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Conserved quantities for the free motion of particles with spin
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In the early 1980s, R. Riidiger published a pair of articles in which the most general conserved charges
associated to the motion of particles with spin moving in curved spacetime were found. In particular, it was
shown that besides the well-known conserved quantity associated to Killing vectors, it is also possible to
have another conserved quantity that is linear in the spin of the particle if the spacetime admits a Killing-
Yano tensor. However, in these papers it was proved that in order for this new scalar to be conserved, two
obscure conditions involving the Killing-Yano tensor and the curvature must be obeyed. In the present
paper we try to shed light over these conditions and end up proving that this conserved quantity is useless
for most physically relevant spacetimes. Notably, for particles moving in vacuum (Einstein spacetimes) this
conserved scalar constructed with the Killing-Yano tensor will not help on the integration of the equations
of motion. Moreover, we prove that, as a consequence of these obscure conditions, the Killing-Yano tensor

must be covariantly constant.
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I. INTRODUCTION

It is well known that in Einstein’s gravitational theory,
point particles that are free, i.e., interacting just with the
gravitational field through the curved spacetime, moving
along geodesics. However, if the particle has a finite size, as
all classical particles certainly do, it can carry internal
angular momentum which, in turn, couples to the gravi-
tational field and deviates the particle from the geodesic
path. Indeed, energy can be stored in the form of angular
momentum and, due to the Equivalence principle, any form
of energy will respond to the gravitational field. Here we
shall refer to this internal angular momentum that stems
from the rotation of the particle around its own center of
mass as “spin.” The equations that dictate the motion of a
test particle with spin are called Mathisson-Papapetrou-
Dixon (MPD) equations and are given by [1-3]

pr=—1Rr, VvS¥
2 vaf
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In these equations, P is the linear momentum of the particle,
and §% = S9! is its intrinsic angular momentum, whereas
V# is the normalized velocity, V¥V, = 1. The dot repre-
sents a covariant derivative along the movement of the
particle. For instance, Pt = V¥V, P¥. In particular, if a
particle is pointlike, its moment of inertia vanishes, which
in the classical realm implies that it cannot store energy in
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its spin. In the latter case we would have S = 0, so that the
second equation above implies that P and V are propor-
tional to each other, whereas the first equation yields that
the movement is geodesic, as it should be. It is worth
pointing out that these equations assume the so-called pole-
dipole approximation, where multipoles of the energy-
momentum tensor with order higher than 1 in the deviation
from the center of mass are neglected. In the case of highly
inhomogeneous gravitational fields and high spins, the
quadrupole degree of freedom can be as important as
the dipole term [4]. For a nice summary of some of the
advances and lines of research on this topic up to the year
2007, see Ref. [5]. For a more recent review on the theme,
the reader is referred to [6].

If a spacetime admits a Killing vector field K then it
follows that the scalar P¥K, is conserved along a geodesic
vector field P with affine parametrization. Likewise, if
N,, = Ny, is a Killing tensor then the quadratic scalar in
the momentum P#P“N ,, is also conserved along geodesics.
Moreover, if Y, =-Y,, is a Killing-Yano (KY) tensor
then N, =Y, Y, is a Killing tensor, so that KY tensors
can be used to generate conserved charges along the
geodesics that are quadratic on the momentum. These
conserved charges are of central importance in the inte-
gration of the geodesic equation and, therefore, for
obtaining the path followed by pointlike free test particles.
For instance, the geodesic motion on Kerr background can
be fully integrated thanks to the existence of two Killing
vector fields and a KY tensor [7,8]; see also [9,10] for
higher-dimensional examples. However, it turns out that
Killing tensors and KY tensors are also associated to the
separability of field equations other than the geodesic
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equation, as Klein-Gordon, Maxwell, and Dirac equations
[11,12], as well as the gravitational perturbation equation
[13,14]. Therefore, it is natural to wonder whether Killing
vectors and KY tensors lead to conserved charges for the
movement dictated by Eq. (1).

Concerning Killing vectors, it is well known that they
yield conserved charges for the MPD equations. More
precisely, if K is a Killing vector field then the scalar

1
Ok = P'K, +§S””VﬂKy

is such that QK = 0 whenever Eq. (1) is assumed to hold.
Regarding the role of Killing tensors and KY tensors as
generators of conserved charges for the MPD equations,
some important results are not widespread in the literature.
Important conclusions on this matter have been attained by
R. Riidiger in two articles published in early 1980s [15,16].
In spite of obtaining solid and useful results, these works
got little attention and have very few citations. In particular,
it has been proven there that if Y is a KY tensor then the
scalar

QY = Sa/} ?a[)’ (2)

can be a conserved charge for the MPD equations, where ¥
stands for the Hodge dual of ¥, which is a closed conformal
KY tensor. The interesting thing about the conserved scalar
Qy is that it is linear in the angular momentum, whereas for
the geodesic motion, KY tensors are associated to con-
served charges that are quadratic on the linear momentum.
However, the conservation of Qy holds only if a pair of
additional conditions involving ¥, its derivative and the
curvature, are obeyed. However, as presented in Ref. [15],
these additional conditions are very obscure and their
consequences have not been worked out so far. The aim
of the present article is to shed light over those conditions.
More precisely, by manipulating these additional con-
straints along with the integrability conditions necessary
for the existence of KY tensors, we will conclude that in
most physical scenarios the charge Qy will be of no
practical relevance.

The outline of the present article is the following. In
Sec. II the procedure used by Riidiger to obtain the scalar
Qy and the additional conditions necessary for it to be
conserved is shown. Some improvements on the deduction
are done as well as a sign correction in one of Riidiger’s
equations. Then, in Sec. III KY tensors and their integra-
bility conditions are reviewed. Section IV then presents the
main results of this article. There the additional conditions
for the conservation of Qy are worked out along with the
integrability conditions necessary for the existence of a KY
tensor. It is then obtained that the range of spacetimes,
such that Qy lead to a useful conserved charge, is very
narrow. Some examples of spacetimes allowing a nontrivial

conserved scalar Qy are then found in Sec. V. Finally,
conclusions are summed up in Sec. VL.

Before proceeding, let us establish some notational
conventions. Indices enclosed by round brackets are
assumed to be symmetrized, whereas square brackets
denote antisymmetrization of indices, so that 7', =
(Tap + Tpa)/2 and Tipy = (Typ — Tp,)/2; in addition,
the tilde over a skew-symmetric tensor stands for the
Hodge dual operation, S, = 4,5%¢,;,,. In what follows
it a four-dimensional spacetime endowed with a metric and
the Levi-Civita connection is always assumed.

II. RUDIGER’S CONSERVED CHARGE

In this section, we follow the steps adopted by Riidiger in
Ref. [15] in order to obtain the most general conserved
scalar for the spinning particle that is linear in its momenta
(linear and angular). However, in order to attain the desired
result it is first necessary to digress about the supplemen-
tary condition required in order to complement MPD.

Note that the unknowns of Eq. (1) comprise thirteen
degrees of freedom, four from P*, six from S#* and three
from V¥, since the velocity is assumed to be normalized,
VeV, = 1. However, MPD equations amount to ten con-
straints. Thus, three further constraints are necessary. The
two most popular supplementary conditions adopted in the
literature are the Pirani condition, defined by Sab V=0,
and the Tulczyjew condition, defined by S"‘ﬂPﬂ = (. Note
that, although both conditions seem to impose four con-
straints, since there is one free index in these equations, the
skew symmetry of S% implies that just three directions of
this free index yield actual constraints. For instance,
projecting the constraint SV, =0 in the direction V,
yields 0 = 0, which represents no constraint. From the
physical point of view, the nonuniqueness of the supple-
mentary condition stems from the fact that our particle is
assumed to be finite, so that there are an infinitude of points
inside the body that one can use to define the orbit of the
body, each choice leading to a different trajectory and a
different velocity. However, the orbits predicted by the
several options are all close to each other for small spin;
actually, they are all contained in the world tube of the
particle [5]. The two choices mentioned above are just two
popular ones due to the fact that the vectors V* and P* are
naturally defined in the theory. Thus, in a sense, these
choices do not break covariance. Following Riidiger’s
choice, here we adopt Tulczyjew condition, namely,
S“ﬁPﬁ = 0. This is the usual choice for massive particles,
since in flat spacetime it is associated to a unique trajectory,
whereas Pirani’s condition allows some freedom.

Assuming S¥P; =0, it follows that y* = P*P, and
Sab Sqp are both conserved along the orbit. But, for the goal
of the present work, the most relevant feature of the latter
condition is that it implies a relation in which the velocity is
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explicitly written in terms of the linear momentum P and
spin vector X, as we shall prove in Eq. (6).

It is worth mentioning that for massless particles,
however, the condition S% V=0 seems to be more
adequate, as argued, for example, in Refs. [17,18].
Beyond the two supplementary conditions above, a relaxed
version of the Tulczyjew condition, S¥Pj; « P%, was
proposed in [19] for massless particles.

Contracting the spin equation in (1) with P4 and using
the derivative of the supplementary condition S“ﬁPﬁ =0,
we eventually arrive at

m

1
VD = /7131/ - 2—styaRaﬂy§VﬂSy5, (3)

where m = P,V* and u* = P*P,. Then, defining

m
R
H

1
a= and DD/} = — ﬁSWIRaﬁy(SSY(S’

it follows that the above expression can be written as
V¥ =aP’ + D¥sVP.

This expression can be iterated by inserting itself in the
right-hand side, so that we end up with

VY = aP’ + D"slaP’ + DF V7]
= aP’ + D*glaP’ + DF ,(aP° + D° V)]
= a[pv + Dl’ﬁlPﬁl + Dy/fl Dﬁnﬁzp/fz 4. ] (4)

Thus, we have just found an expression for V in terms of
the momenta, although in the form of an infinite series. It
would be nice to sum this series and attain a finite formula
on the right-hand side, as we shall do in the sequel.

The supplementary condition S’P; =0 implies that
there exists some vector 2¥, dubbed spin four-vector, such
that

S — s p,. (5)

Moreover, since the transformation X# — ¥ + AP* does
not change the above expression for S%, for an arbitrary A,
and since we are assuming that > = PrP, #0, it follows
that we can impose that P, =0. This imposition
represents not loss of generality. Thus, X has 3 degrees
of freedom. One can then prove that S/ $#/¥ = 0 holds as a
consequence of Eq. (5). Then, using the latter relation, one
can establish that

1 d
By p _ 7
D¥y DV PP> = EDvﬁ]PﬁlD/z,jQ = 5DvﬁlP/l,

where d = D 5 From the latter relation, it then follows that

d\ 2
Dy/le/jlﬁ2Dﬁ2ﬁ3Pﬁ3 = (§> DUﬂ]Pﬁl'

Thus, the series (4) can be written as

[Se] dn
V'=a [P” + D*yP* ZZ—]
n=0

_ aD*yP’
=aP +1—d/2' (6)
Inserting the definitions of D and d, we finally arrive at the
desired relation. Thus, for the supplementary condition
Sab Py =0, it follows that the basic degrees of freedom are
P 2% and m = P*V,. Equation (6) has first been obtained
in Ref. [20] by using an interesting approach to MPD
equations based on symplectic structure on a suitable phase
space. In addition, Ref. [20] also provides a generalization
of the relation (6) for the case in which the spinning particle
is electrically charged and interacts with an external
electromagnetic field. Later, Eq. (6) has been reobtained
in Ref. [15] by following different steps. However, both
deductions make use of a particular reference frame,
whereas here no covariance breaking was necessary.
Analogously, an expression for the velocity in terms of
the momentum and the spin tensor can also be attained for
Pirani’s supplementary condition, as recently proved in
Ref. [21]. The latter relation turns out to be equivalent to
Pirani’s supplementary condition, so that when we sub-
stitute the spin tensor in terms of the spin vector we end up
with a trivial identity. This is the reason why such a relation
would hardly be helpful for finding the conserved quan-
tities of the MPD equation as we do in the sequel. However,
the relation found in Ref. [21] proved to be valuable in the
integration of MPD equations.

Once Eq. (6) is established, we are ready to look for the
conserved charges following the steps of Ref. [15]. The
most general scalar that is linear in the momenta is given by

Q=K,P'+L,S", (7)

for some tensors K, and L,, = Ly,,. Now, let us impose
that Q is conserved along the particle’s trajectory and then
verify what conditions this requirement implies for tensors

K and L. More explicitly, assuming Q = 0, it follows that

1
Vv (vaK,,Pﬂ - EKﬂR”aﬁySﬁ” + VoL, S" + ZLWP”> =0,

(8)

where MPD equations have been used. The next step is
replacing V“ in terms of the momenta, by means of (6) and
finally write S in terms of the spin vector X%, so that the
supplementary condition is already taken into account.
Doing so, we end up with a relation containing just the
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fundamental degrees of freedom, namely, P%, X%, and m.
The next step is to impose that Eq. (8) holds for arbitrary
values of these independent degrees of freedom. This was
the procedure adopted by Riidiger in Refs. [15,16]. The
dependence on m is not relevant, since it factors out as a
collective multiplicative factor. Since P* and X* are
independent of each other and arbitrary, terms with differ-
ent powers of these degrees of freedom must vanish
independently. For instance, the unique term in Eq. (8)
that is of order two in P and of order zero in X is
V,KzP*PP, so that we can conclude that

V.K;P°PP =0

for an arbitrary P. The latter condition, in turn, implies that
V(aK 5 = 0, i.e., K is a Killing vector field. Likewise, the
unique term of order two in P and order one in X yields

1
G#Dy(aVﬁ) <L}w - 2VﬂK,,) = 0, (9)

where the identity V,V;K, = K,R* 5, has been used,
which stems from the fact that K is a Killing vector field.
Thus, defining

1 1
Ya/}Eie aff L/w_iv,qu ’

it follows from Eq. (9) that ¥ must obey the equation
V((,Y/,»)l, =0, i.e., it must be a Killing-Yano tensor. Thus,
the tensor L, must be written as L, = %VﬂK L+ Y - TWO
other conditions can be extracted from Eq. (8), one that
comes from a term of order four in P and order two in X,
while the other is of order four in P and order three in X.
These two conditions are respectively given by

[R <(af) (u9vp + R K(ﬂl/(aég)}?a)tc =0, (10)

RS g5y + R¥ 8]V, Y7 = 0, (1)
where we have introduced the double Hodge dual of the
Riemann tensor. More precisely, here we shall adopt the
following definitions:

o 16 , lRa/ﬂ/,l/D/e ,
afur — 4 apad W uws

~ 1 e
R(l/)’m/ = 5 e(l/)’a’/}’Raﬂ uve

el

As pointed out by Riidiger in Ref. [15], Egs. (10) and (11)
can be simplified. Indeed, after some algebra, one can
prove that they are equivalent to the following two
constraints, respectively:

Y,oRPE, 8 =0, (12)

B ola V 1 olasP) 1
R F5pp =2 G708 V0 + 1, )

(r

JORD ()7 = IR )PV = IR (P (5 = 0. (13)
where J* is the divergence of 17, namely, Jﬂ = V”f/aﬁ,
whereas G,, stands for the Einstein tensor. We note,
however, that there is a sign difference between our
Eq. (12) and Eq. (4.9) of Ref. [15]; in the latter, the sign
in front of the fraction 1/6 is positive, although the correct
sign is negative, as written here. Indeed, should the sign be
positive such constraint would not be identically valid for
maximally symmetric spacetimes, as it should be, as
acknowledged by Riidiger himself. Thus, there must have
been a typo at this point in Ref. [15].

Summing up, assuming the Tulczyjew supplementary
condition, we have proved that the most general conserved
charge for MPD equations that is linear in momenta is
given by

1 -
0= (K#P” +§V”KyS””> +7Y,,5", (14)

where K is a Killing vector and Y is a rank two KY tensor.
In addition, the constraints (12) and (13) must hold. Since
K and Y are totally independent from each other and the
latter constraints do not depend on K, it follows that the
scalars,

1 _
Ok =K,P'+5V,K, 5" and Qy=7,,5".

are independently conserved. Indeed, it is widely known
that Qg is conserved for any Killing vector K. The
important result of Ref. [15] is that the scalar Qy is
conserved as long as Y is a KY tensor and conditions
(12) and (13) hold. The problem is that the latter conditions
are quite obscure and have not been tackled in the literature
so far. The main goal of the present work is to shed light
over the meaning of these constraints and determine the
scenarios in which the conserved charge Qy is allowed to
exist. As a final comment, we mention that a generalization
of the conserved quantity Qg for the case in which the
spinning particle is electrically charged and moves in
an external electromagnetic field has been attained in
Ref. [20].

III. KILLING-YANO TENSORS AND ITS
INTEGRABILITY CONDITIONS

A Killing tensor is a totally symmetric tensor N, aya, =
Ni(4,..a,) that obeys the equation V(/;Na]...ap) =0. In
particular, Killing vectors can be seen as Killing tensors
of rank one. Just as Killing vector fields generate
symmetries on the spacetime, which therefore lead to
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conservation laws for the geodesic motion, Killing tensors
are the generators of symmetries on the phase space of the
geodesic Hamiltonian and, due to Néther’s theorem, also
yield conserved charges along geodesics [22]. Since Killing
tensors are not related to symmetries of the spacetime itself,
they are referred to as hidden symmetries and are generally
more hard to find than Killing vector fields. Indeed, it took
a while to perceive that the Kerr solution is endowed with a
Killing tensor in addition to the two Killing vector fields
associated to stationarity and axial symmetry. The Killing
tensor of Kerr spacetime was the missing link necessary to
attain full integrability for the orbits of pointlike test
particles moving in this background [7,8].

Another important mathematical object for these matters
are the Killing-Yano (KY) tensors, which are totally skew-
symmetric tensors, Y ara, = Yioya,] that obey equation
V(/;Y{,l)azmaq =0, which is also a generalization of the
Killing vector equation. It turns out that the square of a
KY tensor is always a Killing tensor of rank two,
N, =Y, Y vay-a,- Nevertheless, it is worth mentioning
thatrank two Killing tensors are not necessarily the square of
a KY tensor; however, in special cases, this turns out to be
true [23,24]. Thus, one can say that KY tensors are more
special than Killing tensors. Indeed, in addition to generat-
ing conserved charges along the geodesic motion via the
Killing tensor built from its square, KY tensors are also
related to symmetries of the phase space of a semiclassical
supersymmetric model for free particles with quantum spin
1/2 whose internal angular momentum is represented by
S = g2gP where £% is a Grassmann variable [22,25,26].
Furthermore, KY tensors can be used to construct operators
that commute with the D’Alembertian and the Dirac
operators [27,28], which is of relevance to describe quantum
particles moving in classical spacetimes. It is said that KY
symmetries are nonanomalous, a feature that generally is not
shared by the Killing tensors. KY tensors have also been
used to build Lax pairs in curved spaces [29], which is of
relevance for the theory of integrable systems.

Suppose that Z* is a covariantly constant vector field,
namely, V,Z, = 0. Then, using this hypothesis along with
Ricci identity it follows that

0=2V,V,)Z% = R%,,Z".

The latter equation is said to be an integrability condition
for the existence of a constant vector field. For instance, if
the curvature of a connection is such that there exists no
direction 7% obeying T“R,s,, = 0, then we can already
state that no covariantly constant vector field exists, without
needing to bother about integrating the differential equation
V,Z, = 0 for a generic vector field Z¥. Likewise, in order
to enable a KY tensor to exist in a spacetime, some
integrability conditions must hold. For instance, concerning
KY tensors of rank two, Y, the following constraints must
hold [30-32]:

0=R,Y,, (15)
0= Ca[f[;to—yu]a + C/w[a(;Yﬁ]a’ (16)

where R? ,, stands for the Ricci tensor whereas C,,,; denotes
the Weyl tensor. Thus, the curvature of the spacetime must
obey some algebraic restrictions if a spacetime admits a KY
tensor. We shall return to this point later, after introducing the
basics of Petrov classification.

At this point it is useful to use a null tetrad frame
{#,n,m,m}, where € and n are real vector fields, whereas
m is complex with m being its complex conjugate. These
reality conditions encode the fact that we are considering
the Lorentzian signature. By definition of a null tetrad
frame, the only nonvanishing inner products in this frame
are the following:

tn,=1 and mtm, = —1.
In particular, all vectors of the frame are lightlike. For
instance, if {eq,e;,e,,e3} is a Loretnz frame, with their
inner products yielding the Minkowski metric, then

1 1
£ =—(eg+e), n=—(e—e),

V2 V2
B 1 ) _ 1 .
m= 5(32 + ie3), m = 5(62 ie3),

is a null tetrad frame. This kind of frame is valuable to
define the components of the Weyl tensor in a compact
way. The 10 degrees of freedom of the Weyl tensor in four
dimensions can be written in terms of five complex scalars
known as Weyl scalars and defined by

lIJl = Cfnfm’ lPZ = Cfmr'rm
LI]4 = Cnﬁmrh’ (17)

LPO = Cfmfm’
lP3 = Cfnﬁm’

where in the above equation C,,, ., is just a compact way of
denoting Cﬂmﬁf”n”f"m/’ and so on. The Petrov classifi-
cation, an algebraic classification for the Weyl tensor that
proved to be valuable in several physical and mathematical
problems, can then be defined in terms of the vanishing of
these Weyl scalars [33]. Table I summarizes such a link. For
instance, if the Weyl tensor of a spacetime is of Petrov type
N then it is possible to find a null tetrad frame in which all
Weyl scalars except W, vanish. For a review on Petrov
classification see [33] and references therein.

Null tetrad frames are also of relevance to define the
possible algebraic types of a bivector, i.e., a rank two
skew-symmetric tensor B,, = B,,). In a four-dimensional
Lorentzian space, any nonzero bivector can be of two
algebraic types. Either it is a null bivector, meaning
that both contractions B*B,, and B’“’Bm vanish, or it is
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TABLE I. Petrov types and their relation with the possibility of
annihilating the Weyl scalars by a judicious choice of a null tetrad
frame. Note that type O means a conformally flat spacetime, i.e.,
the Weyl tensor is identically zero in such a case.

Petrov type Vanishing Weyl scalars

1 lPo, lP4

11 "I"(), "Pl, LP4

111 lPo, lPL, le, lP4
D lPo, lPl, lP3, lP4
N ¥, ¥, V,, ¥,
0] Y, ¥, ¥V, Vs, P,

non-null. It turns out that given a real bivector B, one can
always find a null frame in which the bivector is written in
one of the following forms, depending on its algebraic type:

{Null Bivector: B=7¢ A (m + m) (18)

Non-Null Bivector: B = f€ An+ ihm A in,

where f and h are real functions that cannot vanish
simultaneously. Since a rank two KY tensor is a bivector,
we can then work out the consequences of the integrability
condition (15) for the Ricci tensor. Actually, in the next
section we will be more interested in the traceless part of
the Ricci tensor, which is defined by

o

1

w — R;w - ZRg/w’
where R stands for the Ricci scalar, R%,, and g,, is the
metric. A spacetime is called an Einstein spacetime when-
ever its Ricci tensor is proportional to the metric, which is
equivalent to say that @ vanishes. Note that, in terms of the
null tetrad frame, the traceless condition implies that
Dy = Dy

Now, assuming that the KY tensor is a null bivector, i.e.,
Y = ¢ A (m + m) for some null frame, then inserting this
form into Eq. (15) and finally contracting the free indices of
this equation with the vectors of the null tetrad, we
eventually conclude that

®,p =B,y =D =D, + D, =0,
Y Null: { 44 ‘m ‘m nm nin (19)
q)mm = q)rhﬁt = _2q)fn'

In the same fashion, assuming that the KY tensor is non-
null and writing it in the standard form given in Eq. (18), it
follows that the integrability condition (15) implies

q))f’m = q)frh = chm = (I)mh =0,
Y Non-Null: f#0=> 0, =0,,=0 (20)
h#0=®,, = D;; =0.

Thus, for a generic non-null KY, i.e., when the real
functions f and h appearing in the standard form of

Eq. (18) are both nonvanishing, we have that ®,,, ®,,,,
@, .., and @, all vanish. However, if 4 vanishes then we
cannot assert that ®,,,, = @, = 0, whereas if f vanishes
the integrability condition does not imply ®,, = ®,,, = 0.
Recall that f and /& cannot vanish simultaneously, other-
wise the KY tensor would be trivial.

In the same vein, it is interesting to see the interplay
between the Petrov classification and the possible algebraic
types of a KY tensor. Assuming that Y, is a KY whose
algebraic type is null, it follows that there exists some null
frame such that Y = Z A (m +m). Then, inserting this
expression for the KY tensor into the integrability condition
(16) it follows, after some algebra, that in this null frame the
following Weyl scalars ¥, ¥, ¥,, and W5 must all vanish.
Thus, for a null KY tensor the Petrov classification must be
type N or type O, where the latter is a degenerate case of
type N [32]. Likewise, assuming that the KY tensor is non-
null and inserting its generic form given in Eq. (18) into the
integrability condition (16), it follows that the unique Weyl
scalar that can be different from zero is ¥,, so that the
Petrov type is D or O (which is a degenerate case of D).
Summing up, the following conclusion holds

Null KY: ¥y =¥, =¥, =¥; =0,
{ 0 1 2 3 (21)

Non-Null KY: LPO = lPl = LP3 = lP4 =0.

Thus, just from the algebraic type of the Weyl tensor one
can already rule out the possible existence of a KY tensor of
rank two. For instance, suppose that a spacetime is of
Petrov type III, then it cannot admit a KY tensor. This
statement can be done prior to any attempt of integrating
the KY equation. Thus, the integrability conditions can be a
very powerful tool. In the next section we shall use this tool
along with the conditions (12) and (13) that are required in
order to guarantee that the scalar Qy = S% f/aﬁ is conserved
along a solution of MPD equations, and conclude that very
few spacetimes allow this conserved charge. In particular,
we will prove that this scalar is useless for an Einstein
spacetime.

IV. SPACETIMES ALLOWING
THE CONSERVED CHARGE

In this section we shall investigate the constraints (12)
and (13) that are required to hold in order to guarantee
that the scalar Qy is conserved. The idea is to study its
consequences along with the integrability conditions that
must be true due to the fact that Y is a K tensor. As we will
prove in the sequel, when analyzed together, these con-
straints are very restrictive, with a very narrow class of
spacetimes obeying them. Before proceeding, however, let
us establish that for the maximally symmetric spacetimes,
i.e., de Sitter, anti—de Sitter, and Minkowski spacetimes, the
conserved charge Qy is useless. This is a consequence of
the fact that in these spaces the number of independent
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Killing vector fields is ten, leading to ten conserved charges
Qk, which are enough to obtain expressions for the ten
unknowns P and S in terms of the initial conditions of the
particle. Since here we are assuming the supplementary
condition S"ﬁPﬁ = 0, one can then use Eq. (6) in order to
obtain an expression for the velocity V. In fact, the full
integrability of MPD equations for de Sitter spacetime has
been explicitly attained in Ref. [34]. Thus, in this sense, one
can say that the conservation of Qy is somehow trivial for
maximally symmetric spacetimes and is reason why we
shall ignore this case in what follows.

The Riemann tensor can be decomposed in terms of its
irreducible blocks with respect to the action of the Lorentz
group, which are the Weyl tensor, the trace-less part of the
Ricci tensor and the Ricci scalar. This decomposition is
explicitly written as

R
Raﬂy§ = Caﬂy& + ga[yq)é]ﬂ - gﬂ[yq)ﬁ]a + gga[ygﬁ]ﬂ' (22)

In particular, the spacetime is maximally symmetric if, and
only if, C,,,s and ®,, vanish simultaneously. Each of the
irreducible blocks have a simple transformation with
respect to the double Hodge dual. More precisely, we have

: R
Rapro = =Copys + 9aiyPojp — 9oy Lol = ¢ Yaly Jolp-

Using this expression along with G5 = @ —% Gaps 1t
follows that the constraint (12) can be equivalently writ-
ten as

K (q v 1o ex(a sP) 1 a P
Crl /3)(],Y5)K+ZY€KC ( (réé)_§®( (7Y5)

1 a Ky 1 (a KV 1 kslas
+59 P, Y(;)K—Eé(yq)ﬂ) Yo =795 9).=0. (23)

Analogously, Eq. (13) can be written as

~ ~ 1
JC () (agbr) — J(acﬂ(w)w + Efke(ﬂ|(a‘,<5q)5\p)g‘ﬁy)
Kk (o ) 1 K a ) _
+J°C P8~ 57 € e “@; 8 = 0. (24)

Now, let us consider the two possible algebraic forms for
the KY tensor, null and non-null. These possibilities will be
considered separately in what follows.

A. Null Killing-Yano tensor

In what follows we will consider that the KY tensor is
a null bivector, so that there exists a null frame such that
Y=¢ A (m+in), so that its Hodge dual is ¥ =
i A (m—im). In this case the integrability condition of
the KY tensor implies that Weyl tensor is of Petrov type N
(or more special, namely, O), i.e., the only Weyl scalar that

can be different from zero is ¥,, as explained in the
previous section. Hence, the Weyl tensor can be written
as [33]

C

uvaf = 4‘I’4zf[llm,,]f[amﬂ] + 4@4I/ﬁmﬁiy]1/ﬂ[aﬁ1ﬂ], (25)
where W, stands for the complex conjugate of ¥,. In
addition, several components of the traceless part of the
Ricci tensor vanish, in accordance with Eq. (19). The only
components that can, in principle, be different from zero are

o ()

nn» nms q)nrh s (I)mm ’ q)rhm ) q)fn ’

In addition, the following constraints must hold:

(I)nrh = _(I)nmv
(26)
(I)mm = q)rhﬂt = _2(I)mrh = _2(I)fn'

Thus, at the end of the day just 3 degrees of freedom are left
for @4, namely, ®,,,, @,,,, and ®,,. Similarly, contracting
Eq. (23) with n,ngm’m® and mmgm?n® leads to ®@,,,, = 0
and ®,,,, =0, respectively. Then, taking Eq. (26) into
consideration, it follows that ®,,;, ®;, @z, and @, are
also zero. Hence, the only component of ®,; that can be
different from zero is ®,,. Finally, contracting Eq. (23)
with n,ngn’m®, we obtain

1
‘P4 + Eq)nn = 0. (27)

Therefore, ®,,, vanishes if, and only if, ¥, vanish. Thus, if
either ®@,, or W, vanish then the spacetime is maximally
symmetric, in which case the conserved quantity Qy is
useless. In particular, if the spacetime is Einstein, namely if
®,; vanish identically then W, vanishes and we have the
trivial case.

Concerning the condition (24), contracting it with
mgmgm,n*m”, we obtain J,¥, =0, where it has been
used that W, is real, with the latter fact being a consequence
of Eq. (27). Similarly, contracting with n,ngn,m"m",
ngngn,*m*, and mgymgm,n¥n” implies that J,¥, =0,

Jp+J7)¥4=0, and J,¥,=0, respectively.
Therefore, the constraint (24) leads to
J, ¥y =0, (28)

meaning that either ¥, = 0, which again lead to the trivial
case of a maximally symmetric spacetime, or J, = 0, which
means that Y is covariantly constant. Indeed, the KY
equation can equivalently be written as V,Y,, = VY,
Thus, if J, vanishes, it follows that vey ap = 0, which is
equivalent to the condition V[(, Y, = 0, which implies that

Y is covariantly constant.
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However, if Y is covariantly constant so is its Hodge dual
Y. Particularly, this implies that ¥ is also a K'Y tensor, so that
it makes sense to suppose that the scalar Qy is conserved,
although this is not a necessary requirement as it is
independent from the requirement that Qy is conserved.
Nevertheless, if besides the conservation of Qy we also
assume that Qy is conserved, it follows that the condition
(23) must also hold if we replace Y by Y. Performing this
replacement and then contracting Eq. (23) with n,n ﬁn7ﬁ15 ,

we end up with the constraint

1

> ®,, =0. (29)
Composing Eqgs. (27) and (29) leads us to the conclusion that
Y, and ®,, = 0, which then imply that the spacetime is
maximally symmetric, in which case the conserved charges
are useless.

Summing up, in order for the conserved charge Qy to be
nontrivial for the case of a KY tensor whose algebraic type
is null, the Weyl tensor must be Petrov type N and the only
component of @ that can be different from zero is ®,,,,. In
addition, the KY tensor must be covariantly constant.
Because of the latter fact, it follows that ¥ is also a KY
tensor. If we further impose that Qy is conserved, in
addition to Qy, we conclude that the spacetime is max-
imally symmetric and the conserved charges are useless.

¥, —

B. Non-null Killing-Yano tensor

Now, let us assume that the Killing-Yano tensor is non-
null, which means that there exists some null frame such that
Y = f€ An+ihm A m, where f and h are real functions
that cannot vanish simultaneously. The Hodge dual of the
KY tensor is then given by ¥ = h€ A n —ifm A in. As
discussed in Sec. I, in this case the integrability condition
of the KY tensor implies that the only Weyl scalar that can be
different from zero is ¥,, so that the Weyl tensor can be
written as follows [33]:

Cap = (P2 + o) (Cuny € attp) + My, ming )

- (¥, - ‘i’z)(f[ﬂn,,]m[an%ﬂ] + m[ﬂn'il,}f[anﬂ])

— W, (Cymyniging + nying, € mg)

- ‘i‘z(f[ﬂrhy]n[amﬂ] + nym, i), (30)
In addition, the following components of the tracefree part of

the Ricci tensor must vanish due to the fact that Y is a KY
tensor:

q)fm = q)zf’r'n = (I)nm = q)nrh =0. (31)

Now, taking Egs. (30) and (31) into consideration, we are
ready to analyze Eq. (23), which is necessary for Qy to be
conserved. Contracting (23) with nngn’¢®, €,65¢7n°,
mgmgm?m®, and i, mgm’m® we obtain, respectively:

®,, = 0, Dy = 0, D Dy = 0. (32)
Since the trace-free condition obeyed by @ means that
o, = D, it follows that both components ®,,, and ®,,;,
represent the same degree of freedom. Hence, from
Egs. (31) and (32) one concludes that only 1 degree of
freedom of @ can be different from zero, namely, ®,,.
Then, contracting Eq. (23) with nng7¢° and
m,m Mﬂn‘qé , we arrive at the following relations, respectively:

hRe{W,)} + fIm{W,} + % h,, = 0,
—fRe{W,} + AIm{¥,} + % FOpn=0.  (33)

Finally, using ®,, = ®,,;, we conclude that

Lf—ih

2 = g;ﬂ‘bmf' (34)
Thus, if the spacetime is Einstein, i.e., if @, = 0, then ¥,
vanishes. The latter, in turn, is the unique Weyl scalar that can
be different from zero, so that we conclude that the whole
Weyl tensor vanishes. Hence, if the spacetime is Einstein it
will also be conformally flat and these two conditions means
that the spacetime is maximally symmetric, so that the
conserved quantity Qy is trivial.

Regarding the constraint (24), one can check that it boils
down to

Jalpz = O,

where Eq. (34) has been used. Hence, either the space is
maximally symmetric (if W, =0, which then implies
®,3 =0), or the KY tensor is covariantly constant (if
Jo = 0). Thus, the only nontrivial case in which Qy is
conserved for a non-null KY tensor is when this tensor is
covariantly constant, the Weyl tensor is of Petrov type D
and with the only nonvanishing components of ®,; being
&, = ®,,;. Furthermore, the relation between ¥, and @,
given in Eq. (34) must hold. These are quite restrictive
conditions.

Now, since Y is covariantly constant, it follows that its
Hodge dual is also a KY tensor. Then we can require that
Qy 1is also conserved along the solutions of the MPD
equation, although it is worth pointing out that this is an
independent requirement. Comparing the expressions for
Y and Y,

{Y:ft’/\n—f—ihm/\n'z
Y=hWl An—ifmnrnin’

we note that one Y can be obtained from ¥ by making the
changes f — h and h — —f. Thus, since Eq. (34) must
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hold in order to guarantee that Qy is conserved, it follows
that the analogous condition

Lh+if
=—— 35
2 35— lf nt ( )
must hold in order to assure the conservation of Qy. Hence,
assuming that the scalars Qy and Qy are both conserved, it
follows that Eqs. (34) and (35) hold simultaneously.
Equating both expressions for ¥, and assuming that
®,, # 0, so that the spacetime is nontrivial lead us to
the condition
h+if f—ih

2 12
n—if fram ) TH=0

Since f and £ are real functions, the unique solution for the
latter constraint turns out to be the trivial one, f = h =0,
which is unacceptable, since by hypothesis Y is a non-
vanishing KY tensor. Thus, we conclude that the only case
in which Qy and Qy are both conserved is when ®,, = 0,
which then implies ¥, = 0. This means that the spacetime
is maximally symmetric and, therefore, the conserved
scalars of interest are useless.

C. Physical restrictions by energy conditions

As we have just seen, the integrability conditions for the
KY tensor along with the additional conditions required for
Qy to be conserved inflict huge restrictions over the Weyl
and Ricci tensors. In the present subsection we shall make
use of Einstein’s equation to convert the restrictions over
the Ricci tensor onto constraints over the energy-momen-
tum tensor of the matter on the background. More precisely,
we shall analyze whether the weak energy condition
(WEC) holds or not. Here we will assume that the
spacetime is not maximally symmetric, which means that
we are requiring that just Qy is conserved, while Qy is not a
conserved scalar, otherwise ®,, would vanish identically
and the calculations below would be senseless.

In suitable units, Einstein’s equation reads G,, =T ,,
where T, is the energy-momentum tensor of the back-
ground matter. This can be equivalently written as

R
T, =2 - — G-

1724 712 4

The weak energy condition then amounts to the constraint
T,, 22" > 0 for any timelike vector field Z*, which means
that the energy density of the matter is not negative as
measured by an arbitrary observer. Writing the vector field
Z in terms of the null tetrad frame we have

Z=2,0+Zm—Z,m—Z,m.

The WEC then reads

R
(DIWZ”ZD - 5 (Zan - Zmzm) =0, (36)

for any vector Z such that Z,Z, > Z,,Z;. Since most of the
components of ®,, vanish when Qy is conserved, the
above restriction becomes simpler to be analyzed. In what
follows let us consider the two possible algebraic types of
the KY tensor separately.

When the KY tensor is type null, the only component of
®,, that can be different from zero is ®,,,, so that Eq. (36)
becomes

R
(I)nanZf - E (Zan - ZﬁLZm) > 0.

Defining ¢ = (Z,Z; — ZyZ,,)/(Z%), it follows that the
timelike condition reads { > 0, so that the WEC becomes

R
o, > Eéj, for all £ > 0.

This is possible only if @,,, > 0 and R < 0. Thus, besides
the geometrical restrictions found in Sec. IV A, there exists
the physical restriction that the Ricci scalar cannot be
positive whereas the component ®,,, cannot be negative.
Otherwise the background spacetime is not generated by a
physically reasonable matter.

Now, let us consider that the KY tensor has a non-null
algebraic type, in which case the only components of ®,,
that can be different from zero are ®,, = ®,,;, so that
Eq. (36) becomes

R
q)fn(zfzn + Zthm) - Z (anf - Zrhzm) > 0.
Since the time-like condition for Z reads
Z,Zp > ZyZi = | Zu|*

it follows that Z,Z, is positive and, therefore, defining
E= (2,2, —1Z,")/(Z,Zs +|Z,,%), it follows that & is
positive, so that the WEC for spacetimes with conserved
Qy for a non-null KY tensor is given by

R
o, > Zf, for all £ > 0.

This, in turn, implies that ®,, cannot be negative and the
Ricci scalar cannot be positive.

V. LOOKING FOR EXPLICIT EXAMPLES

The aim of the present section is to find nontrivial
examples of spacetimes obeying the several restrictions
necessary in order to assure the conservation of Qy. We
shall start analyzing the case in which the KY tensor is null
and then consider the non-null case.
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A. An example with a null KY tensor

As argued in Sec. III, when the algebraic type of the KY
tensor is null the Weyl tensor must be type N according to
the Petrov classification. A well-known class of type N
spacetimes is given by the so-called pp-wave metrics.
These spacetimes are generally associated to gravitational
radiation and are geometrically defined as the ones pos-
sessing a covariantly constant null vector field. Their line
elements are given by

ds2 — 2F(u’ Z, Z)duz + 2dudr - ZdZdZ» (37)

where u and r are real coordinates, whereas z is a complex
coordinate with Z being its complex conjugate. F is an
arbitrary real function of coordinates u, z, and Z. A null
tetrad frame is then given by

=0, n=0,-Fo,, m=a0,, m = 0;.
The null vector field € is the covariantly constant vector
that characterizes a p p-wave spacetime. In this frame the

unique Weyl scalar that is different from zero is

whereas the only component of the Ricci tensor that is
different from zero, in this null frame, is

Rnn = (I)nn = 28182F

The null bivector Y = € A (m + m) is covariantly constant
and, therefore, is also a KY tensor. Thus, out of the
restrictions necessary in order for Qy to be conserved,
the only one that remains to be met is the one given in
Eq. (27), namely, ¥, +%<I>,m = 0. Imposing the latter
equation to hold leads us to the partial differential equation
0:0-F = 0.0-F, whose general solution is

F(u,2,2) = Fy(u,2+2) + Fa(u, 2), (39)

where F; and F, are general real functions of their argu-
ments. Note, however, that taking the complex conjugate of
the equation (27) it follows that ¥, must be a real function,
since the Ricci tensor is clearly real and the null vector n is
also real. Therefore, from Eq. (38), it follows that

lP4 == @4 = 8282F — aZaZF

This condition, along with Eq. (39), implies that the function
F must have the form

F(u,2,2) = F3(u, 2 +2), (40)
where F7j is an arbitrary real function of u and z + Z. This

choice of function F leads to the most general pp-wave
spacetime such that the scalar

Qy = Y, = 2i(Sppm — Sew) = 2i(S,, = S,2)

is conserved along the solutions of the MPD equations,
where in the last equality it has been used that Y is the
bivector 0, A (0, + 0:).

However, it turns out that the bivector ¥ =id, A (9. —0:)
is also a KY tensor (actually it is covariantly constant).
Imposing the scalar Qy to be conserved, we would find
from Riidiger’s conditions that the function F appearing in
the line element should have the form

F(u,z.z) = Fy(u.z - 2). (41)

Note that Egs. (40) and (41) hold simultaneously only if F
is a function of u alone, F = F(u), in which case the
spacetime would be maximally symmetric, in accordance
with what has been obtained in Sec. IVA when the
constancy of Qy and Qy are imposed simultaneously.

B. Seeking an example with a non-null KY tensor

Since the most general metric of Petrov type D pos-
sessing a covariantly constant bivector Y is not available in
the literature and certainly is quite hard to find, here we will
start with the most general type D spacetime possessing a
KY tensor and two commuting Killing vectors. The latter
class of spacetimes is physically relevant due to the fact that
a star that has attained the equilibrium should be stationary
and axis symmetric, which geometrically means that
there exists Killing vector fields 0, and d,. Moreover,
the existence of a KY tensor along with the two Killing
vectors assures the integrability of the geodesic motion. In
particular, the Kerr metric is a member of this class of
spacetimes. The most general metric possessing these
features has been obtained in Ref. [35] and is given by

AyA dy?
ds? = S| 222 (dt + x2dg?)? —
(x2+y2)2( ) A,
AA dx?
-7 (dt- 2d 2\2 _ 7
(x2+y2)2( y (/’) A, s

where A; and A, are arbitrary functions, whereas A, A,,
and § are the functions given by

2

x
A= (b1x® + ) (box® +112)
Ay = v
(11 = b1y*)(b2y* = 12)
_ b3x® + 113 n b3y* =113
bix* +n by

where the b’s and #’s are arbitrary constants. The null tetrad
frame aligned with the principal null directions of the Weyl
tensor is given by
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1 y
£:M<¢_a+\/_

-0,

ya+

a A0,
2SA2 + 8

1
V254,

The KY tensor is given by

m = ZAla

)
/v +1Ala>
)

= (0w
1
”‘m<A
(2

Y=f€ An—+ihmAm,

b 2 b 2 _
e 2x2 T g =2 ’7;
bix” +m m—byy

Using this frame, it follows that the only Weyl scalar that is
different from zero is '¥,, whereas the components of @, in
this frame are all vanishing apart from ®,,, and ®,,;, where
it is worth recalling that the tracefree condition implies
&, = D,,;. Then, the only constraints that remain to be
imposed in order to assure that Qy is conserved along the
solutions of the MPD equations are Eq. (34), which
connects ¥, and ®,,, and the requirement that ¥ must
be covariantly constant. In particular, imposing the
latter constraint we find that either bs/n3 = b;/n, or
by /ny = by /1y, but the former option leads to a vanishing
S and, therefore, a vanishing metric, which is senseless.
Thus, let us consider b, /n; = b,/n,. However, in this case
either A; or A, become negative, so that the signature
ceases to the Lorentzian, i.e., the space is nonphysical.
Thus, for the broad class of spacetimes considered here,
there exists no example in which the scalar Qy is conserved
along with the solutions of the MPD equations.

where

VI. CONCLUSIONS

We have proved that the integrability condition of the
KY tensor along with the constraints necessary for Qy to be
conserved imply, actually, that the bivector Y should be
more than a KY tensor, it must be a covariantly constant
tensor. In addition, we have proved that if the background is
an Einstein space then the conservation of the scalar Qy
implies that the spacetime must be maximally symmetric,
i.e., trivial. This is a great improvement on the under-
standing of the conserved quantity introduced by Riidiger
in Ref. [15]. There exist several physically relevant
spacetimes possessing KY tensors, as exemplified by
Kerr-NUT-(A)dS and Kerr-Newman metrics. However,
backgrounds possessing covariantly constant bivectors
and with physical interest are much more rare. This greatly
undermines the usefulness of the conserved scalar Qy.

Moreover, once Y is constant, it follows that its Hodge dual
is also constant and, therefore, is also a KY tensor. Hence, it
is natural to demand that the scalar constructed from Y,
namely, Oy, should also be constant. In this case, it turns
out that the spacetime must be maximally symmetric,
which, in turn, means that these conserved scalars are
useless for the integration of MPD equations, since in these
spaces full integrability can already be attained by means of
the Killing vector fields. However, it is worth pointing out
that in spite of it being reasonable to require that Qy and Oy
are both conserved, this is not necessary. Rather, we could
be interested in finding spaces in which just Qy is
conserved. In the present article, we have proven that there
exist spacetimes obeying the latter condition, but they form
a very narrow class of metrics. Indeed, we have proved that
besides having the covariantly constant bivector Y, these
spacetimes must have Weyl tensors that are either of Petrov
type N, when Y is a null bivector, or type D, when Y is non-
null. Moreover, using the null tetrad frame adapted to the
covariantly constant bivector, we have seen that the trace-
less part of the Ricci tensor must have just 1 nonvanishing
degree of freedom and this degree of freedom is connected
to the only Weyl scalar that can be different from zero; see
Egs. (27) and (34). In particular, we have provided one
explicit example in Sec. VA.

The scenario of greater physical interest for the use of the
MPD equations is given by a test particle moving in empty
space around some celestial body, so that the energy-
momentum tensor of the background matter vanishes in the
region of interest. Einstein’s equation then implies that the
traceless part of the Ricci tensor vanishes (even allowing
the existence of a cosmological constant), in which case the
conservation of Qy implies that the spacetime is maximally
symmetric. Therefore, the conserved quantity Qy is useless
in most scenarios of physical relevance.

As a final comment, it is worth pointing out that the idea
of Riidiger’s article was to look for a scalar linear on the
momenta that is conserved for an arbitrary theory yielding
MPD equations and adopting Tulczyjew supplementary
condition S”/’Pﬁ = 0. In this broad scenario, Riidiger
obtained that Qy = SV L 18 conserved provided that ¥
is a KY tensor and conditions (10) and (11) are obeyed.
However, in some specific theories these extra conditions
might not be necessary and even other conserved scalars
might exist. As an example, let us consider the Lagrangian
formulation of the spinning particle theory [19,36], with the
following specific Lagrangian:

L = aV*V, + bo*o,,

where a and b are nonvanishing constants V# = dx*/dx.
The momenta are then defined by [19]

OL OL
PtH=——— and S* =-— ,
av, do,,
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which for this particular Lagrangian yields

Pt = —-2aV*¥ and S* = —2bot".

The field equations for this Lagrangian are MPD equations.
Since in this case P « V, it follows from Eq. (1) that

S§# = 0, so that the conservation of Qp = S”’“BM for some
bivector B* reads

Qp = $*V°V,B,, = 0. (42)
Now, the supplementary condition S$**P, =0 can be

equivalently written as S* :e’“’V‘SZyP(;, where 2P, = 0.
Thus, Eq. (43) reads

. 1
Qp = ——%,PsP, VB’ = 0. (43)
a

Imposing that the above equation holds for an arbitrary P*
and an arbitrary ¥ orthogonal to P we eventually find that
V(@B9r must vanish, i.e., B must be a KY tensor, which
agrees with Riidiger’s result. But in this specific theory,
note that no additional condition is required for the
conservation of Qp.
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