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We provide detailed analysis of the curvature structure of the spacetime around regular black holes
(RBHs) governed by general relativity (GR) combined with nonlinear electrodynamics (NED), charac-
terized by electric charge Q, and degree of nonlinearity n. We consider special class of the backgrounds
introduced by Toshmatov et al. [Phys. Rev. D 98, 028501 (2018)] that have proper Maxwell weak-field
limit of the NED sector. We also study the motion of uncharged and charged particles in the RBH
background. We determine shadows of such black holes (BHs) using the effective geometry governing
motion of photons in the background of NED RBHs. The analysis of circular motion enables to determine
innermost stable circular orbits (ISCO) and marginally bound orbits (MBO). We show that the radius of
ISCO and MBO for neutral particles decreases as the parameters of the RBHQ and n increase for the fixed
value of the BH mass. We demonstrate that for the electrically charged particles properties of the circular
orbits strongly depend on their Coulomb interaction with the RBH charge. The dependence of the ISCO
radius on the particle specific charge q and the RBH parameters is rather complex, but for the attractive
Coulomb interaction there is a general feature (independent of n) giving a limiting value of the intensity of
this interaction qQmax behind which no stable circular orbits are allowed around the RBH. Comparison of
the RBH with Reissner-Nordström black holes (RNBH) shows that for the same electric charges of these
backgrounds the location of the relevant orbits is at substantially smaller radii for the RBH, demonstrating
thus a strong influence of the NED effects. The analysis of ISCO radius of test particles has shown that the
charge of RBH Q can mimic the rotation parameter of Kerr BH up to the value a ¼ 0.8M. We have also
shown that the RN BH charge can mimic the rotation parameter up to a ¼ 0.5M and the RBH charge up to
Q ¼ 0.2M. Applications from observational data to the parameters of the supermassive black holes
(SMBHs) at the galactic center Messier 87 (M87) and Milky Way so called Sagittarius A� (SgrA�) give the
mimic value for the RBH charge parameter for the rotation parameter of M87 to be 103Q ≈ 277.56þ3.82

−1.26 ,

while for SgrA� there is 103Q ≈ 187.33þ27.6
−26.4 . Moreover, it is shown that the RN BH charge cannot mimic

the rotation parameter of the SMBH M87, however, it can mimic the spin parameter of SgrA� at
103QRN=M ¼ 828.71þ70.58

−60.94 .
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I. INTRODUCTION

The solutions of the Einstein field equations for electri-
cally and magnetically charged black holes were first
obtained by H. Reissner in 1916 (the same year as the
Schwarzschild solution) [2] and independently by G.
Nordström in 1918 [3]. The solution, governed by general

relativity (GR) coupled with linear Maxwell electrodynam-
ics, describes a Reissner-Nordström black hole (RNBH)
which has physical singularity at it’s center (r ¼ 0).
However, there are other exact solutions for electrically
and magnetically charged black holes which avoid this
physical singularity by coupling GR to nonlinear electro-
dynamics (NED)—such solutions are called RBH solu-
tions.1 Several types of the RBH solutions have been
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1For the Maxwell electrodynamics, the spacetime structure of
the RNBHs is modified in the same way for both the electric and
magnetic charges [4], but it is not so in the case of NED [5].
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introduced by in the past [5–13] being based on various
Lagrangians governing the NED; their electromagnetic and
thermodynamic properties, particle dynamics around them
have been studied by many authors [14–27].
Do charged BHs exist in the Universe? In principle this is

possible, but we expect that the realistic BHs can have
limited charge due to preferred accretion of oppositely
charged particles from orbiting plasma [28], of course this
argument is not relevant for hypothetical magnetically
charged BHs [29,30]. Recently, the electric charge of the
SMBH SgrA� situated in the center of the Milky Way
has been estimated through observational data [31–33] and
concluded that the charge has to be small charge and can
contribute to the BH geometry only slightly, but the
electromagnetic interaction of the orbiting charged par-
ticles with the allowed BH electric charge can be relevant
for the optical phenomena recently observed by the
GRAVITY [34].
In order to understand the electromagnetic phenomena

arising in vicinity of BHs, it is important to study basic
properties of the charged particle motion. Such studies
properly reflect the character of the combined gravitational
and electromagnetic fields related to charged BHs and
give insight into the processes in ionized accretion disks
[35–41]. A number of authors have considered the charged
particles (or uncharged particle) motion around charged
BHs: (a) BHs immersed in a magnetic field [37,42–49];
(b) RNBHs [50–56]; magnetized particles around a BH
immersed in an external asymptotically uniform magnetic
field [57–62].
Testing the general relativity and alternative theories of

gravity due to studies of motion of particles around BHs
with different parameters may help to obtain constrains on
the astrophysical BH parameters such as spin and charge
from the observational data. However, the parameters
estimated due to the ISCO of the particle motion around
the BH and the shadow of the BH, may be predicted the
same in different theories of gravity. In such cases we
cannot distinguish the character of the astrophysical BH, as
the parameters of different theories of gravities may mimic
each other [63]. Recently, several authors obtained con-
straints on the parameters of the SMBHs situated in the
Galaxy center, and the galaxy M87, located at the distance
about 17 Mpc from the solar system, using observational
data from physical evidences around them, such as shadow
of the BH M87 obtained by the EHT and [30,64–68].
Recently, authors of Ref. [69] have shown that magneti-
cally charged RBH can mimic rotation parameter up
to Qm=M < 0.7 through analysis of the SMBH M87
shadow considered in the framework of the Einstein-
Bronnikov model.
Here, we aim to study properties of the electrically

charged RBH solution obtained in [1] and to describe
the characteristic orbits of massless, as well as, massive,
charged and neutral particles around it and to obtain values

of the electric charge parameter that mimic the rotation
parameter of the SMBHs M87 and SrgA�. We have chosen
the case of the generic regular black holes governed by the
Lagrangian introduced in [1,11] that covers the regular
Bardeen and Hayward black hole spacetimes as special
cases. We focus attention to the special class of regular
spacetimes having the correct Maxwell weak-field limit
predicting in its simplest form optical phenomena related to
Keplerian disks in accord with observations [70], contrary
to the those related to disks orbiting the Bardeen regular
spacetimes that are in strong contradiction with the obser-
vations [71,72]. The Maxwellian NED RBHs are thus
worth of detailed studies in relation to the electromagnetic
effects in their vicinity.
The paper is organized as follows: Sec. II is devoted to

the curvature invariants, event horizon and electric field
properties of the spacetime around the RBH, in Sec. III we
considered photon and neutrinolike particle orbits around
the RBH, in Sec. IV the motion of massive test particles
around the RBH was studied, in Sec. V we have inves-
tigated the motion of electrically charged particles, and, in
particular, the ISCO and MBO is studied in detail. In
Sec. VI we have focused on the mimicker values for the
charge parameter Q as related to the spin parameter of the
SMBHs M87 and SgrA�, considering them as a RBH (RN
BH) and applying the studies of ISCO for neutral particles
and photon circular orbits governing the black hole shadow
in Secs. III and IV. In Sec. VII we have summarized the
obtained results.
Throughout this work we use signature ð−;þ;þ;þÞ for

the spacetime and geometric unit system G ¼ c ¼ 1.
(However, for astrophysical applications we use standard
units in our expressions). Latin indices run from 1 to 3 and
Greek ones from 0 to 3.

II. MAXWELLIAN NED REGULAR
BLACK HOLES

The generic RBH spacetimes [1,11] are solutions of GR
coupled to NED determined by the action taking the form

S ¼ 1

16π

Z
dx4

ffiffiffiffiffiffi
−g

p ðR − LðFÞÞ ð1Þ

where F ¼ FμνFμν is the invariant of the electromagnetic
field tensor Fμν ¼ Aν;μ − Aμ;ν expressed by using the
electromagnetic field potential Aμ.
The generic RBH spacetimes are governed by the

electromagnetic Lagrangian being a function of the electro-
magnetic field invariant taking the form

LðFÞ ¼ 4n
α

ðαFÞkþ3
4

½1þ ðαFÞk4�1þn
k

: ð2Þ

The Maxwellian NED generic RBH spacetimes having
the proper Maxwell weak-field limit are the solutions of GR
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combined with NED represented by special class of the
NED Lagrangian given by the parameters k ¼ 1 and n ≥ 3,
where n is assumed to be an integer [1,73]. The metric
tensor of such spherically symmetric spacetimes

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2 ð3Þ

is then represented by the lapse function that can be
expressed in the form [73]

f ¼ 1 −
2M
r

�
1þQ

r

�
−n
; ð4Þ

where Q > 0 denotes charge of the black hole and M its
mass. For Q ¼ 0 we obtain the Schwarzschild vacuum
spacetime. The last RBH parameter n reflects degree of
the electrodynamic nonlinearity; recall that the parameter k
is fixed to k ¼ 1 guaranteeing the proper Maxwell weak-
field limit of the generic NED framework. The term
dΩ2 ¼ dθ2 þ sin2 θdφ2 is the angular part of the spheri-
cally symmetric spacetime.
The four-potential of the Maxwellian NED RBH electro-

magnetic field [1] reads

Aμ ¼
nffiffiffiffiffiffi
2α

p
Q
r

ð1þ Q
rÞnþ1

�
1þ ð3 − nÞQ

r

�
f1; 0; 0; 0g ð5Þ

where α is a constant reflecting the intensity of the
interaction [1,11] which we have chosen to be α ¼ n2=2
for simplicity and in the weak-field limit At in Eq. (5) takes
the form of the RN potential φRN ¼ Q=r.

A. Curvature of RBH

Studies of curvature invariants such as the Ricci scalar,
square of the Ricci tensor and the Kretschmann scalar help
to deeply understand properties of a given spacetime. We
thus investigate the curvature invariants of the metric (4).

1. The Ricci scalar

We first give the Ricci scalar of the spacetime determined
by the metric (4) that can be expressed as

R ¼ gμνRμν ¼ 2nðnþ 1ÞQ
2

r5

�
1þQ

r

�
−ðnþ2Þ

: ð6Þ

In the limiting case Q ¼ 0, R ¼ 0 and the matter (field)
inside the inner horizon does not give rise to the existence
of the Ricci scalar, as this is the vacuum solution of GR
where the Ricci tensor vanishes by definition. The limits of
the Ricci scalar at the center read

lim
r→0

Rðn¼3Þ ¼
24

Q3
; lim

r→0
Rðn≥4Þ ¼ 0: ð7Þ

We study the radial dependence of the Ricci scalar by
varying the RBH parameters, Q and n, keeping fixed M.
One can see from Eq. (6) that the dimensions of the scalar
are 1=½Q�3. We considered the dimensionless Ricci scalar
curvature, multiplying the Ricci scalar by Q3.
Figure 1 shows the radial dependence of the dimension-

less Ricci scalar on different values ofQ and n. One can see
from the figure that increasing n decreases the value of the
dimensionless Ricci scalar and increasing the value of Q
shifts the maximum value of the curvature out from the
center of the RBH. For example, in the case of n ¼ 3, there
is finite Ricci scalar at the center of the BH—this means
that the RBH is not flat nor has a singular point at its center.
In the cases n ≥ 4, the Ricci scalar is vanishing at the center
of the BH and at the inner horizon—the radial profile of the
Ricci scalar is represented in this cases by a “Gaussian”
distribution. We can conclude that in the case n ¼ 3 the
charged matter is denser in the center (but not infinite), and
in the cases where n ≥ 4, the charged matter distribution is
“Gaussian-like”. This means that matter is organized in a
shell-like manner inside of the RBH which could corre-
spond to the charged matter distribution in the shell. As
the size of the shell becomes larger, the maximum of the
distribution shifts outside while both parameters of the
RBH,Q and n, increase. However the maximum value does
not vary with varying the parameter Q for a fixed n. One
can conclude that the Ricci scalar corresponds to the
electrostatic field, which is related to the total charge of
the RBH.

FIG. 1. Radial dependence of Ricci scaler for different values of the RBH parameters Q and n.
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2. The square of Ricci tensor

The second curvature invariant we consider is the square
of the Ricci tensor,R, related to the lapse function given by
Eq. (4). This invariant is given by the relation

R ¼ RμνRμν ¼
�
M
r3

nQ
r

�
1þQ

r

�
−ðnþ2Þ�2

× 2

�
8 − 4ðn − 3ÞQ

r
þ ðn2 − 2nþ 5ÞQ

2

r2

�
: ð8Þ

In the case of Q ¼ 0 (the Schwarzschild case) we again
arrive to R ¼ 0 due to the fact that vacuum spacetimes in
GR are Ricci flat. The limits of the R scalar curvature read

lim
r→0

Rðn¼3Þ ¼
144M2

Q6
; lim

r→0
Rðn≥4Þ ¼ 0 ð9Þ

and we expect similar qualitative behavior as in the case of
the Ricci scalar, namely the Gaussian behavior of the radial
profiles of the square of the Ricci tensor for n ≥ 4.
The properties of R for different values of the RBH

parameters Q and n are reflected in Fig. 2 demonstrating
the radial profiles of a dimensionless R. One can see from
the figures that the properties of the square of the Ricci
tensor is very similar to those of the Ricci scalar, with
respect to the values of parameter n. However, the maximal
value of the dimensionless scalar strongly depends on the
values of the RBH parameters. Moreover, increasing of the
values of the RBH parameters decreases the maximum
value of the square of Ricci tensor. In cases where n ≥ 4 the
maximum value shifts out from the center of RBH.

3. The Kretschmann scalar

The third scalar we study is the Kretschmann scalar,
enabling us to obtain more information about the character
of the curvature of spacetime metric governed by the lapse
function (4). It should be stressed that this is the only
curvature scalar of those considered here that is reflecting
the curvature of the vacuum spacetime solutions of GR that
generally Ricci flat solutions.

The expression for the Kretschmann scalar of the
considered RBH spacetimes takes the form

K ¼ RμνσδRμνσδ ¼ 4M2

r6

�
1þQ

r

�
−2ðnþ2Þ

×

�
12 − 24ðn − 2ÞQ

r
þ 4nð6nþ 1ÞQ

2

r2

− 8ðn3 − 5n2 þ 8n − 6ÞQ
3

r3

þ ðn4 − 6n3 þ 17n2 − 20nþ 12ÞQ
4

r4

�
ð10Þ

and it is reduced to the Schwarzchild BH spacetime form
K ¼ 48M2=r6 for Q ¼ 0.
The central limits (r ¼ 0) of the Kretschmann scalar read

lim
r→0

Kðn¼3Þ ¼
96M2

Q6
; lim

r→0
Kðn≥4Þ ¼ 0: ð11Þ

In general, one can see that the root of the Kretschmann
scalar can be interpreted as a matter energy density,ffiffiffiffi
K

p
∼ ρM. The units of the Kretschmann scalar is

1=½Q�4, and here we also analyze the dimensionless scalar
by multiplying it by a factor Q4.
Figure 3 illustrates the profiles of the dimensionless

Kretschmann scalar for different values of n and Q. One
can see from the figure that the distribution of the
Kretschmann scalar is very similar to the distribution of
the square of the Ricci tensor.
As the charge of the RBH increases the value of the

Kretschmann scalar decreases and for n ¼ 3 there is finite
value of the scalar in the center of the RBH, and for the
cases n ≥ 4 in the center the value of the scalar is zero. In
the case of n ≥ 4 the maximum of the curvature shifts
outside for larger values of the RBH charge Q.
As we mentioned above, the Kretschmann scalar corre-

sponds to the total matter-energy density, and when the
value of Q increases, as seen from Fig. 3, the value of the
Kretschmann scalar decreases.

FIG. 2. Dimensionless R scalar as a function of dimensionless radial coordinate (r=M) for different values of the RBH parameters
Q and n.
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B. Horizons of the RBH

Now we study properties of the RBH spacetimes,
governed by the lapse function given by Eq. (4), by
determining the existence and positions of their event
horizons.
The standard way to find the event horizon is by setting

grr → ∞, grr ¼ 0, or equivalently f ¼ 0. In our case the
existence ad position of the event horizons depends on the
RBH parameters n andQ, if we putM ¼ 1, or equivalently,
we use dimensionless coordinates r=M and charges Q=M.
Calculating the event horizons by setting f ¼ 0 shows that:

(i) two event horizons exists for Q < Qext: an inner and
an outer horizon

(ii) for Q ¼ Qext we have an extreme RBH with
maximal allowed charge, where the two event
horizons coalesce forming a single event horizon,
(rexth ), instead of two (see, Fig. 4)

(iii) when Q > Qext we have no-horizon strong gravity
objects, having no event horizon (the lapse function
is positive everywhere in the range 0 < r < ∞).

In order to find the value of the extreme charge (Qext) and
the corresponding event horizon rexth of the RBH, we
established the system of equations f ¼ 0 and f0 ¼ 0,
where we solved the system of equations simultaneously
for given values of n. We then obtained the event horizon
and the extreme value for the RBH. The extreme charge of
the RBH depends on the degree n, for example when

n ¼ 3, Qð3Þ
ext ¼ 8

27
M and for n ¼ 4, Qð4Þ

ext ¼ 27
128

M. In Fig. 5
we show the dependence of the extreme charge, Qext, a
RBH can have, on the nonlinearity degree parameter n. One
can see that the value of Qext decreases as n increases, and
when n ≫ 3,Qext ≪ M. Figure 5 also shows that a charged
RBH can exist for Q ≤ Qext, otherwise the geometry
corresponds to a no-horizon strong gravity object.
We can say due to Fig. 4 that as the charge of the RBH,

Q, and the degree, n, both increase, the radius of the inner
event horizon becomes larger and the outer event horizon of
the radius becomes smaller. The disappearance of the event

FIG. 3. Dimensionless Kretschmann scalar as a function of dimensionless radial coordinate (r=M) for different values of the RBH
parameters Q and n.

FIG. 4. Lapse function f as a function of dimensionless radial
coordinates r=M, with different values of Q and n, the black dots
indicates the minimum of the lapse function.

FIG. 5. Values of extreme charge of RBH Qext for different
values of the degree n.
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horizon of the RBH when Q > Qext results in a no-horizon
strong gravity object.
The expressions of the event horizon radius for n ¼ 3

and n ¼ 4 are given, respectively, by the relations

arð3Þh

M
¼ 1

4
ðaþ 2Þ2 þ ðaþ 3Þ Q

M
ð12Þ

2rð4Þh

M
¼ 1þ b −

2Q
M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ 3

b

�
1 −

6Q
M

�
1þ Q

M

��s
ð13Þ

where the constants are

a3 ¼ 8 −
9Q
M

�
4 −

3Q
M

�
þ 27Q

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q
M

�
Q
M

−
8

27

�s

b2 ¼ 1 −
4Q
M

þ Q
M

�
2Q
M

�
1=3

þ 4Q
3M

�
2Q2

dM2

�
1=3

c ¼ 1 −
4Q
M

−
Q
M

�
dQ
36M

�
1=3

−
2Q
M

�
4Q2

3dM2

�
1=3

d ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

128Q
27M

r
: ð14Þ

One can see from Eqs. (12)–(14) that when Q ¼ 0, the
Schwarzschild case, the equation become rh ¼ 2M.
Figure 6 shows the dependence of the event horizon on

the parameter Q for fixed values of n. One can see that the
radius of the event horizon decreases as the value of the
parameter Q increase for any fixed value of n, and the rate
of this decrease increases with increasing n. For a given
charge parameter, the outer event horizon of any RBH is
smaller than those of the corresponding RNBH. In this
figure, we have not shown the inner horizon, as it is not
relevant astrophysically. However, it is possible to deduce
from Fig. 4 that the both horizon radii increase as the charge
Q and the degree n are increased.

C. The electric field of the RBH

The nonzero components of the electromagnetic field
tensor are given by Frt ¼ At;r. Using the relation Eα ¼
Fαβuβ, where uβ is the four velocity of the frame of an
observer, we calculate the radial component of the electric
field for the static observers with four-velocity uαPO ¼
f−1f1; 0; 0; 0g as

Er̂ ¼
Q
r2

�
1þQ

r

�
−ðnþ2Þ

×

�
1 − 3ðn − 2ÞQ

r
þ ðn − 3Þðn − 1ÞQ

2

r2

�
: ð15Þ

One can expand Eq. (15) for different values of the
parameter n, for instance n ¼ 3 and n ¼ 4, obtaining the
relations

En¼3
r̂ ¼ −

Q
r2

þ 8

r
Q2

r2
−
30

r
Q3

r3
þO

�
Q4

r4

�

En¼4
r̂ ¼ −

Q
r2

þ 12

r
Q2

r2
−
60

r
Q3

r3
þO

�
Q4

r4

�
: ð16Þ

Equation (16) yields the electric field around a RNBH in
the linear approximation.
Figure 7 illustrates the strength of the electric field as a

function of the radial distance from the BH center for
different values of the parameters Q and n under the

FIG. 6. The dependence of the outer event horizon radius on
BH charge Q for fixed values of n ¼ 3, 4, 5. For comparison we
include also the case of the RNBHs.

FIG. 7. Radial components of the electric field a function of radial coordinates, in the distances r > rh, in different values of Q and n.
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condition that r > rh. The left panel of the figure illustrates
the behavior of the magnitude of the E field for fixed n and
several properly selected values of Q. On the other hand,
the cases of fixed Q and increasing values of n, as illus-
trated in the middle and rightmost panels, demonstrate the
maximum value of the E field to increase, and asQ → Qext
the strength of the electric field decreases for larger values
of n.
The only nonzero component of the electromagnetic

field tensor is Frt and the electromagnetic invariants of the
electric field reads

F ¼ FrtFrt ¼ −A2
t;r ¼ −

Q2

r4

�
1þQ

r

�
−2ðnþ2Þ

×

�
1 − 3ðn − 2ÞQ

r
þ ðn − 1Þðn − 3ÞQ

2

r2

�
2

ð17Þ

III. THE MOTION OF MASSLESS PARTICLES

The motion of massless particles (with rest mass-energy
m ¼ 0 that can be approximated by neutrinos) is governed
by the null geodesics of the NED RBH spacetimes, but
with an exception of photons because of the nonlinearity of
the electromagnetic field. However, the photon motion is in
this case governed by null geodesics of the so-called effec-
tive geometry [71,74] reflecting directly the NED effects, in
addition to those hidden in the spacetime structure.

A. The photon-sphere around a RBH

The photon motion in the RBH spacetimes governed by
the lapse function given by Eq. (4) can be determined
by the null geodesics of the effective geometry introduced
in [63,71–75]

g̃μν ¼ gμν − 4
LFF

LF
Fλ
μFμν ð18Þ

g̃μν ¼ 16
LFFFμηF

η
ν − ðLF þ 2FLFFÞgμν

F2L2
FF − 16ðLF þ FLFFÞ2

ð19Þ

where

LF ¼ ∂LðFÞ
∂F ; LFF ¼

∂2LðFÞ
∂F2

: ð20Þ

The eikonal equation for photons in the effective
geometry related to the NED RBH can be written as

g̃μνkμkν ¼ 0 ð21Þ

where kμ is the four-wave-vector related to the four-
momentum of photons by pμ ¼ ℏkμ (in Gaussian units
ℏ ¼ 1). Using the results of [70,71,75], the effective
potential for the photon motion in the effective geometry

corresponding to the Maxwellian NED RBHs is related to
the inverse of the impact parameter of photon motion in the
equatorial plane, b ¼ pϕ=pt, and reads

Veff ¼
f
r2

�
1þ 2

LFF

LF
F

�
: ð22Þ

For details of the photon motion in Maxwellian NED
RBH spacetimes with the parameter n ¼ 3 see [70]. In the
case of LðFÞ ¼ F, the effective potential takes the form
of those governing photon motion in the RN spacetimes
(see [76–78]).
The local minimum of the effective potential corre-

sponds to the photon circular orbits. The radius and impact
parameter of these circular orbits can be found by setting
on the effective potential the condition V 0

eff ¼ 0 where
the prime 0 denotes differentiation with respect to the radial
coordinate. Notice that the photon circular orbits in this
case govern also the quasinormal modes of electromagnetic
perturbations in the Maxwellian NED RBH spacetimes
[73], representing thus a special case when the quasinormal
modes are not related to the null geodesics of the spacetime,
first discussed in [79].
Figure 8 illustrates the dependence of the radius of

circular photon orbits on the charge of the RBH, Q, for
fixed values of n. It can be seen that for distances very close
to the coordinate origin r ¼ 0, the radius increases and then
decreases as Q and n are increased.
From the viewpoint of astrophysics, more important is

the impact parameter of the photon circular orbit, as it
governs the size of the RBH shadow. The expression of the
impact parameter takes the form [63,70,71]

b2c ¼
LF

LF þ 2FLFF

r2

f

����
r¼rph

: ð23Þ

Figure 9 illustrates extension of the RBH shadow (given
by the impact parameter bc) as a function of its charge, Q,
for different values of the degree parameter n. One can see

FIG. 8. The radius of photon sphere as a function of the RBH
charge Q, for different values of the parameter n.
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that the effect of the parameters Q and n on the impact
parameter are similar to photon sphere. In small values ofQ
the effect of n dominates and the value of the impact
parameter increases as increases n, while with increasing
value of Q effect of n decreases and at the same time the
value of the impact parameter also decreases, then effect of
Q dominates. One can notice that the value of bc in the case
n ≥ 4 at Qext equals to the value of bc in case n ¼ 3

at Q ¼ Qn≥4
ext .

B. The motion of neutrinolike particles

Calculating the equations of motion for massless (“neu-
trinolike”) particles is simpler than the photon case. One
can use again the standard Euler-Lagrange equations
utilizing the metric given by the lapse function with Eq. (3).
Considering the dimensionless Lagrangian density for a

neutral particle with mass m

Lp ¼
1

2
gμν _xμ _xν; ð24Þ

the conserved quantities of motion read

pt ¼
∂Lp

∂_t ⇒ gtt_t ¼ −E ð25Þ

pϕ ¼ ∂Lp

∂ _ϕ ⇒ gϕϕ _ϕ ¼ L ð26Þ

where E and L are the special energy and angular
momentum of the particle, respectively. Equations of
motion for a test particle in the equatorial plane are then
governed by the normalization condition

gμνuμuν ¼ ϵ ð27Þ

where ϵ is 0 and −1 for massless and massive particles,
respectively.

Taking into account Eqs. (25)–(26) we can introduce
the effective potential for massless particles (ϵ ¼ 0)
considering

_r2

L2
þ Veff ¼

E2

L2
;

and we obtain

Veff ¼
f
r2
: ð28Þ

Circular orbits for massless particle can be found in the
standard way by setting condition V0

eff ¼ 0 which implies

f0 −
2

r
f ¼ 0 ð29Þ

while for the impact parameter of the circular null geo-
desics of the spacetime itself, we have simple relation [70]

b2cðneuÞ ¼
r2

f

����
r¼rneu

: ð30Þ

The analytical solution of Eq. (29) is rather complex, we
thus present the results of the numerical solution for the
circular orbits of massless particles in Fig. 10, providing the
dependence of radius of the circular orbits for on the RBH
charge Q for different values of the nonlinearity degree
parameter n. We can see that the radius of the circular orbit
decreases as the parametersQ and n are increased. The rate
of decrease is inversely proportional to the parameter n. The
decrease is always faster for RBHs than for the RNBHs.

IV. THE MOTION OF TEST PARTICLES

For the massive electrically uncharged particles the
motion is governed by timelike geodesics of the spacetime,

FIG. 9. The dependence of impact parameter for circular orbits
of photons on the RBH charge Q, for different values of the
parameter n.

FIG. 10. Comparison of the radius of circular null geodesics of
massless neutrino-like particles in the Maxwellian NED RBH
spacetimes with different values of n. The results are compared to
those corresponding to the RNBHs.
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and the equations of motion can be found by using Eq. (27).
Taking into consideration Eqs. (25) and (26), we obtain the
motion equations in the separated and integrated form

_r2 ¼ E2 þ gtt

�
1þ K

r2

�
ð31Þ

_θ ¼ 1

g2θθ

�
K −

L2

sin2 θ

�
ð32Þ

_ϕ ¼ L
gϕϕ

ð33Þ

_t ¼ −
E
gtt

ð34Þ

where K denotes the Carter constant corresponding to the
total angular momentum.
Restricting the motion of the particle to the equatorial

plane, in which θ ¼ π=2 and _θ ¼ 0, the Carter constant
takes the form K ¼ L2 and the equation of the radial
motion can be expressed in the form

_r2 ¼ E2 − Veff ð35Þ

where the effective potential of the motion of neutral
particles reads

Veff ¼ f
�
1þ L2

r2

�
: ð36Þ

In order to derive the motion constants of circular motion of
a neutral particle at a radius r, we apply the standard
conditions for the circular motion, meaning no radial
motion (_r ¼ 0) and no forces in the radial direction
(̈r ¼ 0). We obtain for the neutral particle motion in the
field of NED RBHs governed by the lapse function in

Eq. (4) the radial profiles of the specific angular momentum
and specific energy for circular orbits in the following form

L2 ¼ Mr½1þ ð1 − nÞ Qr �
ð1þ Q

rÞnþ1 − ½3þ ð3 − nÞ Qr �Mr
; ð37Þ

E2 ¼ ð1þ Q
rÞ1−n½ð1þ Q

rÞn − 2M
r �2

ð1þ Q
rÞnþ1 − ½3þ ð3 − nÞ Qr �Mr

: ð38Þ

The radial profiles of the specific angular momentum
Lðr;M;Q; nÞ and specific energy Eðr;M;Q; nÞ of the
circular motion, given by Eqs. (37) and (38) are determined
by the parameters of the RBHQ and n and fix the values of
these motion constants at any given radius r. We are giving
the squares of the motion constants as in the spherically
symmetric spacetimes the corotating orbits are equivalent
to counterrotating ones.
Figure 11 illustrates the radial profiles of the specific

angular momentum and the specific energy of the neutral
particle circular orbits, constructed for characteristic values
of the RBH parameters, Q and n, and compared to the
Schwarzschild BH case having Q ¼ 0. We can see that
both the radial profiles of the specific angular momentum
and the specific energy are decreasing with increasing RBH
parameters n and Q. Note that in the decreasing part
of the radial profiles, the circular orbits are stable against
the radial perturbations, while in the increasing part, the
circular orbits are unstable [80]. The minimum of the
profiles corresponds to the so-called marginally stable, or
innermost stable circular orbit (ISCO) that is related to the
inflexion point of the effective potential. The specific
energy of the ISCO orbit determines efficiency of the
Keplerian accretion following the stable circular geodesics
[81]—with the specific energy of the ISCO decreasing,
efficiency of the accretion is increasing. We thus see that
the efficiency of the Keplerian accretion increases with
increasing parameters Q and n.

FIG. 11. Radial profiles of the specific angular momentum (at the left panel) and specific energy (at the right one) of neutral particles in
circular orbits, given for characteristic values of RBH charge, Q, and the degree, n.
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There is another important circular geodesic orbit,
namely the marginally bound orbit (MBO) with specific
energy E ¼ 1 that is unstable against the radial perturba-
tions—this orbit represents a natural limit on the so called
thick accretion disks from perfect fluid where the structure
is governed also by the fluid pressure [82,83].2 We thus
now consider these limiting orbits, ISCO and MBO, in the
Maxwellian NED RBH spacetimes.

A. Innermost stable circular orbits (ISCO)

Circular orbits of massive neutral particles are stable if
the condition V 00

eff ≥ 0 is satisfied, and unstable for the
condition V 00

eff < 0; the ISCO is determined by the con-
dition V 00

eff ¼ 0. The ISCO radius is determined as solution
of the equation

2M
r

�
3−3ðn−2ÞQ

r
−ðn−3Þðn−1ÞQ

2

r2

�

−
�
1þQ

r

�
n
�
1þðnþ2ÞQ

r
−ðn2−1ÞQ

2

r2

�
≥0: ð39Þ

We study the ISCO radius rISCO for neutral particles by
numerical solution of Eq. (39). Figure 12 shows the
dependence of the ISCO radius for neutral particle motion
around Maxwellian NED RBH spacetimes in dependence
on their electrical charge Q for fixed values of the degree
parameter n. The ISCO radius decreases with increasing
charge parameter, and the rate of decrease of the ISCO
radius increases with increasing n being always larger for
RBH than for RNBHs.

B. Energy efficiency of Keplerian accretion

It is well known that efficiency of the Keplerian accretion
in geometrically thin disks, governed by the properties
of the spacetime circular geodesics, is determined by the
specific energy of the innermost (marginally) stable circular
geodesic (ISCO) [81]. The efficiency is given by the
relation

η ¼ 1 − EISCO; ð40Þ
where EISCO is the dimensionless (normalized to the rest
energy of test particle mc2) energy of the test particle at
the ISCO. The efficiency represents maximum energy that
can be extracted and converted into radiation from the
rest energy of the falling matter in the process of Keplerian
accretion. The specific energy EISCO governing the
Keplerian accretion can be obtained by using Eq. (38) at
r ¼ rISCO. We give EISCO for several characteristic values of
the RBH parameters Q and n in Table I.
One can see from the Table that the energy EISCO

decreases (the efficiency increases) with increasing values
of the RBH parameters Q and n. However, in the case of
extremely charged RBH (with Q ¼ Qmax) the specific
energy EISCO slightly decreases with increasing the value
of the parameter n.

C. Marginally bound orbits of neutral particles

Massive particles on the marginally bound orbits (MBO)
have their energy equal to the rest energy, E ¼ 1, thus their
binding energy is equal to zero. The radius of the MBO can
be given due to Eq. (38) by the relation

1 −
4M
r

�
1þQ

r

�
1−n

þ ð1þ nÞQ
r
¼ 0 ð41Þ

Here we give the MBO for fixed values of the degree n.
The solution for n ¼ 3 reads

3rmb ¼ 4M − 6Qþ RðM;QÞ

þ 16M2 − 48MQþ 9Q2

RðM;QÞ ð42Þ

where

R3ðM;QÞ ¼ 64M3 − 288M2Qþ 270MQ2 − 27Q3

þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MQ3ð207MQ − 64M2 − 27Q2Þ

q
;

FIG. 12. The ISCO radius for neutral particle motion in the field
of the NED RBHs, given in dependence on parameter Q for
characteristic values of n. For comparison the dependence of
ISCO on Q is given for RNBHs.

TABLE I. Numerical values of EISCO for the different values of
the RBH parameters Q and n.

Q ¼ 0.1 Q ¼ 0.15 Qmax

n ¼ 3 0.8710 0.8588 0.7844
n ¼ 4 0.8629 0.8418 0.7932
n ¼ 5 0.8532 0.8156 0.7976

2In the BH spacetimes reflecting the cosmic repulsion
(cosmological constant) the definition of the MBO is more
complex [4,84,85]
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in the Schwarzschild case Q ¼ 0, R ¼ 2M and rmb ¼ 4M.
For n ≥ 4, Eq. (42) is a bit longer and more complicated.
For this reason, we determine the solutions numerically
and represent them graphically in Fig. 13. The radii of the
MBOs are given as a functions of the RBH charge Q for
typical values of n. One can see that the radius decreases as
both the values of Q and n increase. The minimum values

of rmb comes closer to the event horizon as QðnÞ → QðnÞ
ext .

V. CHARGED PARTICLE MOTION

In this section we study the motion of a charged particle
with mass m and electric charge e in the combined
gravitational and electromagnetic fields determined by
the lapse function of Eq. (4) and the electromagnetic vector
four-potential given by Eq. (5).

A. Equations of motion for charged particles

Motion of charged test particles in charged backgrounds
is governed by the Lorentz equation

uμ∇μuν ¼ qFν
σuσ: ð43Þ

We use the specific charge q ¼ e=m. The Lorentz equa-
tion can be related to the Euler-Lagrange method. The

Lagrangian for a charged particle motion in a gravitational
field combined with an electromagnetic field reads

Lch p ¼
1

2
gμν _xμ _xν þ qAμ _xμ ð44Þ

where Aμ are the components of the electromagnetic four-
potential given by Eq. (5). The motion constants deter-
mined by the stationarity and axial symmetry of the
background are given by the relations

gtt_tþ qAt ¼ −E ð45Þ

gϕϕ _ϕ ¼ L ð46Þ

where E represents the specific energy and L represents
the specific axial angular momentum of the particle,
respectively, related to observers at rest at r → ∞. Due
to the spherical symmetry of the background we can make
simplification and consider only the equatorial motion (at
fixed θ ¼ π=2 ¼ const) and the Euler-Lagrange method
again enables introduction of an effective potential.
The effective potential for a charged particle in the

equatorial plane (θ ¼ π=2 and _θ ¼ 0) can be found by
solving equation E ¼ Veff (taking _r ¼ 0), taking the form

V�
effðrÞ ¼ qAt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

�
1þ L2

r2

�s
ð47Þ

In this study, we consider the positive root of the
effective potential, Vþ

eff , as it corresponds to the so called
positive-root states with four-velocity oriented to future and
positive energy relative to local observers—for details see
[80,86,87].
Figure 14 demonstrates how the minimum of the

effective potential, governing the circular orbits, changes
for various charged particles. The angular momentum,
L ¼ 4.3M, around the RBH is assumed along with values
for Q and n. The leftmost panel of the figure illustrates
that the minimum of the effective potential, as the charge of
the RBH increases, reacts chaotically for n ¼ 3, while the
middle panel shows that the minimum shifts upward for

FIG. 13. The radius of marginally bounded orbits as a function
of the RBH charge Q, for the different values of the degree of
nonlinearity n.

FIG. 14. The effective potential for fixed specific axial angular momentum and charged particles with various specific charge moving
around a RBH with different values of Q and n.
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positive charges and downward for negative charges for
n ¼ 4, as related to the effective potential for uncharged
particles. The rightmost panel is slightly different as it
illustrates the minimum for the positive charges q > 0 of
varying degrees of nonlinearity n ¼ 3, 4, 5. It is seen that as
n increases the minimum Coulomb potential decreases and
the maximum of the effective potential increases and shifts
to the center. Also shown in the same panel is effective
potential curve for a RNBH, and how it differs from the
RBH case for similarly charged particle. The minima of the
effective potential govern again the stable circular orbits of
charged particles, while the maxima correspond to the
unstable circular orbits. The circular orbits of charged test
particles around RNBHs were studied in [52,80,86].

B. Circular orbits and the ISCO

Stable circular orbits in the equatorial plane can be
studied using the following standard conditions

Veff ¼ E; V 0
eff ¼ 0; V 00

eff ≥ 0: ð48Þ

The solutions of the equation V 0
eff ¼ 0 in the fixed back-

ground imply that the particle with given specific charge q
follows a circular orbit at a given radius r, if its specific
angular momentum is given by the relation

L2
� ¼ 1

ðrf0 − 2fÞ2
h
2r3fðq2rA0

t
2 þ f0Þ − r4f02

� 2qr3fA0
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2r2A0

t
2 − 2ðrf0 − 2fÞ

q i
ð49Þ

The prime, 0, on V 0
eff or other quantities denotes the partial

derivative with respect to the radial coordinate. In the case
when Q ¼ 0 (i.e., the Schwarzschild case) the angular
momentum solutions for circular orbits from above takes
the form

L2
� ¼ Mr2

r − 3M
:

We now analyse the solution (49) looking for the condition
where both L2

� are real.
In order to ensure that we obtain a real solution to

Eq. (49), we require that the function under the square root
is always positive,

ðqrA0
tÞ2 − 2ðrf0 − 2fÞ ≥ 0: ð50Þ

Therefore, in regards to the specific angular momentum at
the circular orbit we must consider two cases:
(1) since ðqrA0

tÞ2 is always positive, then rf0 − 2f ≤ 0
must be searched for any specific charge q and
for q ¼ 0

(2) when rf0 − 2f > 0 then ðqrA0
tÞ2 ≥ 2j2f − rf0j must

be satisfied for large values of particle’s charge

We rewrite the condition (50) in the form

q2Q2

ð1þ Q
rÞ2n

�
1 − 3ðn − 2ÞQ

r
þ ðn − 3Þðn − 1ÞQ

2

r2

�
2

þ 4r2
�
1þQ

r

�
3−n M

r

�
3 − ðn − 3ÞQ

r

�
≥ 0: ð51Þ

The condition (51) can be satisfied simultaneously by
looking at the 3D “surface” in Fig. 15 formed by con-
sidering the variables q, Q, and r and assuming a fixed
value for n. It is illustrated that in dependence on the charge
of the RBH, Q, and the particle specific charge q, a critical
distance rcrit from the RBH is defined where the circular
orbits are allowed. For the orange surface, n ¼ 3, and
the blue surface, n ¼ 5 the distance decreases as Q is
increased. The figure also illustrates that when Q ¼ 0, the
particle is at distance rcrit ¼ 3M, as expected in the
Schwarzschild case.
At large values of Q and q, the critical distance depends

on both the black hole charge Q and the particle charge q.
Clearly since L2 is always positive the critical distance
rcrit < r, and the region above the surface corresponds to
the appropriate values of r, Q, and q that satisfy the real-
valued angular momentum found in (49).
One can also see from Fig. 15 that the critical radius, rcrit,

decreases for neutral particles as well as for charged
particles of smaller charge around a RBH of increasingly
higher charge, Q. The rate at which this distance decreases
becomes larger as n increases. This corresponds to a value

FIG. 15. The zeros of the left side in relation (49) governing the
critical surfaces of the parameter space determining regions
allowing of circular orbits. The orange 3D surface is relevant
for n ¼ 3, and the blue one for n ¼ 5. The regions to the “right”
or “above” either surface corresponds to the values of r, Q, and q
for which the specific angular momentum is real-valued for the
given value of n.
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of the critical distance where rn¼3
crit > rn¼5

crit for a given Q.
However, for large values of q (it is approximately at
q≳ 10) the decreasing rate decreases with increasing n and
the surface corresponding to n ¼ 3 intersects with the blue
surface corresponding to n ¼ 5. Where the two surfaces
intersect indicates where the critical distance is the same for
degrees of nonlinearity n ¼ 3 and n ¼ 5. Within the region
bounded by these two surfaces, rn¼3

crit < rn¼5
crit for values

of Qn → Qn
max.

One can see from Eq. (49) that L2þ < L2
− for positive

charges and L2
− > L2þ for negatively charged particles.

Therefore L2þjq<0 ¼ L2
−jq>0 < L2þjq>0 ¼ L2

−jq<0.
Since the conditions in (48) were required in order to

have stable circular orbits, they imply that no forces acting
on the charged particle competing against each other. Yet,
there are three forces on the particle while it is in the orbit
around the RBH: the Coulomb (C), gravitational (G), and
centrifugal (Cf) forces. For negatively charged particle the
G and C forces point in the same direction and Cf points
into the RBH. Under the condition that the sum of the C and
G forces balance out the Cf force, which means that for
negatively charged particles we use L2

−, since Cf is
proportional to L2 and the value of the L2 should be large
enough in order to ensure that the particle does not fall into
the central object. This means that for positively charged
particles the Cf and C forces the same direction and we can
only use for positively charged particle also L2

−, because
the value of L2 should be small enough, otherwise, the
particle will be pulled away to infinity. Using these facts,
we analyze the radii of the circular orbits of charged
particles using the solution L2

− of Eq. (49), where r > rcrit.
Figure 16 shows the specific angular momentum which

corresponds to the circular orbit for negatively charged
particles as a function of the dimensionless radial coordinate,
r=M. One can see from the panel at the top that the value of
L2
− increases as Q is increased for given values of the

negatively charged particle q. We show the curves for the
specific angular momentum for two negatively charged
particles with q ¼ −10 and q ¼ −60. We can see from
the bottom panel that for q ¼ −10 increasing of the charge
of the RBH causes the minimum of the function L2

− to
increase for differing values of Q up to the extreme charge
when n ¼ 3. For q ¼ −60, increasing of the RBH charge
results in increasing minimum value of the specific angular
momentum, and the critical distance where L2

− is minimized
starts to increase but then decreases. One can conclude from
the two panels that increasing the particle specific charge
results in increasing specific angular momentum.
Figure 17 illustrates similar situation with the same RBH

parameters as presented in Fig. 16, but only for positive
specific charges of the particles.
Now, we can study stable circular orbits for a charged

particle in the background of the Maxwellian NED RBH,
determined by the condition V 00

eff ≥ 0. The stable circular

orbits for charged particles with a given specific charge q
have to be located above the ISCO radius that corresponds
to the minimum of the radial profile of the specific angular
momentum governing the circular orbits—see Fig. 16.
Figure 18 shows the ISCO for charged particles as a
function of the charge of the RBH.
The top panel profiles the ISCO radii for positively

charged particles when n ¼ 3. One can see that for large
values of q the ISCO radii decrease reaching its minimum
value, and then increase to infinity as the charge of the RBH
tends to Q ¼ Qcrit; for small values of q, the ISCO radii
decrease with increasing Q.
It is seen from the figure that under the condition
(i) Q < Qcrit: circular orbits are allowed around the

RBH.
(ii) Q ≥ Qcrit: the ISCO tends to infinity where there are

no circular orbits around the RBH and the positively
charged particle goes to infinity due to the Coulomb
interaction and centrifugal forces being much larger
than gravity (which is an attractive force).

Note that one can see from the panel that for positively
charged particles the ISCO radius is heavily influenced by
the specific charge, q, for a RBH having the critical charge,
Qcrit. As the specific charge of the particle q increases, the

FIG. 16. Radial profiles of the square of the specific angular
momentum which correspond to circular motion for different
values of the RBH parameters Q, and n, and particle specific
charge q.
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critical charge of the RBH Qcrit decreases. The bottom
panel of Fig. 18 illustrates the ISCO radius for negatively
charged particles when n ¼ 3.
Figure 19 illustrates how the ISCO radius as a function of

the charge of a RBH, for a charged particle with q ¼ 5,
changes while varying the degree of nonlinearity n. Notice
how the ISCO curve shifts to the right as n is increased,
while the asymptotic RBH charge Qcrit ¼ 0.2M from
Fig. 18 is the same for all n. When Q > Qcrit, the
Coulomb interaction dominates and this region illustrates
where the particle orbits are no longer stable.
Moreover, we can see from Figs. 18 and 19 that the ISCO

radius is rISCO ¼ 6M at two points: when q ¼ Q ¼ 0 and
q ≠ 0 and Q ≠ 0. Here we are interested in the cases what
the values of q and Q must be in order for the ISCO radius
to be the same as the ISCO for a particle around
Schwarzschild BH (rISCO ¼ 6M).
Figure 20 shows how the ISCO radius varies as a

function of the RBH charge for various values of the
degree of nonlinearity. As n increases, the maximum of the
ISCO radius decreases and the corresponding chargeQ also
decreases. Notice that there are two different RBH of some
charge, Q, that have an ISCO radius of rISCO ¼ 6M for a
single particle of charge, q ¼ −60.
Figure 21 illustrates the relation between the particle

charge and the ISCO of the particle while varying the RBH

charge and the nonlinearity degree n. We can see that the
ISCO radius decreases as n andQ are increased. Notice that
because the ISCO curves intersect for two oppositely
charged particles there can are two different particles that
have the same ISCO radius for two differently parame-
trized RBHs.
In Fig. 22 we consider how charged particles and the

charge of the RBH relate to the ISCO radius at the distances

FIG. 18. The dependence of ISCO radius for negative (at the
bottom panel) and positive(at the top panel) charged particles on
the RBH charge, Q.

FIG. 19. The ISCO radius of positively charged particles with
value q ¼ 5 for different values of n.

FIG. 17. The radial profiles of the specific angular momentum
as in Fig. 16, but for positively charged particles.
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around r ¼ 6M. Recall that, in general, the ISCO radius
exists for strongly bounded particles where Q < Qcrit. One
can see in this figure that as the degree of nonlinearity
increases, the ISCO radius is preserved for large values of q
and small values of Q. The colored regions illustrate that,
for fixed n ¼ 3, for certain values of q and Q the ISCO
radius is smaller than 6M.
The border of the white region and colored regions

indicates when the ISCO is equal to 6M. The values of q
and Q that lie on this line correlates to the ISCO for a
particle around a Schwarzschild BH. This means that a
particles with charge q around a RBH of charge Q can be
observed to have an ISCO radius of 6M. Below we
illustrate how Q and q relate to profile different values
of the ISCO radius for charged particles.
Figure 23 illustrates how Q and q relate to give certain

values for the ISCO radius when n ¼ 3. It is shown that for
positive charges there is only a single RBH for which a
particular particle can have a given ISCO radius, but in the
case of negatively charged particles the opposite is true,

indicating that there can be two differently charged RBHs
for a single negatively charged particle.

C. Marginally bound orbits of charged particles

As we mentioned in Sec. IV C, the specific energy of a
charged particle following the MBO is equal to its rest
energy. The energy of charged particles following the
circular orbits can be given in the form

E ¼ qAt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

�
1þ L2

r2

�s
: ð52Þ

The condition E ¼ 1 implies a relation for the specific
angular momentum of the particles following the MBO that
should be compared to the radial profiles of the specific

FIG. 20. The ISCO radius for the particle from Fig. 18 of
charge, q ¼ −60, for different values of n ¼ 3, 4, 5.

FIG. 21. ISCO radius for charged particles as a function the
particle charge q for different values of the RBH chargeQ and the
degree n.

FIG. 22. Above is a contour plot relating Q and q where their
corresponding ISCO radius is larger or smaller than the
Schwarzschild radius for n ¼ 3.

FIG. 23. Q and q profile for different values of the ISCO, for
n ¼ 3.
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angular momentum of circular orbits, and the radius of
MBO can be determined easily by numerical methods.
Below we present an illustrative example of the study of

the positions of the MBO as function of RBH charge Q for
fixed values of n ¼ 3 and n ¼ 4, and positively and
negatively charged particles.
In Fig. 24 we have demonstrated the dependence of the

radius of the MBOs on the RBH charge parameter for the

different values of the parameter of nonlinearity n. One can
see that for the critical value Qcrit ¼ 0.2 the MBOs of
positively charged particles goes to infinity at qQcrit ≃ 1.
The marginally bounded orbits for negatively charged
particles become smaller as Q and n are increased.

D. Trajectories of particles around RBH

In order to illustrate explicitly the role of the Coulomb
electromagnetic interaction of charged particles and
charged RBHs, we present a simple example of trajectory
of an uncharged particle in comparison to trajectories of
positively and negatively charged particles.
Figure 25 shows trajectories of neutral (q ¼ 0) and

charged particles with specific charges q ¼ 1; q ¼ −1,
having similar initial conditions. We assume that all the
particles have the same specific angular momentum L ¼
3.15 that remains constant during their motion. For all the
particles, we assume the starting point at a turning point of
their motion located at the coordinates r0 ¼ 5 and θ0 ¼ 1.6.
Then the neutral particle must have the specific energy
E ¼ 0.94, while the charged particle with q ¼ −1 has
E ¼ 0.92, and those with q ¼ 1 has E ¼ 0.96. During
the motion the specific energy of each particle remains

FIG. 24. The radius of marginally bound orbits for charged
particles as a function of the RBH charge for negative (blue line)
and positive (red line) charged particles of charge, q ¼ 5.

FIG. 25. Trajectories of test particles around the RBH with parameters Q ¼ 0.1 and n ¼ 3.
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constant. We can immediately see that the neutral particle
follows a bound trajectory of epicyclic motion—for the
q ¼ −1 particle the attractive Coulomb interaction causes
in-fall of the particle into the black hole, while for the q ¼ 1
particle the repulsive Coulomb interaction causes extension
of the bound epicyclic motion to larger distances from the
RBH. These effects are the result of the interplay of the
gravitational, centrifugal and Coulomb forces.

VI. ASTROPHYSICAL APPLICATIONS

In this section we apply our studies of the photon sphere
and test particle orbits around NED RBH to the real
astrophysical evidence from observational data. We test
how the parameters of electrically charged BHs in LED and
NED can mimic the rotation parameter of Kerr BHs in
relation to the photon circular orbits and the ISCO orbits,
and give constrains on the parameters of the central BHs
located in the well known objects SgrA� and M87. Here we
have normalized radius and the BH parameters such as
spin, electric charge to the BH mass M.

A. Photon circular orbits

First, we compare the radius of the photon circular orbit
around the charged BHs with the radius of the equatorial
circular photon orbit around the Kerr BHs that is deter-
mined by the expression [88]

rph ¼ 2

�
1þ cos

�
2

3
arccosð−aÞ

��
ð53Þ

Figure 26 shows the mimicker values of the BH
charge corresponding to the rotation parameter of the
Kerr BHs. One can see that the RN BH charge can mimic
the rotation parameter up to a ¼ ffiffiffi

2
p

=2. However, the
considered RBHs can mimic the rotation parameter up

to a3 ¼ 0.966334, a4 ¼ 0.965531 and a5 ¼ 0.9073, for
n ¼ 3, 4, 5, respectively.
In Fig. 27 we have presented the relation between

charges of the RBH and RN BH. One can see that the
RN BH charge can mimic the RBH charge up to a ¼ 0.2
for QRN ≲ 0.95 and the nonlinearity parameter n ¼ 3. The
upper limit of the mimicker RN BH charge slightly
increases with increasing n, however, the upper value of
the RBH charge parameter decreases.

1. Estimations for charge of the SM RBH M87

The theoretical analysis of observational data from the
center of the Galaxy M87 shows that the rotation para-
meter of the central BH is about a ¼ 0.9� 0.05 [64] (in
the Ref. [68] it is shown approximately the same a ¼
0.9� 0.1). As the mimicker value of RN BH charge is
much smaller than the value required by the BH spin
estimated due to observations (the mimicker value of the
M87 black hole charge parameter for RN BH must be
Q ¼ 1.056), the M87 BH cannot be considered as a purely
LED charged RN BH. The mimicker values of the RBH
charge for the rotation parameter of the M87 BH, obtained
in [64], are given for the cases n ¼ 3, 4, 5 by the relations
103Q3 ¼ 277.56þ3.82

−1.26 , 10
3Q4 ¼ 196.65þ0.76

−0.78 and 103Q5 ¼
149.28þ0.48

−0.57 , respectively.
In Fig. 28 we have shown the mimicker values of the BH

M87 considered as a RBH, the rotation parameter a=M ¼
0.9� 0.05 (see [64]), given in 10−3M scale. One can see
the figure the mimic values of the RBH charge parameter
related to the rotation parameter of the M87 BH decrease
with increasing nonlinearity parameter n.
The mimicker values of the RBH charge parameter

related to the rotation parameter of the M87 BH decrease
with increasing nonlinearity parameter n.

B. ISCO

The stellar mass BHs are observationally relevant in
microquasars, i.e., binary systems containing a BH and its

FIG. 26. Relations between BH charge and rotation parameters
for the cases RN BH (brown colored, large dashed line) and RBH
(blue dashed line for n ¼ 3, red dashed one for n ¼ 4 and black
line for the case n ¼ 5). The colored rectangular dots give the
mimicker values of the RBH charge the rotation parameter of the
BH M87 a ¼ 0.9.

FIG. 27. Relations between RN BH charge and the charge
parameter Q of the RBH giving the same radius of the photon
circular orbits.
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low mass stellar partner giving matter for the BH accretion
disk whose x-ray emission is observed [65]. The BH is
usually assumed to be described by the Kerr geometry—its
mass parameter M is estimated by the optical observations
of the dynamics of the stellar companion, while the dimen-
sionless spin a of the black hole is estimated by the spectral
fitting method [89]. The spectral fitting method is based on
determination of the inner edge of the Keplerian accretion
disk, i.e., on determination of the ISCO that implies the
value of the spin parameter a of the Kerr geometry. How-
ever, the BH can be nonrotating and charged, being still
able to give the same ISCO information as the Kerr BH—
the charged BH parameters can mimic the spin parameter of
the Kerr BH. As an astrophysical applications of the studies
of the ISCO of neutral particles orbiting the nonrotating
electrically charged BHs, we consider here the possibility
to obtain the same ISCO radius for test particles following
the corotating circular orbits around a Kerr BH with the
dimensionless spin a, and for a NED RBH characterized by
the charge parameterQ and the nonlinearity parameter n, or
for the RN BH with charge QRN—such charge parameters
thus mimic the spin parameter in the spectral fitting method
implying necessity of additional methods in order to
distinguish the Kerr BHs and the charged BH.

1. The RBH or Kerr BH?

The ISCO radius of the test particles following corotat-
ing orbits around Kerr BHs is given by the relations [88]

rISCO ¼ 3þ Z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð54Þ

where

Z1 ¼ 1þ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − a3

p
þ ffiffiffiffiffiffiffiffiffiffiffi

1þ a3
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a23

p
;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
:

Figure 29 illustrates the dependence of the ISCO
radius of the test particles on the RBH (RN BH) charge
Q and on the rotation parameter a of Kerr BHs. We can
see that the effect of the rotation parameter a on the
ISCO radius of the prograde orbits is much weaker than
the effect of the RBH charge Q and stronger than the
effect of the RN BH charge.
Relations between the RBH (RN BH) charge and

rotation parameter of Kerr BH giving the same ISCO
radius of electrically uncharged test particles are given in
Fig. 30. One can see that the RBH charge can mimic the
rotation parameter up to a ¼ 0.8 when the nonlinearity
parameter n ¼ 3; however, the for the RN BH, the charge
QRN can mimic the rotation parameter up to a ≈ 0.5. The
comparison of the mimicker values of the BHs charge are in
concordance with the effect of the RBH charge on the
curvature of the spacetime around the BH that is stronger
than for the RN BHs.

FIG. 29. ISCO radii of prograde orbits around Kerr BHs
compared to the ISCO radii around NED RBHs and RN BHs.

FIG. 28. Mimicker value of the charge parameter Q of the BH
M87 (considering as a RBH) the measured rotation parameter in
different values of the parameter n.

FIG. 30. The values of BH charge Q and rotation parameter a
giving the same ISCO of neutral particles following the corotat-
ing orbits.
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2. The RBH or RN BH?

Here we study relations electrically charge of RN BH
and the RBH giving the same ISCO radius for test particles.
Figure 31 demonstrates the relation of the RBH Q and

the RN BH QRN for the different values of the nonlinearity
parameter n. One can see that the charged RN BH with
QRN ≤ 1 can mimic the RBH with the charge going up to
Q ¼ 0.2 for the values of ISCO radius between 4M and
6M, for the parameter of nonlinearity n ¼ 3. The maximal
mimicker value of the RBH charge decreases with increas-
ing value of the parameter n. Only in the cases of rISCO ≤
4M the RN BHs can be distinguishable from the RBHs due
to ISCO radius is minimum and it is rISCO ¼ 4M for the
extreme charged RB BH. However, in such a case these
ISCO orbits can be mimicked by the prograde ISCO orbits
around Kerr BHs with properly chosen spin parameter a.

3. Estimations for charge of the SM RBH SrgA�

The analysis of the observed high-frequency quasiperi-
odic oscillations (HF-QPOs) in an x-ray band at the center
of the Galaxy, whose periods are close to the period of the
Keplerian accretion at the ISCO of the SMBH SrgA� with
mass ð4.154� 0.014Þ × 106 M⊙ have shown that the spin
parameter of the SMBH a ¼ 0.44� 0.08 [67]. Now we can
estimate the values of the NED charge of the SMBH SrgA�
considering it as a RBH, which may mimic the observa-
tionally estimated value of the rotation parameter, using the
agreement of the ISCO radius.
The results are given in the Table II—one can see that the

mimicker values and related error bar values decrease with
increasing the value of nonlinearity parameter n.
Figure 32 also illustrates the mimic values of the charge

of the SMBH SrgA� when we consider it as a RBH to the

spin parameter a ¼ 0.44� 0.08. One can see that the
mimic and its error bar values decrease as the increase
of the parameter of nonlinearity n.

VII. CONCLUSION

We studied in detail properties of the RBH spacetime
obtained by coupling general relativity to nonlinear electro-
dynamics [1], focusing on the solutions having the proper
Maxwell weak-field limit of the nonlinear model of
electrodynamics. We concentrated on the properties of
the spacetime curvature, the electric field, and the motion
of neutral particles and electrically charged particles. The
following main results were obtained.
(1) The curvature invariants of the spacetime (3) such as

the Ricci scalar, square of Ricci tensor and the
Kretschmann scalar have been studied. We state the
following from this study.
(a) When n ¼ 3 there is finite curvature at the center

of the RBH.
(b) When n ≥ 4 the distribution of the invariants is

similar to the Gauss distribution.
(c) The maximum value of the Ricci scalar does not

depend on the value of Q but the maximum
decreases as n is increased. Moreover, the
maximum value of the scalar shifts outward as
Q is increased.

(d) The Kretschmann scalar and square of the Ricci
tensor have similar characteristics and in the
cases n ¼ 3 and n ≥ 4 the distribution of the
invariants are the same as the Ricci scalar.

(e) The maximum value of both of the invariants
decreases with increasing parameters Q and n.

(2) An analytical expression for the radius of the outer
event horizon for the cases of n ¼ 3 and n ¼ 4 was

TABLE II. Numerical mimicker values of RBH charge param-
eter 103Q for the different values of the parameters n.

n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 RNBH

187.33þ27.6
−26.4 138.94þ20.17

−19.15 110.40þ15.88
−15.01 91.59þ13.01

−12.35 828.71þ70.58
−60.94

FIG. 32. Mimicker value of the charge Q of the SMBH SrgA�
(considering as a RBH) the measured rotation parameter in
different values of the parameter n.

FIG. 31. The values of the RBH chargeQ vs the RN BH charge
QRN that imply the same ISCO radius of neutral particles are
determined for characteristic values of the nonlinearity
parameter n.
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obtained, and it was shown that the radius of the
event horizon decreases as the RBH charge Q, and
degree of nonlinearity n, increase. The rate at which
the event horizon decreases as these parameters
increase speeds up much more than in the Reissner-
Nordström case.

(3) For the electric field around the RBH we can
state that
(a) an exact expression for the radial component of

the electric field strength was derived. It was
understood that the strength of the electric field
E increases at large distances when n ¼ 3 and as
Q is increased. In extreme charged RBH case the
value of E-field becomes negative, near the
event horizon.

(4) The motion of neutral particles was considered and it
was shown that
(a) the ISCO and marginally bounded radius de-

creases as Q and n are both increased. The rate
of this decrease is larger for RBHs than in the
RNBH case.

(b) The value of the effective potential for neutral
particles increases with increasing the values of
the parameters Q and n.

(5) The motion of electrically charged particles around
the RBH was investigated and it was shown that
(a) the ISCO andMBO strongly depend on the RBH

charge and the specific charge of the particle.
For positively charged particles with qQ < 1,
the radius of the orbits decreases as Q is
increased and at Q < Qcrit (qQcrit ≃ 1) the ISCO
for positively charged particles exists, but in
cases when Q ≥ Qcrit circular orbits do not exist
due to a large repulsive Coulomb interaction;

(b) similar effects for negatively charged particles
were also seen. For small values of q the radius
of ISCO and MBO decreases with increasing
parameters, Q and n. With increasing values of
q, the radius of ISCO and MBO reaches a
minimum, then increases to a maximum and
finally decreases again.

(c) for negatively charged particles there exists
ISCO at the same radius for two different values
of the RBH charge. This means that even if we
know about ISCO radius and value of the
particle charge we cannot uniquely estimate
the RBH charge.

(d) for two oppositely charged particles having the
same magnitude of specific charge there exists

the same ISCO radius (4M ≤ rISCO ≤ 7M)
around a RBH.

(6) We have shown by comparing the radius of photon
circular orbits around Kerr BH, RN BH and the
RBH that:
(a) the RBH charge may mimic the rotation param-

eter up to a ≈ 0.97M (when the parameter
n ¼ 3) and RN BH charge can do this mimick-
ing up to a ≈ 0.71M;

(b) we have obtained the mimicker value of the
RBH charge parameter as related to the rotation
parameter of the SMBH M87 (a ¼ 0.9� 0.05)
to be 103Q=M ¼ 277.564þ3.82

−1.26 when n ¼ 3,
while RN BH charge mimicking is not possible.

(7) We have also shown through the comparisons of the
ISCO radius of test particle around Kerr BH, RN BH
and the RBH that:
(a) the RBH charge may mimic the rotation param-

eter up to a ¼ 0.8M (when the parameter n ¼ 3)
and RN BH charge do the mimicking up to
a ¼ 0.5M;

(b) the RN BH charge may mimic the RBH charge
up toQ ¼ 0.2M for the case n ¼ 3 and the value
of the parameter n increases, the mimicking
value of the charge Q decreases

(c) the numerical analysis shows that the value of
the NED charge of the regular SMBN SrgA� can
mimic its spin parameter a ¼ 0.44� 0.08 at
103Q=M ¼ 187.33þ27.6

−26.4 when n ¼ 3, while the
RN BH charge can mimic the spin parameter
at 103QRN=M ¼ 828.71þ70.58

−60.94 .
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