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We develop an approach to calculate the self-force on a charged particle held in place in a curved
spacetime, in which the particle is attached to a massless string and the force is measured by the string’s
tension. The calculation is based on the Weyl class of static and axially symmetric spacetimes, and the
presence of the string is manifested by a conical singularity; the tension is proportional to the angular
deficit. A remarkable and appealing aspect of this approach is that the calculation of the self-force requires
no renormalization of the particle’s electric field. This is in contract with traditional methods, which
incorporate a careful and elaborate subtraction of the singular part of the field. We implement the approach
in a number of different situations. First, we examine the case of an electric charge in Schwarzschild
spacetime, and recover the classic Smith-Will force in addition to a purely gravitational contribution to the
self-force. Second, we turn to the case of electric and magnetic dipoles in Schwarzschild spacetime, and
correct expressions for the self-force previously obtained in the literature. Third, we replace the electric
charge by a scalar charge, and recover Wiseman’s no-force result, which we generalize to a scalar dipole.
And fourth, we calculate the force exerted on extended bodies such as Schwarzschild black holes and Janis-
Newman-Winicour objects, which describe scalarized naked singularities.
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I. INTRODUCTION AND SUMMARY

In a classic work, Smith and Will [1] calculated the self-
force acting on an electric charge held in place in the
Schwarzschild spacetime of a nonrotating black hole. In
flat spacetime, the electric field lines emanating from the
charge would be isotropically distributed around the
particle, and the net force on the charge would vanish
(this in spite of the infinite value of the field at the particle’s
position). In a curved spacetime, however, the electric field
is modified by the spacetime curvature, the field lines are
no longer isotropic, and the net force no longer vanishes.
Smith and Will relied on an expression for the electric field
provided by Copson [2] and corrected by Linet [3].
Because the field diverges at the charge’s position, an
essential aspect of their calculation was a careful regulari-
zation of this singular field, followed by a renormalization
to a finite piece that is solely responsible for the self-force.
The Smith-Will self-force is given by Fself ¼ q2M=r30,

where q is the particle’s electric charge, M the mass of the
black hole, and r0 the charge’s radial position (in the usual
Schwarzschild coordinates). The self-force points away
from the black hole, and therefore represents a repulsive
effect. Their result was generalized to electric charges in the
Reissner-Nordström spacetime [4], to scalar charges [5–7],
and to higher-dimensional black holes [8–12]. The Smith-
Will self-force is nearly universal, in the sense that its
expression is largely independent of the internal compo-
sition of the gravitating body [13,14].

The calculation of the self-force by Smith and Will
leaves a number of questions unanswered. Among these are
the following: What is the external agent responsible for
holding the charge at its fixed position? Is this agent not a
significant source of gravitation? What is the impact of the
electric field on the spacetime geometry? Can these
modifications to the gravitational field alter the description
of the self-force? Should there not also be a gravitational
component to the self-force? And what is the precise
operational meaning of the self-force?
Our aim with this paper is to provide a more complete

description of the self-force and to supply answers to these
questions. We have two main concerns. The first is the
nature of the external agent: what is holding the charge at its
fixed position? The second is the operational meaning of
the self-force: who is measuring this force, and where is it
being measured? As we start providing answers to these
questions, we shall find that the other queries find answers
as well.
We first make a choice of external agent. We declare that

the charge shall be prevented from falling into the black
hole by being attached to a massless string. The string
extends from the particle to infinity, where it is held firmly
by an observer (to be thought of as an actual person). The
force required of this observer is equal to the tension in the
string, and this force accounts for the local acceleration of
the charge in the Schwarzschild spacetime, along with all
self-force effects. This choice of external agent provides
at once an operational meaning for the self-force: it is
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measured by the string’s tension, after subtracting off the
local acceleration.
The black hole must also be prevented from falling

toward the particle. We do this by attaching a second
massless string to the black hole. This string extends from
the black hole to infinity, where it is held by a second
observer. Newton’s third law guarantees that the force
required of this observer, which is equal to the tension in
the second string, is equal to the force supplied by the first
observer. The situation is depicted in Fig. 1.
To make all this precise, we work with the class of static

and axially symmetric spacetimes described by the Weyl
metric (see, for example, chapter 10 of Ref. [15])

ds2 ¼ −e−2Udt2 þ e2U½e2γðdρ2 þ dz2Þ þ ρ2dϕ2�; ð1:1Þ

in whichU and γ are gravitational potentials that depend on
ρ and z. The class includes the Schwarzschild spacetime,
whose metric can easily be recast in this form, and it
includes also all the spacetimes to be considered in this
paper, which are modifications to the Schwarzschild
spacetime that account for the field created by the particle.
This class of metrics is very convenient to work with,
because U satisfies a Poisson-type equation for which a
multitude of solutions have been found, and because γ can
then be obtained from U by evaluating quadratures.
In the metric of Eq. (1.1), the ratio of proper circum-

ference to proper radius for a small circle ρ ¼ constant
around the z axis is given by 2π expð−γaxisÞ, where γaxis ≔
γðρ ¼ 0; zÞ is the value of γ on the axis. Elementary flatness
demands that this ratio be precisely 2π, and for this we must
have γaxis ¼ 0. Failure to achieve this implies that an
angular deficit measured by β ≔ 2π½1 − expð−γaxisÞ� has
been introduced in the geometry; the spacetime contains a
conical singularity. This singularity signals the presence of
a material source on the axis, which can be interpreted as a
Nambu-Goto string, a one-dimensional object whose mass
density μ is equal to its tension T—the string traces a two-
dimensional world sheet in spacetime. The string is mass-
less because its sole gravitational manifestation is the
nonzero γaxis; it makes no contribution to U. The string’s
tension is given by [16–19]

T ¼ β

8π
¼ 1

4
½1 − expð−γaxisÞ�; ð1:2Þ

and an observer holding this string at infinity would need to
exert a force F ¼ T.
These observations define our strategy in this paper. We

consider a charged particle held in place by a massless
string in the spacetime of a nonrotating black hole. We
calculate the electric field produced by this charge, and we
calculate the gravitational potentialU for this system, going
well beyond the test-charge approximation in which the
metric is kept to its Schwarzschild expression. Next we find
γaxis, calculate the string’s tension according to Eq. (1.2),
and thus obtain the force required of an observer at infinity
to hold the string. In doing all this, we manage to answer all
the questions listed previously.
In addition to providing a precise operational meaning to

the force and answers to these questions, a substantial
advantage of the method developed in this paper is that the
calculation of the force requires no regularization and no
renormalization of the particle’s electric field, which is
badly singular at the particle’s position. Because the force
follows from the angular deficit instead of an evaluation of
the field acting on the charge, there is absolutely no need to
deal with the singular nature of the field. In our opinion, the
absence of renormalization in this scheme is a most
powerful conceptual advance over the traditional methods
of calculation.1

FIG. 1. A massless string is attached to a particle (right) to prevent it from falling toward a black hole. A second string is attached to the
black hole (left) to prevent it from falling toward the particle.

1We hasten to point out that in spite of this bold claim, our
calculations are not entirely free of regularization. While it is true
that there is no need to regularize the electric field (a big deal for
us), we shall nevertheless have to contend with other infinities.
The first occurs when we attempt to define the particle’s mass at
second order in perturbation theory, because at this order the mass
incorporates the particle’s gravitational binding energy, which is
formally infinite for a point mass. The second occurs when we
attempt to introduce a redshift factor for photons emitted at the
particle and received at infinity; this is infinite because the
gravitational potential of a point mass is infinite at the particle’s
position. In both cases we require a mild form of regularization to
remove the infinities. For the particle’s mass, we absorb the
binding energy within the definition of the mass at second order.
For the redshift, we subtract the particle’s contribution from the
total effect. All this is to be contrasted with the complete absence
of regularization for the electric field.
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We are not the first authors to exploit the Weyl metric of
Eq. (1.1) to calculate the force required to keep gravitating
objects at fixed positions. There is, in fact, a vast literature
on this topic, reviewed in chapter 10 of Ref. [15], which
features strings and struts to keep the objects still. An
interesting subset of this literature [20–29] is concerned
with the equilibrium of two (or more) massive and charged
objects. This line of inquiry culminated in the discovery of
a class of solutions to the Einstein-Maxwell equations
[30,31] that describes two charged black holes held apart
by a strut. In recent papers [32,33], Krtouš and Zelnikov
investigated the thermodynamic and self-force aspects of
these spacetimes.
The literature reviewed in the preceding paragraph is

concerned mostly with exact solutions to the field equa-
tions, and it considers situations in which γ can be obtained
globally. To investigate the conical singularity and calculate
the string’s tension, however, it is not necessary to know γ
everywhere in the spacetime. It suffices to know γaxis, the
value of γ on the z axis. Giving up on a global γ and
focusing instead on γaxis should open up the way for much
more exploration.
In this paper we develop techniques that allow us to

calculate γaxis directly, by exploiting the singular nature of
all fields in the vicinity of the particle. These methods are
flexible and adaptable, and we apply them to a number of
different situations. We reproduce old results from the
literature, provide additional information and extensions of
these results, correct some erroneous results, and consider
situations that have not yet been examined.
We begin in Sec. II with a general description of the

method, in the specific context of an electric charge held at
rest in the spacetime of a nonrotating black hole. In Sec. III
we cast the background Schwarzschild metric in the Weyl
form of Eq. (1.1), and review some of its properties. In
Sec. IV we place a charged particle in the spacetime,
construct its vector potential and metric perturbation, and
calculate the string’s tension T from γaxis. We obtain

T ¼ mM

r20ð1 − 2M=r0Þ1=2
−

2m2M2

r40ð1 − 2M=r0Þ
−
q2M
r30

þOðm3; mq2Þ; ð1:3Þ
where M is the mass of the black hole, m the particle’s
mass, q its charge, and r0 its position. The first term on the
right of Eq. (1.3) is recognized as ma, the particle’s mass
times its acceleration in the background Schwarzschild
spacetime. The second term is a correction to this expres-
sion, which can be attributed to the particle’s gravitational
self-force; this contribution is negative, which reveals that
the gravitational self-force is repulsive. The last term is the
Smith-Will electromagnetic self-force, which is also repul-
sive. The error term in Eq. (1.3) indicates that the tension is
calculated through second order in both m and q; the error
is of third order.

In the developments of Sec. IV we go at length to ensure
that all quantities that appear in Eq. (1.3) can be given an
operational definition. The black-hole mass M is thus
identified with the Smarr mass [34], which can be defined
in terms of geometric quantities on the deformed event
horizon. The particle’s mass m is defined in terms of its
energy-momentum tensor. The charge q is similarly defined
in terms of the current-density vector, but it can also be
defined by Gauss’s law applied to a closed surface
surrounding the charge. The most difficult quantity to
interpret is r0, the coordinate position of the charge. We
relate it to a redshift factor freg, the ratio of energies for a
photon emitted at the particle and received at infinity; this is
regularized by subtracting the (infinite) redshift contributed
by the particle’s local gravitational field.
We continue in Sec. V with a calculation of the string

tension produced by electric and magnetic dipoles in the
spacetime of a nonrotating black hole. The self-force acting
on dipoles was previously computed by Léauté and Linet
[35], based on the expectation that only the regular part of
the (electric or magnetic) field should be exerting this force.
The field, however, is more singular for a dipole than for a
point charge, and regularization may not be as straightfor-
ward as what was attempted by Léauté and Linet. We find
that indeed, our results differ from theirs. In Sec. VI we
replace the electric charge of Sec. IV with a scalar charge,
and reproduce Wiseman’s result [5] that the self-force
vanishes; the tension is given by Eq. (1.3) with the last term
deleted. In an interesting extension ofWiseman’s treatment,
we find that the black hole and scalar charge system can be
described by an exact solution to the Einstein-scalar
equations. Finally, we show that the self-force on a scalar
dipole is also zero.
In Sec. VII, the last section of the paper, we generalize

our methods so that they can be applied to extended objects
instead of point particles. We first calculate the string’s
tension for a system of two nonrotating black holes, and
then consider a system of two massive, scalarized objects
described by the Janis-Newman-Winicour metric [36]. In
the Appendix we provide additional insights into the
spacetime of a Schwarzschild black hole perturbed by an
electric charge, as described in Sec. IV.
We hope that this survey of what our methods can

achieve will convince the reader of their power, and that this
reader will feel inspired to continue their exploration. In our
view, the approach to the self-force provided by the Weyl
class of metrics is a most compelling one. First, it provides
a complete physical picture in which the external agent
holding the particle is precisely identified as a massless
string. Second, and more importantly, it permits a calcu-
lation of the force in which there is no need to renormalize
a singular field. The approach, however, is limited by
the restrictions inherent to the Weyl class of metrics: the
spacetime must be static and axially symmetric, and the
energy-momentum tensor must be such that Tρ

z ¼ −Tz
z.
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Fortunately, this last condition is fairly accommodating,
being met by electromagnetic and massless scalar fields,
and by point particles. With some work it should be
possible to go beyond this class of spacetimes. For
example, the restriction on the energy-momentum tensor
can be lifted by incorporating a third gravitational potential
in the metric, and a third potential can also allow the
spacetime to become stationary (instead of merely static;
see, for example, chapter 13 of Ref. [15]). We shall leave
these considerations for future work.

II. GENERAL SCHEME AND STRATEGY

We present our calculational scheme in the specific
context of a point electric charge held at rest in the
spacetime of a nonrotating black hole. The method is
easily adaptable, and it will also be applied to an electric
dipole, a magnetic dipole, a scalar charge, a scalar dipole,
and extended objects. But for the time being we consider a
point particle of mass m and electric charge q held in place
outside a black hole of mass M. It is assumed that m and q
are both much smaller thanM, and we takem and q to be of
the same order of magnitude. (There is no obstacle to
lettingm be much smaller than q, or q be much smaller than
m.) We wish to calculate the force required to keep the
particle in its place.

A. Metric, vector potential, and field equations

The spacetime is static and axially symmetric about the
straight line that joins the particle to the black hole. The
geometry of this spacetime is described by the Weyl metric
of Eq. (1.1), in which U and γ are functions of ρ and z. The
electric field produced by the particle is described by the
vector potential

Aα ¼ −Φ∂αt; ð2:1Þ

in which Φ is also a function of ρ and z. The particle is
placed on the z axis, at ρ ¼ 0 and z ¼ b.
The charged particle comes with a current-density vector

jα ¼ q
Z

uα
δðx − XðτÞÞffiffiffiffiffiffi−gp dτ ð2:2Þ

and an energy-momentum tensor

Tαβ ¼ m
Z

uαuβ
δðx − XðτÞÞffiffiffiffiffiffi−gp dτ: ð2:3Þ

Here, xα represents the coordinates of a spacetime event,
XαðτÞ describes the particle’s world line, which is para-
metrized with proper time τ, uα ¼ dXα=dτ is the velocity
vector, δðx − XÞ is a four-dimensional delta function, and g
is the metric determinant. In the case of a static particle
placed on the z axis, the only nonvanishing components are

jt ¼ qe−2ðUþγÞδðx − bÞ; Ttt ¼ me−ðUþ2γÞδðx − bÞ;
ð2:4Þ

in which x designates a spatial point with coordinates
ðρ; z;ϕÞ, b denotes the position of the particle at ρ ¼ 0,
z ¼ b, and δðx − bÞ ≔ ρ−1δðρÞδðz − bÞδðϕÞ is a three-
dimensional delta function.
The field equations consist of Maxwell’s equations

∇βFαβ ¼ 4πjα; ð2:5Þ

where Fαβ ¼ ∇αAβ −∇βAα is the electromagnetic field
tensor, and Einstein’s equations,

Gα
β − 2Fα

μFβ
μ þ 1

2
δαβFμνFμν ¼ 8πTα

β; ð2:6Þ

where Gα
β is the Einstein tensor. The t-component of

Maxwell’s equations—the only nonvanishing one—
reduces to

∇2Φþ 2∇U · ∇Φ ¼ −4πqe−2Uδðx − bÞ; ð2:7Þ

where ∇2 ≔ ∂ρρ þ ρ−1∂ρ þ ∂zz is the flat-space Laplacian
operator in cylindrical coordinates, and ∇φ · ∇ψ ≔
ð∂ρφÞð∂ρψÞ þ ð∂zφÞð∂zψÞ for any two functions φ and
ψ of ρ and z. The tt and ϕϕ components of the Einstein
field equations, one subtracted from the other, yield

∇2U þ e2U∇Φ · ∇Φ ¼ −4πme−Uδðx − bÞ: ð2:8Þ

And the ρρ and zz components of the Einstein equations
produce

1

ρ
∂ργ ¼ ð∂ρUÞ2 − ð∂zUÞ2 − e2U½ð∂ρΦÞ2 − ð∂zΦÞ2�;

ð2:9aÞ
1

ρ
∂zγ ¼ 2ð∂ρUÞð∂zUÞ − 2e2Uð∂ρΦÞð∂zΦÞ; ð2:9bÞ

respectively. We observe that Eqs. (2.7) and (2.8) forΦ and
U feature a distributional source term on the right-hand
side, but that no such terms appear in Eqs. (2.9) for γ. We
observe also that Eqs. (2.7) and (2.8) do not involve γ; these
equations are integrated first for Φ and U, and the results
are inserted within Eqs. (2.9) to obtain γ.

B. Perturbative expansion

The particle creates a perturbation of the Schwarzschild
solution that describes the unperturbed black hole. To
obtain the potentials in a perturbative series, we expand
U and Φ in powers of ϵ, a bookkeeping parameter
(eventually set equal to one) that keeps track of the powers
of m and q. We write
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U ¼ U0 þ ϵU1 þ ϵ2U2 þOðϵ3Þ;
Φ ¼ ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ; ð2:10Þ

in which U0 describes a Schwarzschild black hole, and Un,
Φn (with n ¼ 1, 2) are the perturbations created by the
particle. Inserting the expansions within the field equations,
we obtain the sequence of equations

∇2U0 ¼ 0; ð2:11aÞ

∇2U1 ¼ −4πme−U0δðx − bÞ; ð2:11bÞ

∇2U2 þ e2U0∇Φ1 · ∇Φ1 ¼ 4πme−U0U1δðx − bÞ ð2:11cÞ

for the gravitational potential, and the sequence

∇2Φ1 þ 2∇U0 · ∇Φ1 ¼ −4πqe−2U0δðx − bÞ; ð2:12aÞ

∇2Φ2 þ 2ð∇U0 · ∇Φ2 þ ∇U1 · ∇Φ1Þ
¼ 8πqe−2U0U1δðx − bÞ ð2:12bÞ

for the electrostatic potential. The sequences could be
extended to higher orders in ϵ, but we shall be satisfied
with a truncation through order ϵ2. An issue that arises in
the integration of the field equations is that U1 is infinite at
x ¼ b, with the consequence that the source terms for U2

and Φ2 do not make sense as distributions. As we shall see,
we shall be able to evade this difficulty.

C. String tension

Once Eqs. (2.11) and (2.12) have been integrated to
reveal the potentials U and Φ through order ϵ2, the results
are inserted within Eqs. (2.9) to obtain γ, also expanded
through order ϵ2. Equation (2.9b) implies that ∂zγ ¼ 0
when ρ ¼ 0, except when the right-hand side of the
equation is singular. It follows that γðρ ¼ 0; zÞ is constant
on any nonsingular portion of the axis, but the value of
γðρ ¼ 0; zÞ can jump from one constant to another when a
singularity is encountered. BecauseU andΦ are singular at
z ¼ b, where the particle is situated, we have that γðρ ¼
0; zÞmust jump at z ¼ b. While γðρ ¼ 0; zÞ can be taken to
vanish2 for z < b (between the black hole and the particle),
it cannot be zero for z > b (above the particle); we must
have instead γaxis ≔ γðρ ¼ 0; z > bÞ ≠ 0.
A regular metric would have γ vanish everywhere on the

z axis; a nonzero γaxis reveals instead the presence of an
angular deficit in the spacetime. The conical singularity, in
turn, signals the presence of a material source on the axis, a
string. Because a constant γaxis implies a constant tension T,

and because this is possible only if T ¼ μ, where μ is the
string’s mass density, the string is identified as a Nambu-
Goto string. We recall that the tension is given by Eq. (1.2),
and that it is directly proportional to the angular deficit.
The sole gravitational manifestation of the string is this
angular deficit; in particular, the string possesses a vanish-
ing gravitational mass.
The picture that emerges is that of a charged particle held

in place at z ¼ b by being attached to a Nambu-Goto string,
which extends from the particle out to infinity. The force
required to keep the particle from falling toward the black
hole, exerted by an observer holding the string at infinity, is
equal to the string’s tension. A calculation of γaxis, there-
fore, reveals the force acting on the particle.

D. Calculational scheme

We rely on Eqs. (2.9) to calculate γðρ ¼ 0; z > bÞ. It is
sufficient to integrate these equations in a small neighbor-
hood of z ¼ b, and for this purpose it is sufficient to know
U and Φ near ρ ¼ 0 and z ¼ b. This observation defines
our calculational strategy: Obtain the potentials locally, use
this information to calculate the jump of γ across z ¼ b, and
deduce the string’s tension from γ.
In most of the cases that we shall examine below, it is

possible to obtain global solutions for U1 and Φ1. We shall
insert these in Eqs. (2.11c) and (2.12b) to obtain U2 andΦ2

near ρ ¼ 0 and z ¼ b, and we shall then involve these local
solutions in a calculation of γðρ ¼ 0; z > bÞ. The local
analysis, however, does not return unique solutions for U2

and Φ2, because it does not provide access to the required
boundary conditions, either at infinity or at the black-hole
horizon. The solutions, therefore, can only be obtained up
to a number of unknown constants. It is a very fortunate
circumstance that the calculation of γðρ ¼ 0; z > bÞ is
insensitive to the value of these constants.
In the cases to be considered in Sec. VII, featuring

extended objects instead of point particles, we shall have
access to exact solutions forU andΦ. We shall nevertheless
base the calculation of γ on local expressions that are valid
close to the extended objects.

III. BACKGROUND SPACETIME

We begin in this section with a description of the
background Schwarzschild metric, expressed in the Weyl
coordinates ðt; ρ; z;ϕÞ. The metric takes the form of
Eq. (1.1), and the Schwarzschild solution is given by
U ¼ U0 and γ ¼ γ0, with

e−2U0 ¼ Rþ þ R− − 2M
Rþ þ R− þ 2M

; e2γ0 ¼ ðRþ þ R−Þ2 − 4M2

4RþR−
;

ð3:1Þ

where

2The opposite scenario is also possible: we can choose
γðρ ¼ 0; z > bÞ ¼ 0, and find that γðρ ¼ 0; z < bÞ cannot be
zero. In this scenario the particle would be held in place by a strut
situated between the black hole and the particle.
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R� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz�MÞ2

q
: ð3:2Þ

The potential U0, interpreted in Newtonian terms, is that of
a rod of mass M and length 2M, with constant linear mass
densityM=ð2MÞ ¼ 1=2. In the Weyl coordinates, the event
horizon is described by ρ ¼ 0, z ¼ �M.
A test particle of mass m, at position ρ ¼ 0 and z ¼ b in

the Schwarzschild spacetime, possesses a velocity vector
given by

uα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþM
b −M

r
tα; ð3:3Þ

where tα ≔ ð1; 0; 0; 0Þ is the timelike Killing vector; the
square-root factor is eU0 evaluated at ρ ¼ 0 and z ¼ b. The
particle’s Killing energy is E ¼ −muαtα, or

E ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
: ð3:4Þ

The particle’s acceleration vector is aα ≔ uβ∇βuα, and its
only nonvanishing component is az > 0; its covariant
magnitude a ≔ ðgαβaαaβÞ1=2 evaluates to

a ¼ M

ðb −MÞ1=2ðbþMÞ3=2 : ð3:5Þ

The transformation

ρ ¼ r
ffiffiffi
f

p
sin θ; z ¼ ðr −MÞ cos θ; ð3:6Þ

where f ≔ 1 − 2M=r, brings the metric to its usual
Schwarzschild form. We have that R� ¼ r −M �M cos θ,

e−2U0 ¼ f; e2γ0 ¼ r2f
RþR−

; ð3:7Þ

and dρ2 þ dz2 ¼ ðRþR−=r2Þ½f−1dr2 þ r2dθ2�. With this
the metric turns into the familiar form

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3:8Þ

In terms of the Schwarzschild coordinates, the particle is at
r ¼ r0 ≔ bþM and θ ¼ 0. Its Killing energy and accel-
eration are given by

E ¼ m
ffiffiffiffiffi
f0

p
; a ¼ M

r20
ffiffiffiffiffi
f0

p ; ð3:9Þ

respectively, where f0 ≔ 1 − 2M=r0.

IV. ELECTRIC CHARGE

Next we calculate the perturbations U1, Φ1, U2, and Φ2

associated with a point electric charge, obtain γ on the axis,

and calculate the string’s tension. We follow the strategy
outlined in Sec. II, and provide the missing details.

A. First-order perturbation

We begin by constructing the first-order corrections to
the metric and vector potential created by the charged
particle at ρ ¼ 0, z ¼ b. We write U ¼ U0 þ ϵU1 þOðϵ2Þ,
Φ ¼ ϵΦ1 þOðϵ2Þ, and γ ¼ γ0 þ ϵγ1 þOðϵ2Þ, and work to
first order in ϵ.

1. Potentials

The gravitational potential U1 must be a solution to
Eq. (2.11b). It is easy to see that it is given by

U1 ¼
E
D

¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

D
; ð4:1Þ

where E is the Killing energy of Eq. (3.4), and

D ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − bÞ2

q
ð4:2Þ

is the Euclidean distance to the particle. This potential can
also be viewed as the linearized approximation to the
Schwarzschild potential of a black hole of mass E situated
at z ¼ b. It is worth noting that in this view, the error
introduced in the linearization is of order E3, and not E2 as
might be expected. The potential can also be viewed as the
exact representation of a Curzon-Chazy particle [37,38].
The electrostatic potential Φ1 must be a solution to

Eq. (2.12a). Such a potential was constructed by Copson
[2] and then corrected by Linet [3]. In the Weyl coordinates
it is given by

Φ1 ¼
q

ðbþMÞðRþ þ R− þ 2MÞ

×
�ðbþMÞR− þ ðb −MÞRþ

D
þ 2M

�
: ð4:3Þ

An application of Gauss’s law confirms that a small sphere
surrounding ðρ; zÞ ¼ ð0; bÞ contains a charge q, and that
the total charge in the spacetime is also q. The second
property was not verified in Copson’s original solution;
Linet added the 2M term within the square brackets in
Eq. (4.3), a monopole solution to Maxwell’s equation, to
restore the correct value for the total charge.
Next we insert the expansions U ¼ U0 þ ϵU1 þOðϵ2Þ,

Φ ¼ ϵΦ1 þOðϵ2Þ within Eqs. (2.9) and determine γ1. We
find that the general solution to these equations features an
integration constant, and we choose this constant so that
γ1ðρ ¼ 0; zÞ ¼ 0 when M < z < b, that is, between the
black hole and the particle. With this choice we find that
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γ1 ¼
m

ðb −MÞ1=2ðbþMÞ3=2

×

�ðbþMÞR− − ðb −MÞRþ
D

þ 2M

�
: ð4:4Þ

With this solution we find that γ1ðρ ¼ 0; zÞ ¼ 4ma when
z > b (above the particle), with a denoting the acceleration
of Eq. (3.5). We also have that γ1ðρ ¼ 0; zÞ ¼ 4ma when
z < −M (on the other side of the black hole). According to
this and Eq. (1.2), the particle is held in place with the help
of a Nambu-Goto string with tension

T ¼ ϵmaþOðϵ2Þ: ð4:5Þ

A string is also attached to the black hole, extending from
z ¼ −M to z ¼ −∞. The tension in this string is also equal
to ϵmaþOðϵ2Þ. In a beautiful illustration of Newton’s
second and third laws, applied to a fully relativistic
situation, the force required to keep the particle from
falling toward the black hole is equal to the force required
to keep the black hole from falling toward the particle, and
each force is equal to ma, the particle’s mass times its
acceleration.
In the usual Schwarzschild coordinates we have that

U1 ¼
m

ffiffiffiffiffi
f0

p
D

; ð4:6aÞ

Φ1 ¼
q
r0r

�ðr −MÞðr0 −MÞ −M2 cos θ
D

þM

�
; ð4:6bÞ

γ1 ¼
2mM
r20

ffiffiffiffiffi
f0

p
�
r −M − ðr0 −MÞ cos θ

D
þ 1

�
; ð4:6cÞ

where f0 ≔ 1 − 2M=r0 and D is now given by

D ¼ ½ðr −MÞ2 − 2ðr −MÞðr0 −MÞ cos θ
þ ðr0 −MÞ2 −M2 sin2 θ�1=2: ð4:7Þ

In this description, γ1ðr; θ ¼ 0Þ is zero when 2M < r < r0,
and equal to 4ma when r > r0, with a now given by
Eq. (3.9); we also have that γ1ðr; θ ¼ πÞ ¼ 4ma. At first
order in ϵ, the metric of the perturbed Schwarzschild black
hole is given by

ds2 ¼ −ð1 − 2ϵU1Þfdt2
þ ½1þ 2ϵðU1 þ γ1Þ�ðf−1dr2 þ r2dθ2Þ
þ ð1þ 2ϵU1Þr2 sin2 θdϕ2; ð4:8Þ

and the vector potential is Aα ¼ −ϵΦ1∂αt.

2. Black-hole properties

The metric of Eq. (4.8) can be used to calculate how the
black hole is affected by the perturbation. It is evident that
the event horizon continues to be situated at r ¼ 2M, where
gtt ¼ 0, and that the induced metric on the horizon is given
by the θθ and ϕϕ components of the metric, with U1 and γ1
evaluated at r ¼ 2M. These horizon values are

U1ðr ¼ 2MÞ ¼ m
ffiffiffiffiffi
f0

p
r0 −M −M cos θ

;

γ1ðr ¼ 2MÞ ¼ 2mM
r0

ffiffiffiffiffi
f0

p 1 − cos θ
r0 −M −M cos θ

; ð4:9Þ

and we also have that Φ1ðr ¼ 2MÞ ¼ q=r0. The black-hole
area is calculated to be

A ¼ 16πM2

�
1þ ϵ

2m
r0

ffiffiffiffiffi
f0

p
�
þOðϵ2Þ

¼ 16πM2

�
1þ ϵ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
�
þOðϵ2Þ: ð4:10Þ

The surface gravity is obtained from κ2¼−1
2
ð∇αtβÞð∇αtβÞ,

where the right-hand side is evaluated on the horizon.
We find

κ ¼ 1

4M

�
1 − ϵ

2m
r0

ffiffiffiffiffi
f0

p
�
þOðϵ2Þ

¼ 1

4M

�
1 − ϵ

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
�
þOðϵ2Þ; ð4:11Þ

and observe that in accordance with the zeroth-law of
black-hole mechanics, the surface gravity is constant on the
horizon.
It follows from Eqs. (4.10) and (4.11) that the Smarr

mass of the black hole, defined by [34]MSmarr ≔ κA=ð4πÞ,
is given by

MSmarr ¼ M þOðϵ2Þ: ð4:12Þ

The mass parameter M can therefore be related to geo-
metric objects defined on the perturbed event horizon. It is
possible to formulate a first law of black-hole mechanics
for the deformed black hole. For a quasistatic process in
which m is kept fixed (butM and r0 are allowed to vary), it
takes the form of

dMtot ¼
κ

8π
dA − λdT; ð4:13Þ

where Mtot ≔ M þ E ¼ M þ ϵm
ffiffiffiffiffi
f0

p þOðϵ2Þ is the total
mass in the spacetime, T is the string’s tension of Eq. (4.5),
and

λ ≔ r0 þOðϵÞ ð4:14Þ
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is the string’s “thermodynamic length,” a quantity defined
by the first law itself. It is noteworthy that Mtot plays the
role of enthalpy (instead of energy) in Eq. (4.13). Appels,
Gregory, and Kubizňák [39] have shown that an enthalpy
formulation of the first law is what should be expected of
black holes with angular deficits.

3. Regularized redshift

We consider, in a spacetime with the metric of Eq. (1.1),
a photon emitted at z ¼ b and received at z ¼ ∞; the
photon is assumed to travel on the z axis, with ρ ¼ 0. The
photon’s energy at the emission event, as measured by a
static observer at z ¼ b, is denoted EðbÞ, while its energy at
reception, measured by a second static observer at infinity,
is denoted Eð∞Þ. The energies are related by the redshift
formula

Eð∞Þ ¼ fEðbÞ; f ¼ e−UðbÞ; ð4:15Þ

where UðbÞ is the gravitational potential evaluated at
ρ ¼ 0, z ¼ b.
With U ¼ U0 þ ϵU1 þOðϵ2Þ we find that f is ill

defined, because U1 is formally infinite at ρ ¼ 0, z ¼ b.
In the spirit of Detweiler’s redshift invariant [40], we
regularize f by removing U1 from the accounting of the
gravitational potential. Operationally, this amounts to let-
ting the photon be emitted slightly away from the particle,
and subtracting from the overall redshift—now finite—the
piece contributed by the particle’s local gravitational field,
described by U1. The regularized redshift is then

freg ¼ e−U0ðbÞ þOðϵ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
þOðϵ2Þ

¼
ffiffiffiffiffi
f0

p
þOðϵ2Þ: ð4:16Þ

This equation can be inverted to express b and r0 in terms
of the regularized redshift. We have that

b=M ¼ 1þ f2reg
1 − f2reg

þOðϵ2Þ; r0=M ¼ 2

1 − f2reg
þOðϵ2Þ:

ð4:17Þ
In this way, the coordinate position of the particle can be
expressed in terms of a meaningful observable.
The prescription of Eq. (4.16) can be related to a

standard regularization procedure of post-Newtonian
theory, in which a formally infinite quantity is replaced
by its Hadamard partie finie [41]. To define this, we
introduce local polar coordinates ðs; αÞ near ρ ¼ 0, z ¼ b,
given by ρ ¼ s sin α, z ¼ bþ s cos α, and we consider a
function hðs; αÞ that is singular in the limit s → 0. More
precisely, we assume that h admits a Laurent series of the
form hðs;αÞ ¼ P

n≥−N hnðαÞsn near s ¼ 0; the series is
taken to begin at order s−N, with N > 0. Then its
Hadamard partie finie is defined to be

bhc ≔ 1

2

Z
π

0

h0ðαÞ sin αdα; ð4:18Þ

it is the average over all angles of the zeroth-order term in
the series. In our application, h ¼ f ¼ ½1 − ϵE=sþ
Oðϵ2Þ�e−U0 , with

e−U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
−

Ms cos α

ðb −MÞ1=2ðbþMÞ3=2 þOðs2Þ:

ð4:19Þ
Extracting the s ¼ 0 term in the Laurent series and
integrating over α, we arrive at bfc ¼ ðb −MÞ1=2=
ðbþMÞ1=2 þOðϵ2Þ, in agreement with Eq. (4.16).
Hadamard’s regularization procedure will be exploited
again in the following subsection.

B. Second-order perturbation

We proceed to the next order in the perturbative
expansion, write U ¼ U0 þ ϵU1 þ ϵ2U2 þOðϵ3Þ, Φ ¼
ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ, and work to second order in ϵ.
The goal is to obtain U2, Φ2 by integrating Eqs. (2.11c)
and (2.12b), respectively. Unfortunately these equations
cannot be solved exactly, but as was stated in Sec. II D, it is
sufficient for our purposes to obtain U2 and Φ2 in a small
neighborhood around the particle.
To achieve this it is helpful to reformulate the field

equations in terms of the local polar coordinates ðs; αÞ
introduced previously. These are defined by ρ ¼ s sin α,
z ¼ bþ s cos α, and with them the metric becomes

ds2 ¼ −e−2Udt2 þ e2ðUþγÞðds2 þ s2dα2Þ
þ e2Us2 sin2 αdϕ2: ð4:20Þ

The previously calculated potentials take the local form

e−2U0 ¼ b −M
bþM

þ 2M cos α
ðbþMÞ2 s

þM½b − ð3b − 2MÞ cos2 α�
ðb −MÞðbþMÞ3 s2 þOðs3Þ; ð4:21aÞ

U1 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

s
; ð4:21bÞ

Φ1¼
b−M
bþM

q
s
þ qM
ðbþMÞ2 ð1þ cosαÞ

−
qM

2ðb−MÞðbþMÞ3
× ½ð3b−MÞcosα− ðbþMÞ�ð1þ cosαÞsþOðs2Þ:

ð4:21cÞ

The differential operators that occur in Eqs. (2.11) and
(2.12) become
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∇2ψ¼ 1

s2
∂sðs2∂sψÞþ

1

s2sinα
∂αðsinα∂αψÞ; ð4:22aÞ

∇ψ · ∇φ ¼ ð∂sψÞð∂sφÞ þ
1

s2
ð∂αψÞð∂αφÞ: ð4:22bÞ

in the local polar coordinates; here ψ and φ are any
functions of s and α.
For the moment we ignore the distributional term on the

right-hand side of Eq. (2.11c), and find a solution to the
equation by making the ansatz

U2 ¼
u−2
s2

þ u−1
s

þ u0 þOðsÞ; ð4:23Þ

where the coefficients uj are functions of α. These are
determined by integrating Eq. (2.11) order by order in s,
and demanding that the solutions be regular at α ¼ 0 and
α ¼ π. We obtain

u−2 ¼ −
q2ðb −MÞ
2ðbþMÞ ; ð4:24aÞ

u−1 ¼ −
q2M

ðbþMÞ2 cos α; ð4:24bÞ

u0 ¼
q2M

ðbþMÞ3 cos αþ q2Mb
ðb −MÞðbþMÞ3 cos

2 αþ μ0;

ð4:24cÞ

where μ0 is an arbitrary constant.
A complete solution must also account for the source

term in Eq. (2.11). The delta function on the right-hand side
calls for the inclusion of a term δE=s inUpart

2 , with a shift in
energy parameter formally given by δE ¼ −me−U0U1, with
the right-hand side evaluated at the particle’s position. This
quantity is actually infinite, but meaning can be given to it
by replacing it by its Hadamard partie finie, as was done in
the preceding subsection. The regularization prescribes
δE ¼ −mbe−U0U1c, and making use of Eqs. (4.21) to
perform the calculation, we find that δE ¼ 0.
To the solution of Eq. (4.23) we might have added any

solution to the homogeneous version of Eq. (2.11c), in
which we set both the distributional source term and Φ1 to
zero, and thereby recover Laplace’s equation. The constant
μ0 reflects this freedom, but we might also have included
multipolar terms of the form s−ðlþ1ÞPlðcos αÞ with l ≥ 1,
where Pl are Legendre polynomials. That such terms must
be excluded can be justified on the grounds that Eq. (2.11c)
does not feature matching distributional sources (involving
derivatives of delta functions) for higher multipoles.
Additional evidence in favor of this exclusion comes from
the asymptotic matching that we carry out in the Appendix.
The solution of Eq. (4.23) is complete.

To obtain a solution to Eq. (2.12b), first without the
source term on the right-hand side, we write

Φ2 ¼
p−2

s2
þ p−1

s
þ p0 þOðsÞ; ð4:25Þ

where each pj is a function of α. Integrating Eq. (2.12b)
order by order in s, we obtain

p−2 ¼ −mq

�
b −M
bþM

�
3=2

; ð4:26aÞ

p−1 ¼ −2mq
Mðb −MÞ1=2
ðbþMÞ5=2 cos α; ð4:26bÞ

p0 ¼ mq
M

2ðb −MÞ1=2ðbþMÞ7=2
× ½ð5b − 3MÞ cos2 αþ 2ðb −MÞ cos α� þ ν0;

ð4:26cÞ
where ν0 is an arbitrary constant. To account for the delta
function on the right-hand side of Eq. (2.12b), we should
insert a term σ2δq=s in Φpart

2 , where σ2 ≔ ðb −MÞ=
ðbþMÞ, and where the shift in charge parameter is given
by the regularized expression δq ¼ −mσ−2be−2U0U1c.
Performing the calculation of the Hadamard partie finie
as we did previously, we find that δq ¼ 0. This conclusion
is supported by an application of Gauss’s law: For a small
sphere surrounding the particle, an electrostatic potential
that contains a term σ2δq=s would produce an enclosed
charge equal to qþ δq; because the particle’s charge is q,
we must indeed set δq ¼ 0. This corroboration lends
considerable credence to the regularization procedure.
To the solution of Eq. (4.25) we might have added any

solution to the homogeneous version of Eq. (2.12b), in
which the distributional source term, U1, and Φ1 are all set
to zero. The constant ν0 reflects this freedom, and we
again rule out singular terms corresponding to multipole
moments, given the absence of matching distributional
terms on the right-hand side, and on the basis of the
asymptotic matching to be carried out in the Appendix.
Equations (4.21), (4.23), and (4.25) provide us with local

expressions for the potentials U ¼ U0 þ ϵU1 þ ϵ2U2 þ
Oðϵ3Þ and Φ ¼ ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ. The description of
the black-hole view is as complete as we can make it.

C. String tension

With U and Φ now at hand, we are ready to tackle the
calculation of γ on the axis. As we have seen, the value of
γðρ ¼ 0; zÞ can jump from one constant to another at the
singular point z ¼ b. The values of γ on each side of this
singularity are related by

γðz > bÞ − γðz < bÞ ¼
Z
C
ð∂ργdρþ ∂zγdzÞ; ð4:27Þ
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where C is any contour in the ρ − z plane that links
the points at z > b and z < b. It is convenient to
choose C to be a half-circle described by ρ ¼ s sin α, z ¼
bþ s cos α, where s is constant and π ≥ α ≥ 0. Choosing
γðz < bÞ ¼ 0—no strut between black hole and particle—
we then find that γðz > bÞ is given by

γaxis ¼ −
Z

π

0

∂αγdα; ð4:28Þ

where

∂αγ ¼ −s2 sin α cos αð∂sUÞ2 þ 2ssin2αð∂sUÞð∂αUÞ
þ sin α cos αð∂αUÞ2 − e2U½−s2 sin α cos αð∂sΦÞ2
þ 2ssin2αð∂sΦÞð∂αΦÞ þ sin α cos αð∂αΦÞ2�

ð4:29Þ
can be deduced from Eq. (2.9). The coordinates ðs; αÞ were
introduced back in Sec. IV B.
We insert U ¼ U0 þ ϵU1 þ ϵ2U2 þOðϵ3Þ and Φ ¼

ϵΦ1 þOðϵ2Þ within Eq. (4.29), with U0 given by
Eq. (4.21), U1 by Eq. (4.1), U2 by Eq. (4.23), and Φ1

given by Eq. (4.21). We expand ∂αγ through order ϵ2, and
notice that Φ2 is not required in this calculation. We
evaluate the integral of Eq. (4.28), and observe that as it
should, the outcome is independent of the contour radius s.
We arrive at

γaxis ¼ ϵ
4mM

ðb −MÞ1=2ðbþMÞ3=2 − ϵ2
4q2M

ðbþMÞ3 þOðϵ3Þ:

ð4:30Þ
It is interesting to note that the contribution proportional to
q2 in γaxis comes entirely from the Φ terms in ∂αγ. The q2

terms in U combine with corresponding ones in Φ to cancel
out contributions that would otherwise depend on s. It is also
interesting to observe that while ∂αγ features terms of order
m2, these do not survive the integration; γaxis is therefore free
of such terms. Finally, we point out that the calculation is
completely insensitive to the value of the constants μ0 and μ1
that were introduced in Eq. (4.23); these contributions also
do not survive the integration over α.
We substitute Eq. (4.30) into Eq. (1.2), expand in powers

of ϵ, and find that the string’s tension is given by

T ¼ ϵ
mM

ðb −MÞ1=2ðbþMÞ3=2 − ϵ2
2m2M2

ðb −MÞðbþMÞ3

− ϵ2
q2M

ðbþMÞ3 þOðϵ3Þ: ð4:31Þ

The first term is recognized as ma, the particle’s mass
times its acceleration in the background Schwarzschild
spacetime, as given by Eq. (3.5). The second term is a
gravitational self-force correction to this expression. The
last term is the Smith-Will electromagnetic self-force. It is

useful to recall that in the usual Schwarzschild coordinates,
the particle is situated at r0 ¼ bþM; with this translation,
we recover Eq. (1.3).
The quantities that appear in Eq. (4.31) are all well

defined in operational terms. The particle’s mass m is
defined in terms of the particle’s energy-momentum tensor
in Eq. (2.3), and its charge q is defined in terms of the
current density of Eq. (2.2); alternatively, the charge can be
defined by Gauss’s law applied to a small surface surround-
ing the particle. Up to terms of order ϵ2, the black-hole mass
M was identified with the Smarr mass, which is defined in
terms of geometric quantities (surface gravity, area) on the
horizon. And b, which designates the coordinate position of
the particle, can be related by Eq. (4.17) to the regularized
redshift freg of a photon emitted close to the particle and
received at infinity.

V. ELECTRIC AND MAGNETIC DIPOLES

In this section we examine the case of an electric dipole
of mass m and dipole moment p held in place outside a
nonrotating black hole of massM. As before, the particle is
placed at r ¼ r0 and θ ¼ 0, or at ρ ¼ 0 and z ¼ b, with
r0 ¼ b −M. To respect the required axial symmetry, the
dipole moment points in the radial direction, along the z
axis. We wish to calculate the force required to hold the
dipole in place, and to achieve this we adapt the strategy
described in Sec. II to this new situation. Most of it is
unchanged; the only difference concerns the source terms
in Eqs. (2.7) and (2.12), which are now proportional to a
z-derivative of δðx − bÞ. We calculate the perturbations U1,
Φ1, and U2 associated with the point dipole (we omit Φ2,
which is not needed), obtain γ on the axis, and then
calculate the string’s tension.
A duality transformation takes the field of an electric

dipole to that of a magnetic dipole, and these field con-
figurations come with the same distribution of energy-
momentum tensor. The force on a magnetic dipole is
therefore calculated in exactly the same way, and the
calculation returns the same answer; this computation is
detailed in Sec. V D.

A. First-order perturbation

We begin with the first-order corrections to the metric
and vector potential created by the dipole at ρ ¼ 0, z ¼ b.
We write U ¼ U0 þ ϵU1 þOðϵ2Þ, Φ ¼ ϵΦ1 þOðϵ2Þ, and
γ ¼ γ0 þ ϵγ1 þOðϵ2Þ, and work to first order in ϵ.
The gravitational potentialU1 is the same as in Sec. IVA,

U1 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

D
; ð5:1Þ

where D ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − bÞ2

p
.

The electrostatic potential of a dipole can be obtained by
superposing two monopole potentials, one for a negative
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charge −q at z ¼ b − δb, the other for a positive chargeþq
at z ¼ bþ δb, and taking the limit δb → 0 keeping 2qδb
fixed. This gives

Φdipole
1 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r ∂
∂bΦ

monopole
1 ; ð5:2Þ

where Φmonopole
1 is the Copson-Linet potential of Eq. (4.3),

and p is a covariant dipole moment, which differs from
2qδb by a factor of ðbþMÞ1=2=ðb −MÞ1=2, the ratio of
proper distance to coordinate distance along the z axis.
Performing the calculation yields

Φ1 ¼
pðb −MÞ1=2

ðbþMÞ3=2ðRþ þ R− þ 2MÞ
�ðz − bÞ½ðbþMÞR− þ ðb −MÞRþ�

D3
þ 2MRþ
ðbþMÞD −

2M
bþM

�
; ð5:3Þ

where R� was introduced in Eq. (3.2), and where we henceforth omit the label “dipole” on the potential. In the usual
Schwarzschild coordinates, the dipole potential is expressed as

Φ1 ¼
p

ffiffiffiffiffi
f0

p
r0r

�½ðr −MÞðr0 −MÞ −M2 cos θ�½ðr −MÞ cos θ − ðr0 −MÞ�
D3

þMðr −M þM cos θÞ
r0D

−
M
r0

�
; ð5:4Þ

where f0 ≔ 1 − 2M=b0, and D is now given by Eq. (4.7).
Because Φ1 does not enter in the calculation of γ1, we

find that the result of Eq. (4.4) is unchanged. This implies
that at first order in ϵ, the tension is again given by
Eq. (4.5). And because the first-order metric is the same as
in Sec. IVA, the black-hole area and surface gravity are still
given by Eqs. (4.10) and (4.11), respectively. The Smarr
mass of the black hole is still identified withM, and the first
law continues to be given by Eq. (4.13). Finally, the

regularized redshift of a photon emitted close to the dipole
and received at infinity is still given by Eq. (4.17).

B. Second-order perturbation

We next proceed to second order in the perturbative
expansion. We writeU ¼ U0 þ ϵU1 þ ϵ2U2 þOðϵ3Þ,Φ ¼
ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ, and obtain U2 by integrating
Eqs. (2.11c). We again rely on the local polar coordinates
ðs; αÞ, and expand everything in powers of s. We require

e−2U0 ¼ b −M
bþM

þ 2M cos α
ðbþMÞ2 sþ

M
ðb −MÞðbþMÞ3 ½b − ð3b − 2MÞcos2α�s2

−
M

ðb −MÞ2ðbþMÞ4 ½ð3b
2 − 2MbþM2Þ cos α − ð5b2 − 6Mbþ 3M2Þcos3α�s3

−
M

4ðb −MÞ3ðbþMÞ5 ½bð3b
2 − 2Mbþ 3M2Þ − 2ð15b3 − 18Mb2 þ 19M2b − 4M3Þcos2α

þ ð35b3 − 58Mb2 þ 59M2b − 16M3Þcos4α�s4 þOðs5Þ; ð5:5aÞ

U1 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

s
; ð5:5bÞ

Φ1 ¼ p
ðb−MÞ3=2
ðbþMÞ3=2

cosα
s2

þpM
ðb−MÞ1=2
ðbþMÞ5=2 ½1þ cos2α�1

s

−pM
�ðb−MÞ1=2
ðbþMÞ7=2 −

1

2ðb−MÞ1=2ðbþMÞ5=2 cosαþ
3b−M

2ðb−MÞ1=2ðbþMÞ7=2 cos
3α

�

−pM

�
M

2ðb−MÞ1=2ðbþMÞ9=2 −
ðb−MÞ1=2
ðbþMÞ9=2 cosαþ

3b2 þM2

2ðb−MÞ3=2ðbþMÞ9=2 cos
2α−

5b2 − 3Mbþ 2M2

2ðb−MÞ3=2ðbþMÞ9=2 cos
4α

�
s

þpM

�
b

2ðb−MÞ1=2ðbþMÞ11=2 −
3b3 − 9Mb2 þ 17M2b− 3M3

8ðb−MÞ5=2ðbþMÞ11=2 cosα−
3b− 2M

2ðb−MÞ1=2ðbþMÞ11=2 cos
2α

þ 15b3 − 7Mb2 þ 17M2b−M3

4ðb−MÞ5=2ðbþMÞ11=2 cos3α−
35b3 − 29Mb2 þ 41M2b− 7M3

8ðb−MÞ5=2ðbþMÞ11=2 cos5α

�
s2 þOðs3Þ: ð5:5cÞ
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The solution to Eq. (2.11c) is of the form

U2 ¼
u−4
s4

þ u−3
s3

þ u−2
s2

þ u−1
s

þ u0 þOðsÞ; ð5:6Þ

in which the coefficients uj are functions of α that are required to be regular at α ¼ 0 and α ¼ π. Integrating order by order
in s, we get

u−4 ¼ −p2
ðb −MÞ2
2ðbþMÞ2 cos

2 α; ð5:7aÞ

u−3 ¼ −p2M
b −M

ðbþMÞ3 cos
3 α; ð5:7bÞ

u−2 ¼ −p2M

�
b −M

2ðbþMÞ4 −
b − 3M

2ðbþMÞ4 cos
2 α −

b
ðbþMÞ4 cos

4 α

�
; ð5:7cÞ

u−1 ¼ p2M

�
M

ðbþMÞ5 cos α −
b −M

ðbþMÞ5 cos
2 αþ 1

2ðb −MÞðbþMÞ3 cos
3 α −

3b2 þM2

2ðb −MÞðbþMÞ5 cos
5 α

�
; ð5:7dÞ

u0 ¼ μ0 − p2M

�
1

2ðbþMÞ5 cos αþ Mbðb − 2MÞ
ðb −MÞ2ðbþMÞ6 cos

2 α −
3b −M

2ðbþMÞ6 cos
3 α

þ 7b3 þ 4Mb2 þ 11M2bþ 2M3

4ðb −MÞ2ðbþMÞ6 cos4 α −
5bðb2 þM2Þ

2ðb −MÞ2ðbþMÞ6 cos
6 α

�
; ð5:7eÞ

where μ0 is an arbitrary constant. The discussion following
Eq. (4.23) in Sec. IV B implies that this solution is
complete; there is no need to insert additional terms to
account for the distributional source in Eq. (2.11c), and
there is no need to add particular solutions beyond the
constant term μ0.

C. String tension

WithU andΦ now at hand, the calculation of γðρ; z > bÞ
proceeds as in Sec. IV C. We insert the potentials in
Eq. (4.29), and substitute this within the integral of
Eq. (4.28). We obtain

γaxis ¼ ϵ
4mM

ðb −MÞ1=2ðbþMÞ3=2 − ϵ2
4p2Mð2b −MÞ

ðbþMÞ6
þOðϵ3Þ: ð5:8Þ

Making the substitution in Eq. (1.2), we find that the
tension is given by

T ¼ ϵ
mM

ðb −MÞ1=2ðbþMÞ3=2 − ϵ2
2m2M2

ðb −MÞðbþMÞ3

− ϵ2
p2Mð2b −MÞ
ðbþMÞ6 þOðϵ3Þ: ð5:9Þ

As in Eq. (4.31), the first term is recognized as ma, the
particle’s mass times its acceleration in the background

Schwarzschild spacetime, as given by Eq. (3.5). The
second term is a gravitational self-force correction to
ma. The last term is (minus) the electromagnetic self-force
acting on a point dipole in Schwarzschild spacetime. In the
usual Schwarzschild coordinates, with r0 ¼ bþM, we
have that

Fdipole
self ¼ þ 2p2M

r50

�
1 −

3M
2r0

�
: ð5:10Þ

As in the case of a point charge, this self-force is repulsive.
And as in Sec. IV, all quantities that appear in Eq. (5.9) are
well defined operationally; the coordinate position b, in
particular, can be related to the regularized redshift
by Eq. (4.17).
The self-force on an electric dipole in Schwarzschild

spacetime was first calculated by Léauté and Linet [35].
Their result differs from ours; they get ð2p2M=r50Þ×
ð1 − 5M=2r0Þ. Léauté and Linet calculate the self-force
under the premise that in Eq. (5.4), only the last term,
−p

ffiffiffiffiffi
f0

p
M=ðr20rÞ, contributes to the self-force; they

dismiss the remaining terms on the grounds that they
are singular at the dipole’s position. In the concluding
section of their paper, they admit that their treatment is
“simple but not completely rigorous.” The disagreement
with our result indicates that the singular terms in Φ1,
when suitably regularized, do have an impact on the
self-force.
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D. Magnetic dipole

Léauté and Linet [35] also calculate the self-force on
a magnetic dipole in Schwarzschild spacetime, with the
same caveat regarding the regularization of singular terms
in the electromagnetic field tensor. It is easy to show that
this self-force must also be given by Eq. (5.10), with p now
interpreted as a magnetic dipole moment.
As Léauté and Linet point out, the field of a magnetic

dipole can be obtained from that of an electric dipole by
a duality transformation. We therefore begin with the
electrostatic potential Φ of an electric dipole, obtain the
corresponding field tensor Fel

αβ ¼ ∂αAel
β − ∂βAel

α with
Ael
α ¼ −Φ∂αt, and perform the duality transformation

Fmag
αβ ¼ −

1

2
εαβ

γδFel
γδ; ð5:11Þ

where εαβγδ is the Levi-Civita tensor. We find that
both fields give rise to the same distribution of energy-
momentum tensor, and that the Einstein field equations
for the magnetic dipole take exactly the same form as
Eqs. (2.8) and (2.9). It follows from this observation that
the calculations carried out in this section apply unchanged
to the case of a magnetic dipole, and we conclude that the
self-force is indeed given by Eq. (5.10). This result also is
in disagreement with Léauté and Linet.

VI. SCALAR CHARGE

In this section we replace the electric charge of Sec. IV
with a scalar charge, and apply the calculational methods
of Sec. II—with appropriate modifications—to this new
situation. We shall recover Wiseman’s result [5], that the
self-force on a static scalar charge in Schwarzschild
spacetime vanishes. We shall also obtain additional insights
into the problem.

A. Field equations

We continue to express the metric as in Eq. (1.1), but we
replace the electromagnetic vector potential Aα with a
scalar potential Ψ. This satisfies

□Ψ ¼ −4πμ; ð6:1Þ

where □ ≔ gαβ∇α∇β is the covariant wave operator, and

μ ¼ q
Z

δðx − XðτÞÞffiffiffiffiffiffi−gp dτ ð6:2Þ

is the scalar charge density, with q denoting the charge of a
particle moving on a world line described by XαðτÞ; τ is
proper time on the world line. In the case of static particle at
ρ ¼ 0 and z ¼ b, we have that

μ ¼ qe−ð3Uþ2γÞδðx − bÞ; ð6:3Þ

where δðx − bÞ ≔ ρ−1δðρÞδðz − bÞδðϕÞ is a three-
dimensional delta function.
The Einstein field equations are

Gαβ − 2∂αΨ∂βΨþ gαβgμν∂μΨ∂νΨ ¼ 8πTαβ; ð6:4Þ

whereGαβ is the Einstein tensor, the remaining terms on the
left-hand side make up the energy-momentum tensor of the
scalar field, and Tαβ is the particle’s energy-momentum
tensor, as given by Eqs. (2.3) and (2.4).
The explicit form of the field equations is

∇2Ψ ¼ −4πqe−Uδðx − bÞ; ð6:5aÞ

∇2U ¼ −4πme−Uδðx − bÞ; ð6:5bÞ

where ∇2 ≔ ∂ρρ þ ρ−1∂ρ þ ∂zz, and

1

ρ
∂ργ ¼ ð∂ρUÞ2 − ð∂zUÞ2 þ ð∂ρΨÞ2 − ð∂zΨÞ2; ð6:6aÞ

1

ρ
∂zγ ¼ 2ð∂ρUÞð∂zUÞ þ 2ð∂ρΦÞð∂zΦÞ: ð6:6bÞ

It is remarkable that apart from the factor of e−U that comes
with the delta functions, the field equations forΨ andU are
completely independent, and that they each take the form of
a simple Poisson equation.

B. Solution

We might, in the spirit of Sec. IV, integrate Eqs. (6.5) by
inserting the perturbative expansions U ¼ U0 þ ϵU1 þ
ϵ2U2 þOðϵ3Þ and Ψ ¼ ϵΨ1 þ ϵ2Ψ2 þOðϵ3Þ. In this
approach, U0 would be the Schwarzschild potential of
Eq. (3.1), and at first order in ϵ, the factor of e−U

multiplying δðx − bÞ would be replaced by ðb −MÞ1=2=
ðbþMÞ1=2, the value of e−U0 at ρ ¼ 0, z ¼ b. The
solutions to Eqs. (6.5) would then be

Ψ1 ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

D
; U1 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
1

D
; ð6:7Þ

where D ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − bÞ2

p
. At second order in ϵ we

would regularize the distributional source terms as in
Sec. IV B, and replace the factor multiplying δðx − bÞ
by its Hadamard partie finie, which vanishes. We would
thereby obtain Ψ2 ¼ 0 ¼ U2, and conclude that the per-
turbative expansion terminates at order ϵ.
The purpose of this rather belabored discussion is to

bring home the point that

Ψ ¼ Ψ1; U ¼ U0 þ U1 ð6:8Þ

can be viewed as an exact solution to the Einstein-scalar
equations. Viewed perturbatively, the solution describes a
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point particle of mass m and scalar charge q held in place
outside a Schwarzschild black hole of mass M. Viewed as
an exact solution, the point particle is replaced by a Curzon-
Chazy object of the same mass and charge. In this
interpretation, the distributional sources can again be made
meaningful with the help of Hadamard’s prescription. A
better option, however, is simply to eliminate the source
terms all together, take Ψ1 and U1 to satisfy Laplace’s
equation, and adopt for them a specific singular behavior at
ρ ¼ 0, z ¼ b. In this view, the Laplace equations are meant
to apply everywhere, except at the singularity.
Equations (6.6) can be integrated exactly for our poten-

tials Ψ and U. We find that

γ ¼ γ0 þ γ1 þ γ2; ð6:9Þ

where γ0 is the Schwarzschild expression of Eq. (3.1), γ1 is
given by Eq. (4.4), and

γ2 ¼ −
1

2
ðm2 þ q2Þ b −M

bþM
ρ2

D4
: ð6:10Þ

Remarkably, while γ1 is nonzero when ρ ¼ 0 and z > b (or
z < −M), γ2 vanishes everywhere on the z axis (except at
the singular point).

C. String tension

On the axis, for z > b or z < −M, we find that

γaxis ¼ 4mM

ðb −MÞ1=2ðbþMÞ3=2 ; ð6:11Þ

and it follows that the string’s tension is

T ¼ 1

4

�
1 − exp

�
−

4mM

ðb −MÞ1=2ðbþMÞ3=2
��

: ð6:12Þ

The fact that T is independent of q is the statement that
there is no scalar self-force contribution to the force
required to hold the particle in place. It was first demon-
strated by Wiseman [5] that the scalar self-force vanishes in
the Schwarzschild spacetime; we have here a nonpertur-
bative extension of his result.

D. Schwarzschild coordinates

In the usual Schwarzschild coordinates, the metric of our
scalarized Curzon-Chazy object is

ds2 ¼ −e−2U1fdt2 þ e2ðU1þγ1þγ2Þðf−1dr2 þ r2dθ2Þ
þ e2U1r2 sin2 θdϕ2; ð6:13Þ

where f ≔ 1 − 2M=r, U1 ¼ m
ffiffiffiffiffi
f0

p
=D, γ1 is given by

Eq. (4.6c),

γ2 ¼ −
1

2
ðm2 þ q2Þf0

r2f sin2 θ
D4

; ð6:14Þ

and where D now takes the form of Eq. (4.7). The object is
situated at r ¼ r0 ¼ bþM, θ ¼ 0, and we have that
f0 ≔ 1 − 2M=r0. The scalar potential is Ψ ¼ q

ffiffiffiffiffi
f0

p
=D,

which is recognized as Wiseman’s solution [5] for a point
scalar charge in the Schwarzschild spacetime.

E. Properties of the deformed black hole

The event horizon of the perturbed black hole is still
situated at r ¼ 2M, and because γ2 ¼ 0 on the horizon, its
intrinsic geometry is described by the induced metric

ds2 ¼ 4M2e2U1ðe2γ1dθ2 þ sin2 θdϕ2Þ; ð6:15Þ

with U1ðr ¼ 2MÞ and γ1ðr ¼ 2MÞ still given by Eq. (4.9).
The horizon area is

A ¼ 16πM2 exp

�
2m

r0
ffiffiffiffiffi
f0

p
�
; ð6:16Þ

and the surface gravity is calculated to be

κ ¼ 1

4M
exp

�
−

2m
r0

ffiffiffiffiffi
f0

p
�
: ð6:17Þ

It follows from this that MSmarr ≔ κA=ð4πÞ ¼ M. The first
law of black-hole mechanics continues to take the form of
dMtot ¼ ðκ=8πÞdA − λdT, whereMtot ≔ M þm

ffiffiffiffiffi
f0

p
is the

total mass, T is the tension of Eq. (6.12), and

λ ≔ r0 exp

�
4mM
r20

ffiffiffiffiffi
f0

p
�

ð6:18Þ

is the string’s thermodynamic length.

F. Regularized redshift

We can, as in Sec. IVA, define a regularized redshift by
removing the singular factor e−U1 from the accounting of
the gravitational potential; in this prescription, the local
gravity of the scalarized Curzon-Chazy object is simply
taken out of the redshift formula. The prescription returns

freg ¼
ffiffiffiffiffi
f0

p
; r0=M ¼ 2

1 − f2reg
; ð6:19Þ

in agreement with Eqs. (4.16) and (4.17), respectively.
There is a difference, however: the relation between freg and
r0 is now meant to be exact, instead of an approximation
through order ϵ.
Because e−U1 contains terms of all orders in s−1 (with s

denoting the coordinate distance from the Curzon-Chazy
object), the prescription of Eq. (6.19) can no longer be
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related to a regularization procedure in which e−U1f1=2 is
replaced by its Hadamard partie finie. The relationship,
however, is recovered when one retreats to a perturbative
interpretation of our results, and takes them to apply only
through first order in an expansion in powers of ϵ.

G. Scalar dipole

The developments of this section can be generalized to
other configurations for the scalar field. For example, the
Curzon-Chazy object could be endowed with a scalar
dipole moment instead of a scalar charge, and the corre-
sponding dipole solution to Laplace’s equation could be
adopted forΨ. We have gone through this exercise, and find
that the scalar self-force vanishes in this case also; the
string’s tension continues to be given by Eq. (6.12). We
omit the details of this calculation here, because the
resulting expression for γ2 is lengthy and not terribly
illuminating. The only important point is that in this case
also, γ2 vanishes on the axis, so that the string’s tension
comes entirely from γ1. The tension, therefore, depends on
m but is independent of the scalar dipole moment.

VII. FORCE ON EXTENDED OBJECTS

In the preceding sections of the paper we calculated the
force required to hold a pointlike object in place, as mea-
sured by the tension in a Nambu-Goto string attached to the
object. Here we generalize the method to handle extended
objects, following a technique devised by Weinstein [42] to
calculate the stress in a strut that holds two Schwarzschild
black holes apart. To introduce the method we revisit the
case of two black holes, replacing the strut by strings, and
then examine the case of two Janis-Newman-Winicour
objects [36], naked singularities which are individually
described by scalarized Schwarzschild solutions.

A. Schwarzschild black holes

Following Weinstein, we consider two Schwarzschild
black holes held apart by a pair of Nambu-Goto strings;
each black hole is attached to a string, which extends from
the black hole to infinity. The first black hole has a massM,
it is situated at ρ ¼ 0, z ¼ 0, and it comes with a
gravitational potential U0 given by

e−2U0 ¼ Rþ þ R− − 2M
Rþ þ R− þ 2M

; R� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz�MÞ2

q
:

ð7:1Þ

The second black hole has a mass m, it is situated at ρ ¼ 0,
z ¼ b, and its gravitational potential U1 is

e−2U1 ¼ rþ þ r− − 2m
rþ þ r− þ 2m

; r� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − b�mÞ2

q
:

ð7:2Þ

We assume that b > M þm. The potentials U0 and U1 are
each solutions to Laplace’s equation in cylindrical coor-
dinates, and we construct the two-hole spacetime by
superposing these solutions: U ¼ U0 þU1. It should be
kept in mind that while the interpretation of M and m as
mass parameters was sound in the context of the individual
solutions, it does not hold up in the context of the
superposition. In particular, according to U ¼ U0 þ U1,
the total mass in the spacetime is simply M þm, and this
must account for the system’s gravitational binding energy.
This implies thatM actually represents the mass of the first
black hole minus a fraction of the binding energy, and that
m incorporates the remaining fraction of this energy.
To obtain γ we write

γ ¼ γ00 þ γ01 þ γ11; ð7:3Þ

and invoke Eqs. (2.9) to obtain

1

ρ
∂ργ00 ¼ ð∂ρU0Þ2 − ð∂zU0Þ2; ð7:4aÞ

1

ρ
∂ργ01 ¼ 2ð∂ρU0Þð∂ρU1Þ − 2ð∂zU0Þð∂zU1Þ; ð7:4bÞ

1

ρ
∂ργ11 ¼ ð∂ρU1Þ2 − ð∂zU1Þ2 ð7:4cÞ

and

1

ρ
∂zγ00 ¼ 2ð∂ρU0Þð∂zU0Þ; ð7:5aÞ

1

ρ
∂zγ01 ¼ 2ð∂ρU0Þð∂zU1Þ þ 2ð∂zU0Þð∂ρU1Þ; ð7:5bÞ

1

ρ
∂zγ11 ¼ 2ð∂ρU1Þð∂zU1Þ: ð7:5cÞ

The notation should be clear: γ00, as given by Eq. (3.1), is
the potential associated with the black hole of massM as if
it were isolated, and γ11 is similarly associated with the
black hole of mass m; γ01 results from the interaction
between black holes. We have that γ00 and γ11 both vanish
on the z axis (except in the segments occupied by the black
holes), and therefore do not contribute to the angular deficit
nor the string’s tension. To calculate the tension, we may
focus our attention entirely on γ01.
We take γ to vanish on the axis segment between the

black holes (for M < z < b −m), and we calculate its
value above the black hole of mass m (for z > bþm) with
the help of the line integral

γaxis ¼
Z
C
ð∂ργ01dρþ ∂zγ01dzÞ; ð7:6Þ
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where C is any path away from the axis that links a point
P below z ¼ b −m to a point Q above z ¼ bþm.
Equations (7.4b) and (7.5b) and straightforward manipu-
lations allow us to express this as

γaxis ¼ 2

Z
C
ρ∂ρU0dU1

þ 2

Z
C
ð∂zU0Þ½ð1þ ρ∂ρU1Þdz − ρ∂zU1dρ�

þ 2

Z
C
∂ρU0dρ − 2½U0ðQÞ −U0ðPÞ�: ð7:7Þ

For C we choose the elliptical path described by ρ ¼ s sin α
and z ¼ b − ðm2 þ s2Þ1=2 cos α, where s is constant and
0 ≤ α ≤ π; because γaxis is independent of C, and therefore
of s, it is sufficient to calculate each integral in the limit
s → 0. We observe that r� ¼ ðm2 þ s2Þ1=2 ∓ m cos α on
C, and it follows that U1 is constant on the adopted path;
the first integral vanishes. In the second integral, we find
that the quantity between square brackets evaluates to
½ðm2 þ s2Þ1=2 −m� sin α dα, and that it scales as Oðs2Þ
in the limit s → 0; the second integral makes no contribu-
tion in the limit. The same conclusion applies to the third
integral, which scales as OðsÞ. The final result is that

γaxis ¼ −2½U0ðρ¼ 0; z¼ bþmÞ−U0ðρ¼ 0; z¼ b−mÞ�;
ð7:8Þ

and making the substitutions in U0ðρ; zÞ, we obtain

γaxis ¼ ln
b2 − ðM −mÞ2
b2 − ðM þmÞ2 : ð7:9Þ

The string’s tension is obtained by inserting our result
within Eq. (1.2). This gives

T ¼ mM
b2 − ðM −mÞ2 : ð7:10Þ

The value reported by Weinstein [42] has ðM þmÞ2 in the
denominator. The discrepancy is real, but Weinstein’s result
is nevertheless correct. Instead of a string attached to each
black hole, Weinstein puts a strut between the black holes,
and calculates the stress in the strut. With γðρ; zÞ assumed
to be zero for z > bþm, the value for M < z < b −m
is −γaxis, and the stress is equal to 1

4
½expðγaxisÞ − 1� ¼

mM=½b2 − ðM þmÞ2�, in agreement with Weinstein’s
result.
In the case of the pointlike objects of Secs. IV, V, and VI

we were able to give operational meanings to the quantities
that appear in the string’s tension. For example, we recall
that m was related to the particle’s energy-momentum
tensor, that M was identified with the Smarr mass of the
black hole, and that b was related to a regularized redshift.

It should also be possible to assign such operational
meanings to m, M, and b in the context of the two-hole
spacetime. For example, it is plausible that M and m could
be expressed in terms of geometric quantities defined on the
horizon of each black hole, and that b could be related to
the proper spatial distance between horizons. These iden-
tifications, however, would require a complete knowledge
of the metric. Because γ is known only on the z axis, our
knowledge is incomplete, and the operational meaning of
m, M, and b remains unknown. In view of this, the
interpretation of Eq. (7.10) must remain ambiguous.

B. Janis-Newman-Winicour objects

A Janis-Newman-Winicour (JNW) object [36] is a naked
singularity with massM and scalar chargeQ. It is described
by an exact solution to the Einstein-scalar equations of
Sec. VI, in which the distributional source terms are set
to zero. The solution is a scalarized version of the
Schwarzschild metric, obtained by setting

U ¼ 1

Λ
χ; Ψ ¼ Q

ΛM
χ; Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=M2

q
; ð7:11Þ

where χðρ; zÞ is an auxiliary potential that satisfies
∇2χ ¼ 0. The remaining field equations (6.6) become

1

ρ
∂ργ ¼ ð∂ρχÞ2 − ð∂zχÞ2; ð7:12aÞ

1

ρ
∂zγ ¼ 2ð∂ρχÞð∂zχÞ: ð7:12bÞ

The equations for χ and γ are formally identical to the
Einstein field equations in vacuum, and the transformation
of Eq. (7.11) can therefore be exploited to turn a pure-
gravity solution into a solution of the Einstein-scalar
equations.
The JNW metric and scalar potential are given by

e−2χ ¼ Rþ þ R− − 2ΛM
Rþ þ R− þ 2ΛM

;

e2γ ¼ ðRþ þ R−Þ2 − 4ðΛMÞ2
4RþR−

; ð7:13Þ

where R� ≔ ½ρ2 þ ðz� ΛMÞ2�1=2. In these expressions,
the mass parameterM is multiplied by Λ to account for the
compensating factor in Eq. (7.11). The transformation

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþMÞ2 − ðΛMÞ2

q
sin θ; z ¼ ðRþMÞ cos θ

ð7:14Þ

to new coordinates ðR; θÞ brings the metric and scalar
potential to the forms originally given by Janis, Newman,
and Winicour. It is useful to note that in the new
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coordinates, R� ¼ RþM � ΛM cos θ and dρ2 þ dz2 ¼
RþR−f½ðRþMÞ2 − ðΛMÞ2�−1dR2 þ dθ2g.
We now construct a spacetime that contains two such

JNW objects. The first has a mass M and scalar charge Q,
and is situated at ρ ¼ 0, z ¼ 0; its potentials U0 and Ψ0 are
those given previously. The second has a mass m and
charge q, and is situated at ρ ¼ 0, z ¼ b. Its potentials are

U1 ¼
1

λ
χ1; Ψ1 ¼

q
λm

χ1; λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2=m2

q
; ð7:15Þ

with

e−2χ1 ¼ rþ þ r− − 2λm
rþ þ r− þ 2λm

ð7:16Þ

and r� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − b� λmÞ2

p
. We assume that b >

ΛM þ λm. We write U ¼ U0 þ U1, Ψ ¼ Ψ0 þΨ1, and
γ ¼ γ00 þ γ01 þ γ11. As we saw previously in the case of
the superposed Schwarzschild solutions, γ00 and γ11 cor-
respond to the objects in isolation, while γ01 accounts for
their interaction. Its governing equations are

1

ρ
∂ργ01 ¼

2

λΛ

�
1þ qQ

mM

�
½ð∂ρχ0Þð∂ρχ1Þ − ð∂zχ0Þð∂zχ1Þ�;

ð7:17aÞ

1

ρ
∂ργ01 ¼

2

λΛ

�
1þ qQ

mM

�
½ð∂ρχ0Þð∂zχ1Þ þ ð∂zχ0Þð∂ρχ1Þ�:

ð7:17bÞ

Repeating the manipulations of the preceding subsection,
we calculate γaxis with the help of a line integral, with
a path C now described by ρ ¼ s sin α and z ¼ b−
½ðλmÞ2 þ s2�1=2 cos α, with s ¼ constant and 0 ≤ α ≤ π.
We get

γaxis ¼ −
2

λΛ

�
1þ qQ

mM

�
½χ0ðρ ¼ 0; z ¼ bþ λmÞ

− χ0ðρ ¼ 0; z ¼ b − λmÞ�; ð7:18Þ

or

γaxis ¼ 1

λΛ

�
1þ qQ

mM

�
ln
b2 − ðΛM − λmÞ2
b2 − ðΛM þ λmÞ2 : ð7:19Þ

The string’s tension is then obtained by inserting this within
Eq. (1.2). These results come with the same warnings as in
Sec. VII A: a precise operational interpretation of the
parameters M, m, and b must await a complete determi-
nation of the metric. The scalar charges Q and q, however,
can be defined operationally in terms of the scalar potential.
It is noteworthy that γaxis and T both vanish when

mM ¼ −qQ, that is, when the gravitational attraction of

the JNW objects is balanced by their scalar repulsion—
unlike charges repel in this theory. When b ≫ ΛM þ λm,
the expressions simplify to

γaxis ¼ 4ðmMþ qQÞ
b2

�
1þm2 þ q2 þM2 þQ2

b2
þOðb−4Þ

�

ð7:20Þ

and

T ¼mMþ qQ
b2

�
1þm2 þ q2 − 2ðmMþ qQÞ þM2 þQ2

b2

þOðb−4Þ
�
: ð7:21Þ
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APPENDIX: BLACK HOLE AND
PARTICLE VIEWS

In Sec. IV we examined a point particle of mass m and
electric charge q held in place outside a Schwarzschild
black hole of massM, and calculated the metric and vector
potential created by this particle-black hole system. The
metric and vector potential were presented as expansions in
powers of ϵ, a book-keeping parameter that keeps track of
the powers of m and q. We saw that while the order-ϵ
potentials could be obtained globally and expressed in
closed forms, only local expansions could be given for the
order-ϵ2 potentials. Moreover, we saw that the local
solutions for the order-ϵ2 potentials were not unique,
and involved arbitrary constants.
In this appendix we aim to obtain additional information

about the local solutions, and we achieve this by exploiting
the method of matched asymptotic expansions. We con-
struct two versions of U and Φ, one reflecting the black-
hole view of Sec. IV, the other reflecting a particle view to
be developed here. In the black-hole view, we have a
Schwarzschild black hole perturbed by a point particle, and
the expansion parameter is ϵ. In the particle view, we have a
charged particle—modeled as a Reissner-Nordström (RN)
field—perturbed by the tidal environment provided by the
black hole, and the expansion parameter is M=blþ1, which
measures the strength of the tidal field for a multipole of
order l. Each version of U and Φ comes with unknown
constants, and these are approximately determined by
demanding that both versions be mutually compatible
when ϵ and M=blþ1 are simultaneously small.
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1. Tidal perturbation of a RN field

In the particle view, the charged particle is modelled as a
tidally deformed Reissner-Nordström field; it could be a
black hole (when m > jqj) or a naked singularity (when
m < jqj). The source of the tidal deformation is a black
hole of mass M, situated at a distance b from the particle.
We express the metric of a tidally deformed RN field as

ds2 ¼ −e−2δUfdt̄2 þ e2ðδUþδγÞðf−1dr2 þ r2dθ2Þ
þ e2δUr2 sin2 θdϕ2; ðA1Þ

where f≔1−2m=rþq2=r2, and where δUðr; θÞ, δγðr; θÞ
are the gravitational perturbations. The vector potential is
expressed as

Aα ¼ −ðq=rþ δΦÞ∂αt̄; ðA2Þ

where δΦðr; θÞ is the electromagnetic perturbation. It is
assumed that the tidal perturbation is static and axisym-
metric. We place an overbar on the time coordinate to
distinguish it from the t used in the main text; we shall see
that they are related by a scaling factor.
The field equations are decoupled by writing

δΦ ¼ ðm − q2=rÞð
ffiffiffi
f

p
AÞ þ qfB;

δU ¼ ðm − q2=rÞBþ qð
ffiffiffi
f

p
AÞ; ðA3Þ

and the auxiliary functions A and B are decomposed as

Aðr; θÞ ¼
X∞
l¼0

AlðrÞPlðcos θÞ;

Bðr; θÞ ¼
X∞
l¼0

BlðrÞPlðcos θÞ; ðA4Þ

where Plðcos θÞ are Legendre polynomials. The field
equations become

0 ¼ r2f
d2Al

dr2
þ 2ðr −mÞ dAl

dr
−
�
lðlþ 1Þ þm2 − q2

r2f

�
Al;

ðA5aÞ

0 ¼ r2f
d2Bl

dr2
þ 2ðr −mÞ dBl

dr
− lðlþ 1ÞBl: ðA5bÞ

To represent a tidal perturbation we adopt the growing
solutions to these equations, those that behave as rl when r
is large. We exclude decaying solutions, those that behave
as r−ðlþ1Þ when r is large, for the following reasons: When
the RN field describes a black hole (when m > jqj), the
decaying solutions diverge at the horizon, and they are
rejected on the grounds that the perturbation should be well
behaved there. When the RN field describes a naked

singularity (when m < jqj), the decaying solutions would
be associated with intrinsic multipole moments, and these
are set to zero to keep the particle as spherical as possible.
For l ≠ 0, the growing solutions to the perturbation

equations are

Al ¼ alP1
lððr −mÞ=λÞ; Bl ¼ blPlððr −mÞ=λÞ;

ðA6Þ

where Pl are Legendre polynomials, Pm
l are associated

Legendre functions, al, bl are arbitrary constants, and
λ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
—this parameter can be real or imaginary.

For small values of l we have the explicit expressions

δU1 ¼
�
u1

�
r −mþ q2

r

�
− p1q

�
P1ðcos θÞ; ðA7aÞ

δΦ1 ¼ fðp1r − u1qÞP1ðcos θÞ; ðA7bÞ

δU2 ¼
�
u2

�
r2 − 2mrþ 2

3
m2 þ q2 −

2

3

mq2

r

�

− p2q

�
r −

4

3
mþ 1

3

q2

r

��
P2ðcos θÞ; ðA7cÞ

δΦ2 ¼ f

�
p2

�
r2 −mrþ 1

3
q2
�
− u2q

�
r −

2

3
m

��

× P2ðcos θÞ: ðA7dÞ

The constants bl and al were eliminated in favor of ul and
pl; these are defined so that ul is the coefficient in front of
rlPlðcos θÞ in δUl, while pl is the coefficient in front of
rlPlðcos θÞ in δΦl.
For l ¼ 0 the general solution to the perturbation

equations is characterized by three constants of integration,
which we denote u0, p0, and a0; a fourth constant is set to
zero to ensure that the solution is regular.3 The solution is

δU0 ¼ u0 þ a0
q
r
; ðA8aÞ

δΦ0 ¼ p0 − u0
q
r
þ a0

�
m
r
−
q2

r2

�
: ðA8bÞ

The constant p0 changes Φ by an irrelevant constant, and
p0 can be set equal to zero without loss of generality. The
constants a0 and u0 can be related to shifts in the particle’s

3The discarded solution comes with B0 ¼ ln½ðr −mþ λÞ=
ðr −m − λÞ�. When the RN field describes a black hole (when
m > jqj), B0 is singular on the horizon, at r ¼ mþ λ. When the
field describes a naked singularity (when m < jqj), B0 is purely
imaginary, and it is multiplied by an imaginary constant to return
a real solution; but this solution possesses a discontinuous
derivative at r ¼ m.

MICHAEL LAHAYE and ERIC POISSON PHYS. REV. D 101, 104047 (2020)

104047-18



mass and charge parameters. We set these to zero, because
the tidal deformation cannot change the particle’s charge,
and can only change its mass at second order in the
perturbation. We conclude that the l ¼ 0 contribution to
δU and δΦ must be eliminated.
The complete perturbation is

δU ¼
X∞
l¼1

δUl; δΦ ¼
X∞
l¼1

δΦl: ðA9Þ

While the sums implicate an infinite number of terms, we
shall see below that a truncation through l ¼ 2 will be
sufficient for our purposes.

2. Transformation to local coordinates

To compare the potentials of the particle view to those of
the black-hole view, we must transform the coordinates to a
local system ðs̄; αÞ that will be simply related to the local
polar coordinates employed previously. We note first that
the transformation to Weyl coordinates is ρ̄ ¼ r

ffiffiffi
f

p
sin θ

and z̄ ¼ ðr −mÞ cos θ. The additional transformation to
local coordinates is then ρ̄ ¼ s̄ sin α and z̄ ¼ s̄ cos α.
We introduce

D� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ ðz̄� λÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̄2 � 2λs̄ cos αþ λ2

p
; ðA10Þ

where, we recall, λ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
. The inverse transforma-

tion is

r ¼ 1

2
ðDþ þD− þ 2mÞ;

cos θ ¼ 2z̄
Dþ þD−

¼ 2s̄ cos α
Dþ þD−

: ðA11Þ

Expanding in powers of λ2=s̄2, this is

r ¼ s̄

�
1þm

s̄
þ λ2 sin2 α

2s̄2
þ λ4ð5 cos2 α − 1Þ sin2 α

8s̄4

þOðλ6=s̄6Þ
�
; ðA12aÞ

θ ¼ αþ λ2 sin α cos α
2s̄2

þ 3λ4ð2 cos2 α − 1Þ sin α cos α
8s̄4

þOðλ6=s̄6Þ: ðA12bÞ

If we introduce

e−2Ū0 ≔ f ¼ ðDþ þD−Þ2 − 4λ2

ðDþ þD− þ 2mÞ2 ;

e2γ̄0 ≔
ðDþ þD−Þ2 − 4λ2

4DþD−
; ðA13Þ

we find that f−1dr2 þ r2dθ2 ¼ e2ðŪ0þγ̄0Þðdρ̄2 þ dz̄2Þ ¼
e2ðŪ0þγ̄0Þðds̄2 þ s̄2dα2Þ.
The metric becomes

ds2 ¼ −e−2Ūd t̄2 þ e2ðŪþγ̄Þðds̄2 þ s̄2dα2Þ þ e2Ūs̄2 sin2 αdϕ2

ðA14Þ

in the local coordinates, where Ū ≔ Ū0 þ δU and γ̄ ¼
γ̄0 þ δγ. The potentials Ū0 and γ̄0 are recognized as the
Weyl expression of the RN solution. The vector potential is

Aα ¼ −Φ̄∂αt̄; ðA15Þ

where Φ̄ ¼ Φ̄0 þ δΦ, with

Φ̄0 ≔
2q

Dþ þD− þ 2m
ðA16Þ

denoting the RN electrostatic potential.

3. Asymptotic matching

The metric and vector potential constructed in Sec. IV,
and the ones obtained in this appendix, give distinct
approximate representations of the same physical situation,
and they must be mutually compatible. We recall that in
the black-hole view, we have a Schwarzschild black hole
perturbed by a point particle, and that the expansion para-
meter is ϵ, which counts powers of m and q. On the other
hand, in the particle view we have that the field of the
charged particle is tidally deformed by the black hole, and
the expansion parameter is formally M, to reflect the fact
that M=blþ1 measures the strength of the tidal field for a
multipole of order l. In this section we compare the two
constructions, show that they are indeed compatible, and
give approximate expressions for the constants that were
left undetermined in the preceding calculations.

a. Black-hole view

We begin with the metric and vector potential of the
black-hole view. The metric is given in local ðt; s;α;ϕÞ
coordinates by Eq. (4.20), in which U ¼ U0 þ ϵU1þ
ϵ2U2 þOðϵ3Þ, with U0 given by Eq. (4.21), U1 by
Eq. (4.1), and U2 by Eq. (4.23). The electrostatic potential
is Φ ¼ ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ, with Φ1 given by Eq. (4.21),
and Φ2 by Eq. (4.25).
Noting that the expansion of e−2U0 in powers of s begins

with ðb −MÞ=ðbþMÞ, we find that inserting the poten-
tials in the metric of Eq. (4.20) produces an overall factor of
ðb −MÞ=ðbþMÞ in front of dt2, and factors of ðbþMÞ=
ðb −MÞ in front of ds2, s2 dα2, and s2 sin2 α dϕ2. These
can be eliminated by a rescaling of the time and radial
coordinates,
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t ¼ σ−1 t̄; s ¼ σs̄; σ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b −M
bþM

r
: ðA17Þ

With this notation we find that the metric of the black-hole
view becomes

ds2 ¼ −V̄d t̄2 þ V̄−1e2γ̄ðds̄2 þ s̄2dα2Þ þ V̄−1s̄2 sin2 αdϕ2;

ðA18Þ

where

V̄≔ σ−2e−2U

¼ σ−2e−2U0 ½1−2ϵU1þ2ϵ2ðU2
1−U2ÞþOðϵ3Þ� ðA19Þ

and γ̄ ¼ γ. Because the electrostatic potential is (minus) the
t component of the vector potential, it is affected by a
rescaling of the time coordinate. Defining −Φ̄ ≔ At̄ ¼
Atðdt=dt̄Þ, we have that

Φ̄ ¼ σ−1Φ ¼ σ−1½ϵΦ1 þ ϵ2Φ2 þOðϵ3Þ�: ðA20Þ

We import our results from Sec. IV, and in anticipation of
the comparison with expressions obtained from the particle
view, we formally linearize them with respect toM. Setting
ϵ ¼ 1, we have that

V̄ ¼ 2m2 þ q2

s̄2
þ 1

s̄

�
−2mþ 4M

b2
ðm2 þ q2Þ cos α

�

þ 1 − 2μ0 þ
M
b3

ð2m2 þ q2Þ − 2M
b2

�
2mþ q2

b

�
cos α

−
M
b3

ð6m2 þ 5q2Þ cos2 αþOðs̄Þ; ðA21aÞ

Φ̄ ¼ −
mq
s̄2

þ q
s̄

�
1 −

2mM
b2

cos α
�
þ qM

b2
þ ν0

�
1þM

b

�

þ qM
b2

�
1þm

b

�
cos αþ 5mqM

2b3
cos2 αþOðs̄Þ:

ðA21bÞ

b. Particle view

The particle-view metric of Eq. (A14) is already of the
form of Eq. (A18), with

V̄ ¼ e−2Ū ¼ fe−2δU ≃ fð1 − 2δUÞ: ðA22Þ

The electrostatic potential Φ̄ ¼ Φ̄0 þ δΦ refers to the same
time coordinate as in Eq. (A20). The perturbations δU and
δΦ were obtained in Sec. A 1 as multipole expansions. To
enable a comparison of these expressions to those of the
black-hole view, we let m → ϵm, q → ϵq, expand through

order ϵ2, and finally set ϵ ¼ 1. At this order, keeping V̄ and
Φ̄ accurate through order s̄0, we find that it is sufficient to
keep terms up through l ¼ 2 in the multipole expansion.
We obtain

V̄ ¼ 2m2 þ q2

s̄2
þ 1

s̄
f−2m − 4½ðm2 þ q2Þu1 þmqp1� cos αg

þ 1þ
�
8

3
m2 þ q2

�
u2 þ

7

3
mqp2

þ 2ð2mu1 þ qp1Þ cos α − ½ð6m2 þ 5q2Þu2
þ 7mqp2�cos2αþOðs̄Þ; ðA23aÞ

Φ̄ ¼ −
mq
s̄2

þ q
s̄
f1þ ð2mu1 þ qp1Þ cos αg −

5

6
mqu2

−
1

6
ð3m2 þ q2Þp2 − ðqu1 þmp1Þ cos α

þ
�
5

2
mqu2 þ

1

2
ðm2 þ 3q2Þp2

�
cos2αþOðs̄Þ:

ðA23bÞ
c. Approximate determination of constants

A detailed comparison between the two versions of V̄
and Φ̄ reveals that the expressions match provided that

u1 ¼ −
M
b2

þOðϵ2Þ; p1 ¼ −
qM
b3

þOðϵ2Þ; ðA24aÞ

u2 ¼
M
b3

þOðϵ2Þ; p2 ¼
qM
b4

þOðϵ2Þ ðA24bÞ

and

μ0 ¼ −
m2M
3b3

þOðM2Þ; ν0 ¼ −
5mqM
6b3

þOðM2Þ:
ðA25Þ

As expected, we find that ul ∝ M=blþ1 measures the
strength of the tidal field; pl is further suppressed by a
factor of q=b. With these assignments, we find that

V̄½black-hole view� ¼ V̄½particle view� þOðϵ3;M2Þ
ðA26Þ

and

Φ̄½black-hole view� ¼ Φ̄½particle view� þ qM
b2

þOðϵ3;M2Þ:
ðA27Þ

The electrostatic potentials agree up to an irrelevant
constant. This constant could have been included within
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ν0. We chose to exclude it, because being part of Φ2, ν0
must scale as ϵ2, while qM=b2 is linear in ϵ.
We conclude that the black-hole and particle views do

indeed return mutually compatible approximations for the
gravitational and electrostatic potentials.

4. Absence of multipole moments

In Sec. IV B we made the assertion that the gravitational
and electrostatic potentials constructed in the black-hole
view should not contain singular terms that would be
associated with the presence of higher multipole moments.
The assertion was justified on the grounds that the field
equations do not feature distributional sources for these
moments. Here we provide an additional argument in favor
of the assertion.
The physical basis for the assertion is the stipulation that

the particle should be as spherical as possible. This
requirement was incorporated in the particle view by taking
the particle’s unperturbed field to be described by the
Reissner-Nordström solution to the Einstein-Maxwell
equations. The particle’s field, however, cannot be strictly
spherical, because it is deformed by the presence of the
black hole. While we have allowed for such a tidal
deformation, we have properly ruled against intrinsic
multipole moments by discarding the decaying solutions
to the perturbation equations.
The subtlety is whether the tidal deformation of the

particle’s field could induce terms inU2 andΦ2 that appear
to be associated with intrinsic moments, that is, terms that
are singular in the limit s → 0. It is easy to show that this
cannot happen.
To begin, consider δU1 and δΦ1, the dipole contributions

to the particle-view potentials, as listed in Eqs. (A7). The
transformation from r to s is given by Eq. (A12), and
schematically we have that r ¼ sþ ϵþ ϵ2=sþOðϵ3Þ,
where ϵ stands for either m or q, and ϵ2 stands for either
m2, mq, or q2. Incorporating this transformation, we find
that through order ϵ2, δU1 and δΦ1 cannot be more singular
than s−1, which is short of the s−2 singularity that could be
associated with an intrinsic dipole. Continuing this exami-
nation for δU2 and δΦ2, the quadrupole contributions to the
particle-view potentials, we find that these cannot be
singular at all; the smallest power of s that appears through
order ϵ2 is s0, and this is nowhere near the s−3 singularity
that would come with an apparent intrinsic quadrupole.
Going to higher multipoles confirms the trend: the expres-
sions for δUl and δΦl, truncated through order ϵ2, have
sl−2 as the smallest power of s, and this cannot match the

s−ðlþ1Þ singularity of an apparent multipole moment.
Notice that the argument is completely indifferent to the
value of the amplitudes ul and pl, so long as these do not
scale with inverse powers of ϵ. (The detailed matching
exercise reveals that they do not.)
Our conclusion thus far is that a first-order tidal

perturbation cannot produce terms in U and Φ that could
mimic those associated with intrinsic multipole moments.
Another argument, based entirely on dimensional analysis,
supports this conclusion, and allows us to extend it to
nonlinear tidal perturbations.
The argument goes as follows. In geometrized units, a

(mass or charge) multipole moment dl has a dimension of
length raised to the power lþ 1, where l ≥ 1. Three
independent length scales are available to make up this
multipole moment: ϵ, M, and b. If the multipole moment
is to scale with ϵ2 and linearly with M (for a first-order
tidal deformation), we must have a relation of the form
dl ∼ ϵ2Mbl−2. This, however, does not match an expected
scaling with M and b through the combination M=blþ1,
which would result if the apparent multipole moment were
the result of a tidal deformation. The only way to reconcile
these scalings would be to introduce another length scale,
such as a particle radius, into the problem; in the absence
of such a scale, we must conclude that the tidal deforma-
tion cannot induce the presence of apparent multipole
moments.
The argument generalizes to higher order in an expan-

sion in powers of the tidal interaction. To keep things
specific, let us consider a second-order treatment of the
tidal perturbation. In this situation the multipole moment
continues to scale as ϵ2, but it is now proportional to M2,
and we have a relation of the form dl ∼ ϵ2M2bl−3. On
the other hand, if this apparent multipole moment were
the result of a second-order tidal interaction, we would
expect a scaling with M and b through the combination
M2=bl1þl2þ2, where l1 and l2 are the multipole orders of
the first-order interaction. The composition of spherical
harmonics implies that l1 þ l2 ≥ l, and it follows that the
tidal scaling can never be a match for a required ϵ2M2bl−3.
We conclude that a second-order tidal deformation cannot
induce the presence of apparent multipole moments.
More thought along these lines reveals that the con-

clusion continues to apply at higher orders in the tidal
interaction. The argument provides compelling evidence in
favor of the assertion that the gravitational and electrostatic
potentials cannot contain singular terms that would be
associated with tidally induced multipole moments.
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