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In a compact binary coalescence, the spins of the compact objects can have a significant effect on the
orbital motion and gravitational-wave (GW) emission. For generic spin orientations, the orbital plane
precesses, leading to characteristic modulations of the GW signal. The observation of precession effects is
crucial to discriminate among different binary formation scenarios and to carry out precise tests of general
relativity. Here, we work toward an improved description of spin effects in binary inspirals, within the
effective-one-body (EOB) formalism, which is commonly used to build waveform models for LIGO and
Virgo data analysis. We derive EOB Hamiltonians including the complete fourth post-Newtonian (4PN)
conservative dynamics, which is the current state of the art. We place no restrictions on the spin orientations
or magnitudes, or on the type of compact object (e.g., black hole or neutron star), and we produce the first
generic-spin EOB Hamiltonians complete at 4PN order. We consider multiple spinning EOB Hamiltonians,
which are more or less direct extensions of the varieties found in previous literature, and we suggest another
simplified variant. Finally, we compare the circular-orbit, aligned-spin binding-energy functions derived
from the EOB Hamiltonians to numerical-relativity simulations of the late inspiral. While finding that all
proposed Hamiltonians perform reasonably well, we point out some interesting differences, which could
guide the selection of a simpler, and thus faster-to-evolve EOB Hamiltonian to be used in future LIGO and

Virgo inference studies.
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I. INTRODUCTION

The observation of gravitational waves (GWs) from
coalescing binaries [1-4] using a continually improving
network of GW detectors [5—8] is a milestone in funda-
mental physics and astrophysics. As the detectors increase
their sensitivity, we will observe more events, with larger
signal-to-noise ratios, spanning a larger region of the
parameter space. Thus, to faithfully recover the sources’
properties, it is important to improve the accuracy of
models of waveforms from binaries of compact objects
(black holes and/or neutron stars) on generic orbits and
with generic spin orientations. In the generic case, the
orbital plane and the objects’ spins precess about the
direction of the system’s total angular momentum, leading
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to modulations of the GW signal which are a smoking-gun
signature of the dynamical influence of the spins. Including
such precession effects in GW template models, as opposed
to restricting to the simpler aligned-spin case with no
precession, is important for more inclusive GW searches,
more accurate inference studies, and tests of general
relativity.

The effective-one-body (EOB) framework [9,10] aims at
providing a synergy between multiple analytical approx-
imations and numerical-relativity (NR) simulations of
relativistic inspiraling binaries. The core ingredient of
the EOB approach is the EOB Hamiltonian, a canonical
Hamiltonian describing the binary’s (conservative) orbital
dynamics, which both (i) agrees, in its post-Newtonian
(PN) expansion,1 with known results for arbitrary mass
ratios from PN calculations (in the weak-field and low-
speed regime), and (ii) becomes, in the extreme-mass-ratio
limit, an exact Hamiltonian for a test (or probe) particle in
an exact black-hole spacetime, valid for arbitrary separa-
tions and speeds. The EOB Hamiltonian is naturally
expressed as a deformation of the zero-mass-ratio test-
particle Hamiltonian, with the deformation determined by

1Recently, also the post-Minkowskian (weak-field) approxi-
mation for unbound orbits is considered; see below.
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TABLEI. The SEOB Hamiltonians used in this paper and the differences between them. All Hamiltonians include
complete 4PN results for generic spins and compact objects, except for the last Hamiltonian, which is for aligned
spins.
SEOB Definition References
SEOB g Based on the Hamiltonian for a test spin (TS) in Kerr spacetime [27,28]
SEOB%M Based on the Hamiltonian for a test mass (TM) in Kerr spacetime; [17]
it uses the centrifugal radius r.
SEOB\ Simplified version of SEOBY;; it does not use r,; This paper
it uses different factorization for spin corrections
SEOB%ﬁ‘lig” Similar to SEOBy,, but for aligned spins and includes [19,23,47]

S2 and S* corrections, differently

finite-mass-ratio results from the PN approximation. For
example, the original (nonspinning) EOB Hamiltonian [9]
becomes, as the mass ratio goes to zero, the exact
Hamiltonian for a test mass undergoing geodesic motion
in a Schwarzschild (nonspinning black hole) spacetime.
In generalizing to spinning black holes, the first natural
replacement for the Schwarzschild-geodesic Hamiltonian is
the Hamiltonian for geodesic (test-mass) motion in an exact
Kerr (spinning black hole) spacetime.”> A spinning EOB
(SEOB) Hamiltonian incorporating the Kerr-geodesic limit
was first constructed in Ref. [12] including leading-order
(LO) spin-orbit and LO spin-squared effects in the PN
expansion. This was later extended to the next-to-leading
(NLO) [13] and next-to-NLO (NNLO) [14] spin-orbit
levels, and to the NLO spin-squared level for aligned spins
[15,16] and then for generic (precessing) spins [17]. The
Kerr-geodesic-based approach for aligned spins has been
further developed in Refs. [18-24], e.g., by including
matter effects (for neutron stars) and calibration to NR
simulations. A second category of SEOB Hamiltonians is
based on the Hamiltonian for a spinning test body (test
spin) in a Kerr background [25,26], first developed with
NLO [27] and then NNLO [28] spin-orbit terms and with
LO spin-squared terms. Such Hamiltonians have always
been applicable for generic (precessing) spins. They have
been generalized to include tidal effects in Refs. [29,30],
they have been used for studies of extreme-mass-ratio
binaries in Ref. [31] and periastron advance in Ref. [32],
and they have been refined and calibrated to NR simu-
lations in Refs. [33-38]. EOB Hamiltonians have also been
constructed to include information from gravitational
self-force calculations [39-42] (for extreme mass ratios)
and from the post-Minkowskian approximation [43-45]
(assuming weak fields but allowing arbitrary speeds). A
recent comparison of various SEOB waveform models is
given in Ref. [46]. Waveform models constructed with the
SEOB Hamiltonians based on a spinning test body in a Kerr

*With the aim of building a first inspiral-merger-ringdown
waveform model for generic spins, Ref. [11] employed a spinning
EOB Hamiltonian built by adding to the Schwarzschild-geodesic
EOB Hamiltonian the PN-expanded spin Hamiltonian.

background [34-38] have been employed in template banks
of LIGO and Virgo, and inference studies of binary black
holes [1,2,4]. For parameter estimation of binary neutron
stars, both classes of SEOB Hamiltonians have been
employed in Ref. [4].

The goal of the present paper is to construct SEOB
Hamiltonians for compact binaries (black holes or neutron
stars) that include all known PN results to 4PN order for
generic orbits and spin orientations. Beyond the up-to-
NNLO spin-orbit and spin-squared contributions, the 4PN
level includes also the LO cubic and quartic in spin terms.
Previous work is not complete to 4PN order for generic spins
[17,27,28] or complete to 4PN but valid for aligned spins
only [19,22,23,47]. We construct three SEOB Hamiltonians
in this paper: (i) a Hamiltonian based on Ref. [17], which
uses the idea of “centrifugal radius” r.. [19], while recovering
the Kerr-geodesic limit; (ii) a simplified version of the
Hamiltonian from Ref. [17] that does not use a centrifugal
radius and has a different factorization for the PN spin
corrections, similarly recovering the Kerr-geodesic limit;
and (iii) one Hamiltonian following Refs. [25,27,28] which
recovers the dynamics of a spinning test body in the Kerr
spacetime in the small-mass-ratio limit (see Table I for a
summary of the differences between these Hamiltonians). As
we wish to somewhat fairly compare different treatments of
spin effects in the EOB formalism, we have modified some
details of the original proposals of Refs. [17,28] such that all
the Hamiltonians agree in the zero-spin limit. We compare
the aligned-spin circular-orbit binding energy functions
from the different Hamiltonians with NR simulations and
with the aligned-spin Hamiltonian from Refs. [19,23,47].
This enables one to assess compromises between accuracy
and simplicity of the SEOB Hamiltonians.

The paper is organized as follows. In Sec. II, we
provide an overview of SEOB Hamiltonians and their
construction. Sections III and IV present the Ansdtze of the
SEOB Hamiltonians, with explicit results matched to 4PN
in Appendix B. We then compare the aligned-spin circular-
orbit binding energy of the Hamiltonians against NR in
Sec. V. Our conclusions are given in Sec. VI. Appendix A
corrects an omission at NLO S? in the Hamiltonian
of Ref. [15].
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A. Notation

We use geometric units such that the speed of light ¢ and
the Newton constant G are equal to 1. We utilize various
combinations of the masses m;, m, of the binary’s
components,

myn, U
M: s = s = —,
my + my U v
mg mg my
= —, X - -, X = —. 1
n, "M T M (1)

For the spins S, S,, we define the dimensionless versions

52

_a . 2)

S a
72’ Xz—i

X1=—= =—=

mg m nmy m
along with the intermediate @, a@,. The relative position and
momentum are denoted by r and p, respectively. Using an

implicit Euclidean background, it holds

L2
pP=pit5. pr=n-p. L=rxp. (3
where n = r/r with r = |r|, and L is the orbital angular
momentum with magnitude L. For convenience, we also

introduce rescaled dimensionless variables,

. H . L
= p=L. m=", =" a=% @
M u u Mu M
and similarly for the magnitudes 7 = ||, etc. Here, H is any
of several Hamiltonians encountered below, and a =
Skerr/M is the rescaled spin of an effective Kerr black hole.

II. SPINNING EFFECTIVE-ONE-BODY
HAMILTONIANS

In this section, we give an overview of spinning
EOB Hamiltonians and their construction [9,12-17,19,23,
25,27,28,47], on which current EOB waveform models are
built [10,20,21,23,24,33-37,48]. The EOB Hamiltonians
are constructed such that (i) they describe geodesic motion
in Kerr spacetime in the limit of vanishing mass ratio and
that (ii) they agree (up to a canonical transformation) with a
PN approximate Hamiltonian describing the conservative
binary motion up to a certain order (here the 4PN order
[49]). A certain class of EOB Hamiltonians [25,27,28]
also incorporates the (nongeodesic) motion of spinning
test particles in Kerr spacetime in the small-mass-ratio
limit, as described by the Matthisson-Papapetrou-Dixon
equations [50-54].

We consider a spinning binary in the center-of-mass
frame. The orbital dynamics is described by the relative
separation r and linear momentum p vectors, and the
internal dynamics is assumed to be captured by the spins
S and S, of each body. The Poisson brackets between
these dynamical variables are the standard ones,

{”i’P/} = 0ij» (5a)
{Si 5 Sjl} = €iijk’ (Sb)
{85, 85} = e85, (5¢)

with all others vanishing. The dynamics on phase space is
generated by a Hamiltonian function H(r,p,S,,S,). The
equation of motion of a generic phase-space function A
reads

dA 0A

— ={A H} +—. 6

5 = AHN (6)
Here the Hamiltonian is either the PN H'N or the EOB
HEOB one. The EOB Hamiltonian HFOB itself is given in
terms of another Hamiltonian, the effective Hamiltonian
H®', via the energy map,

EOB Heff
HEOB — b1, [1+ 20 -1). (7)
U

The utility of this energy map was demonstrated, e.g., in
Refs. [9,43,55]. For instance, if for H° one just takes the
Hamiltonian of geodesics in Schwarzschild spacetime, then
HEOB correctly describes both the 1PN and first post-
Minkowskian dynamics [9,43].

A. The effective Hamiltonian

The central idea of the EOB Hamiltonian is to combine
the dynamics in the test-body limit (with no restriction on
the speed or field strength) with the PN dynamics (not
restricted in the mass ratio). In this way, one might
overcome some of the limitations of the individual approx-
imations. This can be achieved by making an Ansatz for
H®T as a deformation of the test-body-limit Hamiltonian
(deforming it such that PN results are recovered), which is
the purpose of this section. Note that in the test-body
limit HFOB ~ HeT 1 const.

Let us review the Hamiltonian of a spinning test body in
Kerr spacetime [25,26]. One can easily specialize this to the
nonspinning (geodesic) case, which is the basis of some
SEOB models. These test-body Hamiltonians are the basis
for all SEOB models. The (inverse) Kerr metric ¢y, in
Boyer-Lindquist coordinates (x*) = (¢, r,0, ¢) is given by
the line element

_dTZ = dll(l;:rraﬂau
A A 1
_ 2 2 2
=g

> —2Mr 5
YAsin2 9 ¢

AdMra
YA atatﬁ’ (8)
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where M is the mass of the black hole, 0 = Ma is its spin,
and

T =r? + a*cos? 6, A=r*-2Mr+a* (9a)

A= (r? + a?)? — a*Asin? 6. (9b)

The Hamiltonian of a spinning test-body HX™ can be
obtained as a solution of the mass-shell constraint (see, e.g.,
Ref. [26]),

) 1 1
_ﬂ2 = gjll(err <p;4 - Ewﬂabsib> (pu - Ea)uabszb>
+0(82), (10)

where p, = (—H**", p,, pg. p,), i is the mass of the test
body, $9» = —S9 is its spin tensor in a local Lorentz frame
(e'e™ = Gor)r Opap = €, V,e,” are the Ricci rotation
coefficients, and Vﬂ is the covariant derivative. The
canonical spin vector of the test-body S, is given by
S = %eikaik, and the components S, are fixed by the
supplementary condition % (e, p, + u*8)) = 0+ O(S?),
all in the local frame.

Let us split ™ into a part dependent on the test-spin S,
and the remaining S,-independent terms into parts even and
odd in the Kerr spin a,

HKem = gKer 4 gXem 4 ke, (11)

Following the procedure outlined above, and choosing the
local frame from Ref. [27], this leads to

HEet = ke 2 4 gl 2 byt p2 - reph. (122)
HST = 5, (12b)
aKerr}/lﬁf/{7 p
Kerr _ K Kerr ¢
HS*err — |:Ft+ <ﬁ err 4 I(e;r >F¢:| S*
Kerr
+ \/CIKW (ylr(renerr + 7/§9errp9F9) : S*
+ O(8?), (12¢)
with
aKerr = —l 7 = E’ (13&)
V ~Y9Kerr A
1
e _ Ierr _ 2aMr (13b)

Gl A

tp  tp

Pd Db IKerrIKerr z 13

= —_ = s C

YKerr Kerr iéerr Asin2 0 ( )
A

}/Ir(rerr - glr(rerr - E’ (13d)
06 00 1

YKerr — YKerr — E’ (136)

HKerr
45" = R (13f)

and with explicit expressions for the fictitious gravitomag-
netic (frame-dragging) force interacting with the test-spin
S, given in Ref. [32] in terms of the vectors F, (reproduced
here in Sec. IV). A simplified version of this Hamiltonian
for aligned spins and motion in the equatorial plane can be
found in Ref. [56]. Simplifications for the generic-spin case
are possible by making a different choice for the local frame
which may simplify the Ricci rotation coefficients; see,
e.g., Appendix C of Ref. [26].

The Hamiltonian above is written in terms of compo-
nents instead of vectors, which is a disadvantage for
some purposes. Following Ref. [17], we transform to a
three-vector notation (with an implicit flat Euclidean
background) by treating (r, 0, ¢) as spherical coordinates,
with r = (x,y,z) = r(sinfcos ¢, sinfsin ¢, cosd) and
a = (0,0,a). This is accompanied by a transformation
of the momenta p,, py, py to the new momenta p,

pr=n-p, ptﬁ :LZ = (I‘Xp)z, (148)
2 2

Po_ o2 Pi 14b
2 P TP age (14b)

which makes it an overall canonical transformation. Noting
that a*pj/r* = (n xp -a)*,acosf = n - a, and a’sin’0 =
a* — (n - a)?, this results in the even-in-a Hamiltonian,

HES = [AT (42 + Byep® + B (n - p)?

+ Biga(nxp-a))]'?, (15a)
with
AX
AKerr — (aKerr)Z — T’ (168.)
2
;
BKerr — 200 5 (16b)
2 TA
e |
r
2 00 2
. b 7K _
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and
T=r+(n-a)?, A=r*=2Mr+a*  (17a)
A= (r?+d*)?-Ad®>+ A(n-a)*. (17b)
Similarly, the odd-in-a part reads
2Mr
HST = pfemp, = v L-a. (18)

We now have all ingredients in order to discuss how an
Ansatz for the effective Hamiltonian can be built. In
general, one takes the effective Hamiltonian to be a
deformation of the Kerr Hamiltonian (the deformation
parameter being the symmetric mass ratio v), either for a
test spin or a test mass. While all EOB models agree on
the identification of the masses between the test body and
comparable mass case (M = m; +m,, p= mymy/M),
different choices are made for mapping the spins a and
S, to §; and S,. Let us consider a simple explicit
example. We could write the even-in-a part of the effective
Hamiltonian as

Hgfffen = [A(/"z + Bpp2 + Bnp(n .p)Z
+ Bupa(n xp-a)* +p20)]'"2, (19)

where the momentum-independent potentials A, B, B,,,,
B, are the Kerr potentials given above modified by PN
corrections (to be determined). The quantity Q is a
momentum-dependent potential introduced in Ref. [55],
which may accommodate PN terms that do not fit into the
momentum-independent potentials. (In cases where Q
vanishes, the deformed Hamiltonian can be interpreted
as describing geodesic motion in a v-deformed Kerr
metric.) The mentioned potentials should all be of even
order in spin, while terms of odd order in spin should be
included via a deformation of HXS™. More explicit Anscitze
for the PN-corrected SEOB Hamiltonians and their poten-
tials are discussed below.

B. Matching to post-Newtonian results

To fix the potentials in the Ansatz for an effective
Hamiltonian, one demands that the EOB Hamiltonian
HFOP agrees with the Hamiltonian in the PN approximation
HPN up to a canonical transformation. This will eventually
not uniquely fix the potentials, but leave some (gauge)
freedom.

Here we use the spinning PN Hamiltonian derived in the
framework and gauges introduced in Ref. [57], since it is
available to 4PN order in the spinning sector [49]. Broken
up into LO, NLO, NNLO PN parts and into powers of spin,
it reads

HI§O _I_HI;ILO _|_H?NLO
O SO o
+HL
Han = +HLY

O +O() +O(F) +0(%) +0) +O).
(20)

where columns correspond to PN orders counted by the
inverse of the speed of light ¢ (one PN order is O(c72)).
Except for the self-spin-squared interactions in H-O
calculated in Ref. [58], these results have been derived in
different frameworks and checked against each other:
HYO in Refs. [59-66], HY"O in Refs. [67-73], HYNLO
in Refs. [74-78], HIS‘§) in Refs. [61-63,65,79], H?ZLO in
Refs. [80-88], HI;ZNLO in Refs. [58,75,89-91], H;O in
Refs. [92-96], and HIS‘? in Refs. [92-94,96]. These
Hamiltonians are valid for both black holes and neutron
stars. They depend on coefficients (C(Esz), C(BS3)’ C(ES“))
which are the proportionality constants between the spin-
induced multipoles (quadrupole, octupole, hexadecapole)
and symmetric-tracefree tensors built out of (two, three,
four) spin vectors (respectively). The proportionality con-
stants depend on the type of compact object (and on the
equation of state in case of a neutron star); here they are
normalized to zero for black holes (in the original paper [49],
they are normalized to one and denoted without a tilde; see
also Appendix B). This normalization makes sense here
since we base the EOB Hamiltonian on a deformation of
the Kerr one. Of course, the PN Hamiltonian APN =
Hy' + Hyy, must be supplemented by its nonspinning
(ns) part HFN, which we only need to 2PN order here in
order to construct the canonical transformation of the spin
sector; it can be derived, e.g., from the Lagrangian in
Ref. [97]. The nonspinning part was derived to 4PN order
using independent methods [98—101] and partial results at
5PN have already been obtained [102-104].

The condition that the EOB Hamiltonian HFO® must
coincide with results for the PN-approximate binary
Hamiltonian H™N up to a canonical transformation reads

HEOB — HPN 4 (G HPN) +2l!{g, {g.H™}}
+%{g, {GAGH™N Y + ..., (21)

where G is the generating function of the canonical trans-
formation. If G is small in the PN approximation, then the
series in Eq. (21) terminates after a finite number of terms at
a given PN order. In practice, one makes a PN approximate
and manifestly rotation invariant Ansatz for G in terms of

104034-5
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the canonical variables; we provide an explicit expression
for G as Mathematica code in the Supplemental Material
[105]. Equation (21) then leads to constraints on the
coefficients in the Ansatz for G and H®". The remaining
freedom in the coefficients is a gauge freedom within the
EOB formalism.

Let us note some general considerations about how part
of this gauge freedom can be fixed in SEOB models. Since
binaries are expected to be on almost circular orbits during
their last orbits, it makes sense to fix the gauge freedom of
the EOB Hamiltonian such that it simplifies for circular
orbits, for which p, =mn-p = 0 [55]. Taking the Ansatz
in Eq. (19) as an example, this means that—using the
canonical transformation discussed above—one should
transform as many PN terms as possible into a form such
that they can be included in the potential BE;”, which drops
out of the Hamiltonian for circular orbits. In the non-
spinning case, it is additionally possible to require that the
potential Q depends on the momentum only via p,., and this
uniquely fixes all EOB gauge freedom [9,55]. For the
example in Eq. (19), following the structure of the non-
spinning Hamiltonian, it is natural to require that (i) the
momentum dependence of Hgdeé’ is expressed in terms
of p, whenever possible [13], (i) B,,, = Byes [17], and
(iii) terms in Q have a power in p, that is as high as
possible. The last requirement ensures that Q vanishes for
circular orbits, as in the nonspinning case.

These considerations still leave some remaining gauge
freedom in the spinning case, which we fix such to simplify
the EOB Hamiltonian also for aligned spins. For example,
it is possible to choose PN corrections in the potential B,
such that it only depends on terms of the form n - S but not
S -S. Any remaining gauge freedom beyond that may be
chosen arbitrarily.

I11. SPINNING EFFECTIVE-ONE-BODY
HAMILTONIANS WITH TEST MASS

In this section, we present different Ansdtze for effective
Hamiltonians based on the Kerr-geodesic one. That is, we
do not include the Kerr test-spin Hamiltonian H§*" here
and instead make an Ansatz of the form ’

H = Hel + Hiy. (22)

The explicit lengthy results from the matching at 4PN order
against PN results (and fixing of the remaining gauge
freedom) are given in Appendix B. We start with an
extension of the SEOB Hamiltonian from Ref. [17],
which we call SEOBfy,, to 4PN order, here including spin
effects at LO S3, and NNLO S2. We also extend that
Hamiltonian from black holes to generic compact objects,
e.g., neutron stars. We proceed with a simplified version
of the SEOB7;, Hamiltonian to 4PN order that does not
make use of the centrifugal radius introduced in Ref. [19].

. ali
For completeness, we also summarize the SEOBy &

Hamiltonian from Refs. [19,22,23,47] which is valid for
aligned spins only. We do not include additional PN terms
in the SEOB/5""®" Hamiltonian since it is already 4PN

complete for generic bodies. For convenience, we summa-
rize the Hamiltonians in Table I.

A. Effective-one-body Hamiltonian with
test-mass limit and centrifugal radius: SEOB7

Reference [17] was the first to construct an SEOB
Hamiltonian with NLO spin-squared terms for generic spin
orientations (but omitting a subtle contribution, included
here, see Appendix A). Here we extend the Hamiltonian to
include NNLO spin-squared and LO spin-cubed terms, and
add multipole constants to make it applicable to generic
bodies like neutron stars.

For the even-in-spin part of the SEOB7y,; Hamiltonian,
we use the Ansatz in Eq. (19),

HE, = [A(u* + B,p* + B,,(n - p)*
+ Bopa(n xp-a)* +2Q)]"2  (23)

where the Kerr spin is mapped according to
a=a;+a,. (24)

This ensures that the Hamiltonian reproduces leading-order
PN results at all even orders in spin [106]. The effective
Hamiltonian further uses the centrifugal radius r., which
was introduced in Ref. [19], and is defined such that the
Kerr Hamiltonian for aligned spins and equatorial orbits

VJAST (2 + 3 /2 + p}/B(r)),
which implies the definition

2Ma?
re=A\/r+a+ < (25)
r

The centrifugal radius was generalized to generic spin
orientations in Ref. [17]. In terms of r., the Kerr potential
AKe™ from Eq. (16a) can be written equivalently as

can be written as HXT =

2 e (20)
(1+2) 14 Al

2
c

2M (n-a)®
AKerr:(l_zM)(l—'—n) 1+
rC

In the nonspinning limit, only the first term above remains,
which reduces to the Schwarzschild A potential. This is the
reason why Ref. [17] adds the zero-spin PN corrections to
1 — 2M/r.. However, in this paper, we intend to investigate
spin effects across different Hamiltonian descriptions, so
we need to make sure that the nonspinning Hamiltonians
are identical. That is, we need to choose a method for
adding zero-spin corrections that can be applied to all four

104034-6
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EOB Hamiltonians considered here. We simply multiply
the Kerr potential AX®™ by zero-spin PN corrections
denoted as A° below (without performing a Padé or log
resummation’ of A®). For the spin-squared corrections, we
follow Ref. [17] and add spin-squared corrections of the

form n - S to the term 1 + (n - @)?/r?, and add corrections
of the form S - S to 1 + 2M/r., since it has an expansion of
the form 1 +2M/r — Ma?/r* + - - - . One employs similar
considerations for adding PN corrections to the B potentials
in Eq. (23), leading to the following Ansatz:

apry (121485 128 (14245 4 475)

A=(1-— S —~A(re), (27a)
re (1+29) (1+a%)
.a)? -1
B, = [1 4 rz") +B;§S] , (27b)
1 2M  a?

Bnl’ = 14 (n-a)? |:<1 - T + 7) (A()(rc)DO(rc) + Bﬁ}s’ + BZ}S;) - 1:| > (27(:)
Bnpu = BE[?J’ (27d)
0=0r.)+0%. (27)

Note that we use the gauge choice from Ref. [17], i.e., there are no corrections of the form S - § in the potential B,,, which
simplifies the Hamiltonian for aligned spins and circular orbits.

The 4PN corrections to the nonspinning effective Hamiltonian were obtained in Ref. [107]. Since we factor the PN
corrections in A%(r,.), we choose it such that the PN expansion of the A potential agrees, in the nonspinning limit, with the
results of Ref. [107]. Writing the PN corrections using scaled variables (4) to simplify notation, we obtain

41 ,

2 (106 41
AO(rC)=1+u{§+<
re

1 1
DO(}’C) =1 + 61/34‘ (521/— 6IJ2>§
re re

— ——n’ l4— i-F—T[V—gU
3 27 )7 20" 2

963 , 128 256 64 1\ 1
2 P2 ) = 2
+5127r + 5 YE + 5 In + 5 n?c) ?2} (28a)

123 23761 , 533 1184 6496 2916 592 171
S22 =260 )02 + v - 2220 202 n3) +>cuin—|—. (28b
i [(16” >” +”( 1536 a5 T15 ET s Met s >+ 15 ”nn] v (280)
1 5308 496256 33048 1
0 _ _ - _ _ _ 2 3) " | p4
o' r.) = [2(4 3v)v 2 + (< 15 + 25 In2 5 ln3>1/ 83v” + 10v ) ?3} by
827 2358912 1399437 390625 27 I
Bl st In3 n5)o—"002 46| 22 28
—1—[( 3 2% n2+ 50 n3+ 13 n)u 51/—1—1/}?3, (28c¢)

where the corrections are expressed in terms of the
centrifugal radius r., with 7. =r./M, and p, = p,/p.

The justification for the Padé or log resummations is that
they improve agreement with NR in some models and may
hence be seen as an implicit calibration. In this paper, however,
we consider EOB Hamiltonians with no calibration to NR, so
we try to avoid such resummations, in particular in the non-
spinning part.

|
Note that here and in the SEOB models discussed
below, we are using Taylor expanded and not resummed
versions of these potentials—we want to compare the
different Ansdtze of the Hamiltonians irrespective
of possible resummations for the potentials (see also
footnote 3).

Spin-squared contributions, up to NNLO, are added to

the Hamiltonian using the following Ansatz:
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Cn Cn Cn
A = S5 X+ S X 5K X (29a)
c ¢,
A"S:?T(" xi)(mx;) + g(”‘%i)(”')(j)
Cn
F ) 1), (290)
ns CVL C
By =5 (n-xi)(m-x;) + ( xi)m-x;),  (29¢)
BiS = t(n-x)nx) + m(n-x)n gy, (294)
np 3 Xi X ! “Xi Xj)s
Cn cn
By = B XiXj +g){i X (29)
s2 i)ﬁ
0 *F[chi'Xj'f'cn(n'Xi)(n')(j)]
IA):; 20f
+§Cn(l7'){i>(”'lj)v (29f)

where we followed Ref. [17] in expressing the corrections
in terms of r.. We employ notation such that, e.g.,
CoXi Xj = CoXi+ X1 X2 + cx3. Each ¢, stands for
an independent undetermined coefficient in our Ansatz,
i.e., we use the same symbol ¢, for all coefficients to
simplify notation. The full expressions after matching to
PN results are provided in Appendix B. Note that we added
LO S? corrections to the A potential above (which vanish
for black holes) to account for the multipole constants of
neutron stars.

The NLO S? contributions were included in the effective
Hamiltonian in Ref. [17]; however, the authors missed a
contribution in matching the EOB Hamiltonian to PN
results, namely, from the LO S? generating function applied
to the LO SO Hamiltonian, i.e., from the Poisson bracket
{05, H®}. In Appendix A, we write the matching results

for NLO S2, using the notation of Ref. [17], after taking
into account the missing Poisson bracket.

The leading-order quartic-in-spin terms AS" are zero for
black holes, since the Kerr Hamiltonian, with the mapping
a = a; + a,, automatically reproduces them, but they are
nonzero for other types of compact objects. We take the
most generic expression for the S* corrections,

) %[Cn()(i ) (e x1)

+eu(xi-xj)(n
+cy(n-xi)(n-x;)(n

X)) (m-xp)
x)(m-x)],  (30)

where a summation over the spins of the two bodies is
implied, and terms symmetric under the exchange of the
two bodies’ labels are only included once.

The spin-orbit and spin-cubed PN corrections are added
to the odd-in-spin part of the Kerr Hamiltonian HOK(;’Qr . For
the SO part, we use the Ansatz in Refs. [17,19], and we add
to it S* corrections,

Ay = L)(X%IA' 2+ XL x)
2(1+ A )
+(i§ VL -y +Lx)
+ B+ Bl (31a)
where

-1
cn r
GS=2|:1+?—+C,, +A2+Cn{]_+cn r:| ;

c C

3 p? B
GSi - E |:1 + 5 + nA% + A2 + Cn > + Cnp‘r‘:| (328')

c

1
Gy = ?—[Cn)h X1 T CuXo X2+ CuX1 X2
+cu(m-x1)? +cu(n-x2)? + co(n-x1) (- x2)]
+ pe(n-x1)* 4 cu(n-x2)* + c,(n-x1)(n - 1))
i2
+g [ea(m 1) Feu(m-x)? e (n-x)(nxn)l,
Gg =Gy with 1 <2, (32b)

Note that an inverse-Taylor resummation is used for G and
G-, which improves the description of the binary dynamics
for aligned spins [19]. In the spin-cubed corrections G
and G, a gauge freedom exists which we chose such that
terms of the form ply; - x; or L% - x; are not included.
Explicit results after matching at 4PN can be found in
Appendix B 1.

B. A simplified effective-one-body Hamiltonian
with test-mass limit: SEOBy;

Since it is important to have fast and simple EOB
waveform models, in this section, we consider a simplified
version of the SEOB1,, Hamiltonian that uses r instead of
r.. for the PN corrections. In order to assess the effect of this
simplification, we also avoid resummations that are not
motivated by the structure of the interactions, i.e., we
factorize spin corrections to the Kerr potentials and do not
use an inverse-Taylor resummation for the spin-orbit part.

The potentials of the effective Hamiltonian are simply
taken to be
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A= AKerr(AO +ASS +AnS —|—A54), (333)
B, = BXe"(1 + B1S), (33b)
_(1=3+5)(AD" + B + BS) ~ 1
B,, = 53 . (33¢)
1+ (n-a)*/?
Bnpa = B},(;I;, (33(1)
0=0"+0% (33¢)

where the zero-spin corrections A°(r), D°(r), and Q°(r)
are given by Eq. (28) but in terms of r instead of r,.. The
Ansiitze for the S*> and S* corrections are given by the
corresponding expressions from the previous section, i.e.,
Egs. (29) and (30), but using r instead of r. (and with
different coefficients c,). For HXST, we modify the odd-in-
a part of the Kerr Hamiltonian by the SO and S* PN
corrections, that is,

- 1 o o
Hods = —7———war\ [Gs(X%L X+ X3L20)
rrc<1 + A5 )
. . Gy - Gy -
+Gsv(L-x1+L-x)+ ;QL'M + ;314'){2 ;
(34a)

with the Ansditze for the coefficients given in Eqs. (32a) and
(32b), but again written with r instead of r,. (and different
¢,)- Explicit results after matching at 4PN can be found in
Appendix B 2.

C. Aligned effective-one-body Hamiltonian witll_l
r.,align

test-mass limit and centrifugal radius: SEOB

In this section, we consider the aligned-spin EOB
Hamiltonian proposed by Damour and Nagar in
Ref. [19] and extended in Refs. [22,23,47], which we
denote SEOB/52"®". That Hamiltonian is similar to the
aligned-spin limit of the SEOB/;; Hamiltonian from above,
except that the even-in-spin PN corrections are added to the
centrifugal radius.

The even-in-spin effective Hamiltonian is given by

R iZ [A)2
A = A(1+?—2+Er+QO>. (35)

The EOB potentials A and B are given in Ref. [19], but we
do not use Padé resummation and we modify how the zero-
spin PN corrections are added such that they agree with the
other Hamiltonians in this paper, that is,

A 1 2 1+%A0 36

(1-3) i ane. o6
r? 1

=5—F, 36b
ZAD(r) (60)

where A°, D°, and Q¥ are given by Eq. (28). Note that
Refs. [23,46,47] use Q = 2u(4 — 3v)p?/r? instead of Q°,
and use p, = p,/A/B instead of p,.

The spin-squared and spin-quartic corrections are added
to the centrifugal radius, which is here defined by

Sa? Sa? Sa?
I:ILO+ I:INLO+ ALO7 (37)
7 2 2

2
%3:?2+&2Q<1+;) +

and where @, depends on the compact object’s multipolar
constants,

&ZQ = 212 + C‘l(Esl)a% + Cz(ESz)&%, (38)

where a; = a;/M, a = |a|/M, and recalling Eq. (24).

The spin-orbit part was obtained in Ref. [19] with
NNNLO v-independent spinning-test-body contributions
and v-dependent contributions calibrated to NR. We do not
include those higher-order corrections here, but we follow
Ref. [19] in using an inverse-Taylor resummation/calibra-
tion of the coefficients Gg and Gg- in

R Gg o » R Gse .~ .
A%y = — X3y, + X3Ly,) + —v(Lyi + Lio)
rre re
Gy - Gg »
+ ;,i Ly, +T2L)(21 (39)
C C

see Egs. (B7a), and where Gg and G for aligned spins
take the simple form

1

Gy =+ (e} + coxixa).
C

3 1

(;S3 = ?_ (Cn)(% + Cn)(lZZ)' (40)
Cc

Including spin-cubic contributions was discussed in
Appendix A of Ref. [47], which we implement here so
that the effective Hamiltonian includes all PN information
at the same order as the other Hamiltonians considered in
this paper. Explicit results after matching at 4PN can be
found in Appendix B 3.

IV. EFFECTIVE-ONE-BODY HAMILTONIAN
WITH TEST-SPIN LIMIT: SEOBg

The SEOB Hamiltonian proposed in Refs. [27,28] is
based on the Hamiltonian of a spinning test body in the
background of a Kerr black hole, which we here denote by
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SEOBrg (see Table I). In this section, we extend that
Hamiltonian to 4PN order; compared to previous results,
we add NLO S%, NNLO S2 LO S3, and LO S* PN corrections,
for generic compact objects and spin orientations.

The SEOBg Hamiltonian, as expressed in Ref. [32], is
given by

T = Sl + S+ S (41a)
. =ay/q+Q°, (41b)
A — p (41c)
odd Pgs
N N P N\ .
At = [Ft + <ﬁ+ay p"’)%] -8,
* \/6
o . .
+ NG (v D, F,+v"peFy) - S,
1 A PO
+ 5538, n2 =8, 8], (41d)
where
q=147"p% +y"pr+7v"pj. (42)

and 8, = S, /My is a rescaling of the spin of the test body.
The spins are mapped according to

S. =o.[l +vf.(r.p)] +vg.(r.p)o,  (43a)

o = Sl +S2, (43b)

o, :@Sl +ﬂS2, (43C)
m my

where the functions f, and g, are given by Egs. (50)—(52)
of Ref. [28], and that 6 = Ma is the spin of the background
Kerr metric; it does not hold @ = a; + a, as for the models
discussed above. The spin maps are analogous to the

|

mapping of the masses M, u according to Eq. (1), with
the difference that the spin maps relate dynamical variables.
The deformed metric is obtained by substituting A, X, and
A in the Kerr metric by

A, = PA(r) + 62, (44a)
A, = A,DO(r), (44b)
3 = 2 4+ 62cos20, (44c)
A, = (7 + 6%)? — 6%A,sin%0, (44d)
as in
A 26 7

a= . p==, 45a
A, A, (452)

)y A 1
bb — i =" % —=~.  (45b
iarweey =3 =g (45b)

The potential D°(r) is given by Eq. (28b), and the potential
A is given by

1 1 1 1 a’
A:&Z(T_A—>(T_A )AO(")_%’ (46)
rru+/ \" TH- r

where A is given by Eq. (28a), and 7 .. are the scaled
inner and outer radii of a Kerr black hole, i.e.,

Pue=1+V1-0a2 (47)

Finally, the vectors F 0 F s IA"H, and F ¢ describe the
fictitious force acting on the test-body spin S, (frame
dragging) in the deformed Kerr metric. They are given by
Eq. (6) in Ref. [32], which we rewrite here for convenience,

ﬁ'¢ = cosOn + v, (48a)
b /% /70 {maﬂu +24) w, o0 (1- 2\/21),6,9}
! NG (1+9) ¢ 2y0¢ ’
Sese Oy {y‘f"ﬁma.r (2va- 1B, + amyf’i‘ﬁ] (48b)
L0+ va) 24 |

06 P P
foo g VI Bobr+PrPo)

cscO(Bor® Do+ 2p,v"B,)

20/v" (1 + \/q)

_escOTT Db,

2/ y7(1+ )

F.o—_h \/}’egﬂ,aﬁe

g — —h

a1+ D) 2av7 (1 + yg) +§CSC9[1 -

_gescOy/y” [2\/6_106.9 +Dyfo | ary

a7 | (1+va) ] s

(1+a) +0;y>} e

V },rr (zﬂa,r + ﬁqﬁﬁ,r
20/ 7%
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Here, the unit vectors (ﬁ £ 9) are defined by it =%
E= eg xn, and ¥ =il x €, where ez = 6/0 denotes the
direction of the (deformed) Kerr spin.

For the purpose of extending the SEOB g Hamiltonian to
4PN in the spinning sector, we deviate from the original
|

philosophy of Refs. [27,28] in that we do not modify the
spin maps or deform the metric entering H' gff with terms of
quadratic and higher order in spin. Instead, we only slightly
modify the Ansatz for the effective Hamiltonian (keeping
Hgif unchanged) as

[A{S\f/fen — \/a2 +ASS +AnS +AS4\/q +B;Sﬁ2 + (BSS +BnS)pr + QO QS2 + QS4,

eff G T G

3 A
odd—ﬂp¢+ L-y + SL)(z,

(49a)

(49b)

where we introduced potentials into T, at quadratic and higher order in spin following the structure of Eq. (19). These

BnS BSS BnS

potentials ASS A" e

s QSZ, and AS" are given by Egs. (29) and (30) but with r instead of r, (and different c,,),

and similarly for the spin-cubic corrections G and Gss from Eq. (32b). We take the function QS4 to have the form

p?

QS4 e [cq(n X1)3(" “X2) +cu(n x1)*(x ) e x - x)(mx)(ne ) +cu(n X2) (n “X1)
+ (20?21 22) Fen(xz - 22) - x0) (- 200) + cu(m-x00)* (0 20)* + cou(n - 1) (X2 - 22)
+ (- 20) 2 20) + enlxn - 20) (- 20)°)
Pr
+p g el x) - 20) + enln o) + cu(n-30)* (- 20) + ealn-x0) (1 22) + ealn-20) (m - 22)°
ca(n-x1) (X2 x2)]
Py
+p g lenlon )20 + enln-x0)* + cu(n-x2)* (- 20) + enln-x2) (1 22) + ealm-20) (0 31)°
+cu(m-x02) (X1 21))- (50)
I
Out of 38 possible terms in the most general expression Q- OHgop 51
for 05, 16 terms were removed via a gauge choice. We - 9p b (51)

started by removing the three terms that do not vanish for
aligned spins, but the other 13 terms were chosen arbi-
trarily. Explicit results after matching at 4PN can be found
in Appendix B 4.

V. COMPARISON WITH NUMERICAL
RELATIVITY

In this section, we compare the four SEOB Hamiltonians
considered in this paper to NR simulations through the
binding energy for circular orbits and aligned spins. The
NR binding energy data we use here were extracted from
the Simulating eXtreme Spacetimes (SXS) catalog [108] in
Ref. [109]. Hereafter, in this section, we use the term aligned
spins to mean spins parallel to, and in the same direction as, the
orbital angular momentum L, but we use the term “antialigned
spins” to mean spins opposite to the direction of L.

The binding energy is calculated by evaluating the
EOB Hamiltonian for circular orbits (p, = 0) and solving
numerically p,=—0Hggog/Jr=0 for the angular momen-
tum p,, at some radius. The orbital frequency €2 is obtained
from

We then calculate the binding energy and orbital frequency
as r goes from the beginning of the NR simulation to the
innermost-stable circular orbit (ISCO) of the Hamiltonian,
which marks the end of the inspiral phase of the binary
coalescence and the beginning of the plunge. The ISCO is
calculated by setting both the first and second derivatives
of the Hamiltonian with respect to r to zero, i.e.,
8HEOB/8V =0= 82HEOB/8r2.

It should be noted that the binding energy is extracted
from NR simulations from an evolving binary, tracking the
radiated energy in GWs. From the EOB Hamiltonians,
however, we obtain the binding energy here by assuming
exact circular orbits at different orbital separations, neglect-
ing the orbital decay (radiation-reaction) due to the emitted
GWs. The NR and EOB binding energies are thus not
expected to agree exactly here during the last few orbits
(see discussions in Ref. [45]).

In Fig. 1, we plot the binding energy for nonspinning
configurations with different mass ratios ¢ as a function of
the velocity parameter v = (MQ)'/3, and we see that the
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GW cycles before merger for g =1 GW cycles before merger for ¢ = 1

10 5 4 3 2 10 5 4 3 2
: — : : 0.12F : — : : .
-0.04 f—qg=1
0.10} .
& [—q=3
Z o L
-0.05 K 0.08f —q=5 p
. [
[— =10
= — 0.06} qN ]
s Z o foom— ¥
S _0.06 ' R error
| 0.04f 1
&5 [
—0.07 — 0.02] .
0.00 frmm——————
0.30 0.35 0.40 0.30 0.35 0.40
v =(MQ)? v=(MQ)?

FIG. 1. Binding energy (left panel) and fractional binding energy (right panel) versus the “velocity” parameter v for nonspinning
binary—black-hole configurations with different mass ratios. The four SEOB Hamiltonians considered here are identical for zero spin.
The relative NR error shown in the right panel is a conservative 1.1% estimate. The initial value of v (the left end of the plots’ domain)
here is determined by the beginning of the NR simulation with ¢ = 10; those with lower mass ratios have several cycles at lower

frequencies not shown here. We stress that the SEOB Hamiltonians at 4PN order are not calibrated to NR simulations.

binding energy increases with increasing mass ratio. The
top axis of the figure indicates the number of GW cycles
before merger, computed from the SXS waveform, for the
case of ¢ = 1, which is close to the other values of ¢; for
example, at two GW cycles before merger, v = 0.416 for
g =1 while v =0415 for g =10. Since all SEOB
Hamiltonians considered here agree in the nonspinning
limit by construction, this figure gives a rough estimate for
the zero-spin contributions to the binding energy. In all
plots of this section, the number of GW cycles from
merger is always computed from the SXS waveforms,
and the merger is defined as the peak of the (2,2)
gravitational mode.

The different spin contributions to the binding energy
are depicted in Fig. 2. They can be extracted by combining
results for various spin combinations as (see Refs. [109,110])

1 1
Eso =~ (=0.6,0) + % (0.3,0) = 2(0.0) = 5 (0.6.0).
3

Eg = %(—0.6, 0) = 2(0.0) +3(06,0) ~ (0.6, ~0.6),

5 8 1
Eg = ~2(=06.0) ~3(03.0) +3(0.0) - 5 (0.6.0)

1 1

+5(0.6.~0.6) +5(06,0.6). (52a)

where the numbers in brackets refer to the values of the
dimensionless spins of the two bodies (y;, y,). The spin-
squared contributions to the binding energy E ¢ refer to both
S? and S, S, interactions. Similarly, spin-cubic contributions
Eg refer to both 7 and §7S;. We see that the spin-orbit
contribution is about an order of magnitude larger than the

. — — —— 0.003 —— - —— . — — R —
0.000F linear-in-spin contributions quadratic-in-spin contributions 0.0004 F cubic-in-spin contributions
—-0.002¢ L
0.002 0.0002F
= —0.004 —SEOB%,
5 ~0.006f —SEOBmy 0.001} 0.0000 |
— 7e,align
—0.008F — SEOBr —~0.0002f
—SEOBTg 0.000 [ 1
-0.010¢
—NR ~0.0004}
~0.012k ‘ ‘ ‘ 1 0001 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.25 0.30 0.35 0.40 0.25 0.30 0.35 0.40 0.25 0.30 0.35 0.40
v=(MQ)V? v=(MQ)Y? v=(MQ)Y?

FIG. 2. Binding energy versus the velocity parameter v for the linear-in-spin (left panel), quadratic-in-spin (central panel), and cubic-
in-spin (right panel) contributions of the four SEOB Hamiltonians. The NR error is indicated by the shaded regions. In the left panel, the

blue and orange curves overlap since the SEOBJ;, and SEOBJ; "

Hamiltonians are identical in the spin-orbit limit.
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FIG. 3. Fractional difference in the binding energy between NR and SEOB Hamiltonians for different spin configurations with mass
ratio ¢ = 3 at four GW cycles before merger.

GW cycles before merger GW cycles before merger GW cycles before merger
40 20 10 54 3 2 1 40 20 10 54 3 2 1 40 20 10 54 3 2 1
ok T =L =097, =097 [ Tg=1 x=09 =09 L ¢=3, 0 =085 x,=08 ]
2, —SEOB},,
5 010} —SEOBy ] ] ]
—~ 7¢,align
— ——SEOB5] ¢
Zs 005) —SEOBxs ] ] ]
| —NR error
\Li 0.00
~0.05f 1t 11 ]
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.25 0.30 0.35 0.40 0.45 0.50 0.55 0.30 035 040 0.45 0.50 0.55
40 20 10 54 3 2 40 20 10 54 3 2 40 20 10 54 3 2
ol TP a=06 =06 11 =2 0=08Th u=-08 || =3 u=0 =06 ]
- .
Zo
5 oa0f ] ]
—~
£ 005} ] ] ]
|
\Li 0.00
~0.05f 1t 11 ]

030 035 040 045 050025 030 035 040 045 0.25 0.30 0.35 0.40
v=(MQ)'/? v=(MQ)'/? v=(MQ)'/?

FIG. 4. Binding energy comparison with NR for different aligned-spin configurations for the four SEOB Hamiltonians. Curves that
end with a point indicate the location of the ISCO. For the NR error, we used 1.1% relative error as a very conservative estimate.
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GW cycles before merger

GW cycles before merger

GW cycles before merger

20 10 5 4 3 2 40 20 10 54 3 2 40 20 10 54 3 2
ool T g=1, x1= 097, xa= —0.97 [ =3 =06 va=-06 ] [ g=2 yvi=—0871, yo= 085
g ,
S gopf _orOPiu ] 17 ]
~ —— SEOBTM
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£ 0.04f — SEOBm 1T 1T 1
_SEOBT5
Lrlj 0.02F ——NR error 1 [ 1 [ ]
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FIG. 5. As in Fig. 4 but for configurations with antialigned spins.

spin-squared contribution, which in turn is an order of
magnitude larger than the spin-cubic contribution. All
SEOB Hamiltonians give comparable results for the spin-
orbit part; however, for the spin-squared contribution, the
SEOBtg and SEOBr); Hamiltonians give better agreement
with NR than the other two Hamiltonians. For the cubic-in-
spin contributions, the NR error is larger than the EOB values
for the binding energy, and hence we cannot conclude which
Hamiltonian is better in terms of S* contributions.

In Fig. 3, we compare the fractional energy difference
|E, — ENR|/ENR at four GW cycles (i.e., two orbits) before
merger for various spin configurations with mass ratio

GW cycles before merger

40 20 10 54 3 2

q = 3. We see that, for all configurations at that frequency,
the relative difference with NR is around 1%. For aligned
spins, all Hamiltonians give comparable results, but the
SEOB1g Hamiltonian gives better agreement with NR for
antialigned spins.

We also compare the binding energy as a function of
velocity for some configurations with aligned spins (Fig. 4)
and antialigned spins (Fig. 5). The curves in these figures
start at the beginning of the available NR simulations and
end at the ISCO of the EOB Hamiltonians. All effective
Hamiltonians considered here have an ISCO for arbitrary
spins, except that the SEOB1g Hamiltonian does not have an

GW cycles before merger
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binding energy at different PN orders for the four SEOB
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ISCO for large aligned spins 20.92. From the three panels at
the top of Fig. 4, we see that for large aligned spins (Z0.8),
the SEOB1g Hamiltonian shows slightly better agreement
with NR than the other Hamiltonians. However, for smaller
spins (<0.6), all Hamiltonians give very similar results. This
is also the case when the two spins are both large but in
opposite directions. For antialigned spins, the difference
between the four Hamiltonians is smaller than in the aligned-
spin case; the SEOB1g Hamiltonian gives better agreement
with NR than the other Hamiltonians, but the difference is
small, even for spin magnitudes of 0.97, and becomes
negligible for smaller spins.

Finally, in Fig. 6, we compare the effect of spin PN
orders to the effective Hamiltonian for a configuration
with mass ratio ¢ = 3 and spins y; = y, = 0.85. For all
Hamiltonians, adding higher spin orders improves agree-
ment with NR, except for the SEOBrg Hamiltonian where
adding LO S* and LO S* gives slightly worse agreement.
We checked that using different spin configurations gives
qualitatively similar behavior.

Overall, beside the small differences pointed out above,
all Hamiltonians perform reasonably well compared to NR
simulations. One should expect that the differences that
accumulate during the last orbits can be compensated by a
calibration of the Hamiltonians, applying also further
resummations to the potentials, which we leave for future
work. This would be of particular interest for the simplified
Hamiltonian, in order to prepare and evaluate it as a
possible starting point for an EOB waveform model.

VI. CONCLUSIONS

In this paper, we built spinning EOB Hamiltonians that
include the complete fourth post-Newtonian conservative
dynamics for generic (precessing) spins. These Hamiltonians
are also valid for generic compact objects (e.g., black holes or
neutron stars) since we included multipole constants that
parametrize the deformation of the compact object due to its
rotation.

In particular, we considered and extended four SEOB
Hamiltonians: (i) an extension of the SEOB Hamiltonian
from Ref. [17] by adding NNLO S? and LO S* contribu-
tions, in addition to adding the multipole constants; (ii) a
simplified version of that Hamiltonian that differs in how
the spin corrections are added to the Kerr metric, and that
does not use the concept of centrifugal radius; (iii) the
aligned-spin Hamiltonian from Refs. [19,23,47], which
already includes complete 4PN information for generic
compact objects, but considered here for comparison with
the other Hamiltonians; (iv) an extension of the SEOB
Hamiltonian from Refs. [27,28], which uses a test spin, by
adding NLO S?, NNLO S?, LO S3, and LO S* contribu-
tions, in addition to adding the multipole constants. Since
our goal in this paper was to improve the description of spin
effects in the EOB formalism, we modified the zero-spin
part of the above Hamiltonians such that they are identical

in that limit. Furthermore, we did not include NR calibra-
tion parameters or resummations of the PN corrections
(e.g., with Padé or log resummations of the zero-spin part)
since they constitute an implicit calibration to NR that
improves the performance of EOB Hamiltonians only in
certain models.

We compared the four SEOB Hamiltonians considered
here with NR simulations by calculating the binding energy
for circular orbits and aligned spins. We found that all
Hamiltonians show good agreement with NR, and that the
difference between the Hamiltonians is quite small up to
moderate values of the spins and a handful number of GW
cycles before merger. For large spins, the SEOBtg
Hamiltonian performs better at large frequencies, but since
all Hamiltonians have an error of about 1% compared to
NR at about four GW cycles before merger, the simplest
SEOB Hamiltonian SEOBpy; could be an excellent candi-
date for building an improved EOB waveform model with
precessing spins. The simplicity will allow one to have a
fast-to-evolve set of equations of motion and could help in
calibrating the EOB waveforms built with SEOBy; to NR
simulations. However, more analyses, which include dis-
sipative effects, and a careful study of how the GW
frequency approaches merger, are needed to pin down
the more suitable SEOB Hamiltonian. Indeed, as several
studies have shown [33-38], to attach robustly the merger-
ringdown waveform to the inspiral-plunge one in the EOB
formalism, dynamical quantities, such as the orbital fre-
quency, radial separation, and momentum vectors, have to
behave regularly around and beyond the EOB photon orbit.

We leave for future work to complete the SEOB
Hamiltonians to a gravitational waveform model, i.e.,
provide resummed expressions for GW modes and asso-
ciated radiation-reaction forces. Once radiation-reaction
forces are included in the model, it is important to perform
comparisons with NR for precessing spins and to use those
comparisons to study different resummation options and to
add calibration parameters in order to improve the accuracy
of EOB waveforms toward merger.
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APPENDIX A: COMPLETING THE SPINNING
EFFECTIVE-ONE-BODY HAMILTONIAN
IN REF. [17] AT NLO $?

We found that Ref. [17] missed a contribution in the
matching between the EOB Hamiltonian and PN results,
namely, from the LO spin-squared canonical transforma-
tion, generated by G%g, applied to the LO spin-orbit
Hamiltonian H53. This contribution can be obtained using
the Poisson bracket as {G5$, HS9}. This leads to SS
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contributions via the Poisson bracket of the spin vector
{87, 87} = €;;S*, which turns out to start at NLO in the SS
sector. Taking these additional contributions into account,

we find that the coefficients in the EOB potentials c/i‘j, a;’]’f ,
bI¥, U™, biP¥, bIP" defined in Ref. [17] should read,
assuming the gauge conditions b}* = 0,

n, 5
a =TvX, —I—Zl/z, (Ala)
ny 5 2
ay, = X, +ZV > (Alb)
27 9
ny _ ony 22 Al
A =) =g V=V, (Alc)
Py S
bli = 41_/X1 —51/ . (Ald)
pny S 2
PP — ppx 9 2
= b =20 g (AIf)
15
DI = UKy =12, (Alg)
npy 15,
P = 0uX, ~ 02 (Alh)
9
bR = byl = 3u+ A, (Ali)
npy 15, .
B = 150X =202, (Alj)

15w 27w, 1 4117 n 51y
256 8

R

15

by = 150X, — Zl/z, (Alk)
45 15

by = by = 5 v+ Zl/z, (A1)

modifying Egs. (2.52a)—(2.53c) and (2.62) in Ref. [17]. The
coefficients «;; from Eq. (2.61) in Ref. [17] remain
unchanged. Also, the coefficients bf]f"” are unchanged,

but their defining Eq. (2.62) in Ref. [17] is no longer valid,
so we listed them here explicitly for clarity. This solution
has the three additional terms with coefficients b7,
b5y, and DYD™, which vanish in Ref. [17]. The six
symmetries between the coefficients in Ref. [17] are also
absent in our solution (assuming the gauge conditions

bi* = 0).

APPENDIX B: HAMILTONIAN COEFFICIENTS
AFTER MATCHING TO PN RESULTS

In this appendix, we present the results of matching the
SEOB Hamiltonians using the procedure described in
Sec. II B. Here, we express the multipole constants as

Ci(ESZ) = Ci(ESZ) - 1, Ci(BSZ) = Ci(BSZ) bl 1, etc., (B])
such that the black hole results are easily obtained by
setting C = 0.

The expressions for the Hamiltonians and the potentials
given in this appendix are provided as the Supplemental

Material [105] in the form of Mathematica files.

1. Coefficients of the SEOB;,, Hamiltonian

The spin-orbit and spin-cubed PN corrections in
Eq. (31a) are given by

~2 2 2 —

Pz (21v 49v 1690~ 5v\ 17!

L e - B2
TF < 4 ~128) T \2s6 167 (B2a)

71/24_5 1)+ 1 3y2+29v+27
LS B

8 2Z\8 "4 16

(B2b)
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FOURTH POST-NEWTONIAN EFFECTIVE-ONE-BODY ...
1 ) ~ 9wX, 9 507 9v
G53 :?—C (")(1) (51/+(5U— ) )C (BS3) 4 —T l(ESZ)_T—’_ZU—’_ 7—2 Xl
v v ouX
+x1 {((1 —v)X; —v)C s (T ) 1(ES?) —Z‘FTI}

150X\ - 502 2
+n-xln-xz{<—6v2— 5 1>C(ESZ - l}

32 3uX, 412 51/X1
+X1 X2 7+ Cl(ES) 3

32 15uX,)\ - 1/2 17vX
+ (- x2)? [(T i 2) Coes?) + 2} }
+

L i (5 =2 i s )+ o (22

(@)

12 3

31/X2 3v 1312 X,
2(ESZ) BT

i 2 2
SuXy 5 72 uvX
+pr [(n -xl)z( yz 1—%) +n-pn-x3uX, —12) + (n m){%—%)], (B2c)
Gg =Gg with 1< 2. (B2d)
The spin-squared corrections in Eq. (29) are given by
ss_ L o .
1 v 1 )
+toa X (6V+(2V_6)X1)C1(Esz)—7+3VX1 t5201 X220 — 1)
+i ) _2071/2 +2751/ 5331/_& x. )& +3_1/3_ 1571/2+ 1231/_451/ X
A 28 14 28 14 )71)TIES) T T TG 4 g )
1 33 1452 250
+§)(1‘}{2<T+ ] + 2>}+1<—>2 (B3a)
nS 1 2 2
A" = ﬁ(" x1)°(3X, —3V)C1(ESZ)
1 Sv 1 92 27
s a3 004 0= 3008 sgy -2 - | + S0 0 (-5}
+l (-, E 64112 1501/+ 4712 +221/+150 X, C +111/ 7112
AR § 56 7 § 7 "7 ESH T T T o
6317 79 1 3v° 2650 387v
+ <—T—?>X1] +§(”‘)(2)(”')(1)<7——— )} (B3b)
1 - 517 1 9v
B = = {(n x1)? [(—31/2 +3v+ (3v =3)X)CyEs2) — -t 41/X1} tonen -y <2v2 -I-I) }
n i (-, 7_1/3 22117 +ﬂ " 4712 " 169y E x. )& 88912 " 2703
At g8 8 | 2 g 4 2)7)TiEs)T Ty Ty
323v 2172 1 117 427 57
- X,| +on-gmp —— - 1 <2, B
<12 8 > ‘}+2" an ’”(4 24 +16)}+ i (B3c)
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; 1 15v 1 1502 450
anz—;,_{( )(1)2(7—15’/)(>+5”'X1"‘Zz<—T—T)}
72 2 9w 2504 121y 9 ~ 17,7 18512
2
{(n-}(l) [(—7—Z+?+<T+ 1 _§>X1>C1(ES2)+T+ 2

2312 619 1 47 44112 39
SV PN mnegn g (- T | o2, B
3 12) 1]‘*’ n-xn Xz( n o 2)}+ (B3d)

| =

+

_|_
VR ﬁﬁ-l;

By = % {Z% {(—31/2 +3v 4 (30 =3)X)Cygs?) — ISTV + 91/X1] % (9—;2 + 61/))(1 '){2}

+%{x§ K— 152”2 +%+ < 1202 + 1947” 223>X1>CI(ESZ) +50° - 61 + <274i— 37v2>X1}

—1—1(101/3 + 3802 + 20v)yx, -){2} +1<2, (B3e)
0% = Iz_z {n XD X1 [(201/ - 3502 + (350 — 200%)X 1)61(1552) + 19§D3 - 1O§2V2 + (13301/ - 51?}) 1]

79,3 791/ 45y
nexw x( 8 12 +E)}
{ K 35y <ﬂ_5y> 1>C 2+iu3_105u2+(@_145y2>x]
4 IES T g 8 4 8 !

2452 245 . 915 1015, 1015
K Y358 ¢ <351/2— 4”>X1>01(ESZ)——”+ "+ (119y2— U)Xl}

2 12 12
2502 4512 5p 1 770 721124 1050
- —n-yn- - - 1 2. B3f
+2x1 x2< T T g +2)+2n xin x2< 5 7 2 >}+ (B3f)

The spin-quartic corrections in Eq. (30) are given by

s 1 217 2w (21 ~ 350 350 (350 35 -
A3 —ﬁ{(n'll)4[(7—7+ (7_21V)X1>C1(ESZ)+ 7 1T (T_I>X1>C1(ES4):|
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. > 15 1517
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1 ~ 1 - -
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1 - - -

R1% 3v 3v 3 ~

+x1 221 (307 = 3uX,) Cy gss) + 11 [_T trt (7 - Z>X1} Ciest)

1 - 1. 32\ 3 -
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2. Coefficients of the SEOB,; Hamiltonian
The spin-orbit and spin-cubed PN corrections in Eq. (34a) are given by

27 Sv 3502 Sv p? (2317 2lu 1 v Sl
=2|1=-"2up? — = ) A === — === B
Cs [ 1677 16?+<16+16>pr+?<16 4>+?2< 16 8)} (B5a)
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1 ~ oawX, 9.
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The spin-squared and spin-quartic corrections in Eq.
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3. Coefficients of the SEOBfﬁ’&"g“ Hamiltonian

The coefficients of the SEOB%‘,?“g" Hamiltonian are given in Ref. [47], but we rewrite them here for convenience in the
notation used in the rest of the paper.
The spin-orbit and spin-cubic correction in Eq. (39) are given by
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The spin-squared and spin-quartic corrections in Eq. (37) are given by
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4. Coefficients of the SEOBg Hamiltonian

The spin-squared corrections in Eq. (40) are given by
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The spin-quartic corrections in Eq. (49) read
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