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The trajectory of a charged test particle in the Melvin magnetic universe is shown to take the
form of hypocycloids in two different regimes, the first of which is the class of perturbed circular
orbits and the second of which is in the weak-field approximation. In the latter case, we find a simple
relation between the charge of the particle and the number of cusps. These two regimes are within a
continuously connected family of deformed hypocycloidlike orbits parametrized by the magnetic flux
strength of the Melvin spacetime.
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I. INTRODUCTION

The Melvin universe describes a bundle of parallel
magnetic field lines held together under its own gravity
in equilibrium [1,2]. The possibility of such a configuration
was initially considered by Wheeler [3], and a related
solution was obtained by Bonnor [4], though in today’s
parlance, it is typically referred to as the Melvin spacetime
[5]. By the duality of electromagnetic fields, a similar
solution consisting of parallel electric fields can be
obtained. In this paper, we shall mainly be interested in
the magnetic version of this solution.
The Melvin spacetime has been a solution of interest in

various contexts of theoretical high-energy physics.
For instance, the Melvin spacetime provides a background
of a strong magnetic field to induce the quantum pair
creation of black holes [6,7]. Havrdová and Krtouš showed
that the Melvin universe can be constructed by taking the
two charged, accelerating black holes and pushing them
infinitely far apart [8]. More recently, the generalization of
the solution to include a cosmological constant has been
considered in Refs. [9–11].
Aside from Melvin and Wallingford’s initial work [12]

and that of Thorne [13], the motion of test particles in a
magnetic universe was typically studied in a more general
setting of the Ernst spacetime [14], which describes a black
hole immersed in the Melvin universe. The motion of
particles in this spacetime was studied in Refs. [15–25], and
also the magnetized naked singularity was studied in
Ref. [26]. The study of charged particles in the Ernst
spacetime has also informed works in other related areas
such as in Refs. [23,27,28].
Of particular relevance to this paper is the interaction

between the Lorentz force and the gravitational force acting
on an electrically charged test mass. As is well known in

many textbooks of electromagnetism, a particle moving
in a field of mutually perpendicular electric and magnetic
fields will experience a trajectory in the shape of a cycloid
[29]. In this paper, we focus on a similar situation,
except that the electric field will be replaced with a
gravitational field. The cycloidlike, or, more generally,
trochoidlike, motion was obtained by Frolov et al. [30,31]
in the study of charged particles in a weakly magnetized
Schwarzschild spacetime [32]. A similar motion was
considered in the Melvin spacetime by the present author
in Ref. [21]. In this paper, we will extend this idea further to
show that the trajectories are more generally deformed
hypocycloids, which are curves formed by the locus of a
point attached to the rim of a circle that is rolling inside
another larger circle.
Hypocycloid trajectories are well known as solutions to

various brachistochrone problems in mechanics. For in-
stance, the path of least time in the interior of a uniform
gravitating sphere [33] is a hypocycloid. We will see how
the trajectories in Melvin spacetime take a hypocycloidal
shape as well, specifically in two different regimes of
motion. The first of these is the case of perturbed circular
motion, and the second is in the weak-field regime. By
considering numerical solutions, we see that a generic
motion in the nonperturbative case consists of a family of
deformed hypocycloids.
While the study of charged particles in strong gravita-

tional and magnetic fields are typically of astrophysical
interest, the highly ordered motion with finely tuned
parameters considered in this paper is perhaps more of a
mathematical interest instead. To this end, it may be
interesting to study the mathematical connections between
hypocycloids and the equations of motion of the Melvin
spacetime. As particle motion is typically studied to reveal
the underlying geometry of a spacetime, the fact that the
motion here is hypocycloids may yet hint at something
about the geometry of the Melvin universe.*yenkheng.lim@gmail.com
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The rest of this paper is organized as follows. In Sec. II,
we review the essential features of the Melvin spacetime
and derive the equations of motion for an electrically
charged test mass. Subsequently, in Sec. III, we consider
the perturbation of circular orbits. This was already briefly
studied by the present author in a short subsection in
Ref. [21]. Here, we will review the earlier results and
provide some additional details. In Sec. IV, we show that
trajectories in the weak-field regime correspond precisely
to hypocycloids and also show the study of numerical
solutions beyond the weak-field regime. A brief discussion
and closing remarks are given in Sec. V. In Appendix, we
review the basic properties of hypocycloids.

II. EQUATIONS OF MOTION

The Melvin magnetic universe is described by the metric

ds2 ¼ Λ2ð−dt2 þ dr2 þ dz2Þ þ r2

Λ2
dϕ2;

Λ ¼ 1þ 1

4
B2r2; ð1Þ

where the magnetic flux strength is parametrized by B. The
gauge potential giving rise to the magnetic field is

A ¼ Br2

2Λ
dϕ: ð2Þ

The spacetime is invariant under the transformation

B → −B; ϕ → −ϕ: ð3Þ

Therefore, we can consider B ≥ 0 without loss of
generality.
We shall describe the motion of a test particle carrying an

electric charge e by a parametrized curve xμðτÞ, where τ is
an appropriately chosen affine parameter. In this paper, we
will mainly be considering timelike trajectories, for which τ
can be taken to be the particle’s proper time. The trajectory
is governed by the Lagrangian L ¼ 1

2
gμν _xμ _xν þ eAμ _xμ,

where overdots denote derivatives with respect to τ. In
the Melvin spacetime, the Lagrangian is explicitly

L ¼ 1

2

�
Λ2ð−_t2 þ _r2 þ _z2Þ þ r2

Λ2
_ϕ2

�
þ eBr2

2Λ
_ϕ: ð4Þ

Since ∂t, ∂z, and ∂ϕ are Killing vectors of the spacetime,
we have the first integrals

_t¼ E
Λ2

; _z¼ P
Λ2

; _ϕ¼Λ2

r2

�
L−

eBr2

2Λ

�
; ð5Þ

where E, P, and L are constants of motion which we shall
refer to as the particle’s energy, linear momentum in the z
direction, and angular momentum, respectively.

To obtain an equation of motion for r, we use the
invariance of the inner product of the 4-velocity gμν _xμ _xν¼
ϵ. For timelike trajectories, one can appropriately rescale
the affine parameter such that ϵ ¼ −1. Inserting the com-
ponents of the metric, this gives

Λ4 _r2 ¼ E2 − P2 − V2
eff ; ð6Þ

where V2
eff is the effective potential

V2
eff ¼

Λ4

r2

�
L −

eBr2

2Λ

�
2

þ Λ2: ð7Þ

Another equation of motion for r can be obtained by
applying the Euler–Lagrange equation d

dτ
∂L
∂ _r ¼ ∂L

∂r , which
leads to a second-order differential equation

̈r ¼ −
Λ0

Λ
_r2 þ ðP2 − E2Þ Λ

0

Λ5
þ 1

r3

�
1 −

rΛ0

Λ

��
L −

eBr2

2Λ

�
2

þ eBΛ
r

�
1 −

rΛ0

2Λ

��
L −

eBr2

2Λ

�
; ð8Þ

where primes denote derivatives with respect to r.
Another useful equation can be obtained by taking dr

dϕ ¼ _r
_ϕ
,

which gives

�
dr
dϕ

�
2

¼ r4ðE2 − P2 − V2
effÞ

Λ8ð1 − eBr2
2Λ Þ2 : ð9Þ

To obtain the trajectory of the particle, one can solve either
Eq. (8) or (6) to obtain r. Along with the integrations of
Eq. (5), one completely determines the particle motion.
We note that the metric is invariant under Lorentz boosts

along the z direction. Therefore, we can always choose a
coordinate frame in which the particle is located at
z ¼ constant. This is equivalent to fixing P ¼ 0 without
loss of generality. Furthermore, the equation for _ϕ in Eq. (5)
is invariant under the sign change L → −L if the trans-
formation is accompanied by Eq. (3). Therefore, we shall
consider L ≥ 0 without loss of generality as well.
For an appropriately chosen range of E and L, the

allowed range of r can be specified by the condition
that _r2 ≥ 0, or, equivalently, E2 − V2

eff ≥ 0. We denote this
range by

r− ≤ r ≤ rþ; ð10Þ

where r� are two positive real roots of the equation
E2 − V2

eff ¼ 0. For given values of B, e, and L, the
minimum of V2

eff gives the circular orbit r ¼ r0, which

is the root of dðV2
effÞ

dr ¼ 0, where
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dðV2
effÞ

dr
¼ 4þ B2r2

128r3
½ð3B2r2 − 4Þð4þ B2r2ÞL2

− 12B3r4eð4þ B2r2ÞL
þ 4B2r4ð8þ 3r2B2e2 þ 4e2Þ�: ð11Þ

An important quantity for the context of this paper is the
value of r where _ϕ vanishes. Denoting this value as r�, we
have, using Eq. (5),

L ¼ eBr2�
2Λ�

↔ r� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

Bð2e − LBÞ

s
; ð12Þ

where we have denotedΛ� ¼ 1þ 1
4
B2r2�. Given r�, one can

determine L from above, or vice versa. We note that (12)
requires e and L to carry the same sign. Since we have used
the symmetry of the spacetime to fixL ≥ 0, the existence of
r� then requires e ≥ 0 as well. Substituting Eq. (12) into
(11), we find

dðV2
effÞ

dr

����
r¼r�

¼ 4eB
ffiffiffiffi
L

p

2e − LB
¼ eB2r2�ffiffiffiffi

L
p :

As e and L are both positive, the above equation
shows that r ¼ r� must lie within the range where V2

eff
has a positive slope, which is r� ≥ r0. Another quantity of
interest is the value of V2

eff at r ¼ r�. We shall denote this
as E2� ¼ V2

eff jr¼r�
We now briefly explain the significance of the quantity

r�, using a representative example of B ¼ 0.04, e ¼ 2, and
L ¼ 10 shown in Fig. 1. For L ¼ 10, we use Eq. (12) to
obtain r� ≃ 1.6667.1 Now, for different choices of E, the
resulting range (10) may or may not contain r�. There are
three possible cases.
In the first case, we have r� ¼ rþ. This occurs when the

particle carries an energy E ¼ E�. In this case, _ϕ vanishes
the moment it reaches maximum radius where _r ¼ 0. The
orbit forms a sharp cusp at r ¼ rþ, as the one shown in
Fig. 1(b). In the case r− < r� < rþ, the derivative _ϕ will
change sign upon crossing r ¼ r� and change again on its
return crossing. This results in the orbit curling up into a

coil-like structure, shown in Fig. 1(c). Finally, for r� > rþ,
the point r� is not accessible by the particle. Therefore, _ϕ
does not vanish. Rather, it oscillates between finite, non-
zero values. The resulting orbits have a sinusoidal appear-
ance such as in Fig. 1(d).

III. PERTURBATIONS OF CIRCULAR ORBITS

The equations of motion can be solved by r¼ constant¼
r0, corresponding to circular orbits. To satisfy (8) and (6),
the energy and angular momentum are required to be

E2 ¼ ð4Lþ 2eBr20 − LB2r20Þð4L − 2eBr20 þ LB2r20Þð4þ B2r20Þ3
512B2r40

; ð13Þ

L ¼ 2ð3B2er20 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2 þ 8 − 6B2r20

p
Þr20B

ð3B2r20 − 4Þð4þ B2r20Þ
: ð14Þ

Equivalently, Eq. (14) can be obtained by solving (11) for
L, then substituting the results along with _r ¼ 0 into (6) to

obtain E2. In the following, we shall take the lower sign for
(14), as this is the case that will be related to hypocycloid
motion of interest in this paper.
Next, we perturb about the circular orbits by writing r in

the form

rðτÞ ¼ r0 þ εr1ðτÞ: ð15Þ
1We shall use the symbol ≃ to indicate that the displayed

numerical values are precise up to five decimal places.

1.26

1.22

1.20

(a) (b)

(c) (d)

FIG. 1. Examples of orbits with hypocycloidlike behavior, with
B ¼ 0.04, e ¼ 2, and L ¼ 10. For this value of angular momen-
tum, r�¼16.66667, and E2� ¼V2

effðr�Þ¼ 1.2346. Figure 1(a)
shows the effective potential as a function of r, and Figs. 1(b),
1(c), and 1(d) show orbits with energies E ¼ E�, E > E�, and
E < E�, plotted in Cartesian-like coordinates X ¼ r cosϕ,
Y ¼ r sinϕ. The two black dotted circles are r ¼ �, the boun-
daries of the ranges of allowed r where _r2 ≥ 0. The blue dashed
circles are r ¼ r�.
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Further expressing E and L in terms of e, B, and r0 via (13) and (14), expanding Eq. (8) in ε, we find that the first-order
terms describe a harmonic oscillator,

̈r1 ¼ −ω2r1; ð16Þ
where

ω2 ¼ 2ð3B6r60L
2 − 12eB5r60Lþ 12e2B4r60 − 16B2r20L

2 þ 128L2Þ
r40ð4þ B2r20Þ3

: ð17Þ

Subsequently, we expand (5) to obtain

_ϕ ¼ β0 − β1εr1 þOðε2Þ; ð18Þ

where

β0 ¼
ð4Lþ LB2r20 − 2eBr20Þð4þ B2r20Þ

16r20
; ð19aÞ

β1 ¼
16L − LB6r40 þ 2eB3r40

8r30
: ð19bÞ

In particular, β0 is the angular frequency of revolution of
the unperturbed circular motion (the cyclotron frequency.)
With this, we find that the solution to Eqs. (15) and (18) are

r ¼ r0 þ ε cosωτ þOðε2Þ; ð20aÞ

ϕ ¼ β0
ω
ðωτ − ζ sinωτÞ þOðε2Þ; ð20bÞ

where

ζ ¼ β1ε

β0
: ð21Þ

Neglecting the terms second order in ε and beyond,
we have the equation of a family of trochoids parametrized
by ζ. Recalling the standard description of trochoids, the
case ζ > 1 describes the prolate cycloid, ζ < 1 describes
the curtate cycloid, and ζ ¼ 1 corresponds to the common
cycloid.
Recall that the standard cycloid is formed by the locus of

a point on a circle rolling on a flat plane. In the present
case, this “plane” is not flat but rather a large circle of
radius ∼r0, and it only approximates a flat plane for orbits
with ε ≪ r0. Figure 2 shows the zoomed-in sections of
perturbed circular orbits about r0¼6 for a spacetime of
magnetic flux parameterB¼0.1 and various values of e. The
circular orbits are perturbed by λ ¼ 0.01 around r0 ¼ 6. We
see that, depending on the charge of the particle, the
perturbed orbit can either be a common cycloid
[e ¼ 18.068, Fig. 2(a)], prolate cycloid [e > 18.068,
Fig. 2(b)], or curtate cycloid [e < 18.068, Fig. 2(c)].
As ϕ evolves across a period of 2π, the number of r

oscillations is approximately

n ¼ ω

β0
: ð22Þ

We can calculate n for the examples shown in Fig. 2. For
the parameters giving the common cycloid in Fig. 2(a), we
have n ≃ 506.1. For prolate cycloid of Fig. 2(b), it is
n ≃ 749.4. Finally, for the curtate cycloid in Fig. 2(c),
n ≃ 349.4. In the regime of perturbed circular orbits, the
quantity n defined in (22) is the number of cusps formed as
ϕ goes through one period of 2π.
Of course, the locus of a point on a circle rolling inside a

larger circle is also well-known curve called the hypotro-
choid. For the rest of the paper we shall focus on the case of
the common hypocycloid, which is the analogue to the

(a)

(b)

(c)

FIG. 2. Sections of perturbed circular orbits about r0 ¼ 6 for
B ¼ 0.1 and various e. Here, we take λ ¼ 0.01, and the angular
momenta of these orbits are exactly equal to its unperturbed case
calculated with (14), whereas the energies of the orbits are
obtained by solving (6) for E. As in Fig. 1, the black dotted arcs
denote the boundaries of the allowed range r− ≤ r ≤ rþ, and the
blue dashed arc indicates the point r ¼ r� where _ϕ vanishes.
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common cycloid and is also characterised by the occurence
of sharp cusps. In the next section, we will show how the
hypocycloid can be extracted from the equations of motion
beyond the regime of perturbed circular orbits.

IV. HYPOCYCLOIDLIKE TRAJECTORIES

Like their analogs in cycloids, the hypocycloids are
characterized by their trajectories having sharp cusps at
maximum radius. In terms of the equations of motion,
this corresponds to _r and _ϕ being zero simultaneously. In
other words,

rþ ¼ r�: ð23Þ

In this case, the required value of E for the orbit to be a
common hypocycloid is obtained by substituting r ¼ rþ ¼
r� into Eq. (6). At this position, the radial velocity is zero.
Therefore, we put _r ¼ 0 and solve for E to obtain

E ¼ Λ�: ð24Þ

Having the energy and angular momentum fixed by r�, the
equations of motion now become

�
dr
dϕ

�
2

¼ 4r4

e2B2Λ4ðr2�Λ�
− r2

ΛÞ

�
Λ2�
Λ4

−
1

Λ2
−
eB
2r2

�
r2�
Λ�

−
r2

Λ

��
:

ð25Þ

When the magnetic field is weak, we will now show that the
trajectory can be approximated by hypocycloids. To this
end, we take B to be small while keeping e sufficiently
large so that the gravitational effects of the magnetic field is
reduced while keeping the Lorentz interaction on the
charged particle significant. Therefore, we introduce the
parametrization

B ¼ gλ2; e ¼ q
λ
; ð26Þ

for some constants g and q;¼ and expand in small λ. Then,
Eq. (6) becomes

_r2 ¼ g2λ2
�
−
1

4
ðq2 þ 2λ2Þr2 þ 1

2
ðq2 þ λ2Þr2þ −

q2r2þ
r2

�
þOðλ6g4q2Þ

¼ 1

4
g2λ2ðq2 þ 2λ2Þ 1

r2
ðr2þ − r2Þ

�
r2 −

r2þq2

q2 þ 2λ2

�
þOðλ6g4q2Þ; ð27Þ

while the equation of motion for ϕ gives

_ϕ ¼ 1

2
gqλ

r2þ − r2

r2
þOðg2q2λ6Þ; ð28Þ

and Eq. (25) is similarly expanded in small λ to become

�
dr
dϕ

�
2

¼ −r2 þ 2r4

r2þ − r2
λ2

q2
þOðg2λ4Þ: ð29Þ

Equivalently, one could also obtain Eq. (29) by dividing
_r2= _ϕ2 using the expressions from (27) and (28) while
neglecting the higher-order terms and rearranging.
Ignoring the higher-order terms, Eqs. (27), (28), and (29)

are precisely the standard equations of the hypocycloid
given in Eqs. (A3), (A4), and (A5), upon the identifying the
parameters as

2λ2

q2
¼ r2þ − r2−

r2−
¼ 4ðn − 1Þ

ðn − 2Þ2 ; ð30Þ

gqλ ¼ 2r−
rþ − r−

: ð31Þ

In the notation of Appendix, we recall that the hypocycloid
is a curve traced out by a point sitting on a circle of radius b
rolling inside a larger circle of radius a ¼ bn. If n is an
integer with n ≥ 2, we get a periodic hypocycloid with n
cusps. In terms of r�, we have r− ¼ rþ − 2b and rþ ¼ bn.
Furthermore, as e ¼ q

λ, Eq. (30) leads to

e ¼ n − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn − 1Þp : ð32Þ

In the regime of small λ, this gives the required charge e for
the particle to execute a periodic hypocycloid with n cusps.
A straight line segment is technically a “hypocycloid”

with n ¼ 2. By Eq. (32), this will be the trajectory of a
neutral particle with zero angular momentum undergoing
radial oscillations about axis of symmetry in the Melvin
universe, such as in Fig. 3(a). For n ¼ 3, Eq. (32) tells us
that a particle with charge e ¼ 1

2
traces the shape of a

hypocycloid with three cusps, called a deltoid. [See

Fig. 3(b).] For n ¼ 4, we have a particle with charge e ¼ffiffi
6

p
3
tracing out an astroid, which is a hypocycloid with four

cusps. [See Fig. 3(c).] This follows higher n.
To summarize, one can obtain hypocycloid trajectories as

follows. Given a choice of r� ¼ rþ and n, the requisite
energy and angularmomentumare calculated fromEqs. (24)
and (12). The charge of the particle is fixed by Eq. (32). One
also has to choose themagnetic field strengthB so that terms
of order Oðe2B2Þ are sufficiently small. In this way, the
higher-order terms of Eqs. (27), (28), and (29) can be
neglected. This ensures that the equations of motion hold
up to reasonable precision as hypocycloid equations.
We can verify the above arguments by solving the full

nonperturbative equations of motion numerically. In other
words, for a choice of r�, n, and a small B, we integrate
Eqs. (8) and (5) using a fourth-order Runge-Kutta method.
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In Fig. 3, we obtain the trajectories for B ¼ 0.001 and
r� ¼ rþ ¼ 6. For these values, the deviation of the
trajectory from being a true exact hypocycloid is of
Oðe2B2Þ ∼Oð10−5Þ. With this relatively small error, the
visual appearance of the orbits in Fig. 3 indeed resembles
the standard hypocycloid.
Next, we shall explore the shape of the orbits as we

increase B to beyond the weak-field regime. As B is
increased, the higher-order corrections in Eqs. (27), (28),
and (29) become important and will no longer coincide
with the hypocycloid equations. Nevertheless, we are still
able to solve the non-perturbative equations numerically
and explore the behavior of the orbits.
As demonstrated in Fig. 4, as B increases, the hypo-

cycloids are continuously deformed. The innermost curve
curve is the one that most closely approximates hypocy-
cloids with B ¼ 0.001 and e given by Eq. (32). The
subsequent curves are obtained by increasing B and tuning
e manually until we obtain the periodic orbit with desired
number of cusps. We see that as B increases the segments of
curves joining two cusps are deformed from a concave
shape into a convex one. Furthermore, the range of allowed
radii r− ≤ r ≤ rþ becomes narrower as B increases, until
we see that as the outermost orbit (with the largest B) begin
to resemble a cicular orbit. In the case of Fig. 4, the
outermost orbit depicted is for B ¼ 0.6.

In fact, we can check that these orbits of large B
correspond to the perturbed circular orbits of Sec. III.
We do so by checking that the numerical (nonperturbative)
solution matches the perturbed solution of Sec. III. For
instance, let us take the n ¼ 3 case shown in Fig. 4(a). The
outermost n ¼ 3 orbit at B ¼ 0.6 is formed by a particle
carrying charge e ≃ 10.6204. The maximum and minimum
radii of the motion are rþ ¼ 6.0 ¼ r� and r− ≃ 5.7674,
respectively. We shall treat this as a reasonably narrow
range such that the orbit is regarded as a perturbed circular
orbit about r0 ≈

rþþr−
2

≃ 5.8837, and the perturbation
parameter is ε ≈ rþ−r−

2
≃ 0.1163. Inserting these values into

Eqs. (22) and (21), we obtain

n ≃ 3.0057; ζ ≃ 1.0214; ð33Þ
which is consistentwith a common cycloid (ζ ¼ 1) perform-
ing three oscillations in r within one angular period, thus
forming n ¼ 3 cusps.
Performing a further check for the n ¼ 4 orbit of

Fig. 4(b), we have B ¼ 0.6, e ≃ 12.2849. The maximum
and minimum radii are rþ ¼ 6.0 ¼ r� and r− ¼ 5.8275, for
which we take r0 ≃ 5.9138 and ε ≃ 0.0862. Inserting these
into Eq. (22) and (21), we find

n ≃ 4.0041; η ≃ 1.0154; ð34Þ
which is consistent with a common cycloid performing
four oscillations in r within one angular period, resulting in
n ¼ 4 cusps.
Similar checks can be performed for higher n. Hence, we

conclude that the periodic orbits with sharp cusps (rþ ¼ r�)
form a family of deformed hypocycloidal curves. One end
of this family consists of hypocycloids in the weak-field
regime and on the other end are common cycloids as the
perturbation of circular orbits.

V. CONCLUSION

In this paper, we have studied a particular type of motion
performed by a charged particle in the Melvin spacetime.

(a) (b)

FIG. 4. Sequence of hypocycloidlike orbits of increasing B.
Starting from the innermost orbits to the outermost one, the
corresponding values of B are 0.001, 0.16, 0.20, 0.25, 0.30, 0.40,
and 0.60.

(a) (b)

(d)(c)

FIG. 3. Hypocycloid trajectories for n ¼ 2;…; 5, and their
corresponding charges e determined from Eq. (32). The param-
eters used are B ¼ 0.001, rþ ¼ r� ¼ 6. The energy and angular
momentum of each orbit are obtained from Eqs. (24) and (12),
respectively. The dotted circles are the boundaries of the range for
r− ≤ r ≤ rþ of each trajectory.
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It was found that in two different regimes the trajectory
takes the shape of a hypocycloid. The first regime where
this occurs is in the class of perturbed circular orbits [21],
and the second is in the weak-field approximation.
Particularly, in the latter case, we find that the particle’s
charge e is related to the number of cusps n of the
hypocycloid by Eq. (32).
The trajectories in the two regimes are continuously

connected by a family of deformed trajectories that still
retain the features of the hypocycloid, namely, its configu-
ration of cusps. This family of intermediate solutions is
obtained nonperturbatively via numerical solutions. We
have seen that as B increases beyond the weak-field regime,
the hypocycloids are deformed until the orbital parameters
arrive at the regime of hypocycloids in the perturbed
circular orbit regime.
As the hypocycloid equations were extracted from two

different perturbations of the equations of motion in the
Melvin spacetime, one naturally wonders whether there are
any more interesting connections to other mathematical
properties of the hypocycloids. To briefly speculate along
this line of thought, it was recently noted that hypocycloids
are related to the positions of eigenvalues of SUðnÞ in the
complex plane [34]. It may be intriguing to wonder whether
this carries any implications in the context of charged
particle motion in the Melvin spacetime.
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APPENDIX: PARAMETRIC EQUATIONS
OF THE HYPOCYCLOID

Consider a disk of radius b rolling without slipping
inside a larger circle of radius a ¼ bn, where n > 1. Let P

be a point on the edge of the disk at distance b from its
center. The curve traced out by P as the disk rolls in the
larger circle is a hypocycloid. In Cartesian coordinates, its
parametric equations are

x ¼ b½ðn − 1Þ cos τ þ cosðn − 1Þτ�;
y ¼ b½ðn − 1Þ sin τ − sinðn − 1Þτ�; τ ∈ R: ðA1Þ

Let r− and rþ be its minimum and maximum distance from
the origin. In terms of these parameters,

b ¼ rþ − r−
2

; n ¼ 2rþ
rþ − r−

: ðA2Þ

We convert to polar coordinates with x ¼ r cosϕ and
y ¼ r sinϕ. In terms of r and ϕ, one can show that

dr
dτ

¼ rþ
rþ − r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þ − r2Þðr2 − r2−Þ

p
r

; ðA3Þ

dϕ
dτ

¼ r2−
rþ − r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2

p
r2

: ðA4Þ

Eliminating the parameter t, we have

�
dr
dϕ

�
2

¼ r2þ
r2−

r2ðr2 − r2−Þ
r2þ − r2

¼ −r2 þ r2þ − r2−
r2−

r4

r2þ − r2−

¼ −r2 þ 4ðn − 1Þ
ðn − 2Þ2

r4

r2þ − r2−
; ðA5Þ

where the second line follows from using Eq. (A2) to
express r− in terms of n and rþ, which then results in
cancellations of factors of rþ.
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