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We study the false vacuum decay and bubble nucleation in the presence of a cosmic string in de Sitter
spacetime. A cosmic string induces a deficit angle in spacetime around itself so the nucleated bubble has the
shape of a rugby ball. Working in thin wall approximation and using the junction conditions we study the
dynamics of the bubble wall and calculate the Euclidean action. An interesting feature in our analysis is that
the tension of the string is screened by the bubble such that an observer inside the bubble measures a
different value of the tension than an outside observer. We show that the string can act as a catalyzer in
which the nucleation rate is enhanced compared to the Coleman–de Luccia instanton. However, in general,
the nucleation rate is not a monotonic function of the difference between the two tensions so in some
regions of the parameters space the nucleation rate may be smaller than the Coleman–de Luccia bubble.
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I. INTRODUCTION

Vacuum decay, the transition from a metastable false
vacuum at a higher energy to the stable state of the true
vacuum at a lower energy, is a quantum mechanical
phenomenon which happens in various ways. For a system
being initially in its false vacuum, decay happens through
quantum tunneling. On the other hand, with a sufficient
amount of energy, as in a thermal equilibrium state, it is
possible that the system moves over the barrier classically.
Furthermore, vacuum decay may happen via quantum
tunneling from an excited initial state. The probabilistic
nature of quantum processes makes the false vacuum decay
happening locally in a random location and time within an
initially small volume. Thereafter, a small bubble of true
vacuum is nucleated which starts to expand, reaching the
speed of light asymptotically [1,2]. There are signs, after
the discovery of the Higgs boson [3,4], which predict that
the Universe’s present vacuum state is a false vacuum, so
that there exists a true vacuum with lower energy which
allows the electroweak vacuum decay to [5,6]. This is a
known concept in Standard Model [7,8]. So, if the Universe
is in a metastable state, quantum processes could occur at
any time. Luckily, the lifetime of our vacuum exceeds the
cosmic age [9,10].
In the treatment of Coleman et al., an Oð4Þ symmetric

bounce solution was considered [1,11] as it was proven that
an Oð4Þ symmetric bounce has the least Euclidean action

[12]. In addition, Coleman and De Luccia (CDL) inves-
tigated decay rate in the presence of gravity [13]. From
previous intuitions, the symmetries are considered to be the
same as in the absence of gravity, though this assumption
has not been proven in the presence of gravity. Because of
the nonlinear nature of gravity, false vacuum bubbles can
form and expand in spacetime. The created bubbles can
have interesting implications in cosmology.1 Intuitively,
one may view this as a false-vacuum de Sitter (dS) bubble
joined to a surrounding asymptotically flat (Schwarzschild)
spacetime (the true vacuum) by a thin wall. The classical
dynamics of false-vacuum bubbles are first studied in
[23,24] and further investigated in [25] using Israel junction
condition [26]. See also [27] for a recent study of bubble
formation in fðRÞ modified gravity.
It has been shown that bubble nucleation rate in the

presence of an inhomogeneity, i.e., a black hole (BH) and a
topological defect are enhanced in comparison with the
CDL instanton [28,29]. In a more detailed analysis [30,31],
it was shown that the black hole at the center of a bubble
acts as a catalyzer for its nucleation and, taking into account
the contribution of its conical singularity, the effect is even
larger than estimated previously. Moreover, it was sug-
gested that compact objects without BH entropies remark-
ably enhance the nucleation rate [32]. Also, in [33], decay
rate around a spinning BH was considered and it was
shown that the spin of BH would have a suppressing effect.
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1The interior region of the bubble formed via the CDL
instanton is an open universe. For more reviews, the interested
reader is referred to [14–22].
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With the above discussions in mind, in this work, we
study the effects of cosmic strings on nucleation rate in
more details. In this picture, the bubble is formed sym-
metrically around the cosmic string which has a negligible
thickness. The nucleated bubble in the presence of the
cosmic string has the Oð1Þ symmetry rather than the usual
Oð4Þ symmetry of the CDL bubble. In [29], Hiscock
calculated the Euclidean action for nucleating bubble
around a cosmic string in flat spacetime in thin wall
approximations. It was shown that the action, being
proportional to the deficit angle of the cosmic string, is
less than the Oð4Þ action in flat spacetime in the absence of
cosmic string. Herein, we consider the effects of cosmic
strings on vacuum decay with the effects of gravity
included. We use the Israel junction condition (IJC) to
find dynamics of the bubble wall in a dS universe
containing a cosmic string. We calculate the Euclidean
action for the nucleation rate and show that it is different
than that of CDL Oð4Þ symmetric bounce, with an amount
proportional to the deficit angle of the cosmic string. We
assume that the energy scale of bubble nucleation is much
lower than the energy scale of topological defect formation
so the string has no thickness.

II. THIN WALL BUBBLE AROUND
COSMIC STRINGS

A cosmic string is a codimension two topological defect
which has interesting cosmological effects [34]. A network
of cosmic string can reach the scaling regime, meaning that
the contribution of strings in the total energy density
furnish a small subdominant portion of the total energy
density either in radiation dominated era or in matter
dominated era [35]. The interests in cosmic strings and
their cosmological implications had a revival of interest in
early 2000 due to the realization that cosmic superstrings
can form at the end of brane inflation which may provide a
valuable link to connect string theory to low energy
phenomena [36,37]; for reviews, see, e.g., [38–41].
As mentioned before, inhomogeneities and defects affect

the vacuum decay and nucleation rate. In this work, we
study in details the effects of cosmic string on vacuum
decay and bubble nucleation including the effects of
gravity. While it is natural to expect a network of cosmic
string in early universe, but to simplify the analysis we
consider a single straight string in vacuum in dS spacetime.
While this picture may be oversimplified, but one may
imagine that during the inflationary expansion the network
of strings is diluted so in average one string may remain in a
single patch. This is in line with Guth’s original idea as how
inflation can solve the problems with the unwanted
topological defects [42]. Even in this simplified picture
there are interesting lessons to learn.
The spacetime around an isolated cosmic string is locally

flat but globally there is a deficit angle around the cosmic
string which is proportional to Gμ in which G is the

Newton constant and μ is the tension of the string [43–46].
Indeed, all gravitational effects of cosmic strings, such as
lensing or generating anisotropic patterns on CMB maps,
are encoded on the parameter Gμ. Observationally, there is
the bound Gμ ≲ 10−7.
To study the effects of the string on vacuum decay, we

consider a string in a dS spacetime. The vacuum solution of
string in dS background in polar coordinate ðr;ϕ; zÞ has the
form [47,48]

ds2 ¼ −dt2 þ e2Htðdr2 þ r2ð1 − 4 μGÞ2dφ2 þ dz2Þ; ð1Þ

where H is the Hubble constant. As we see from the above
metric, the spacetime around the cosmic string is locally
flat. Performing the transformation φ → ð1 − 4 μGÞφ, the
metric retains the form of conformally flat dS spacetime
but with a deficit angle 8πGμ. Also, in order to pre-
vent singularity, we require that Gμ < 1=4 which will be
imposed in our analysis throughout.
For our purpose of bubble formation with an almost

spherically symmetric shape, we go to spherical coordinate
by making the following transformation:

r̄ ¼ ðr2 þ z2Þ12; θ ¼ tan

�
r
z

�
−1
; ð2Þ

which yields

ds2 ¼ −dtþ e2Htðdr̄2 þþr̄2dθ2

þ r̄2sin2θð1 − 4μGÞ2dφ2Þ: ð3Þ

Now, by introducing the static coordinates transformation
defined as [49,50]

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2sH2

q
sinhðHtsÞ; r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2sH2

q
coshðHtsÞ;

φ ¼ φ; θ ¼ θ; ð4Þ

the comic string metric can be recast into static coordinates,

ds2 ¼ −fðrsÞdt2s þ
1

fðrsÞ
dr2s þ

þ r2sðdθ2 þ sin2θð1 − 4μGÞ2dφ2Þ; ð5Þ

with fðrsÞ ¼ 1 − r2sH2 representing the dS metric with
deficit angle. Note that there is a cosmological horizon at
rs ¼ H−1. Hence, as expected, the effect of cosmic string
on dS spacetime is only via the deficit angle. Therefore, in
Penrose diagram, each point represents a two-sphere from
which a wedge of angular width 8πGμ has been removed
and two edges are identified as shown in Fig. 1. This has the
shape of a rugby ball [51,52].
We can now treat the bubble as a rugby ball with a deficit

angle of 8πGμ. As mentioned before, the bubble wall
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expands and reaches the speed of light, dividing the
spacetime into two regions. The interior true vacuum is
separated from the exterior false vacuum region via
the bubble wall. Herein, we focus our attention on the
dynamics of the expansion of the bubble wall.
The equations of motion of the bubble wall are obtained

using the IJC treatment of singular hypersurface. Briefly,
IJC formalism [26] is about spacetimes with a specified
singular hypersurface Σ. One can foliate the spacetime in
such a way that Σ is one of the hypersurfaces in the
foliation. Therefore, the induced metric h and the extrinsic
curvature K of hypersurfaces must have well-defined limits
as one approaches the singular hypersurface Σ from each
side. Specifically, the induced metric must be continuous
across Σ while the extrinsic curvature Kμν satisfies the
following jump condition (we choose the units such that
G ¼ 1):

½Kij� ¼ −8π
�
Sij −

1

2
hijTr½S�

�
; ð6Þ

where hij denotes the three metric of Σ and the symbol []
denotes the discontinuity across Σ, i.e., ½X�≡ Xþ − X−,
where þ and − represent the exterior and the interior of Σ,
respectively. Furthermore, Sij is the surface stress tensor.
For our bubble wall, the energy-momentum tensor with
surface energy density σ is

Sij ¼ −σhij: ð7Þ

Suppose the spacetime M is divided into two regions
Mþ andM−, by a bubble wall Σ. We take the line element
in Mþ and M− to be dS type with a cosmic string within.
Each region M� is equipped with spherical coordinates
ft�; r�; θ�;ϕ�g with the line element

ds2 ¼ −fþdt2þ þ dr2þ
fþ

þ þr2þðdθ2þ þ sin2θþω2þdφ2þÞ ð8Þ

and

ds2 ¼ −f−dt2− þ dr2−
f−

þþr2−ðdθ2− þ sin2 θ−ω2
−dφ2

−Þ; ð9Þ

where we have defined

ω� ≡ 1 − 4μ�: ð10Þ

Note that we have allowed for the possibility that the
tension of string as measured by each observer to be
different: the interior observer measures it to be μ− while
for an exterior observer it is measured to be μþ.
The bubble wall is a three-dimensional hypersurface and

has the metric

ds2 ¼ −dτ2 þ R2ðτÞðdθ2 þ sin2 θdφ2Þ; ð11Þ

where RðτÞ is the radius of the bubble wall measured by an
observer on Σ. The tangent vector on Σ is defined as

d
dτ

¼ _r
∂
∂rþ _t

∂
∂t ; ð12Þ

while the unit normal vector nμ to Σ is given by

nμ ¼ ð−_r�; _t�; 0; 0Þ; ð13Þ

where here and below a dot means d
dτ.

The conditions of the continuity of the metric are

dτ2 ¼ fþdt2þ −
dr2þ
fþ

¼ f−dt2− −
dr2−
f−

ð14Þ

and

R2ðτÞdθ2 ¼ r2�dθ
2
�; R2ðτÞsin2θdφ2 ¼ r2�ω

2
�sin

2θ�dφ2
�:

ð15Þ

In addition, we have dφþ ¼ dφ− which leads us to

R2ðτÞ sin2 θ ¼ r2�ω
2
� sin2 θ�: ð16Þ

Using the continuity conditions (15), we obtain

θ ¼ 2 arctan

��
tan

θ�
2

�
ω�
�
: ð17Þ

Note that the coordinates θ� are not the same in both
spacetime. They vary in both spacetimes depending on the
value of μ� but with the same values at the end points and
in the equatorial circle on the surface of the wall. This is
seen in Fig. 2 for different values of ωþ=ω− ¼ 1, 0.5, 2. As
can be seen, their values are different in the range ð0; πÞ.
Now, let us consider the junction condition Eq. (6) for

the extrinsic curvature. The extrinsic curvature is related to
the normal vector via kμν ¼ nμ;ν. The junction condition
yields

FIG. 1. A two-sphere where a wedge of angular width 8πμ is
removed and the two edges are identified resulting in a rugby
ball shape.
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½Kθθ� ¼ −4πσR2: ð18Þ

On the other hand, the extrinsic curvature on each side is

Kθθ ¼ R

�∂R
∂r nr −

∂R
∂t nt

�
¼ RfðRÞ

�
_t
∂R
∂r þ _r

∂R
∂t

�
; ð19Þ

and by using the normalization condition (f_t2 − _r2
f ¼ 1), we

obtain

1

R
fþðRÞ_tþ ¼ 1

R
f−ðRÞ_t− ¼ −4πGσ: ð20Þ

To simplify our calculations, we define the following
quantity:

MðτÞ ¼ 4πσRðτÞ2; ð21Þ

which can be interpreted as the mass of the shell associated
to the surface of the bubble. From the above equation, we
have

MðτÞ ¼ −ðKþ
θθ − K−

θθÞ: ð22Þ

Equation (18) can be recast as

ðKþ
θθÞ2 ¼

1

4M2
½ðKþ

θθÞ2 − ðK−
θθÞ2 þM2�2: ð23Þ

Using

_R ¼ dR
dτ

¼ _r
∂R
∂r þ _t

∂R
∂t ð24Þ

and the normalization condition

ðK�
θθÞ2 ¼ R2f2

��∂R
∂r

�
2

−
�∂R
∂t

�
2

þ _R2

�
; ð25Þ

we obtain

ðK�
θθÞ2 ¼ R2

�
_R2 þ

�
1 −

2m�
R

��
; ð26Þ

where we have defined the Misner-Sharp mass [53,54], m�
as

m� ≡ R
2
ð1 − gμν∂μR∂νRÞ

¼ R
2
ðH2

�R
2 − 16μ2� þ 8μ�Þ: ð27Þ

Finally, from Eqs. (23), (26), and (27), we obtain the
equation of motion for the evolution of the shell,

_R2 ¼
�
4Rðmþ −m−Þ

M

�
2

þ 4ðmþ þm−Þ þ
M2

4R2
− 1

¼
��

H2þ −H2
−

8πσ

�
2

þH2þ þH2
−

2
þ 4π2σ2

�
R2

þ κ21
64π2σ2R2

þ κ1ðH2þ −H2
−Þ

32π2σ2
þ κ2

2
− 1; ð28Þ

where we have defined the new parameters

κ1 ≡ 8ðμþ − μ−Þð1 − 2μþ − 2μ−Þ;
κ2 ≡ 8ðμþ þ μ−Þ − 16ðμ2þ þ μ2−Þ: ð29Þ

The above equation can be written in the form of a
particle moving under a one-dimensional potential UðRÞ
via

�
dR
dτ

�
2

þ UðRÞ ¼ 0; ð30Þ

with the effective potential given by

UðRÞ ¼ −αR2 − β −
γ

R2
; ð31Þ

where we have defined

α≡
�
H2þ −H2

−

8πσ

�
2

þH2þ þH2
−

2
þ 4π2σ2; ð32Þ

β≡ κ1ðH2þ −H2
−Þ

32π2σ2
þ κ2

2
− 1; ð33Þ

γ ≡ κ21
64π2σ2

: ð34Þ

The dynamics of the evolution of the wall is controlled
by the effective potential UðRÞ. To categorize different
solutions, we need to find the roots of UðRÞ. The roots are
of the form

FIG. 2. θ for different values of ωþ=ω− ¼ 1, 0, 5, 2. The end
points f0; πg and the equator π=2 are the same for both space-
times on two sides of bubble wall.
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R2 ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p
2α

: ð35Þ

The condition R2 ≥ 0 requires that

β − 2
ffiffiffiffiffi
αγ

p
≤ 0 and β þ 2

ffiffiffiffiffi
αγ

p
≤ 0; ð36Þ

with the special case of γ ¼ 0 to be treated separately.
For simplicity, let us define

ϵ≡Hþ −H− and μ≡ μþ − μ−: ð37Þ

If γ ¼ 0, R will have one root which is positive and
nonzero. In that case, μ can take either the value μ ¼ 0
or μ ¼ ð1 − 4μ−Þ=2. But since μþ cannot be negative, the
latter case is not acceptable and we are led to μ ¼ 0
corresponding to μ− ¼ μþ.
To find the range of parameters which satisfy the above

conditions, we solve the equations β � 2
ffiffiffiffiffi
αγ

p ¼ 0 and then
by using their solutions, we can find the range of μ in which
β � 2

ffiffiffiffiffi
αγ

p
are nonpositive. The equivalent forms of β �

2
ffiffiffiffiffi
αγ

p ¼ 0 are as follows:

κ1ξ−
32π2σ2

− ð1 − 4μ−Þ2 ¼ 0 ð38Þ

and

κ1ξþ
32π2σ2

− ð1 − 4μ−Þ2 ¼ 0; ð39Þ

where ξ� are defined as

ξ� ¼ 2H−ϵþ ϵ2 þ 16π2σ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2H−ϵþ ϵ2 þ 16π2σ2Þ2 þ 64H2

−π
2σ2

q
: ð40Þ

It is easy to see that ξ− ≤ 0 and ξþ ≥ 0. Correspondingly,
the solutions for Eqs. (38) and (39), respectively, are

μð1Þ� ¼
�
1

4
− μ−

��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ−ðξ− − 1Þp

ξ−

�
ð41Þ

and

μð2Þ� ¼
�
1

4
− μ−

��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξþðξþ − 1Þp

ξþ

�
: ð42Þ

One should note that if ξ� are nonzero, then we have μð1Þ− >

μð1Þþ and μð2Þ− < μð2Þþ .
Therefore, inequalities Eq. (36) hold when μð1Þþ ≤ μ ≤

μð1Þ− and μ ≤ μð2Þ− , μ ≥ μð2Þþ . However, since γ ¼ 0 is also a
solution for both inequalities in Eq. (36), we can conclude

that if μ is in the interval ½μð1Þþ ; μð2Þ− � or ½μð1Þ− ; μð2Þþ �, then
Eq. (36) is satisfied. However, we should note that since

the tension of string, μ−, cannot exceed 1=4, therefore μ
should be less than ð1 − μ−Þ=4; on the other hand, μþ
cannot be negative, so μ should be greater than −μ−, which
means that the only allowed region for μ is the inter-

val ½maxðμð1Þþ ;−μ−Þ;maxðμð2Þ− ;−μ−Þ�.
The shape of the potential for various cases of μ is plotted

in Fig. 3. If μ is in the open interval ðmaxðμð1Þþ ;−μ−Þ;
maxðμð2Þ− ;−μ−ÞÞ, then there are two physical solutions for
R in Eq. (35), represented by the dashed-dotted (purple)
curve in Fig. 3, except for the case when γ ¼ 0, which
corresponds to the dashed (blue) curve in Fig. 3. In the case,
when μ is one of the end points, then there is just one
physical solution for R which makes the potential to be
negative or zero, represented by the solid (black) curve in
Fig. 3. In the first case, we have both collapsing and
expanding solutions except for the case when γ ¼ 0 where
there is just one expanding solution for the evolution of the
bubble wall.

III. DECAY RATE AND EUCLIDEAN ACTION

Let us now calculate the Euclidean action of our
instanton. Analogous to the thin-wall Euclidean bounce
solution, we perform a wick rotation t → −iη. Thus, the
metric (5) becomes Euclidean with the coordinate η having
a period of βk. The bubble wall trajectory is now oscillatory
ðηðτÞ; rðτÞÞ and in the thin wall limit it is the locus where
the exterior of the bubble (r > rðτÞ) should be matched
with the interior region (r < rðτÞ). There is a conical
singularity at r ¼ rH for any arbitrary value of βk where
the field equations break down. However, the conical
singularity contributes to the Euclidean action as we
discuss in the following. Generally speaking, the manifold
is separated to the right and left of the wall denoted byM�
with conical singularities on each side of the bubble wall.
Hence, the total action splits into four parts,

I ¼ IH þ I− þ Iþ þ IW ; ð43Þ

FIG. 3. Potential with different values of μ where μ− ¼ 0.01,
H− ¼ 0.1, ϵ ¼ 0.01, and σ ¼ 0.01.
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where IH is the contribution from the conical singularity
part and is obtained (the details can be found in the
Appendix) as

IH ¼ −Ac

4
; ð44Þ

in which Ac is the cosmological horizon area defined as

Ac ¼
1

H2
VolðS2Þ ¼

4π

H2
ð1 − 4μÞ; ð45Þ

with VolðS2Þ being the volume of the two-spheres but with
the wedge of deficit angle removed.
The action of the thin wall IW is given by

IW ¼
Z
W
d3x

ffiffiffi
h

p
σ; ð46Þ

and the remaining bulk actions with Gibbons-Hawking
boundary terms are

I� ¼ −
1

16π

Z
M�

d4x
ffiffiffi
g

p ðRþ 16πLmÞ

þ 1

8πG

Z
∂M�

d3x
ffiffiffiffi
3g

q
K: ð47Þ

Note that ∂M� denote the boundaries both on the conical
deficit and on the bubble wall.
To decompose the action into space and time, we

introduce a family of spacelike surfaces Σt labeled by t
and a timelike vector field tμ satisfying tμ∇μt ¼ 1 [55]. We
can decompose tμ in terms of uμ, the unit normal to the
surfaces, into lapse and shift vector as tμ ¼ Nuμ þ Nμ.
Using the Gauss-Codazzi equations [56,57], we can
decompose the four-dimensional Ricci scalar as follows:

R ¼ R − K2 þ K2
μν − 2∇μðuμ∇νuνÞ þ 2∇νðuμ∇μuνÞ:

ð48Þ

Substituting this into the action (47), the two total deriva-
tive terms in (48) result in boundary term contributions.
The first term is proportional to uμ and its contribution is
only on the initial and final boundaries which exactly
cancel the Gibbons-Hawking boundary terms on these
surfaces. However, the second term is orthogonal to uμ

and gives rise to the surface integral on the bubble wall.
Thus, the action (47) takes the form

I� ¼ 1

16π

Z
βk

0

dη
Z
Στ

ffiffiffiffi
3g

q
ðRþ KμνKμν − K2 þ 16πLmÞ

−
1

8π

Z
W
K� þ 1

8π

Z
W
n�νuμ∇μuν; ð49Þ

with n�ν defined in Eq. (13) is normal to the wall and η is
the Euclidean time, η ¼ iτ. Note that the integral over η is
taken over the interval 0 < η < βk.
Now, let us elaborate more on the first term in Eq. (47).

We introduce the canonical momenta πμν and π conjugate,
respectively, to 3gμν and ϕ (the scalar field in the matter
Lagrangian). The extrinsic curvature is related to the time
derivative of the three-metric _gij as

Kμν ¼
1

2N
½_gμν − 2∇ðμNνÞ�: ð50Þ

Hence, for the first integral, we have

Ið1Þ� ¼ 1

16π

Z
β

0

dη
Z
Στ

½3∂ηgijπij − ∂ηϕπ − NH − NiHi�;

ð51Þ

where H and Hi are the Hamiltonian and momentum
constraints, respectively, which both vanish identically
H ¼ Hi ¼ 0. Furthermore, the static symmetry implies
3∂ηgij ¼ ∂ηϕ ¼ 0.
The second integral is related to the surface stress tensor

Sμν ¼ −σhμν via Kþ ¼ 12πσ − K−. The contribution to
the action from the last term of the boundary with uμ ¼
ð ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

; 0; 0; 0Þ gives

uμ∇μuν∂b ¼ −
∂rf∂r

2
: ð52Þ

Then the total action for the bubble becomes

I ¼ −
1

4
Ac −

1

2

Z
W
dησ −

1

16π

Z
W
dη

�∂fþ
∂rþ _tþ −

∂f−
∂r− _t−

�
:

ð53Þ

Using Eq. (20), the action can be further simplified to

I ¼ 1

4

�
−Ac þ 2

Z
W
dηRð_tþ − _t−Þ

�
: ð54Þ

In general, _t� can be positive or negative which corre-
sponds, respectively, to the movement forward and back-
ward in time, i.e., expanding or collapsing bubbles. Here,
we are interested in the behavior of the expanding vacuum
bubble around cosmic string, though the probabilities of
both solutions are the same.
In the following first, we consider some simple cases

where the results can be obtained analytically followed by
the general case which requires numerical analysis.

A. Coleman–de Luccia bubbles: μ+ = μ− = 0 and Λ − = 0

As a simple check of our formalism, first we consider the
nucleation of a bubble from dS vacuum to Minkowski
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vacuum, the CDL process where there is no string with
μþ ¼ μ− ¼ 0. For this purpose, using Eq. (28), the
Lorentzian radius of the bubble is obtained to be

RðtÞ ¼ 1ffiffiffi
α

p coshð ffiffiffi
α

p
tÞ; ð55Þ

which in Euclidean time is given by

RðηÞ ¼ 1ffiffiffi
α

p cosð ffiffiffi
α

p
ηÞ; −π

2
ffiffiffi
α

p < η <
π

2
ffiffiffi
α

p : ð56Þ

Wick rotating the time coordinate makes this coordinate
to have the period of βk ¼ πffiffi

α
p . Thus, the integration in

calculating the Euclidean action in Eqs. (49)–(54) is over
one period of the oscillatory Euclidean motion of the wall.
Hence, using Eq. (56) in Eq. (54) withAc ¼ 4π

H2 will lead to

I ¼ −π
H2 þ 8σ2

ðH2 þ 4σ2Þ2 : ð57Þ

Then, the exponent of the decay rate Γ ∝ e−B can be
computed using

B ¼ I − IdS; ð58Þ

yielding

BCDL ¼ π

H2

16σ4

ðH2 þ 4σ2Þ2 ; ð59Þ

which is the result obtained in [13] for the nonsingular
Oð4Þ instanton.

B. Special case of μ− = μ+ and H − = 0

The next simple case which can be solved analytically is
when the tensions of the cosmic string in both interior and the
exterior of the bubble wall are equal, μ− ¼ μþ, and the
transition is from a dS spacetime to the Minkowski space-
time. In this simplified case, we can analytically trace the
effects of the cosmic string tension on the nucleation rate.
In this case, the radius of bubble in terms of Euclidean

time from Eq. (28) is obtained to be

RðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ−ð1 − 2μ−Þ

α

r
cosð ffiffiffi

α
p

ηÞ;
−π
2

ffiffiffi
α

p < η <
π

2
ffiffiffi
α

p : ð60Þ

Since μ should be less than 1=4, we conclude that the
physical radius of the bubble is always smaller than the
CDL one. However, as we show in the following, the decay
rate for this case is greater than that of CDL bubble.
Herein, the contribution from the conical deficit is given

by

IH ¼ −
π

H2
ð1 − 4μÞ: ð61Þ

From Eqs. (54) and (58), the exponent of the decay rate is

B ¼
�
−
16ωσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
ðH2 þ 4σ2Þ2 þ 16σ4 þH4

H2ðH2 þ 4σ2Þ2 tan
−1
�

ω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
�

þ 16σ4 −H4

H2ðH2 þ 4σ2Þ2
�
tan−1

�
2
H2 þ 4σ2

H2 − 4σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
ω

�
−
π

2

��
: ð62Þ

It is constructive to compare the decay rate here with the decay rate in CDL, given by BCDL in Eq. (59), so we write
B ¼ BCDL þ ΔB. Subtracting BCDL from Eq. (62) yields

ΔB ¼ 16σ4

H2ðH2 þ 4σ2Þ2
�
tan−1

�
ω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
�
− tan−1

�
2
H2 þ 4σ2

H2 − 4σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
ω

�
−
π

2

�

þ H4

H2ðH2 þ 4σ2Þ2
�
tan−1

�
ω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
�
þ tan−1

�
2
H2 þ 4σ2

H2 − 4σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
ω

�
−
π

2

�

−
16ωσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ−ð1 − 2μ−Þ

p
ðH2 þ 4σ2Þ2 : ð63Þ

It can be shown analytically that ΔB ≤ 0 so we conclude that B ≤ BCDL; this fact is also supported numerically in Fig. 4.
Consequently, the decay rate is greater than the case of CDL, so the string acts as a catalyzer. This is similar to the
conclusion in [47] in which it is shown that a black hole acts as a catalyzer for the decay rate.

C. General case

The general case of decay from a dS vacuum to another dS vacuum with no restrictions on μ� cannot be solved
analytically, so we have to employ numerical analysis to see the effects of cosmic string on the decay rate.
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The radius of the bubble RðτÞ from Eq. (28) is obtained to be

RðτÞ ¼
�
cos ð2 ffiffiffi

α
p

ηÞ
8α

ð−2β þ ð−4αγ þ β2 þ 1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−4αγ þ β2 − 1Þ2sin2ð2 ffiffiffi

α
p

ηÞ þ ðð−4αγ þ β2 þ 1Þ cos ð2 ffiffiffi
α

p
ηÞ − 2βÞ2

q
Þ
�
1=2

: ð64Þ

We solve the Euclidean action numerically and compare
it to the CDL action. The result is shown in Fig. 5. The
starting point from the left of solid thick red line withH− ¼
0 and μ− ¼ 0 represents the value of the CDL tunneling
rate. As the tension of string in false vacuum (μ−) grows,
the exponent B falls off and the rate enhances. Moreover,
for the case when the nucleation is from dS to dS, shown by
the black dot-dashed curve (with nonzero H−), the nucle-
ation rate is even larger than the CDL tunneling. In both
cases, we have found that for μ > 0, as μ increases, the
action reduces compared to CDL and the tunneling rate
increases. In fact, as μ− increases, the nucleation rate
increases too, indicating that the tension of cosmic string
acts as a catalyzer. Interestingly, for a given μ−, the stronger
is the screening effect (meaning that an observer inside the

bubble would measure a smaller value of the tension
compared to an outside observer), the higher is the
decaying rate.
However, it is important to note that for μ < 0 (i.e., a

denser string in true vacuum than in the false vacuum), the
decay rate is not a monotonic function of μ and has a
concave shape. Therefore, there are some intervals in which
the string has a suppressing effect on the decay rate.

IV. SUMMARY

In this work, we have studied the effects of cosmic string
on vacuum decay and bubble nucleation. Working in thin
wall approximation, the bubble wall is a timelike surface
which divides the spacetime into two regions of the exterior
unstable false vacuum and the interior stable true vacuum.
Using the IJC method, the dynamics of the evolution of the
bubble wall is studied and the Euclidean action and the
nucleation decay rate are calculated.
The imprints of the cosmic string on nucleation rate are

twofolds. First, the bubble in this case has the shape of a
rugby ball. This is because a cosmic string produces a
deficit angle in spacetime around itself in which a wedge of
8πμ is removed from the sphere. As a result, the formed
bubble is not exactly spherical, but has the shape of a rugby
ball. Second, the tension of the cosmic string and also the
difference between the measured tensions of the cosmic
string from inside and outside the bubble generally enhance
the nucleation rate so, as shown in Secs. (III B) and (III C),
the string acts as a catalyzer.
There are some open questions related to our setup of

bubble nucleation in the presence of cosmic strings which
may be studied in future. An interesting issue is the question
of the negative modes of vacuum decay [58–62]. In [63], it
is shown that with a black hole as a bubble nucleation site,
there is only one negative mode in contrast to CDL
instanton. Therefore, it is worth addressing negative mode
in the presence of cosmic string. Another direction of work
is to look for cosmological imprints of the bubble nucle-
ation. In [64,65], it is shown that bubbles lead to black hole
which may provide seeds for primordial black holes as
candidates for LIGO observations. This direction can be
pursued in this setup but with the difference that the bubble
is not spherical while there is a string at the core of the
bubble which will make the analysis nontrivial. In addition,
one may be interested to investigate the trace of bubble
nucleation around cosmic string during or after inflation and
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FIG. 5. B=BCDL with different values of μ− and H−.

FIG. 4. ΔB=BCDL for different values of H and σ.
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look for its imprints on CMB anisotropies. To be specific,
in [66], the imprints of CDL instanton during inflation
to generate CMB statistical anisotropies and power
asymmetry are studied, while in [67] these analysis
were extended to the case of an isolated string during
inflation. Combining and extending the methods of [66,67],
one can look for the effects of our setup of a rugby
ball–shaped bubble with a string in its core on CMB
maps. Finally, looking for the direct detection of cosmic
strings through gravitational lensing effect, [68–70] can be
another direction in which our setup can be searched for
observationally.
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APPENDIX: EUCLIDEAN ACTION AND
CONICAL SINGULARITIES

Here we present the details of the analysis for the
contribution of the deficit angle to the Euclidean action,
similar to analysis of [63].
The Euclidean metric for the static line element (5) is

regular in the region r < H−1. However, this metric has a
conical singularity at rH ¼ H−1 [63]. Let us now calculate
the contribution of the conical singularity to the action. The
metric in Euclidean time t → −iη is written in the form

ds2 ¼ fðrsÞdη2 þ
1

fðrsÞ
dr2s þ r2sdΩ2; ðA1Þ

which is asymptotically flat and η is periodic with period
2πβ. Thus, the above metric represents a manifold with
M ¼ D̄ × S2, where D̄ is the closed two-dimensional disc
and S2 is a two-sphere. Near the horizon we define fðrsÞ ¼
f0Hðr − rHÞ þOðr − rHÞ2 with f0H ¼ f0ðrsÞjr¼rH , so that
the metric becomes

ds2 ¼ f0Hðr − rHÞdη2 þ
1

f0Hðr − rHÞ
dr2s þ r2HdΩ2: ðA2Þ

Now, defining the proper radius distance as

dζ ¼ dr
f0Hðr − rHÞ

; ðA3Þ

the metric takes the following asymptotic form:

ds2 ¼
�
ζ

δ

�
2

dη2 þ dζ2 þ r2HdΩ2; ðA4Þ

with δ−1 ¼ f0H
2
. This is the direct sum of a line element of a

cone with τ running from 0 to 2πδ. Thus, the metric (A4)

near the horizon has the topology of Cδ × S2, where Cδ is a
cone with deficit angle 2πð1 − δÞ. For δ ≠ 1, the space is
regular everywhere except at ζ ¼ 0 where it has a singu-
larity [71–73].
We can take ζ ¼ 0 to be the center of a two-sphere and

ζ ¼ ε corresponds to the three-surface at the boundary
∂M. For 0 < ζ ≤ ε, the coordinate system is regular.
Hence, we can do the integrals in this range.
In such manifolds, with conical deficit, the singularity is

smoothed out with a regular function. Let us approximate
the cone by a regular function AðζÞ,

ds2 ¼ AðζÞ2dη2 þ dζ2 þ r2dΩ2
H; ðA5Þ

such that A0ð0Þ ¼ 1 and A0ðϵÞ ¼ ð1 − δÞ, where 2πδ is the
deficit angle.
The Ricci scalar in the vicinity of ζ ¼ 0 is

R ¼ −
2A00

A
−
2A0

Ar

∼ −
2A00

A
þOðζÞ: ðA6Þ

As we see, the first term A00 ¼ OððA0ðεÞ−A0ð0ÞÞ
ε Þ is the

unbounded term. For a small region around ζ ¼ 0 perform-
ing the integration by parts and eliminating the second time
derivatives, we are thus led to
Z

d4x
ffiffiffi
g

p
R ∼AðA0ð0Þ − A0ðεÞÞ þOðεÞ ¼ 4πδAþOðεÞ;

ðA7Þ

in which A is the area of a two-sphere.2 For the
Gibbons-Hawking boundary term, with the normal vector
n ¼ −dζ and the extrinsic curvature K ¼ A0

A − 4
ζ, we

obtain
Z
∂M or ζ¼ε

dτdΩAζ2K ∼ −2πAA0ðεÞ þOðεÞ

¼ −2πAð1 − δÞ þOðεÞ: ðA8Þ

Now, the contribution of the deficit angle, β with ϵ → 0
is obtained to be

IH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p
Rþ 1

8πG

Z
d3x

ffiffiffi
h

p
K

¼ −
A
4G

¼ −
π

GH2
ð1 − 4μÞ: ðA9Þ

2For the dS Universe, one can see that the area of the
cosmological horizon is Ac ¼ 4πr2H ¼ 4π

H2.
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