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Torsion is a non-Riemannian geometrical extension of general relativity that allows including the spin of
matter and the twisting of spacetime. Cosmological models with torsion have been considered in the
literature to solve problems of either the very early (high redshift z) or the present-day Universe. This paper
focuses on distinguishable observational signatures of torsion that could not be otherwise explained with a
scalar field in pseudo-Riemannian geometry. We show that when torsion is present, the cosmic duality
relation between the angular diameter distance, DA, and the luminosity distance, DL, is broken. We show
how the deviation described by the parameter η ¼ DL=½DAð1þ zÞ2� − 1 is linked to torsion and how
different forms of torsion lead to special-case parametrizations of η, including η0z, η0z=ð1þ zÞ, and
η0 lnð1þ zÞ. We also show that the effects of torsion could be visible in low-redshift data, inducing biases
in supernovae-based H0 measurements. We also show that torsion can impact the Clarkson-Bassett-Lu
(CBL) function CðzÞ ¼ 1þH2ðDD00 −D02Þ þHH0DD0, where D is the transverse comoving distance. If
D is inferred from the luminosity distance, then, in general, nonzero torsion models, CðzÞ ≠ 0. For pseudo-
Riemannian geometry, the Friedmann-Lemaître-Robertson-Walker metric has CðzÞ≡ 0; thus, the meas-
urement of the Clarkson-Bassett-Lu function could provide another diagnostic of torsion.

DOI: 10.1103/PhysRevD.101.104046

I. INTRODUCTION

General relativity (GR) describes gravitational interaction
in terms of spacetime curvature. The theory is built upon
pseudo-Riemannian geometry (hereafter, “Riemannian”
geometry implicitly refers to Lorentzian geometry).
Within Riemannian geometry, the motion of free particles
(i.e., no external forces) is fully determined by the Riemann
curvature tensor.Moving beyondGRone finds that curvature
is not the only geometrical feature that could affect physical
processes. One such geometrical feature is torsion. Torsion
could be generated by a spin tensor for matter, in addition to
the energy-momentum tensor of GR (e.g., [1]). An example
of a theory with torsion is the Einstein-Cartan theory of
gravity [1]. Avery special case of models with torsion is that
ofmodels with vanishing curvature (R ¼ 0 and so gαβ ≡ ηαβ,
where ηαβ is the Minkowski metric). When curvature
vanishes, the connection reduces to the Weitzenböck con-
nection, which is then specified by torsion alone. Theories of
this type include thosewhose field equations can be obtained
from the Einstein-Hilbert action proportional to torsion T,

called fðTÞ models, including “teleparallel gravity” for the
case where fðTÞ ¼ T [2] (see Sec. 4. 2. 5).
Torsion allows for additional degrees of freedom, and so in

the past, models with torsion were proposed to solve certain
early Universe problems, replacing the initial singularity
with a big bounce and inflation [3–5]. Recently, cosmologi-
cal models with torsion were used to investigate alternatives
to dark energy [6–8]. Models with torsion exhibit many
properties of models with scalar fields. Thus, from the
cosmological point of view, it is reasonable to ask questions
such as: is torsion just a geometrical replacement for a scalar
field, and if it were, would it survive the scrutiny of Occam’s
razor?On the other hand, if there are cosmological signatures
of torsion that are distinguishable from those of dark sector
physics, then what are they, and could we use cosmological
data to distinguish between dark energy and torsion?
This paper focuses on light propagation and aims at

discussing the observational signatures of non-Riemannian
effects on cosmological scales. The aim of this paper is to
identify those cosmological signatures that would require
models with torsion, i.e., signatures that could be not be
produced by dark energy models but would require a
departure from Riemannian geometry. In addition to*krzysztof.bolejko@utas.edu.au
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nonzero torsion, geometrical spacetime models can also be
extended beyond general relativity to allow nonmetricity,
e.g., [9]. We refer briefly to these for completeness.

II. METRIC-AFFINE SPACE

Ametric-affine space is characterized by a metric g and a
linear connection Γ [10]. The metric and the connection are
independent objects. The metric g can be used for evalu-
ating the magnitude of vectors

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβvαvβ

q
; ð1Þ

and the connection Γ determines the transport of vectors vα

along a curve C with a tangent vector tσ, with parallel
transport of the projection of vα on tσ:

tσ∇σvα ¼ tσ∂σvα þ tσΓα
νσvν ¼ 0: ð2Þ

The connection coefficient can be written as [11]

Γσ
αβ ¼

�
σ

αβ

�
þ Lσ

αβ þ Kσ
αβ; ð3Þ

where f σ
αβg are the Christoffel symbols:

�
σ

αβ

�
¼ 1

2
gσνð∂βgνα þ ∂αgνβ − ∂νgαβÞ; ð4Þ

and Lσ
αβ is the metric incompatibility tensor

Lσ
αβ ¼

1

2
gσνð∇βgνα þ∇αgνβ −∇νgαβÞ; ð5Þ

where ∇ is a covariant derivative with respect to the
connection Γσ

αβ defined in (3). While the Levi-Civita
connection is fully determined by the metric itself (and
its partial derivatives), to evaluate components of Lσ

αβ one
needs to specify the connection first. The contorsion tensor
Kσ

αβ is defined in terms of the torsion tensor, which
describes the fact that the connection is not symmetric
in its lower indices

Tσ
αβ ≔ Γσ

αβ − Γσ
βα: ð6Þ

If one requires that the connection is “metric” then

∇σgαβ ¼ 0: ð7Þ

The metricity condition imposes that Lσ
αβ ¼ 0, and the

difference between the affine connection and the Levi-
Civita connection is described by the contorsion tensor
alone. In the literature, there are various conventions
regarding the contorsion tensor; here we follow [ [1], (12)]

Kσαβ ¼
1

2
ðTσαβ þ Tβσα þ TασβÞ: ð8Þ

The contorsion tensor is antisymmetric in the first and third
indices Kσαβ þ Kβασ ¼ 0.

A. Weak equivalence principle and torsion

In general, no constraint is required on the last two
indices of contorsion, i.e., relating Kσαβ to Kσβα, which
means that the symmetric part of the connection does, in
general, contain some combination of the torsion tensor,
and thus

Γσ
ðαβÞ ≠

�
σ

αβ

�
:

This means that the extremal curves, i.e., those that satisfy

d2xα

ds2
þ
�

σ

βγ

�
dxβ

ds
dxγ

ds
¼ 0; ð9Þ

and the autoparallel curves

d2xα

ds2
þ Γα

ðβγÞ
dxβ

ds
dxγ

ds
¼ 0; ð10Þ

need not be the same. If one requires that extremal curves
are also autoparallel curves then this puts a constraint on
torsion. This condition is required for a freely falling frame
to exist in the vicinity of a point O, with

O

G

extremal curve

autoparallel curve

null curve

FIG. 1. A distant galaxy ‘G’ emits photons that are observed by
observer ‘O’, defining two events G and O. In GR, joining these
two events with extremal curves, autoparallel curves or null
curves leads to the same result. In the presence of torsion,
autoparallel curves are no longer extremal; moreover, as torsion
pushes photons out of geodesics, the null curves are no longer
autoparallel.
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gαβjO ¼ ηαβ;

∂νgαβjO ¼ 0;

Γσ
ðαβÞ

���
O
¼ 0:

If one requires the weak equivalence principle to hold in the
presence of torsion, then the torsion tensor is totally
antisymmetric in all of its indices [12]

Tαβσ ¼ T ½αβ�σ ¼ Tα½βσ�: ð11Þ

Here, we do not assume this condition; instead, we allow
extremal curves to differ from autoparallel ones. As shown
below (and represented in Fig. 1), when torsion is present,
the null curves do not need to be extremal or autopar-
allel [13].

III. LIGHT PROPAGATION

A. Geometric optics approximation

Assuming the geometric optics approximation, the
electromagnetic wave can be approximated as [14–17]

F ¼ aðxαÞgðφÞ; ð12Þ

where a is the amplitude of the wave that depends on space-
time coordinate xα, g is an arbitrary smooth function, and φ
the eikonal (the phase, [15]). The wave vector kα is defined
as a gradient of the eikonal

kα ¼ gαβ∇βφ: ð13Þ

The wave vector is a vector tangent to the light curve, and
thus by the nature of the null curve, it must be null as well:

kαkα ¼ 0: ð14Þ

This is the condition that represents the underlying
assumption of light propagation, i.e., that light propagates
along null curves. Inserting the ansatz (12) into Maxwell’s
equation yields (14), confirming that the ansatz behaves as
expected [18]. Generalizing Maxwell’s equation beyond
GR is not a trivial and unambiguous task [19]. Following
the approach based on exterior calculus [20],

dF ¼ 0 ⇔ ∇½αFμν� þ Fβ ½μT jβjνα� ¼ 0; ð15Þ

and using the ansatz (12) and following the perturbative
approach [14,16,17],

gμνkμkν ¼ 0; ð16Þ

and

Trad
μν ¼ A2kμkν; ð17Þ

where Trad
μν is the energy-momentum tensor of radiation,

Trad
μν ¼ FμσFσ

ν − 1
4
FαβFαβ, unrelated to the torsion Tσ

αβ.
The amplitude A2 ¼ AaAa, and Fαβ ¼ g0ðAαkβ − AβkαÞ.

B. Null curves

The eikonal equation (16) states that light propagates
along the null curves, hence

∇βðkαkαÞ ¼ 0 ⇒ kα∇βkα ¼ 0: ð18Þ

If we now apply the commutator of ∇ to the eikonal φ and
using (13), we have

∇μkν −∇νkμ ¼ Tβ
μνkβ: ð19Þ

Contracting the above with the null vector kμ and using the
conservation of the eikonal (18) we obtain the formula for
the propagation of the null vector kα

gναkμ∇μkα ¼ Tαβνkαkβ: ð20Þ

In general, the null curve that describes light propagation
does not necessarily have to be autoparallel. Let us consider
three scenarios:
(1) Totally antisymmetric torsion:

If torsion is totally antisymmetric Tαβνkαkβ ¼ 0,
hence,

kμ∇μkα ¼ 0; ð21Þ

which means that light propagates along a geodesic,
which is affine parametrized.

(2) Torsion aligned with null vector:
If torsion is not totally antisymmetric but the

null vector is aligned with the torsion tensor, in the
sense that

Tαβνkαkβ ¼ ckν ð22Þ

for a nonzero constant c, then we recover a geodesic
again, but this time with a nonaffine parametrization
[17], i.e.,

gναkμ∇μkα ¼ ckν; ð23Þ

which means that torsion induces inaffinity accel-
eration but keeps photons on autoparallel curves.
However, in general, this can only hold for some
distinct directions (i.e., those directions that are
aligned with the tensor Tαβν). An example of such
a case is a homogeneous and isotropic Friedmann-
Lemaître-Robertson-Walker (FLRW)-type model
with torsion [21], where the only nonzero elements
of the torsion tensors are Ti0i (where i is a spatial
index); in such a case, the distinct direction is
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timelike and torsion provides a nonstandard redshift
contribution at a monopole level.

(3) The most general case:
In the most general case we have

∀ c ∈ R; Tαβνkαkβ ≠ ckν; ð24Þ

which means that torsion induces an orthogonal
acceleration component and modifies the trajectory
of photons, pushing them out of geodesics. In such a
case a light curve is no longer autoparallel [13,22].

Assuming only that light propagates along null curves,
i.e., that the vector tangent to the light path is null,
kαkα ¼ 0, we obtain that in the most general case, in a
spacetime with torsion, not only does light not move along
extremal curves, neither does it move along geodesics.
Using an (imperfect) analogy with pressure gradients
pushing dust particles out of the (timelike) geodesics,
we could say that in some sense torsion “exerts force”
on photons and “pushes” them out of the geodesics;
cf. Fig. 1.

IV. REDSHIFT

We assume no difference from the usual case in which
the time component of a photon’s 4-momentum, as
measured by an observer with velocity uα, is its energy
E, and that this relates to the frequency ν in the usual
quantum mechanical way, where we write the Planck
constant as h ¼ 1

E ¼ ν ¼ −kαuα: ð25Þ

We can now write the propagation equation to evaluate how
frequency changes as light propagates from the emitter to
the observer.

Dν
Ds

¼ −kμ∇μðuαkαÞ ¼ −kαkμ∇μuα − uαkμ∇μkα: ð26Þ

Using the decomposition of the velocity gradient onto
the scalar of expansion Θ and shear σαμ (where ∇μuα ¼
σαμ þ hαμΘ=3), we obtain

Dν
Ds

¼ −kαkμ
�
ðgαμ þ uαuμÞ

Θ
3
þ σαμ þ uσTαμσ

�
: ð27Þ

Using the decomposition of the null vector into its temporal
and spatial parts [ [16], (6.12)]

kα ¼ νðuα þ nαÞ; ð28Þ

the frequency propagation equation (27) reduces to

Dν
Ds

¼ −ν2
�
1

3
Θþ Σþ T

	
; ð29Þ

where Σ ¼ σαβnαnβ and T ¼ Tαβσuαnβuσ þ Tαβσnαnβuσ .
Changing the time variable via dt ¼ ν ds [16], we obtain

ln

�
νG
νO

	
¼

Z
O

G
dt

�
1

3
Θþ Σþ T

	
: ð30Þ

For homogeneous and isotropic models, the right-hand
side reduces to lnðaO=aGÞ, where a is the scale factor
rather than the wave amplitude, yielding a redshift with
no dependence on direction. For inhomogeneous models,
the rhs has, in general, directional dependence, yielding a
direction-dependent redshift.

V. RECIPROCITY THEOREM

Let kα be a tangent vector of the light curve and let pα be
a connecting vector for kα. By definition, a connecting
vector is dragged along a congruence of curves associated
with and generated by the vector field tangent to the curve,
so we have

Lkp ¼ ½k;p� ¼ −Lkp ¼ pα
;βk

β − kα;βp
β ¼ 0; ð31Þ

from which follows

kβ∇βpα ¼ kα;βp
β þ Tα

γβpγkβ: ð32Þ

Following the steps in [23] we find that pα obeys the
following equation:

D2pγ

Ds2
¼ kα∇αðkβ∇βpγÞ ¼ Gγ

σαβkσkαpβ

þ kαkβ∇αðTγ
αβpαÞ þ pβ∇βðTμν

γkμkνÞ: ð33Þ

For a totally antisymmetric torsion (see Sec. III B) the final
term on the right-hand side of the final line here in (33) is
zero. The tensor Gγ

σαβ

Gγ
σαβ ¼ Rγ

σαβ þ
1

2
ð∇αTγ

σβ −∇βTγ
σαÞ

þ −
1

4
ðTγ

ραTρ
σβ − Tγ

ρβT
ρ
σαÞ − 1

2
Tγ

σρTρ
αβ ð34Þ

is the generalized Riemann tensor, which is antisymmetric
in the first two and last two indices, and Rγ

σαβ is the
Riemann tensor defined in terms of the symmetric part of
the connection.
The reciprocity theorem links two lengths, usually called

“distances”: the observer’s “angular diameter distance” rO,
which is a distance corresponding to light paths tracing
backwards in time from O to G, and the galaxy’s angular
diameter distance rG which is a distance corresponding to
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light paths tracing forwards in time from G to O. By
definition, rO is the square root of the cross-sectional area
SG of a bundle of light rays from SG that converge at O in a
one-steradian solid angle (cf. Fig. 2); whereas the galaxy’s
angular diameter distance rG is the square root of the cross-
sectional area SO of a one-steradian bundle of diverging
light rays from the galaxy G that arrive at SO (cf. Fig. 2).
That is,

r2G ≔ SO=ΩG; r2O ≔ SG=ΩO: ð35Þ

We consider a null curve GO that links the observed galaxy
with the observer. We then consider how geodesics deviate
from GO. Considering the connecting vector p will give
rise to the galaxy angular diameter distance rG and
considering the connecting vector p0 will give rise to the
observer’s angular diameter distance rO.

Taking the difference between the geodesic deviation equations leads to

p0γ D
2pγ

Ds2
− pγ

D2p0
γ

Ds2
¼ Rγσαβkσkαpβp0γ − Rγσαβkσkαp0βpγ þ 1

2
∇αTγσβkσkαpβp0γ −

1

2
∇αTγσβkσkαp0βpγ

−
1

2
∇βTγσαkσkαpβp0γ þ 1

2
∇βTγσαkσkαp0βpγ þ −

1

4
TγραTρ

σβkσkαpβp0γ þ 1

4
TγραTρ

σβkσkαp0βpγ

þ 1

4
TγρβTρ

σαkσkαpβp0γ −
1

4
TγρβTρ

σαkσkαp0βpγ þ −
1

2
Tρ

αβTγσρkσkαpβp0γ þ 1

2
Tρ

αβTγσρkσkαp0βpγ

− kσkα∇αðTγσβpβÞp0γ þ kσkα∇αðTγσβp0βÞpγ þ pβ∇βðTσαγkσkαÞp0γ − p0β∇βðTσαγkσkαÞpγ: ð36Þ

A. Riemannian geometry

We first start with the case of Riemannian geometry and
rederive the standard reciprocity theorem. This is done in

order to show how the theorem is affected by the presence
of torsion. The derivation below follows the steps covered
in [16].
When torsion vanishes, and utilizing the symmetries of

the Riemann tensor, we see that the right-hand side
vanishes, and we obtain

D
Ds

�
p0γ Dpγ

Ds
− pγ

Dp0
γ

Ds

	
¼ 0; ð37Þ

and so because of the symmetry of the connection,

p0γ dpγ

ds
− pγ

dp0
γ

ds
¼ constant along GO: ð38Þ

Since at O, p0γ ¼ 0, and at G, pγ ¼ 0, it follows that

−pγjO
dp0

γ

ds

����
O
¼ p0γjG

dpγ

ds

����
G
: ð39Þ

The next step is to choose the connecting vectors such
that they can be linked to the cross-sectional areas and solid
angles. It is always possible to pick two orthogonal
directions of propagation, which remain orthogonal at
the observation event:

dp1a

ds

����
G

dpa
2

ds

����
G
¼ 0; and p1ajOpa

2jO ¼ 0:

Since they are orthogonal, the product of their magnitudes
can be linked to the solid angle and area

SO

SG

�O

p

p’

O

G

�G

FIG. 2. Deviation of light rays around the null curve GO linking
an observed galaxy with the observer, after Fig. 7, [16], with
several differences in notation. Quantities at the emission event
(i.e., at G) are labeled with G, while quantities at the observation
event (i.e., at O) are labeled with O. The connecting vector
between the light curves that diverge towards the observer is pα

and the cross section of the diverging bundle at the observation
event is SO (the observed flux and, hence, luminosity distance
depends on SO). The connecting vector between the light curves
that converge towards the observer is p0α and the rate of
convergence is proportional to ΩO (the observed angular size
and hence angular diameter distance depends on ΩO).
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dΩG ¼ dp1

dl

����
G

dp2

dl

����
G

and dSG ¼ p1jOp2jO;

where p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pa
1p1a

p
, p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pa
2p2a

p
, dl ¼ ðkαuαÞjG ds,

and dl ¼ −ðkαuαÞjO ds (the minus sign reflects the fact
that the direction towards G is opposite to the direction of
light propagation). Similarly, it is also possible to select the
connecting vectors p0 and the initial directions so that they
are orthogonal

dp0
1a

ds

����
O

dp0a
2

ds

����
O
¼ 0 and p0

1ajGp0a
2 jG ¼ 0;

and so

dΩO ¼ dp0
1

dl

����
O

dp0
2

dl

����
O

and dSO ¼ p0
1jGp0

2jG:

The condition (39) implies that it is also possible to select p
and p0 such that they are co-linear and, consequently, from
(39) it follows that [17]

dSGdΩO ¼ ðp1jOp2jO; Þ
�
dp0

1

dl

����
O

dp0
2

dl

����
O

	

¼ dSOdΩG
ν2G
ν2O

ð40Þ

and thus

rG ¼ rOð1þ zÞ: ð41Þ

B. Totally antisymmetric torsion

If torsion is totally antisymmetric, then using the (anti)
symmetries of the torsion tensor we obtain

p0γ D
2pγ

Ds2
− pγ

D2p0
γ

Ds2
¼ −kα∇αðTγσβkσpβp0γÞ; ð42Þ

which can be rewritten as

D
Ds

�
p0γ Dpγ

Ds
− pγ

Dp0
γ

Ds
þ Tγσβpβkσp0γ

	
¼ 0: ð43Þ

By means of equations (33) and (32), this can be reworked
as follows:

p0γ Dpγ

Ds
− pγ

Dp0
γ

Ds
þ Tγσβpβkσp0γ

¼ p0γkαpγ;α − pγkαp0
γ;α − Tσγβpβkσp0γ − Tβγσpβkσp0γ:

ð44Þ

Because of the (anti)symmetries of the torsion tensor, the
last two terms cancel out. Thus, the same result as in the
standard case [Eq. (38)] is recovered

p0γ dpγ

ds
− pγ

dp0
γ

ds
¼ constant along GO: ð45Þ

As above, at O, p0γ ¼ 0, while at G, pγ ¼ 0, so we
recover the same results as in the case of Riemannian
geometry, that is, we obtain (39). Consequently, in the case
of totally antisymmetric torsion, the reciprocity theorem
still holds [13], and thus

rG ¼ rOð1þ zÞ:

C. General case with torsion

In the general case, the difference between the geodesic
deviation equations (36) can be written as in the case of the
totally antisymmertic torsion (43), with the remaining terms
which we combine into a function jðTÞ

D
Ds

�
p0γ Dpγ

Ds
− pγ

Dp0
γ

Ds
þ Tγσβpβkσp0γ

	
¼ jðTÞ: ð46Þ

For the homogeneous and isotropic background model of
Ref. [21], jðTÞ ∼ ϕ2 and thus j > 0, hence,

pγjO
dp0

γ

dl

����
O
¼ p0γjG

dpγ

dl

����
G
ð1þ zÞ þ

Z
O

G
dsjðTÞ: ð47Þ

Consequently,

r2G ¼ r2Oð1þ zÞ2ð1þ gðTÞÞ; ð48Þ

where gðTÞ is of the order of ϕ2 and thus positive, which
implies that, in the presence of torsion, rG is greater
than rOð1þ zÞ2.

VI. COSMIC DUALITY RELATION

Given the luminosity L of the source galaxy at G and the
observed radiation flux f, the luminosity distance DL is
defined by

DL ≔
�

L
4πf

	
1=2

; ð49Þ

so that, by definition, flux f drops as the square of the
luminosity “distance” DL. The angular diameter distance is
defined as above

D2
A ¼ S

Ω
¼ r2O: ð50Þ

The luminosity distance is related to rG as defined above.
By considering flux, we remind the reader in Sec. VI A of
the GR derivation of the GR cosmic duality relation that
relates DA to DL:

DL

DA
¼ ð1þ zÞ2: ð51Þ
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A. Flux and its evolution in GR

The energy-momentum tensor of radiation can be
approximated as above in (17),

Tαβ
rad ¼ A2kαkβ: ð52Þ

The flux of radiation as measured by an observer with four-
velocity uα is

f ¼ Trad
αβ u

αuβ ¼ ν2A2: ð53Þ

At the source, the flux can be linked to the luminosity of the
source

fG ¼ L
4πr2G

¼ L
4π

ΩG

SG
ð54Þ

where ΩG is the (small) solid angle and SG is the cross
section of the light bundle [cf. Fig. 2 and Eq. (35)].
In GR, the product of A2 and S is constant along the

light curve, i.e., A2
GSG ¼ A2

OSO [14,16]. Consequently, the
product of A2 and S at the observer can be replaced by
the product at the emitting galaxy. Subsequently, the flux-
luminosity relation (54) and the definition of rG (35) yield

fO ¼ ν2OA
2
O ¼ ν2O

A2
GSG
SO

¼ ν2O
ν2G

L
4πr2G

: ð55Þ

Applying the definition of DL (49), adopting the defi-
nition of redshift (i.e., νO=νG ¼ 1þ zÞ, using the
Riemannian rG–rO relation (41), and dropping the prefix
O, we obtain the standard GR result

D2
L ¼ L

4πf
¼ ð1þ zÞ2r2G ¼ ð1þ zÞ4D2

A: ð56Þ

B. Flux and its evolution in the presence of torsion

In the presence of torsion the above relation is modified.
Assuming that photons can be treated as a small perturba-
tion and decoupled from matter so that they do not affect
the overall geometry of the spacetime and assuming that the
Einstein equations Gμν ¼ 8πTμν still hold (as for example
in the case of the Einstein-Cartan gravity), we have

∇νT
μν
mat ¼

1

8π
∇νGμν and ∇νT

μν
rad ¼ 0: ð57Þ

Contracting the second of these two equations with the
observer’s four-velocity uμ and using (52), we obtain

ðA2Þ;αkα ¼ −A2kα;α þ A2νT; ð58Þ

where T is as defined just below Eq. (29), i.e., T ¼
Tαβσuαnβuσ þ Tαβσnαnβuσ .

Thus, writing down the evolution of A2S, we obtain

1

A2S
D
Ds

ðA2SÞ ¼ νT: ð59Þ

Writing the integral of the rhs as a function b defined as

b ≔
Z

O

G
dtT; ð60Þ

and by assuming that b is small (eb ≈ 1þ b), the observed
flux is

fO ¼ ν2OA
2
O ¼ ν2O

A2
GSG
SO

ð1þ bÞ ¼ ν2O
ν2G

L
4πr2G

ð1þ bÞ: ð61Þ

Using (48), we obtain the cosmic duality relation affected
by the presence of torsion, which is

D2
L ¼ ð1þ zÞ4 ð1þ gÞ

ð1þ bÞD
2
A: ð62Þ

We adopt the commonly used notation for empirical
estimates of the deviation of the distance duality relation

η ≔
DL

ð1þ zÞ2DA
− 1; ð63Þ

which, if torsion is weak (i.e., both jbj and jgj are much
smaller than unity) yields

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞð1 − bÞ

p
− 1 ≈

1

2
ðg − bÞ: ð64Þ

The parameter g describes the effect of torsion on the cross
section of the bundle, and the parameter b describes the
effect of torsion on the flux.

VII. DISTINGUISHABLE COSMOLOGICAL
SIGNATURES

A. Homogeneous and isotropic models

In this section we assume homogeneity and isotropy and
use the models of [21]. Let us assume that the metric of a
universe model is described by the FLRW line element

ds2 ¼ −dt2 þ a2
�

dr2

1 − kr2
þ r2dϑ2 þ r2 sin ϑ2dφ2

	
; ð65Þ

where a is dimensionless, r has units of length, and
at the equator 1 ¼ kr2 in the spherical case, the algebraic
singularity in the expression is replaced by grr ¼
limr0→r ½a2=ð1 − kr02Þ�. Considering null curves ds ¼ 0,
the redshift formula is
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1þ z ¼ 1

aðtÞ : ð66Þ

Thus, for homogeneous and isotropic models the integrand
on the rhs of (30) needs to be _a=a. Indeed, for homogeneous
and isotropic models with the FLRW metric and nonzero
torsion [21]

Tαβσuαnβuσ ¼ 0 and Tαβσnαnβuσ ¼ −2ϕ; ð67Þ

and the integrand is

1

3
Θ − 2ϕ≡H ¼ _a

a
; ð68Þ

which is consistent with the definition of H obtained by
comparison of the Einstein-Cartan equations with the
Raychaudhuri equation [21].
The angular diameter distance is by definition

D2
A ¼ S=Ω, cf. (50). Based on the metric (65), it is

DA ¼ aðtÞD; ð69Þ

where D is the transverse comoving distance (comoving
one-radian arc length) given by

D ¼ lim
k0→k

1ffiffiffiffi
k0

p sin

� ffiffiffiffi
k0

p Z
G

O

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k0r2

p
	

¼ lim
k0→k

1ffiffiffiffi
k0

p sin

� ffiffiffiffi
k0

p Z
O

G

dt
a

	
; ð70Þ

where the hyperbolic case (k < 0) yields a sinh dependence
(sin ix ¼ i sinh x). Although the evolution of the scale
factor aðtÞ is affected by torsion, and consequently the
transverse comoving distance, the structure of the relation
between the transverse comoving distance and the angular
diameter distance is not affected by the presence of torsion,
i.e., torsion does not explicitly appear in this relation. This
is in contrast to the luminosity distance, where torsion
explicitly affects the flux formula, and thus the cosmic
duality relation (62), where by the definition of η (63),

DL ¼ ð1þ zÞ2DAð1þ ηÞ: ð71Þ

Consequently, we may say that torsion can affect the
luminosity distance in two ways. The first factor is via
the scale factor evolution aðtÞ that solves the Einstein-
Cartan equations, which generalize beyond the GR case.
Non-GR effects on the evolution of aðtÞ would affect the
angular diameter distance dependence on aðtÞ in (70) and
(69). The second factor affecting the luminosity distance is
by torsion affecting the flux itself via (61), which follows
through to (71), showing the dependence of the luminosity
distance on the distance duality deviation parameter η.

The evolution of this type of universe is governed by the
Einstein-Cartan equations [21]

_Θ ¼ −
1

3
Θ2 −

1

2
κρþ Λþ 2Θϕ ð72Þ

_ρ ¼ −Θρþ 4ϕðρþ κ−1ΛÞ; ð73Þ

where κ ≔ 8πG, ρ is the density of matter, ϕ is torsion, Λ is
a cosmological constant, and Θ is the expansion rate,
related to the scale factor via (68).

_a ¼ 1

3
Θa − 2ϕa: ð74Þ

Just as in the case of FLRW models, the parameters Ω can
also be introduced for a homogeneous and isotropic model
with torsion [21]

Ωm ¼ κρ

3H2
;

Ωk ¼ −
k

a2H2
;

ΩΛ ¼ Λ
3H2

;

Ωϕ ¼ −4
�
1þ ϕ

H

	
ϕ

H
; ð75Þ

where the last equations above follows from (72), (74), and

Ωm þΩk þ ΩΛ þΩϕ ¼ 1: ð76Þ

B. Distance duality within the approximation
of weak torsion

For a given model of torsion ϕðtÞ, one can integrate (60)
as well as (46) and get the exact formula for the deviation
from the distance duality (64). The approximation of weak
torsion means that the contribution of torsion to the
reciprocity relation (48) is assumed to be small compared
to the contribution of torsion to the flux relation (61). For
homogeneous and isotropic models with torsion, b ∼ ϕ and
g ∼ ϕ2. Thus, in the limit of weak torsion, using (67), the
deviation from the distance duality (64), can be further
approximated as

η ≈ −
1

2
b ¼

Z
O

G
dtϕ: ð77Þ

Since torsion has units of the expansion rate, the most
common parametrizations of torsion are based on the
relation [6,21]

ϕ ∼H:
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Assuming some standard parametrizations, we can inte-
grate (77) to find the formula for the deviation from the
distance duality in the limit of weak torsion

(i) ϕ ¼ η0H0

In this case, torsion is assumed to be constant,
which would not seem to be a reasonable
assumption unless only local observations are con-
sidered. Assuming that we indeed deal only with
local observations Δt ≈ z=H0, we obtain

η ≈ η0z: ð78Þ

(ii) ϕ ¼ η0H
In this case, torsion is linked to the expansion rate

of the universe model. Integrating (77) yields

η ≈ η0 lnð1þ zÞ: ð79Þ

(iii) ϕ ¼ η0Han

In this case, torsion is expressed in terms of the
expansion rate and the scale factor (cf. [6]). Inte-
grating (77) gives

η ≈ η0
1

n
ð1þ zÞn − 1

ð1þ zÞn : ð80Þ

The limiting case of n ¼ 0 is considered above. The
case of n ¼ 1 leads to

η ≈ η0
z

1þ z
; ð81Þ

which is another commonly used empirical para-
metrization for the departure from the GR distance
duality relation, η ∼ z=ð1þ zÞ.

A summary of these parametrizations is presented in
Table I, and an example is presented in Fig. 3 with
η0 ¼ −0.03.

C. Impact on standard-candle distance moduli

As stated above, torsion affects cosmological observa-
tions in two ways: it modifies scale factor evolution aðtÞ,
which affects the angular diameter distance [(69) and (70)];
and it affects the flux via η in (71).
To estimate the significance of these effects, let us

compare two models: (1) a Lambda cold dark matter
(ΛCDM) model with current-epoch density parameters

Ωm0 ¼ 0.3, ΩΛ0 ¼ 0.7, and Hubble constant H0 ¼
70 km s−1Mpc−1; (2) a “TΛCDM” model which is the
same as the ΛCDM model, but has an empirical torsion
model

ϕ ≔ η0H; η0 ≔ −0.03: ð82Þ

As follows from (75) with torsion present, the model is no
longer flat as Ωk ≈ 0.1.
The evolution equations (72)–(74) are solved starting

from the present epoch t0 and traced back in time. The
initial conditions are

aðt0Þ ¼ 1; ρðt0Þ ¼ Ωm0

3H2
0

8πG
; Θðt0Þ ¼ 3H0 þ 6ϕ0:

The impact on observations is measured in terms of the
change of the bolometric apparent magnitude

m ¼ −2.5 log10 fO þ const

¼ 5 log10 ðDL=1 MpcÞ þ 25þM; ð83Þ

where the constant relates to the zero point of the
magnitude system and the choice of units for expressing
the flux fO, M is the absolute magnitude of an observed
extragalactic object. We assume that the object is a standard
candle; i.e., it emits the same spectral energy distribution
independent of the age of the Universe at the time of
emission and the lookback time, so the K correction [24]
is zero.
Since we have adopted a FLRWmetric, a fixed redshift z

implies that the scale factor a is fixed via the usual relation
(66). The scale factor evolution is, in general, affected by
torsion, so the inverse function tðaÞ (over an always-
expanding range of epochs a) will modify the age of the
Universe at the chosen redshift. Nevertheless, since we are
considering a standard candle, there is no effect on the

TABLE I. Parametrization of torsion and deviation from the
distance duality relation.

Torsion ϕ Distance duality η

ϕ ¼ η0H0 η ¼ η0z
ϕ ¼ η0Ha η ¼ η0

z
1þz

ϕ ¼ η0H η ¼ η0 lnð1þ zÞ

-0.08

-0.06

-0.04

-0.02

 0

 0  0.5  1  1.5  2  2.5  3

� 
(z

)

z

FIG. 3. The deviation η (63) of the distance duality relation
evaluated in the limit of weak torsion (77), as a function of
redshift z for three different torsion models with η0 ¼ −0.03.
Bottom curve (dotted blue): (78); middle curve (solid green):
(79); top curve (dot-dashed red): (81).
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object’s spectral energy distribution. Thus, for fixed z, the
difference in magnitude when comparing the two different
models is

Δm ¼ 5 log10ð1þ ηÞ þ 5 log10ΔD; ð84Þ
whereΔD is the change in the comoving transverse distance
induced by the effect of torsion on the expansion history,

ΔD ≔
D

DΛCDM
;

whereD is the transverse comoving distance given by (70).
The contributions of η and ΔD to the apparent magnitude

are compared in Fig. 4. If an effect such as that shown in
Fig. 4 is not accounted for, then cosmological observations
interpreted in terms of GR models will yield anomalous
results. Thus, torsion can impact the way that supernovae of
type Ia are calibrated and inferences made regarding the
value of the Hubble constant [25,26]. For example, as seen
from Fig. 4, not accounting for torsion can lead to a change
in apparent magnitude. In the particular example presented
in Fig. 4, the change is negative, meaning that the sources
would appear brighter than expected. This could be
misinterpreted in terms of the evolution of the sources
(i.e., supernovae being brighter in the past than at the
present) if torsion were not taken into account.
Another example of how not accounting for torsion could

lead to misinterpretation of cosmological observations is
presented in Fig. 5. The change of the magnitude (84) could
be misinterpreted, not in terms of the absolute magnitudeM,
but rather in terms of the change of the value of the Hubble
constant inferred from observations. Following from (83),

Δm ¼ −5 log10

�
1þ ΔH0

H0

	
: ð85Þ

Thus, the change of apparent magnitude produced by the
presence of torsion could be misinterpreted in terms of an
apparent change of the expansion rate. This is presented in
Fig. 5. The results presented in Fig. 5 show that if wewere to
use data from around z ≈ 0.2, then the inferred value H0

would be about 0.2 km s−1Mpc−1 greater than the value of
H0 inferred from the data at z ≈ 0. A phenomenon that is
qualitatively similar to this, but stronger and with a sign
reversal, is the “Hubble bubble” [27], which remains present
in recent data, e.g., [28,29].While several other effects could
result in a similar apparent change of the Hubble constant
[25,26], it is interesting that torsion could lead to such
changes. Future precise measurements of supernova data at
low redshifts could be used to study cosmological torsion.

D. Clarkson-Bassett-Lu function

The aim of the above considerations was to show that
torsion could affect and bias the results of cosmological
observations. However, a similar effect could be accom-
modated by, for example, a dark energy model with an
evolving equation of state, or by a model with interaction in
the dark sector. How can one tell if indeed the observed
signatures are produced by torsion rather than by a dark
energy model within general relativity?
A standard dark energy model within GR (no matter how

complicated the equation of state is or how complex the
interactions between dark matter and dark energy are) will
not affect the cosmic duality relation. Thus, the measure-
ment ofDA andDL will show if the parameter η is nonzero.
Another possibility for detecting deviation from

Riemannian geometry is to use the Clarkson-Bassett-Lu
(CBL) function CðzÞ, defined in [30] and derived from the

-0.2

-0.15

-0.1

-0.05

 0

 0  0.5  1  1.5  2  2.5  3

� 
m

z

FIG. 4. Differential effects on the apparent magnitude of a
standard candle induced by the torsion model given in (82) in
comparison to a reference ΛCDM model. Top curve (dot-dashed
red): 5 log10 ΔD; middle curve (dotted blue): 5 log10ð1þ ηÞ;
bottom curve (solid green): 5 log10ð1þ ηÞ þ 5 log10 ΔD. The
bottom line shows the total change of magnitude within the
approximation of weak torsion and with η0 ¼ −0.03. As seen a
change of magnitude of order of Δm ¼ 0.1 is small (compared to
for example the scatter of supernovae data) but still it is not
negligibly small, and could be mistaken (for example) for the
evolution of sources, with sources misinterpret to be brighter at
larger redshift.

 70
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 70.2

 70.3

 70.4
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 [k
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FIG. 5. The impact of cosmological torsion on the inferred
value of H0 as a function of the redshift of the data used, i.e., if
one uses data at z ≈ 0.3, then the inferred value ofH0 is greater by
0.4 km s−1 Mpc−1 compared toH0 inferred from the data at z ≈ 0.
The effect of torsion on the luminosity distance was evaluated
within the approximation of weak torsion, i.e., (77) with (82)
and η0 ¼ −0.03.
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relation between the expansion history and spatial curva-
ture in FLRW models,

CðzÞ ¼ 1þH2ðDD00 −D02Þ þHH0DD0; ð86Þ

where H is given by (68) and D is given by (70). In the
FLRW case (65), CðzÞ≡ 0 for the Riemannian geometry.
Deviations from zero are particularly interesting for indi-
cating inhomogeneous GR models (in which structure
formation is taken into account; e.g., [31–34] and refer-
ences therein for recent observational calibrations).
However, deviations from zero could also indicate that
non-pseudo-Riemannian geometry is required to describe
our Universe. For the models considered here, i.e., models
with torsion, the value of the function C will depend on the
type of observations used to infer the parameters H and D.
If the Hubble parameter H is derived from observations

that directly use (66) and (68), and if the distance D is
obtained based on the angular diameter distance (71), then
consistency between the expansion history and curvature
will indeed yield CðzÞ ¼ 0 for the FLRW metric. However,
if the distance is inferred from supernovae observations,
i.e., from luminosity distances (71), without accounting for
the presence of torsion via the parameter η, then CðzÞ ≠ 0
will be inferred. This is illustrated in Fig. 6.
Thus, not only should measuring DA and DL provide

constraints on torsion models, but the presence of torsion
should have an observational signature in the CðzÞ relation
if D is inferred from the luminosity distance (distance
modulus).

E. Reproducibility of results

The code that was used to produce the results reported in
this paper is free-licensed software available at [35]. The

code is written in standard fortran (compatible with the f95,
f2003, and f2008 standards) and does not require any
additional libraries to run. The reader is encouraged to run
the code to reproduce the results shown here, and to modify
the code and redistribute improved versions to derive their
own results.
The code solves for the transverse comoving distance

(70) as a function of redshift, together with the evolutionary
equations (72)–(74). The transverse comoving distance is
then used to evaluate relevant observational signatures such
as a change of the magnitude as given by (84). The code
also evaluates the derivatives with respect to redshift of the
distance as well as the expansion rate—these were needed
to evaluated the CBL function (86)—and thus can easily be
implemented in other studies of cosmological torsion.
The repository available at [35] also includes gnuplot

scripts to reproduce Figures 3–6. Thus, if the reader
compiles and executes the code, they can also use gnuplot
[36] to reproduce exact copies of Figures 3–6.

VIII. CONCLUSIONS

The aim of this paper was to consider observational
signatures of spacetime torsion on cosmological scales.
Several cosmological models with torsion have recently
been considered in the literature [6,7,21,37]. The motiva-
tion in this paper differs from the approach of these studies.
Instead of model comparison, we focus on observational
features that are most likely to be clearly distinguishable
from those of dark energy models, and which are not
reproducible by any dark energy model, i.e., “litmus test”
type signatures.
We show that if torsion is present, then the cosmic

duality relation, parametrized by η (63), is broken:

DL

DAð1þ zÞ2 − 1 ¼ η ≠ 0:

A special case is for the totally antisymmetric torsion
tensor, in which case the cosmic duality relation holds:
η≡ 0 [13]. However, homogeneous and isotropic cosmo-
logical models with an FLRW-type metric do not, in
general, have totally antisymmetric torsion [21], and thus,
cosmological models with torsion should, in general,
violate the distance duality relation: η ≠ 0.
Current observational constraints on η are not conclu-

sive, and still consistent with η ¼ 0 [38]. With DL obtained
from supernova observations andDA from lensing, one can
constrain the parameter η. However, DA estimates of this
sort are strongly dependent on the density profiles adopted
for the lensing analyses. For η ¼ η0 lnð1þ zÞ, the con-
straints found on η0 were η0 ¼ 0.21þ0.16

−0.19 (for a singular
isothermal sphere profile), and η0 ¼ −0.22þ0.14

−0.20 (for a
power law profile) [38].
We found that distance duality violation is not the only

signature of torsion. While less conclusive, as similar

 0
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FIG. 6. The CBL parameter as given by Eq. (86). If the distance
D is obtained from the angular diameter distance (69), (70), then
the CBL parameter is zero, CðzÞ ¼ 0 (flat blue curve). If the
distance is inferred from supernovae type Ia distance modulus
observations, i.e., from the luminosity distance (71), without
accounting for the presence of torsion via the parameter η, then
CðzÞ ≠ 0 (green curve). The torsion model here is the same as for
the other figures (82), i.e., ϕ ¼ η0H, η0 ¼ −0.03.
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effects could result from other models, low-redshift obser-
vations could also be used to point towards torsion, with
small biases in Hubble constant estimates (Figs. 4 and 5) or
a nonzero value of the CBL function CðzÞ if the distances
are derived from distance moduli (Fig. 6).
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