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We find a (quasi)local first law of thermodynamics, ΔE ¼ TΔS −W, connecting gravitational entropy,
S, with matter energy and work. For Einstein gravity, S is the Bekenstein-Hawking entropy, while for
general theories of gravity, S is the Wald entropy, evaluated on the stretched future light cone of any point in
an arbitrary spacetime, not necessarily containing a black hole. The equation can be written as ρΔV ¼
TΔS − pΔV by regarding the energy-momentum tensor as that of a fluid.
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I. INTRODUCTION

For macroscopic systems of matter, the first law of
thermodynamics states that

ΔE ¼ TΔSrev −W; ð1Þ

where, by the Clausius theorem, ΔSrev ¼ Q=T is the
reversible component of the change in entropy. A similar
equation holds for a Schwarzschild black hole [1]:

ΔM ¼ TΔS: ð2Þ

Here, M is the Arnowitt-Deser-Misner (ADM) mass of
the black hole, T is its Hawking temperature, and the
Bekenstein-Hawking entropy S is a quarter of the area of
the event horizon, measured in Planck units [2]:

S ¼ A
4Gℏ

: ð3Þ

Equation (2) is the famous first law of black hole
thermodynamics.
Despite the superficial similarities between (1) and (2),

these expressions are rather different in character. First of
all, the black hole law only applies, obviously, in the
presence of a black hole. Also, unlike (1), the black hole
law is not local; the definition of an event horizon in general
relativity involves the global causal structure of spacetime.
Moreover, a formal definition of the mass term calls for
special asymptotic boundary conditions, in particular
asymptotic flatness; generically, energy density cannot
simply be integrated over finite regions of space to obtain
the total energy. Hence, the left-hand side of (2) has no
exact definition for the realistic case of, say, an astrophysi-
cal, uncharged black hole in an expanding universe.
Another distinction is that, whereas in Eq. (1) the system

can exchange energy with a thermal reservoir, there is no
physical process [3,4] by which the ADM mass can change
because the total energy at spacelike infinity in an asymp-
totically flat spacetime is a conserved quantity. Instead, the
ΔM in (2) refers to differences in the ADM mass under a
variation in the space of static uncharged black hole
solutions. Finally, the work term is notably absent in (2);
indeed, neither pressure nor spatial volume admits a
straightforward definition for black holes [5–8].
The aim of this paper is to derive a local first law of

thermodynamics that also includes gravitational entropy.
The main result is the discovery of a hybrid equation,

ΔE ¼ TΔ
�
Arev

4Gℏ

�
−W; ð4Þ

combining attributes of (1) and (3). We find that such an
equation applies, within a suitably defined region, to all
matter-gravity systems that are significantly smaller than
the local curvature scale of spacetime. To arrive at (4), we
shall incorporate three uncommon elements. First, energy
will be measured with respect to accelerating observers,
rather than with respect to inertial observers. Second, we
will consider a 2-sphere of accelerating observers with
constant uniform radially outward acceleration [9]. These
observers collectively sweep out a hypersurface that
asymptotes to the future light cone of the point at the
center of the 2-sphere, generating a kind of stretched future
light cone (Fig. 1). Third, we will use Einstein’s equation to
convert the heat flux through the hypersurface into the
change in gravitational entropy. But since outward-
accelerating observers will spread out even in the absence
of heat flux (such as in Minkowski space), we will find that
only the reversible part of the change in gravitational
entropy is associated with the heat flux. The corresponding
area change of the hypersurface is denoted ΔArev in (4).
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This quite-general construction can be set up about an
arbitrary point in an arbitrary spacetime; our derivation uses
no speculative assumptions beyond the validity of quantum
field theory in curved spacetime. Amusingly (and some-
what mysteriously), we can express (4) in terms of fluid
properties as

ρΔV ¼ TΔ
�
Arev

4Gℏ

�
− pΔV; ð5Þ

where ρ and p are the energy density and pressure
measured by inertial observers and V is the volume of a
ball in Euclidean space, namely, 4

3
πr3. Lastly, we also find

that an analogous expression holds for more general
theories of gravity, in which the Bekenstein-Hawking
entropy is replaced by the Wald entropy [10].

II. GEOMETRIC SETUP

In the neighborhood of any spacetime point P, the metric
can always be expanded around that of flat space.
In Riemann normal coordinates,

gabðxÞ ¼ ηab −
1

3
RacbdðPÞxcxd þ � � � ; ð6Þ

where xa are Cartesian coordinates with their origin at P.
Using the local Lorentz symmetry, pick an arbitrary time t,
to split spacetime into space and time. The local Poincaré
symmetries are generated by approximate Killing vectors,
which for a generic spacetime fail to exactly obey the
Killing equation because of the quadratic terms in (6). For
example, the vector x∂a

t þ t∂a
x generates a Cartesian boost in

the x direction and is an approximate Killing vector [11]. We
will instead use a vector field that generates radial boosts:

ξa ¼ r∂a
t þ t∂a

r : ð7Þ

Of course, radial boosts are not isometries even in
Minkowski space [12], but notice that ξa does, to leading
order in Riemann normal coordinates, satisfy some—though
not all—components of Killing’s equation,

∇tξt ¼ 0þOðx2Þ; ∇tξi þ∇iξt ¼ 0þOðx2Þ;

∇iξj þ∇jξi ¼
2t
r

�
δij −

xixj
r2

�
þOðx2Þ; ð8Þ

where the xi are Cartesian spatial Riemann normal coor-
dinates and we have r ¼

ffiffiffiffiffiffiffiffi
xixi

p
and ∂a

r ¼ xi
r ∂a

i .
In the absence of spacetime curvature, ξa is tangent to the

flow lines of observers with constant proper acceleration
in the outward radial direction. The congruence of such
worldlines with uniform acceleration 1=α forms a hyper-
boloid asymptoting to the light cone at P. The hyperboloid
is described by r2 ¼ α2 þ t2; its constant-time sections
are 2-spheres of radius rðtÞ bounding a 3-ball BðtÞ (Fig. 1).
On the hyperboloid, ξ2 ¼ −α2.
The presence of spacetime curvature necessitates a more

careful treatment [9]. We replace the hyperboloid by a
timelike surface Σ, defined as follows. Let α be a small
scale (small compared with the smallest curvature scale at
P) with dimensions of length. Imagine that the radial boost
vector field ξa, defined in (7), describes the unnormalized
tangent vectors to the worldlines of a set of observers.
Select the subset of observers who have instantaneous
proper acceleration 1=α at time t ¼ 0; this subset forms a
small deformation of the coordinate 2-sphere r ¼ α. Next,
choose another dimensionful scale ϵ, and follow the chosen
observers from t ¼ 0 to t ¼ ϵ. In general, because of
spacetime curvature, the observers will not maintain their
acceleration. However, by evolving for a very short period
of time, ϵ ≪ α, the acceleration can be treated as effectively
constant. We can therefore, in the presence of spacetime
curvature, regard Σ as the world tube of nearly uniformly
accelerated observers (Fig. 1). The normal to Σ is

na ¼ t
α
∂a
t þ

r
α
∂a
r þ � � � : ð9Þ

In general, the effect of spacetime curvature is to make Σ a
small deformation of the hyperboloid r2 ¼ α2 þ t2 and to
limit its extent in time, 0 ≤ t ≤ ϵ ≪ α. The dominant
contribution to most calculations will come from taking
Σ to be the hyperboloid; only for the entropy change will
deviations from the hyperboloid be implicitly important.
Our thermodynamic system consists of the matter and
gravity contained within the 4-volume, M, bounded by Σ
and the constant-time planes t ¼ 0 and t ¼ ϵ.
The motivation for this setup is twofold [9]. The

compactness of cross sections of Σ means that 3-balls at
any given time can have finite volume and surface area.
Also, by the Davies-Unruh effect, proper acceleration is
related to temperature:

T ¼ ℏ
2πα

: ð10Þ

FIG. 1. Consider an arbitrary point P in spacetime and choose a
locally inertial time coordinate, t. Radially acceleratingworldlines
ξa with uniform acceleration generate a timelike congruence, Σ,
with unit outward-pointing normal na. Two constant-time sections
bounded by Σ at time t ¼ 0 and t ¼ ϵ are indicated by the 3-balls
Bð0Þ andBðϵÞ and have unit normalNa, which is taken to be future
directed. The boundary of the 4-volume, M, containing our
thermodynamic system is Σ ∪ Bð0Þ ∪ BðϵÞ.
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Hence, Σ has a uniform temperature T. This follows from
the choice of the Poincaré-invariant state, which is moti-
vated by the strong principle of equivalence: free-falling
observers should see the same physics locally as inertial
observers in Minkowski space. But any coherent state other
than the Poincaré-invariant vacuum would lead to a stress
tensor whose vacuum expectation value would be singular
somewhere. Given the Poincaré-invariant state, the thermal-
ity of the surface Σ, which in spherical Rindler coordinates
is approximately a constant-lapse surface with lapse α,
follows geometrically (at least formally) from the local
Tolman temperature given by Eq. (10).
It is rather more subtle to give the temperature an

operational meaning in terms of Rindler observers and
model Unruh detectors. For such detectors, it is known
[13–15] that to actually observe a perfectly thermal
spectrum requires an eternally accelerating trajectory. An
analysis [13] of transient acceleration shows that a thermal
spectrum is detected to arbitrary accuracy, provided the
duration of acceleration is sufficiently long compared with
the inverse acceleration. This condition is possible to
arrange, albeit at a price. We extend the worldlines of
the observers over a longer time τ, much greater than the
inverse acceleration α (but still short enough that curvature
effects are negligible), keeping the proper acceleration
constant. As α can be arbitrarily small, this is always
possible. Our surface Σ is then a brief segment, 0 < t <
ϵ ≪ α ≪ τ, of an extended surface traced by a congruence
of such observers. (In general, the worldlines will not trace
the integral curves of ξa before t ¼ 0 or after t ¼ ϵ, and
we therefore restrict our calculation to Σ.) The class of
observers who continue to accelerate at 1=α on the
extended surface beyond Σ will eventually register a
roughly thermal spectrum, with a temperature (10) match-
ing their proper acceleration.
This construction shows that certain observers will

indeed detect a thermal spectrum corresponding to a
geometric concept, namely, the surface gravity of Σ, as
already determined by the vacuum state. However, the price
of giving an operational meaning to the temperature is that
the geometric construction is no longer local, but only
quasilocal. We leave to future work further clarification of
the physical interpretation of the proper acceleration along
Σ as temperature.
Our construction is reminiscent of a similar formulation

based on spherical Rindler coordinates that was proposed
in Ref. [16] to define an equigeodesic hyperboloid; that
surface, however, does not generically coincide with our
isothermal surface, Σ.

III. A FIRST LAW FOR MATTER

The radially accelerating observers have a normalized
4-velocity vector ua ≡ ξa=ð−ξ2Þ1=2 ≈ ξa=α, to leading
order. Let the energy-momentum tensor be Tab. Then, the
energy current measured by the accelerating observers is

Ja ¼ −Tabub ¼ −
1

α
Tabξb: ð11Þ

If ξa were a Killing vector, this current would be conserved
by Killing’s equation. However, since ξa is not a Killing
vector, we have

Z
M
d4x∇aJa ¼ −

1

α

Z
M
d4xTab∇aξb: ð12Þ

Applying the divergence theorem to the left-hand side and
rearranging, we find

1

α

Z
BðϵÞ

dSaTabξb −
1

α

Z
Bð0Þ

dSaTabξb

¼ 1

α

Z
Σ
dΣaTabξb −

1

α

Z
M
d4xTab∇aξb; ð13Þ

where, in accordance with Stokes’s theorem, the signs
depend on whether a boundary is timelike or spacelike.
Here, dSa ¼ Nad3x ¼ ∂a

t r2drdΩ, and dΣa ¼ nad3x≈
nadtðα=rÞr2ðtÞdΩ, where dtðα=rÞ is the differential of
proper time on the hyperboloid. We now argue that these
terms can be interpreted as the change in energy, the heat
flow, and the work done, so that (13) is the first law of
thermodynamics for matter.
It is evident that EðtÞ, the energy of the system at time t,

is given by 1
α

R
BðtÞ dSaT

abξb, where BðtÞ is the 3-ball section
of M at constant t. Not only does this expression have the
correct dimension of energy, but EðtÞ is simply the Noether
charge associated with the energy current density (11). We
then find that the difference between the energy at t ¼ ϵ
and t ¼ 0 is

ΔE ¼ 1

α

Z
BðϵÞ

dSaTabξb −
1

α

Z
Bð0Þ

dSaTabξb; ð14Þ

which is indeed the expression on the left-hand side of (13).
It is interesting to evaluate ΔE explicitly. We first note that,
to leading order in Riemann normal coordinates, the energy-
momentum tensorTabðxÞ ¼ TabðPÞ þOðxÞ canbe replaced
within the integral by its value atP. Referring to (7), we then
see that the off-diagonal pieces of Tab integrate to zero
because the integral of a Cartesian spatial coordinate over
a ball centered at the origin vanishes. We are therefore left

with EðtÞ ¼ 4π
α TttðPÞ R rðtÞ

0 drr2Ntξt. We can approximate
the radius of the ball by the radius of the hyperboloid. Hence,
ΔE ¼ 2πTttðPÞαϵ2, using also ϵ ≪ α. Similarly, the volume
of BðtÞ is VðtÞ ¼ 4

3
πðα2 þ t2Þ3=2. Then, the difference

between the volume of BðϵÞ and of Bð0Þ is

ΔV ¼ 2παϵ2: ð15Þ

Labeling the energy density ρ≡ TttðPÞ, we obtain
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ΔE ¼ ρΔV: ð16Þ

It is amusing that, even though ΔE is the difference in
energies as measured by accelerating observers, it can
nevertheless be written in terms of ρ and ΔV, the energy
density and volume changemeasured by inertial observers; it
is not the case, though, that EðtÞ ¼ ρVðtÞ.
Next, consider the first term on the right in (13). This is

clearly the integrated energy flux into the timelike surface Σ.
The sign matches, too: the normal to Σ is outward pointing,
while the energy current Ja is definedwith aminus sign (11).
Now, in thermodynamics, heat is the energy flowing into
macroscopically unobservable degrees of freedom. For our
observers on the stretched future light cone, the interior of the
system is fundamentally unobservable, being causally dis-
connected. We can therefore interpret the integrated energy
flux into the system as heat [11]:

Q ¼ 1

α

Z
dΣaTabξb: ð17Þ

This interpretation will be confirmed when we incorporate
gravity.
Finally, consider the last term in (13). At first sight, this

term does not appear to be a work term because it is an
integral over a 4-volume. To see that it is, consider first for
simplicity a diagonal energy-momentum tensor with iso-
tropic pressure, TijðPÞ ¼ pδij. Then, working as always at
leading order, we find

1

α

Z
M
d4xTab∇aξb ≈

1

α

Z
M
d4x

2pt
r

≈ 2πpαϵ2; ð18Þ

where, in the last step, we have evaluated the integral at
leading order in ϵ. From (15), we see that this is exactly
equal to pΔV, the pressure-volume work done by a system,
motivating the identification of the last term in (13) as
work. For previous proposals for a pΔV work term, see
Refs. [17,18]. However, in those works, neither the volume
nor the pressure matches our definitions.
More generally, consider an arbitrary energy-momentum

tensor, for which TiiðPÞ ¼ pi, and Tij ≠ 0 for i ≠ j. Now
from (8), we have ∂iξj ∼ t

r3 xixj for i ≠ j. This is an odd
function of the coordinates, and therefore Tij∂iξj vanishes
under integration over the 3-ball for i ≠ j. Moreover,
Txx∂xξx ¼ px

t
r3 ðy2 þ z2Þ, and similarly for Tyy and Tzz.

Then, we find

W ¼ 1

α

Z
M
d4xTab∇aξb ¼

�
1

3

X3
i¼1

pi

�
ΔV; ð19Þ

which is precisely the pressure-volume work for anisotropic
pressures and is now valid for arbitrary energy-momentum
tensors.

Consulting (14), (17), and (19), we indeed find that (13)
can be interpreted as a first law of thermodynamics for
accelerating observers moving along Σ. Our first law is
local in that it is valid near an arbitrary point in a generic
spacetime. As it stands, though, this equation does not yet
involve gravity; there is no Newton’s constant, and all the
terms involve the energy-momentum tensor of matter Tab.
To turn it into a local first law with gravity, we now invoke
Einstein’s equation.

IV. CONNECTING MATTER AND SPACETIME
THERMODYNAMICS

Using Einstein’s equation, Rab−1
2
RgabþΛgab¼8πGTab,

in (17), we find Q ¼ 1
8πGα

R
Σ dΣaRa

eξ
e. The terms propor-

tional to the metric vanish when contracted with dΣa and ξb
because ξa lies along Σ while na is normal to it.
Now, if ξa were a Killing vector, it would obey Killing’s

identity: ∇b∇cξd ¼ Rebcdξ
e. However, we already know

that ξa is not exactly a Killing vector. We therefore have
∇b∇cξd − Rebcdξ

e ¼ fbcd, where fbcd encodes the failure
of Killing’s identity to hold. Then,

Q ¼ 1

8πGα

Z
Σ
dΣa

1

2
ðgacgbd − gadgbcÞð∇b∇cξd − fbcdÞ:

ð20Þ

We now show that the integral of the ∇b∇cξd term
evaluates to TΔS, by essentially reversing the thermody-
namic derivation of Einstein’s equations in the Noether
charge approach [9,19,20]. First, we use Stokes’s theorem
for an antisymmetric tensor field Aab, namely,R
Σ dΣa∇bAab ¼ −

H
∂Σ dSabAab, to express that integral as

the difference of terms − 1
8πGα

R
dSab

1
2
ðgacgbd − gadgbcÞ

∇cξd evaluated over the 2-spheres at time t ¼ 0 and
t ¼ ϵ. Here, dSab ¼ dA 1

2
ðnaub − uanbÞ. Then, since

ua ≈ ξa=α, we have

−
1

16πGα2

Z
dAðncξd − ndξcÞ∇cξd ¼ þ A

8πGα
¼ T

A
4Gℏ

:

ð21Þ

Here, we used the fact (8) that the projection of ∇cξd in the
n − ξ plane is antisymmetric. We then made use of our
judicious choice of Σ as a surface of constant acceleration
and thus temperature in writing ξc∇cξ

d ¼ αnd and in using
(10). Hence, the integral of the∇b∇cξd term can bewritten as
TΔS, where S is precisely the Bekenstein-Hawking entropy,
suggesting that gravitational entropy can be associated with
sections of Σ.
Now, consider the fbcd term in the Q integral (20). In

general, fbcd consists of two types of terms: terms that arise
because of spacetime curvature (6) and also a term of
Oðx−1Þ that exists even in Minkowski space, because radial
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boosts are not true isometries; explicitly, the latter comes
from taking partial derivatives of (8). To lowest order, the
integrals of terms of the first type either vanish because they
are linear Cartesian spatial terms integrated over a sphere
[9] or, if not, can be canceled by adding quadratic and cubic
terms to ξa [9,20,21].
The integral of the term of Oðx−1Þ in fbcd cannot be

eliminated by redefinitions of ξa. To leading order,
we have fbcd ¼ ∂b∂cξd. Then, direct calculation yields
1

8πGα

R
Σ dΣa

1
2
ðηacηbd − ηadηbcÞð−fbcdÞ ¼ − ϵ2

2Gα. Hence,

Q ¼ TΔS −
ϵ2

2Gα
: ð22Þ

To understand the second term, consider the change in
entropy of the hyperboloid defined by r2 ¼ α2 þ t2,

TΔShyp ¼
ℏ

2πα

1

4Gℏ
ðAhypðϵÞ − Ahypð0ÞÞ ¼

ϵ2

2Gα
; ð23Þ

whereAhypðtÞ ¼ 4πðα2 þ t2Þ is simply the area of constant-t
sections of the hyperboloid. We see that (22) automatically
subtracts off the entropy increase from the background
expansion of the hyperboloid. Now, in thermodynamics,
Q is equal to TΔS only for reversible processes. The
expansion of the hyperboloid is, like the free expansion of
a gas or of the light cone, an irreversible process unrelated to
the presence of any heat flux. Hence,

Q ¼ TΔS − TΔShyp ≡ TΔSrev: ð24Þ
Here, ΔSrev is the reversible part of the change in gravita-
tional entropy. A direct calculation using (17) shows that
Q ¼ ðρþ 1

3

P
i piÞΔV. Hence, we have thatΔSrev ≥ 0 if the

null energy condition holds.
Putting everything together, we arrive at our result:

ΔE ¼ TΔ
�
Arev

4Gℏ

�
−W: ð25Þ

We have found a hybrid first law that resembles both the
ordinary first law of thermodynamics for matter (in that it is
valid locally and has a work term) as well as the first law for
black holes (in that it involves gravitational entropy). Using
(16) and (19), we can also put this in the form (5). In (25),
ΔE and W refer to the energy of and work done by matter,
while the middle term refers to the entropy of gravity. The
result suggests that (stretched) future light cones possess
thermodynamic entropy, which is perhaps not unreasonable
as their interiors are causally disconnected from the outside.
Note the absence of a term corresponding to the entropy of
matter. This property is reminiscent of black holes; if one
empties a cup of hot coffee into a black hole, the black
hole’s entropy increases solely due to the mass-energy of
the coffee, with no extra contribution from the coffee’s own
thermal entropy. It is also notable that, because all terms
vanish when Tab is zero, there is no contribution of

gravitational energy in our local first law; indeed, inclusion
of such energy would require a quasilocal conservation
law [22,23].
Our result also bears some resemblance to recent work

[24,25], in which the assumption that the vacuum is
maximally entangled leads to the “first lawof causal diamond
mechanics,” including a term that can be interpreted as work.
It would be interesting to explore this connection, as well as
to some of the ideas expressed in Ref. [26].
The local first law can be extended to higher-dimen-

sional spacetime; in particular, Eq. (22) always corresponds
to subtracting the inherent area increase of the hyperboloid.
More significantly, the derivation can also be extended
to a broad class of higher-curvature theories of gravity.
Consider a diffeomorphism-invariant gravitational theory
for which the Lagrangian L is a polynomial in the Riemann
tensor. Define Pabcd ¼ ∂L=∂Rabcd. The generalization of
Einstein’s equation is then Pcde

a Rbcde − 2∇c∇dPacdb −
1
2
Lgab ¼ 8πGTab. Substituting this into Q, and replacing

Rebcdξ
e as before with ∇b∇cξd − fbcd, we again find that

the fbcd integral precisely cancels the background increase
in gravitational entropy of the hyperboloid. The other term
integrates via Stokes’s theorem to give the difference in a
formally Wald-like gravitational entropy,

SWald ¼ −
1

4Gℏ

Z
dSabðPabcd∇cξd − 2ξd∇cPabcdÞ; ð26Þ

which would be exactly the Wald entropy [10] if ξa were a
timelike Killing vector in a black hole spacetime. Hence,
we again find a local first law that takes precisely the
form ΔE ¼ TΔSWald

rev −W.
Historically, the laws of black hole mechanics supported,

as an analogy, Bekenstein’s idea that a black hole could be
attributed thermodynamic entropy proportional to the
horizon area; this was found to be literally true with the
discovery that black holes have temperature. Here, we have
shown that the first law holds locally when restricted to
brief segments of stretched future light cones generated by
families of accelerating observers. Each term in our first
law has independent justification. This result supports an
analogy between (quasi)locally defined geometric properties
and thermodynamic quantities, notably entropy. However,
since it is already known that accelerating observers perceive
a temperature, our result suggests that stretched future light
cones can be regarded literally as having thermodynamic
entropy. It would be interesting to know whether this has a
statistical-mechanical origin.
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