0. This imposition
represents not loss of generality. Thus, Σ has 3 degrees
of freedom. One can then prove that S½αβSμ�ν ¼ 0 holds as a
consequence of Eq. (5). Then, using the latter relation, one
can establish that

Dν
β1D

β1
β2P

β2 ¼ 1

2
Dν

β1P
β1Dβ2

β2 ¼
d
2
Dν

β1P
β1 ;

where d≡Dβ
β. From the latter relation, it then follows that

Dν
β1D

β1
β2D

β2
β3P

β3 ¼
�
d
2

�
2

Dν
β1P

β1 :

Thus, the series (4) can be written as

Vν ¼ a
�
Pν þDν

βPβ
X∞
n¼0

dn

2n

�

¼ aPν þ aDν
βPβ

1 − d=2
: ð6Þ

Inserting the definitions of D and d, we finally arrive at the
desired relation. Thus, for the supplementary condition
SαβPβ ¼ 0, it follows that the basic degrees of freedom are
Pα, Σα, andm≡ PαVα. Equation (6) has first been obtained
in Ref. [20] by using an interesting approach to MPD
equations based on symplectic structure on a suitable phase
space. In addition, Ref. [20] also provides a generalization
of the relation (6) for the case in which the spinning particle
is electrically charged and interacts with an external
electromagnetic field. Later, Eq. (6) has been reobtained
in Ref. [15] by following different steps. However, both
deductions make use of a particular reference frame,
whereas here no covariance breaking was necessary.
Analogously, an expression for the velocity in terms of
the momentum and the spin tensor can also be attained for
Pirani’s supplementary condition, as recently proved in
Ref. [21]. The latter relation turns out to be equivalent to
Pirani’s supplementary condition, so that when we sub-
stitute the spin tensor in terms of the spin vector we end up
with a trivial identity. This is the reason why such a relation
would hardly be helpful for finding the conserved quan-
tities of the MPD equation as we do in the sequel. However,
the relation found in Ref. [21] proved to be valuable in the
integration of MPD equations.
Once Eq. (6) is established, we are ready to look for the

conserved charges following the steps of Ref. [15]. The
most general scalar that is linear in the momenta is given by

Q ¼ KμPμ þ LμνSμν; ð7Þ

for some tensors Kμ and Lμν ¼ L½μν�. Now, let us impose
that Q is conserved along the particle’s trajectory and then
verify what conditions this requirement implies for tensors
K and L. More explicitly, assuming _Q ¼ 0, it follows that

Vα

�
∇αKμPμ−

1

2
KμRμ

αβγSβγ þ∇αLμνSμνþ2LμαPμ

�
¼ 0;

ð8Þ

where MPD equations have been used. The next step is
replacing Vα in terms of the momenta, by means of (6) and
finally write Sαβ in terms of the spin vector Σα, so that the
supplementary condition is already taken into account.
Doing so, we end up with a relation containing just the
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fundamental degrees of freedom, namely, Pα, Σα, and m.
The next step is to impose that Eq. (8) holds for arbitrary
values of these independent degrees of freedom. This was
the procedure adopted by Rüdiger in Refs. [15,16]. The
dependence on m is not relevant, since it factors out as a
collective multiplicative factor. Since Pα and Σα are
independent of each other and arbitrary, terms with differ-
ent powers of these degrees of freedom must vanish
independently. For instance, the unique term in Eq. (8)
that is of order two in P and of order zero in Σ is
∇αKβPαPβ, so that we can conclude that

∇αKβPαPβ ¼ 0

for an arbitrary P. The latter condition, in turn, implies that
∇ðαKβÞ ¼ 0, i.e., K is a Killing vector field. Likewise, the
unique term of order two in P and order one in Σ yields

ϵμνγðα∇βÞ

�
Lμν −

1

2
∇μKν

�
¼ 0; ð9Þ

where the identity ∇α∇βKγ ¼ KμRμ
αβγ has been used,

which stems from the fact that K is a Killing vector field.
Thus, defining

Yαβ ≡ 1

2
ϵμναβ

�
Lμν −

1

2
∇μKν

�
;

it follows from Eq. (9) that Y must obey the equation
∇ðαYβÞν ¼ 0, i.e., it must be a Killing-Yano tensor. Thus,
the tensor Lμν must be written as Lμν ¼ 1

2
∇μKν þ Ỹμν. Two

other conditions can be extracted from Eq. (8), one that
comes from a term of order four in P and order two in Σ,
while the other is of order four in P and order three in Σ.
These two conditions are respectively given by

½ ˜̃R κðαβÞðμgνρ þ ˜̃R κðμν
ðα
δβÞρ �ỸσÞκ ¼ 0; ð10Þ

½ ˜̃R κðαβðμgνρj þ ˜̃R kðμνðαδ
β
ρj�∇κYγÞjσÞ ¼ 0; ð11Þ

where we have introduced the double Hodge dual of the
Riemann tensor. More precisely, here we shall adopt the
following definitions:

˜̃Rαβμν ¼
1

4
ϵαβα0β0Rα0β0μ0ν0ϵμ0ν0μν;

R̃αβμν ¼
1

2
ϵαβα0β0Rα0β0

μν:

As pointed out by Rüdiger in Ref. [15], Eqs. (10) and (11)
can be simplified. Indeed, after some algebra, one can
prove that they are equivalent to the following two
constraints, respectively:

˜̃R σðαβÞðγỸδÞσ −
1

6
GσðαδβÞðγ ỸδÞσ þ

1

4
Ỹρσ

˜̃R ρσðαðγδ
βÞ
δÞ ¼ 0; ð12Þ

JðαR̃ βðμνÞγÞ − JκR̃ κðμνÞðαgβγÞ − JκR̃ κ
ðαβðμδ

γÞ
νÞ ¼ 0; ð13Þ

where Jα is the divergence of Ỹ, namely, Jβ ¼ ∇αỸαβ,
whereas Gμν stands for the Einstein tensor. We note,
however, that there is a sign difference between our
Eq. (12) and Eq. (4.9) of Ref. [15]; in the latter, the sign
in front of the fraction 1=6 is positive, although the correct
sign is negative, as written here. Indeed, should the sign be
positive such constraint would not be identically valid for
maximally symmetric spacetimes, as it should be, as
acknowledged by Rüdiger himself. Thus, there must have
been a typo at this point in Ref. [15].
Summing up, assuming the Tulczyjew supplementary

condition, we have proved that the most general conserved
charge for MPD equations that is linear in momenta is
given by

Q¼
�
KμPμþ1

2
∇μKνSμν

�
þ ỸμνSμν; ð14Þ

where K is a Killing vector and Y is a rank two KY tensor.
In addition, the constraints (12) and (13) must hold. Since
K and Y are totally independent from each other and the
latter constraints do not depend on K, it follows that the
scalars,

QK ¼KμPμþ1

2
∇μKνSμν and QY ¼ ỸμνSμν;

are independently conserved. Indeed, it is widely known
that QK is conserved for any Killing vector K. The
important result of Ref. [15] is that the scalar QY is
conserved as long as Y is a KY tensor and conditions
(12) and (13) hold. The problem is that the latter conditions
are quite obscure and have not been tackled in the literature
so far. The main goal of the present work is to shed light
over the meaning of these constraints and determine the
scenarios in which the conserved charge QY is allowed to
exist. As a final comment, we mention that a generalization
of the conserved quantity QK for the case in which the
spinning particle is electrically charged and moves in
an external electromagnetic field has been attained in
Ref. [20].

III. KILLING-YANO TENSORS AND ITS
INTEGRABILITY CONDITIONS

A Killing tensor is a totally symmetric tensor Nα1���αp ¼
Nðα1���αpÞ that obeys the equation ∇ðβNα1���αpÞ ¼ 0. In
particular, Killing vectors can be seen as Killing tensors
of rank one. Just as Killing vector fields generate
symmetries on the spacetime, which therefore lead to
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conservation laws for the geodesic motion, Killing tensors
are the generators of symmetries on the phase space of the
geodesic Hamiltonian and, due to Nöther’s theorem, also
yield conserved charges along geodesics [22]. Since Killing
tensors are not related to symmetries of the spacetime itself,
they are referred to as hidden symmetries and are generally
more hard to find than Killing vector fields. Indeed, it took
a while to perceive that the Kerr solution is endowed with a
Killing tensor in addition to the two Killing vector fields
associated to stationarity and axial symmetry. The Killing
tensor of Kerr spacetime was the missing link necessary to
attain full integrability for the orbits of pointlike test
particles moving in this background [7,8].
Another important mathematical object for these matters

are the Killing-Yano (KY) tensors, which are totally skew-
symmetric tensors, Yα1���αq ¼ Y ½α1���αq� that obey equation
∇ðβYα1Þα2���αq ¼ 0, which is also a generalization of the
Killing vector equation. It turns out that the square of a
KY tensor is always a Killing tensor of rank two,
Nμν ¼ Y

α2���αq
μ Yνα2���αq . Nevertheless, it is worth mentioning

that rank twoKilling tensors are not necessarily the square of
a KY tensor; however, in special cases, this turns out to be
true [23,24]. Thus, one can say that KY tensors are more
special than Killing tensors. Indeed, in addition to generat-
ing conserved charges along the geodesic motion via the
Killing tensor built from its square, KY tensors are also
related to symmetries of the phase space of a semiclassical
supersymmetric model for free particles with quantum spin
1=2 whose internal angular momentum is represented by
Sαβ ¼ ξαξβ, where ξα is a Grassmann variable [22,25,26].
Furthermore, KY tensors can be used to construct operators
that commute with the D’Alembertian and the Dirac
operators [27,28], which is of relevance to describe quantum
particles moving in classical spacetimes. It is said that KY
symmetries are nonanomalous, a feature that generally is not
shared by the Killing tensors. KY tensors have also been
used to build Lax pairs in curved spaces [29], which is of
relevance for the theory of integrable systems.
Suppose that Zμ is a covariantly constant vector field,

namely, ∇μZν ¼ 0. Then, using this hypothesis along with
Ricci identity it follows that

0 ¼ 2∇½μ∇ν�Zα ¼ Rα
βμνZβ:

The latter equation is said to be an integrability condition
for the existence of a constant vector field. For instance, if
the curvature of a connection is such that there exists no
direction Tα obeying TαRαβμν ¼ 0, then we can already
state that no covariantly constant vector field exists, without
needing to bother about integrating the differential equation
∇μZν ¼ 0 for a generic vector field Zμ. Likewise, in order
to enable a KY tensor to exist in a spacetime, some
integrability conditions must hold. For instance, concerning
KY tensors of rank two, Yμν, the following constraints must
hold [30–32]:

0 ¼ RβðμYνÞβ; ð15Þ

0 ¼ Cαβ½μσYν�σ þ Cμν½ασYβ�σ; ð16Þ

where Rβ
μ stands for the Ricci tensor whereasCμναβ denotes

the Weyl tensor. Thus, the curvature of the spacetime must
obey some algebraic restrictions if a spacetime admits a KY
tensor.We shall return to this point later, after introducing the
basics of Petrov classification.
At this point it is useful to use a null tetrad frame

fl;n;m; m̄g, where l and n are real vector fields, whereas
m is complex with m̄ being its complex conjugate. These
reality conditions encode the fact that we are considering
the Lorentzian signature. By definition of a null tetrad
frame, the only nonvanishing inner products in this frame
are the following:

lμnμ ¼ 1 and mμm̄μ ¼ −1:

In particular, all vectors of the frame are lightlike. For
instance, if fe0; e1; e2; e3g is a Loretnz frame, with their
inner products yielding the Minkowski metric, then

l ¼ 1ffiffiffi
2

p ðe0 þ e1Þ; n ¼ 1ffiffiffi
2

p ðe0 − e1Þ;

m ¼ 1ffiffiffi
2

p ðe2 þ ie3Þ; m̄ ¼ 1ffiffiffi
2

p ðe2 − ie3Þ;

is a null tetrad frame. This kind of frame is valuable to
define the components of the Weyl tensor in a compact
way. The 10 degrees of freedom of the Weyl tensor in four
dimensions can be written in terms of five complex scalars
known as Weyl scalars and defined by

Ψ0 ≡ Clmlm; Ψ1 ≡ Clnlm; Ψ2 ≡ Clmm̄n

Ψ3 ≡ Clnm̄n; Ψ4 ≡ Cnm̄nm̄; ð17Þ

where in the above equation Clnlm is just a compact way of
denoting Cμναβlμnνlαmβ and so on. The Petrov classifi-
cation, an algebraic classification for the Weyl tensor that
proved to be valuable in several physical and mathematical
problems, can then be defined in terms of the vanishing of
these Weyl scalars [33]. Table I summarizes such a link. For
instance, if the Weyl tensor of a spacetime is of Petrov type
N then it is possible to find a null tetrad frame in which all
Weyl scalars except Ψ4 vanish. For a review on Petrov
classification see [33] and references therein.
Null tetrad frames are also of relevance to define the

possible algebraic types of a bivector, i.e., a rank two
skew-symmetric tensor Bμν ¼ B½μν�. In a four-dimensional
Lorentzian space, any nonzero bivector can be of two
algebraic types. Either it is a null bivector, meaning
that both contractions BμνBμν and BμνB̃μν vanish, or it is
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non-null. It turns out that given a real bivector Bμν one can
always find a null frame in which the bivector is written in
one of the following forms, depending on its algebraic type:

�
Null Bivector∶ B ¼ l ∧ ðmþ m̄Þ
Non-Null Bivector∶ B ¼ fl ∧ nþ ihm ∧ m̄;

ð18Þ

where f and h are real functions that cannot vanish
simultaneously. Since a rank two KY tensor is a bivector,
we can then work out the consequences of the integrability
condition (15) for the Ricci tensor. Actually, in the next
section we will be more interested in the traceless part of
the Ricci tensor, which is defined by

Φμν ¼ Rμν −
1

4
Rgμν;

where R stands for the Ricci scalar, Rα
α, and gμν is the

metric. A spacetime is called an Einstein spacetime when-
ever its Ricci tensor is proportional to the metric, which is
equivalent to say thatΦ vanishes. Note that, in terms of the
null tetrad frame, the traceless condition implies that
Φln ¼ Φmm̄.
Now, assuming that the KY tensor is a null bivector, i.e.,

Y ¼ l ∧ ðmþ m̄Þ for some null frame, then inserting this
form into Eq. (15) and finally contracting the free indices of
this equation with the vectors of the null tetrad, we
eventually conclude that

Y Null∶
�Φll ¼ Φlm ¼ Φlm̄ ¼ Φnm þΦnm̄ ¼ 0;

Φmm ¼ Φm̄m̄ ¼ −2Φln:
ð19Þ

In the same fashion, assuming that the KY tensor is non-
null and writing it in the standard form given in Eq. (18), it
follows that the integrability condition (15) implies

Y Non-Null∶

8<
:

Φlm ¼ Φlm̄ ¼ Φnm ¼ Φnm̄ ¼ 0;�
f ≠ 0 ⇒ Φll ¼ Φnn ¼ 0

h ≠ 0 ⇒ Φmm ¼ Φm̄m̄ ¼ 0:

ð20Þ

Thus, for a generic non-null KY, i.e., when the real
functions f and h appearing in the standard form of

Eq. (18) are both nonvanishing, we have that Φll, Φnn,
Φmm, and Φm̄m̄ all vanish. However, if h vanishes then we
cannot assert that Φmm ¼ Φm̄m̄ ¼ 0, whereas if f vanishes
the integrability condition does not imply Φll ¼ Φnn ¼ 0.
Recall that f and h cannot vanish simultaneously, other-
wise the KY tensor would be trivial.
In the same vein, it is interesting to see the interplay

between the Petrov classification and the possible algebraic
types of a KY tensor. Assuming that Yμν is a KY whose
algebraic type is null, it follows that there exists some null
frame such that Y ¼ l ∧ ðmþ m̄Þ. Then, inserting this
expression for the KY tensor into the integrability condition
(16) it follows, after some algebra, that in this null frame the
following Weyl scalars Ψ0, Ψ1, Ψ2, and Ψ3 must all vanish.
Thus, for a null KY tensor the Petrov classification must be
type N or type O, where the latter is a degenerate case of
type N [32]. Likewise, assuming that the KY tensor is non-
null and inserting its generic form given in Eq. (18) into the
integrability condition (16), it follows that the unique Weyl
scalar that can be different from zero is Ψ2, so that the
Petrov type is D or O (which is a degenerate case of D).
Summing up, the following conclusion holds

�
Null KY∶ Ψ0 ¼ Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0;

Non-Null KY∶ Ψ0 ¼ Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ 0:
ð21Þ

Thus, just from the algebraic type of the Weyl tensor one
can already rule out the possible existence of a KY tensor of
rank two. For instance, suppose that a spacetime is of
Petrov type III, then it cannot admit a KY tensor. This
statement can be done prior to any attempt of integrating
the KYequation. Thus, the integrability conditions can be a
very powerful tool. In the next section we shall use this tool
along with the conditions (12) and (13) that are required in
order to guarantee that the scalarQY ¼ SαβỸαβ is conserved
along a solution of MPD equations, and conclude that very
few spacetimes allow this conserved charge. In particular,
we will prove that this scalar is useless for an Einstein
spacetime.

IV. SPACETIMES ALLOWING
THE CONSERVED CHARGE

In this section we shall investigate the constraints (12)
and (13) that are required to hold in order to guarantee
that the scalar QY is conserved. The idea is to study its
consequences along with the integrability conditions that
must be true due to the fact that Y is a KY tensor. As wewill
prove in the sequel, when analyzed together, these con-
straints are very restrictive, with a very narrow class of
spacetimes obeying them. Before proceeding, however, let
us establish that for the maximally symmetric spacetimes,
i.e., de Sitter, anti–de Sitter, andMinkowski spacetimes, the
conserved charge QY is useless. This is a consequence of
the fact that in these spaces the number of independent

TABLE I. Petrov types and their relation with the possibility of
annihilating the Weyl scalars by a judicious choice of a null tetrad
frame. Note that type O means a conformally flat spacetime, i.e.,
the Weyl tensor is identically zero in such a case.

Petrov type Vanishing Weyl scalars

I Ψ0, Ψ4

II Ψ0, Ψ1, Ψ4

III Ψ0, Ψ1, Ψ2, Ψ4

D Ψ0, Ψ1, Ψ3, Ψ4

N Ψ0, Ψ1, Ψ2, Ψ3

O Ψ0, Ψ1, Ψ2, Ψ3, Ψ4

E. B. SANTOS and CARLOS BATISTA PHYS. REV. D 101, 104049 (2020)

104049-6



Killing vector fields is ten, leading to ten conserved charges
QK , which are enough to obtain expressions for the ten
unknowns P and S in terms of the initial conditions of the
particle. Since here we are assuming the supplementary
condition SαβPβ ¼ 0, one can then use Eq. (6) in order to
obtain an expression for the velocity V. In fact, the full
integrability of MPD equations for de Sitter spacetime has
been explicitly attained in Ref. [34]. Thus, in this sense, one
can say that the conservation of QY is somehow trivial for
maximally symmetric spacetimes and is reason why we
shall ignore this case in what follows.
The Riemann tensor can be decomposed in terms of its

irreducible blocks with respect to the action of the Lorentz
group, which are the Weyl tensor, the trace-less part of the
Ricci tensor and the Ricci scalar. This decomposition is
explicitly written as

Rαβγδ ¼ Cαβγδ þ gα½γΦδ�β − gβ½γΦδ�α þ
R
6
gα½γgδ�β: ð22Þ

In particular, the spacetime is maximally symmetric if, and
only if, Cμναβ and Φμν vanish simultaneously. Each of the
irreducible blocks have a simple transformation with
respect to the double Hodge dual. More precisely, we have

˜̃Rαβγδ ¼ −Cαβγδ þ gα½γΦδ�β − gβ½γΦδ�α −
R
6
gα½γgδ�β:

Using this expression along with Gαβ ¼ Φαβ − R
4
gαβ, it

follows that the constraint (12) can be equivalently writ-
ten as

CκðαβÞðγỸδÞκþ
1

4
ỸϵκCϵκðαðγδ

βÞ
δÞ−

1

2
ΦðαðγỸ

βÞ
δÞ

þ1

2
gαβΦðγκỸδÞκ−

1

12
δðαðγΦ

βÞκỸδÞκ−
1

4
Φðγκδ

ðα
δÞ Ỹ

βÞ
κ¼0: ð23Þ

Analogously, Eq. (13) can be written as

JκC̃ κðμνÞðαgβγÞ − JðαC̃ βðμνÞγÞ þ
1

2
Jκϵðμjðαjκ

δΦδjνÞgjβγÞ

þ JκC̃ κ
ðαβðμδ

γÞ
νÞ −

1

2
JκϵδðμjκðαΦδ

βδγÞjνÞ ¼ 0: ð24Þ

Now, let us consider the two possible algebraic forms for
the KY tensor, null and non-null. These possibilities will be
considered separately in what follows.

A. Null Killing-Yano tensor

In what follows we will consider that the KY tensor is
a null bivector, so that there exists a null frame such that
Y ¼ l ∧ ðmþ m̄Þ, so that its Hodge dual is Ỹ ¼
il ∧ ðm − m̄Þ. In this case the integrability condition of
the KY tensor implies that Weyl tensor is of Petrov type N
(or more special, namely, O), i.e., the only Weyl scalar that

can be different from zero is Ψ4, as explained in the
previous section. Hence, the Weyl tensor can be written
as [33]

Cμναβ ¼ 4Ψ4l½μmν�l½αmβ� þ 4Ψ̄4l½μm̄ν�l½αm̄β�; ð25Þ

where Ψ̄4 stands for the complex conjugate of Ψ4. In
addition, several components of the traceless part of the
Ricci tensor vanish, in accordance with Eq. (19). The only
components that can, in principle, be different from zero are

Φnn; Φnm; Φnm̄; Φmm; Φm̄m̄; Φln; Φmm̄:

In addition, the following constraints must hold:

�Φnm̄ ¼ −Φnm;

Φmm ¼ Φm̄m̄ ¼ −2Φmm̄ ¼ −2Φln:
ð26Þ

Thus, at the end of the day just 3 degrees of freedom are left
for Φαβ, namely, Φnn, Φnm, and Φln. Similarly, contracting
Eq. (23) with nαnβmγmδ and mαmβmγnδ leads to Φnm ¼ 0

and Φmm ¼ 0, respectively. Then, taking Eq. (26) into
consideration, it follows that Φnm̄, Φm̄m̄, Φln, and Φmm̄ are
also zero. Hence, the only component of Φαβ that can be
different from zero is Φnn. Finally, contracting Eq. (23)
with nαnβnγmδ, we obtain

Ψ4 þ
1

2
Φnn ¼ 0: ð27Þ

Therefore, Φnn vanishes if, and only if, Ψ4 vanish. Thus, if
either Φnn or Ψ4 vanish then the spacetime is maximally
symmetric, in which case the conserved quantity QY is
useless. In particular, if the spacetime is Einstein, namely if
Φαβ vanish identically then Ψ4 vanishes and we have the
trivial case.
Concerning the condition (24), contracting it with

mαmβmγnμm̄ν, we obtain JlΨ4 ¼ 0, where it has been
used thatΨ4 is real, with the latter fact being a consequence
of Eq. (27). Similarly, contracting with nαnβnγm̄μm̄ν,
nαnβnγlμmν, and mαmβmγnμnν implies that JnΨ4 ¼ 0,
ðJm þ Jm̄ÞΨ4 ¼ 0, and JmΨ4 ¼ 0, respectively.
Therefore, the constraint (24) leads to

JαΨ4 ¼ 0; ð28Þ

meaning that either Ψ4 ¼ 0, which again lead to the trivial
case of a maximally symmetric spacetime, or Jα ¼ 0, which
means that Y is covariantly constant. Indeed, the KY
equation can equivalently be written as ∇αYμν ¼ ∇½αYμν�.
Thus, if Jα vanishes, it follows that ∇αỸαβ ¼ 0, which is
equivalent to the condition ∇½αYμν� ¼ 0, which implies that
Y is covariantly constant.
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However, if Y is covariantly constant so is its Hodge dual
Ỹ. Particularly, this implies that Ỹ is also a KY tensor, so that
it makes sense to suppose that the scalar QỸ is conserved,
although this is not a necessary requirement as it is
independent from the requirement that QY is conserved.
Nevertheless, if besides the conservation of QY we also
assume that QỸ is conserved, it follows that the condition
(23) must also hold if we replace Y by Ỹ. Performing this
replacement and then contracting Eq. (23) with nαnβnγm̄δ,
we end up with the constraint

Ψ4 −
1

2
Φnn ¼ 0: ð29Þ

Composing Eqs. (27) and (29) leads us to the conclusion that
Ψ4 and Φnn ¼ 0, which then imply that the spacetime is
maximally symmetric, in which case the conserved charges
are useless.
Summing up, in order for the conserved charge QY to be

nontrivial for the case of a KY tensor whose algebraic type
is null, the Weyl tensor must be Petrov type N and the only
component of Φαβ that can be different from zero is Φnn. In
addition, the KY tensor must be covariantly constant.
Because of the latter fact, it follows that Ỹ is also a KY
tensor. If we further impose that QỸ is conserved, in
addition to QY , we conclude that the spacetime is max-
imally symmetric and the conserved charges are useless.

B. Non-null Killing-Yano tensor

Now, let us assume that the Killing-Yano tensor is non-
null, whichmeans that there exists some null frame such that
Y ¼ fl ∧ nþ ihm ∧ m̄, where f and h are real functions
that cannot vanish simultaneously. The Hodge dual of the
KY tensor is then given by Ỹ ¼ hl ∧ n − ifm ∧ m̄. As
discussed in Sec. III, in this case the integrability condition
of theKY tensor implies that the onlyWeyl scalar that can be
different from zero is Ψ2, so that the Weyl tensor can be
written as follows [33]:

Cμναβ ¼ ðΨ2 þ Ψ̄2Þðl½μnν�l½αnβ� þm½μm̄ν�m½αm̄β�Þ
− ðΨ2 − Ψ̄2Þðl½μnν�m½αm̄β� þm½μm̄ν�l½αnβ�Þ
− Ψ2ðl½μmν�n½αm̄β� þ n½μm̄ν�l½αmβ�Þ
− Ψ̄2ðl½μm̄ν�n½αmβ� þ n½μmν�l½αm̄β�Þ: ð30Þ

In addition, the following components of the tracefree part of
the Ricci tensor must vanish due to the fact that Y is a KY
tensor:

Φlm ¼ Φlm̄ ¼ Φnm ¼ Φnm̄ ¼ 0: ð31Þ

Now, taking Eqs. (30) and (31) into consideration, we are
ready to analyze Eq. (23), which is necessary for QY to be
conserved. Contracting (23) with nαnβnγlδ, lαlβlγnδ,
mαmβmγm̄δ, and m̄αm̄βm̄γmδ we obtain, respectively:

Φnn ¼ 0; Φll ¼ 0; Φmm; Φm̄m̄ ¼ 0: ð32Þ

Since the trace-free condition obeyed by Φ means that
Φln ¼ Φmm̄, it follows that both components Φln and Φmm̄
represent the same degree of freedom. Hence, from
Eqs. (31) and (32) one concludes that only 1 degree of
freedom of Φ can be different from zero, namely, Φln.
Then, contracting Eq. (23) with nαnβlγlδ and

mαmβm̄γm̄δ,we arrive at the following relations, respectively:

hRefΨ2g þ fImfΨ2g þ
1

3
hΦnl ¼ 0;

−fRefΨ2g þ hImfΨ2g þ
1

3
fΦmm̄ ¼ 0: ð33Þ

Finally, using Φnl ¼ Φmm̄, we conclude that

Ψ2 ¼
1

3

f − ih
f þ ih

Φnl: ð34Þ

Thus, if the spacetime is Einstein, i.e., if Φαβ ¼ 0, then Ψ2

vanishes. The latter, in turn, is the uniqueWeyl scalar that can
be different from zero, so that we conclude that the whole
Weyl tensor vanishes. Hence, if the spacetime is Einstein it
will also be conformally flat and these two conditions means
that the spacetime is maximally symmetric, so that the
conserved quantity QY is trivial.
Regarding the constraint (24), one can check that it boils

down to

JαΨ2 ¼ 0;

where Eq. (34) has been used. Hence, either the space is
maximally symmetric (if Ψ2 ¼ 0, which then implies
Φαβ ¼ 0), or the KY tensor is covariantly constant (if
Jα ¼ 0). Thus, the only nontrivial case in which QY is
conserved for a non-null KY tensor is when this tensor is
covariantly constant, the Weyl tensor is of Petrov type D
and with the only nonvanishing components of Φαβ being
Φln ¼ Φmm̄. Furthermore, the relation betweenΨ2 andΦln
given in Eq. (34) must hold. These are quite restrictive
conditions.
Now, since Y is covariantly constant, it follows that its

Hodge dual is also a KY tensor. Then we can require that
QỸ is also conserved along the solutions of the MPD
equation, although it is worth pointing out that this is an
independent requirement. Comparing the expressions for
Y and Ỹ,

�
Y ¼ fl ∧ nþ ihm ∧ m̄

Ỹ ¼ hl ∧ n − ifm ∧ m̄
;

we note that one Ỹ can be obtained from Y by making the
changes f → h and h → −f. Thus, since Eq. (34) must
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hold in order to guarantee that QY is conserved, it follows
that the analogous condition

Ψ2 ¼
1

3

hþ if
h − if

Φnl ð35Þ

must hold in order to assure the conservation ofQỸ . Hence,
assuming that the scalars QY and QỸ are both conserved, it
follows that Eqs. (34) and (35) hold simultaneously.
Equating both expressions for Ψ2 and assuming that
Φln ≠ 0, so that the spacetime is nontrivial lead us to
the condition

hþ if
h − if

¼ f − ih
f þ ih

⇒ f2 þ h2 ¼ 0:

Since f and h are real functions, the unique solution for the
latter constraint turns out to be the trivial one, f ¼ h ¼ 0,
which is unacceptable, since by hypothesis Y is a non-
vanishing KY tensor. Thus, we conclude that the only case
in which QY and QỸ are both conserved is when Φln ¼ 0,
which then implies Ψ2 ¼ 0. This means that the spacetime
is maximally symmetric and, therefore, the conserved
scalars of interest are useless.

C. Physical restrictions by energy conditions

As we have just seen, the integrability conditions for the
KY tensor along with the additional conditions required for
QY to be conserved inflict huge restrictions over the Weyl
and Ricci tensors. In the present subsection we shall make
use of Einstein’s equation to convert the restrictions over
the Ricci tensor onto constraints over the energy-momen-
tum tensor of the matter on the background. More precisely,
we shall analyze whether the weak energy condition
(WEC) holds or not. Here we will assume that the
spacetime is not maximally symmetric, which means that
we are requiring that justQY is conserved, whileQỸ is not a
conserved scalar, otherwise Φμν would vanish identically
and the calculations below would be senseless.
In suitable units, Einstein’s equation reads Gμν ¼ Tμν,

where Tμν is the energy-momentum tensor of the back-
ground matter. This can be equivalently written as

Tμν ¼ Φμν −
R
4
gμν:

The weak energy condition then amounts to the constraint
TμνZμZν ≥ 0 for any timelike vector field Zμ, which means
that the energy density of the matter is not negative as
measured by an arbitrary observer. Writing the vector field
Z in terms of the null tetrad frame we have

Z ¼ Znlþ Zln − Zm̄m − Zmm̄:

The WEC then reads

ΦμνZμZν −
R
2
ðZnZl − ZmZm̄Þ ≥ 0; ð36Þ

for any vector Z such that ZnZl > ZmZm̄. Since most of the
components of Φμν vanish when QY is conserved, the
above restriction becomes simpler to be analyzed. In what
follows let us consider the two possible algebraic types of
the KY tensor separately.
When the KY tensor is type null, the only component of

Φμν that can be different from zero is Φnn, so that Eq. (36)
becomes

ΦnnZlZl −
R
2
ðZnZl − Zm̄ZmÞ ≥ 0:

Defining ζ ≡ ðZnZl − Zm̄ZmÞ=ðZ2
lÞ, it follows that the

timelike condition reads ζ > 0, so that the WEC becomes

Φnn ≥
R
2
ζ; for all ζ > 0:

This is possible only if Φnn ≥ 0 and R ≤ 0. Thus, besides
the geometrical restrictions found in Sec. IVA, there exists
the physical restriction that the Ricci scalar cannot be
positive whereas the component Φnn cannot be negative.
Otherwise the background spacetime is not generated by a
physically reasonable matter.
Now, let us consider that the KY tensor has a non-null

algebraic type, in which case the only components of Φμν

that can be different from zero are Φln ¼ Φmm̄, so that
Eq. (36) becomes

ΦlnðZlZn þ Zm̄ZmÞ −
R
4
ðZnZl − Zm̄ZmÞ ≥ 0:

Since the time-like condition for Z reads

ZnZl > ZmZm̄ ¼ jZmj2;

it follows that ZnZl is positive and, therefore, defining
ξ≡ ðZnZl − jZmj2Þ=ðZnZl þ jZmj2Þ, it follows that ξ is
positive, so that the WEC for spacetimes with conserved
QY for a non-null KY tensor is given by

Φln ≥
R
4
ξ; for all ξ > 0:

This, in turn, implies that Φln cannot be negative and the
Ricci scalar cannot be positive.

V. LOOKING FOR EXPLICIT EXAMPLES

The aim of the present section is to find nontrivial
examples of spacetimes obeying the several restrictions
necessary in order to assure the conservation of QY . We
shall start analyzing the case in which the KY tensor is null
and then consider the non-null case.
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A. An example with a null KY tensor

As argued in Sec. III, when the algebraic type of the KY
tensor is null the Weyl tensor must be type N according to
the Petrov classification. A well-known class of type N
spacetimes is given by the so-called pp-wave metrics.
These spacetimes are generally associated to gravitational
radiation and are geometrically defined as the ones pos-
sessing a covariantly constant null vector field. Their line
elements are given by

ds2 ¼ 2Fðu; z; z̄Þdu2 þ 2dudr − 2dzdz̄; ð37Þ
where u and r are real coordinates, whereas z is a complex
coordinate with z̄ being its complex conjugate. F is an
arbitrary real function of coordinates u, z, and z̄. A null
tetrad frame is then given by

l ¼ ∂r; n ¼ ∂u − F∂r; m ¼ ∂z; m̄ ¼ ∂ z̄:

The null vector field l is the covariantly constant vector
that characterizes a pp-wave spacetime. In this frame the
unique Weyl scalar that is different from zero is

Ψ4 ¼ −∂ z̄∂ z̄F; ð38Þ
whereas the only component of the Ricci tensor that is
different from zero, in this null frame, is

Rnn ¼ Φnn ¼ 2∂z∂ z̄F:

The null bivector Y ¼ l ∧ ðmþ m̄Þ is covariantly constant
and, therefore, is also a KY tensor. Thus, out of the
restrictions necessary in order for QY to be conserved,
the only one that remains to be met is the one given in
Eq. (27), namely, Ψ4 þ 1

2
Φnn ¼ 0. Imposing the latter

equation to hold leads us to the partial differential equation
∂ z̄∂ z̄F ¼ ∂z∂ z̄F, whose general solution is

Fðu; z; z̄Þ ¼ F1ðu; zþ z̄Þ þ F2ðu; zÞ; ð39Þ

where F1 and F2 are general real functions of their argu-
ments. Note, however, that taking the complex conjugate of
the equation (27) it follows that Ψ4 must be a real function,
since the Ricci tensor is clearly real and the null vector n is
also real. Therefore, from Eq. (38), it follows that

Ψ4 ¼ Ψ̄4 ⇒ ∂ z̄∂ z̄F ¼ ∂z∂zF:

This condition, along with Eq. (39), implies that the function
F must have the form

Fðu; z; z̄Þ ¼ F3ðu; zþ z̄Þ; ð40Þ

where F3 is an arbitrary real function of u and zþ z̄. This
choice of function F leads to the most general pp-wave
spacetime such that the scalar

QY ¼ SμνỸμν ¼ 2iðSlm − Slm̄Þ ¼ 2iðSrz − Srz̄Þ

is conserved along the solutions of the MPD equations,
where in the last equality it has been used that Y is the
bivector ∂r ∧ ð∂z þ ∂ z̄Þ.
However, it turns out that the bivector Ỹ¼ i∂r∧ð∂z−∂ z̄Þ

is also a KY tensor (actually it is covariantly constant).
Imposing the scalar QỸ to be conserved, we would find
from Rüdiger’s conditions that the function F appearing in
the line element should have the form

Fðu; z; z̄Þ ¼ F4ðu; z − z̄Þ: ð41Þ

Note that Eqs. (40) and (41) hold simultaneously only if F
is a function of u alone, F ¼ FðuÞ, in which case the
spacetime would be maximally symmetric, in accordance
with what has been obtained in Sec. IVA when the
constancy of QY and QỸ are imposed simultaneously.

B. Seeking an example with a non-null KY tensor

Since the most general metric of Petrov type D pos-
sessing a covariantly constant bivector Y is not available in
the literature and certainly is quite hard to find, here we will
start with the most general type D spacetime possessing a
KY tensor and two commuting Killing vectors. The latter
class of spacetimes is physically relevant due to the fact that
a star that has attained the equilibrium should be stationary
and axis symmetric, which geometrically means that
there exists Killing vector fields ∂τ and ∂φ. Moreover,
the existence of a KY tensor along with the two Killing
vectors assures the integrability of the geodesic motion. In
particular, the Kerr metric is a member of this class of
spacetimes. The most general metric possessing these
features has been obtained in Ref. [35] and is given by

ds2 ¼ S

�
A2Δ2

ðx2 þ y2Þ2 ðdtþ x2dφ2Þ2 − dy2

Δ2

−
A1Δ1

ðx2 þ y2Þ2 ðdt − y2dφ2Þ2 − dx2

Δ1

�
;

where Δ1 and Δ2 are arbitrary functions, whereas A1, A2,
and S are the functions given by

A1 ¼
x2

ðb1x2 þ η1Þðb2x2 þ η2Þ
;

A2 ¼
y2

ðη1 − b1y2Þðb2y2 − η2Þ

S ¼ b3x2 þ η3
b1x2 þ η1

þ b3y2 − η3
η1 − b1y2

;

where the b’s and η’s are arbitrary constants. The null tetrad
frame aligned with the principal null directions of the Weyl
tensor is given by
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l ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2SΔ2

p
�

y2ffiffiffiffiffi
A2

p ∂t þ
1ffiffiffiffiffi
A2

p ∂φ − Δ2∂y

�
;

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2SΔ2

p
�

y2ffiffiffiffiffi
A2

p ∂t þ
1ffiffiffiffiffi
A2

p ∂φ þ Δ2∂y

�
;

m ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2SΔ1

p
�

x2ffiffiffiffiffi
A1

p ∂t −
1ffiffiffiffiffi
A1

p ∂φ þ iΔ1∂x

�
;

m̄ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2SΔ1

p
�

x2ffiffiffiffiffi
A1

p ∂t −
1ffiffiffiffiffi
A1

p ∂φ − iΔ1∂x

�
:

The KY tensor is given by

Y ¼ fl ∧ nþ ihm ∧ m̄;

where

f ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2 þ η2
b1x2 þ η1

s
and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2y2 − η2
η1 − b1y2

s
:

Using this frame, it follows that the only Weyl scalar that is
different from zero isΨ2, whereas the components ofΦμν in
this frame are all vanishing apart fromΦln andΦmm̄, where
it is worth recalling that the tracefree condition implies
Φln ¼ Φmm̄. Then, the only constraints that remain to be
imposed in order to assure that QY is conserved along the
solutions of the MPD equations are Eq. (34), which
connects Ψ2 and Φln, and the requirement that Y must
be covariantly constant. In particular, imposing the
latter constraint we find that either b3=η3 ¼ b1=η1 or
b2=η2 ¼ b1=η1, but the former option leads to a vanishing
S and, therefore, a vanishing metric, which is senseless.
Thus, let us consider b1=η1 ¼ b2=η2. However, in this case
either A1 or A2 become negative, so that the signature
ceases to the Lorentzian, i.e., the space is nonphysical.
Thus, for the broad class of spacetimes considered here,
there exists no example in which the scalarQY is conserved
along with the solutions of the MPD equations.

VI. CONCLUSIONS

We have proved that the integrability condition of the
KY tensor along with the constraints necessary forQY to be
conserved imply, actually, that the bivector Y should be
more than a KY tensor, it must be a covariantly constant
tensor. In addition, we have proved that if the background is
an Einstein space then the conservation of the scalar QY
implies that the spacetime must be maximally symmetric,
i.e., trivial. This is a great improvement on the under-
standing of the conserved quantity introduced by Rüdiger
in Ref. [15]. There exist several physically relevant
spacetimes possessing KY tensors, as exemplified by
Kerr-NUT-(A)dS and Kerr-Newman metrics. However,
backgrounds possessing covariantly constant bivectors
and with physical interest are much more rare. This greatly
undermines the usefulness of the conserved scalar QY.

Moreover, once Y is constant, it follows that its Hodge dual
is also constant and, therefore, is also a KY tensor. Hence, it
is natural to demand that the scalar constructed from Ỹ,
namely, QỸ , should also be constant. In this case, it turns
out that the spacetime must be maximally symmetric,
which, in turn, means that these conserved scalars are
useless for the integration of MPD equations, since in these
spaces full integrability can already be attained by means of
the Killing vector fields. However, it is worth pointing out
that in spite of it being reasonable to require thatQY andQỸ
are both conserved, this is not necessary. Rather, we could
be interested in finding spaces in which just QY is
conserved. In the present article, we have proven that there
exist spacetimes obeying the latter condition, but they form
a very narrow class of metrics. Indeed, we have proved that
besides having the covariantly constant bivector Y, these
spacetimes must have Weyl tensors that are either of Petrov
typeN, when Y is a null bivector, or typeD, when Y is non-
null. Moreover, using the null tetrad frame adapted to the
covariantly constant bivector, we have seen that the trace-
less part of the Ricci tensor must have just 1 nonvanishing
degree of freedom and this degree of freedom is connected
to the only Weyl scalar that can be different from zero; see
Eqs. (27) and (34). In particular, we have provided one
explicit example in Sec. VA.
The scenario of greater physical interest for the use of the

MPD equations is given by a test particle moving in empty
space around some celestial body, so that the energy-
momentum tensor of the background matter vanishes in the
region of interest. Einstein’s equation then implies that the
traceless part of the Ricci tensor vanishes (even allowing
the existence of a cosmological constant), in which case the
conservation ofQY implies that the spacetime is maximally
symmetric. Therefore, the conserved quantityQY is useless
in most scenarios of physical relevance.
As a final comment, it is worth pointing out that the idea

of Rüdiger’s article was to look for a scalar linear on the
momenta that is conserved for an arbitrary theory yielding
MPD equations and adopting Tulczyjew supplementary
condition SαβPβ ¼ 0. In this broad scenario, Rüdiger
obtained that QY ¼ SμνỸμν is conserved provided that Y
is a KY tensor and conditions (10) and (11) are obeyed.
However, in some specific theories these extra conditions
might not be necessary and even other conserved scalars
might exist. As an example, let us consider the Lagrangian
formulation of the spinning particle theory [19,36], with the
following specific Lagrangian:

L ¼ aVμVμ þ bσμνσμν;

where a and b are nonvanishing constants Vμ ¼ dxμ=dτ.
The momenta are then defined by [19]

Pμ ¼ −
∂L
∂Vμ

and Sμν ¼ −
∂L
∂σμν ;
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which for this particular Lagrangian yields

Pμ ¼ −2aVμ and Sμν ¼ −2bσμν:

The field equations for this Lagrangian are MPD equations.
Since in this case P ∝ V, it follows from Eq. (1) that
_Sμν ¼ 0, so that the conservation of QB ¼ SμνB̃μν for some
bivector Bμν reads

_QB ¼ SμνVα∇αB̃μν ¼ 0: ð42Þ

Now, the supplementary condition SμνPν ¼ 0 can be
equivalently written as Sμν¼ ϵμνγδΣγPδ, where ΣαPα ¼ 0.
Thus, Eq. (43) reads

_QB ¼ −
1

a
ΣγPδPα∇αBγδ ¼ 0: ð43Þ

Imposing that the above equation holds for an arbitrary Pμ

and an arbitrary Σμ orthogonal to P we eventually find that
∇ðαBδÞγ must vanish, i.e., B must be a KY tensor, which
agrees with Rüdiger’s result. But in this specific theory,
note that no additional condition is required for the
conservation of QB.
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