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Dynamical analysis of self-gravitating stars
in modified Gauss-Bonnet gravity

M. Z. Bhatti,:k Z. Yousaf ,T and A. Khadim®*
Department of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore-54590, Pakistan

® (Received 27 February 2020; revised manuscript received 1 May 2020; accepted 5 May 2020; published 15 May 2020)

In this paper, we have continued the work of Herrera et al. [1] in f(G) gravitational theory. For this
purpose, a spherically symmetric fluid exhibiting locally anisotropic pressure along with the energy
density, is taken under consideration. The perturbation scheme is imposed on modified field equations and
the dynamical equations. The collapse equation is derived from these perturbed equations which assists to
disclose the instability zone under both Newtonian and post-Newtonian constraints. It is wrapped up by
concluding that dynamical instability is interpreted by the adiabatic index I" which relies on the anisotropic
pressure, energy density, and the dark source terms due to f(G) gravity.
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I. INTRODUCTION

General relativity (GR) has become a vital constituent of
the present era which demonstrates the zigzagging of space
time. This is a most alluring theory which explains all the
gravitationally affected phenomena, such as motion of the
galaxy cluster, behavior of the black holes, and many such
mysteries. General relativity lends a different approach to
visualizing the Universe and different phenomena happen-
ing in the cosmos, such as motion of the planets, expansion
of the Universe, and theoretical explanation of black holes.
Various experiments, such as gravitational lensing, gravi-
tational redshift, etc., were implemented to test GR, and
this theory astonished us by maintaining its standard.
Despite a number of large applications, however, there
are some phenomena which are not fully illustrated by GR.
The interior of a black hole is one such limitation, since all
physical laws are declined at the singularity of the black
hole, as well as GR having no quantum limit and being
unable to clarify the dark matter and dark energy. So,
collectively, all these shortcomings paved a path to the
development of modified theories of gravity which could
help to explain all the queries related to dark energy and the
current cosmological model. Another incentive behind the
modified gravity is to consolidate different theories such as
Kaluza-Klein theory and string theory.

The modified Gauss-Bonnet gravity is one of the
compelling modified gravity theories. In modified
Gauss-Bonnet gravity, f(G) is the general function of
the Gauss-Bonnet with the Gauss-Bonnet invariant G, and
it helps to answer the queries related to late time cosmic
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expansion. The f(G) gravity theory illustrates dark energy
with much freedom as compared to other gravity theories.
For a suitable choice of function f, this theory can justify
the transition from a phantom to a nonphantom state. The
f(G) gravity model was initially proposed by Nojiri and
Odintsov [2] by adding some terms of Gauss-Bonnet
function f(G) to the Hilbert action which helps to analyze
various current features of cosmos. Baojiu et al. [3]
investigated the covariant and gauge invariant perturbation
equations and found that cosmological data put few
constraints on f(G) models. Felice and Tsujikawa [4]
studied the solar system constraints on a cosmologically
feasible f(G) gravity model and calculated some correc-
tions to the vacuum Schwarzschild solution. Also, they
performed some experiments for the assessment of stability
for the modifications to GR. Goheer et al. [5] presented the
decelerating power-law solutions for the particular form of
f(G) theories.

Garcia et al. [6] dealt with a special model f(G) =
a,G"+b;
a,G"+b,
cosmic acceleration by imposing weak energy conditions.
Zhao et al. [7] computed field equations and the equations
of motion to figure out a nonconserved energy momentum
tensor with the effects of the specified model, having the
product of Lagrangian density and an arbitrary function
of the Gauss-Bonnet term. Furthermore, they considered

two particular models, f(G)= Z‘gfg; and f(G) =
a3G"(1 4+ b3G™), of f(G) gravity to analyze the energy
conditions by the means of the power law solution and
equation of state of matter with @ smaller than —1/3.
Bamba et al. [8] probed the bouncing cosmology and
stability conditions for its solution by remodeling f(G)
gravity. It was also observed that unified model F(G) =

P(1)G + Q(t) helps to scrutinize the late time cosmic

of Gauss-Bonnet gravity to investigate the late time
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acceleration along with the early time bounce. Nojiri et al.
[9] constructed two action integrals, with and without
auxiliary scalars, to study cosmological reconstruction
and deceleration-acceleration transition in modified
Gauss-Bonnet gravity. It was found that this action integral
corresponds to the cosmological solutions having big bang
and big rip singularity, which contains an auxiliary field.

The constraints under which f(G) becomes cosmologi-
cally worthwhile were extracted by Felice and Tsujikawa
[10]. One of the imperative conditions for stability of late-
time de Sitter solution is d”f/d’G > 0, and it was found
that d’f/d’G — +0 for |G| = o is asymptotic behavior
of feasible models. Zhou ez al. [11] made a study of f(G)
models and tested several toy models to derive the con-
ditions for cosmologically feasible f(G) dark energy
models as geometrical constraints. As well as useful
trajectories, aping ACDM models in radiation and a matter
dominated era were also attained. Mohseni [12] studied the
effects of force acting along the four velocities of dynamic
particles in the background of modified Gauss-Bonnet
gravity. Fayaz et al. [13] examined the Gauss-Bonnet
gravity in a nonisotropic universe with the help of power
law solutions. They have explored the criteria for transition
to phantom phase and studied the stability issues of
modified gravitational models.

Rastkar et al. [14] proposed that when the Universe
enters a phantom phase, a peculiar class of f(G) has
power-law solutions irrespective of the matter dominated
and accelerating power-law solutions. Bamba et al. [15]
calculated viability conditions of some particular f(G)
models induced by energy conditions with the help of
current estimated data of deceleration parameters. Bhatti
et al. [16] performed computational simulations to check
the stable regions of some strange stars with the help of
logarithmic f(G,T) gravity, where T indicates the trace
of matter tensor. Yousaf [17,18] examined the stability of
collapsing stars, and, after evaluating structure scalars,
the role of the Raychaudhuri equation is examined in
this context.

A physical model is worthwhile only if it is stable. The
preeminent eagerness of a star is to maintain its stability
and so it undergoes the collapse or expansion due to the
struggle between the interstellar pressure and gravitational
pull in order to linger in hydrostatic equilibrium. Chan et al.
[19] studied the influence of anisotropy and radiation on
dynamical instability of a spherical system and found that
stability of the system is highly affected due to the
influence of anisotropy and radiations. Chan et al. [20]
explored the influence of shear and shearing viscosity on
dynamical instability of the spherical fluid. They found that
the fluid with shear collapses rapidly where viscosity
decreases the instability. Herrera et al. [21] calculated
the dynamical instability ranges for the spherically sym-
metric nonadiabatic fluid configuration in terms of I
Moreover, they formulated that instability of the fluid

increases or decreases due to the Newtonian (N) corrections
and the relativistic terms due to dissipation, respectively.

Chan et al. [22] calculated how the dynamical instability
is affected by the heat flow and found the range of stability
affected by the dissipation and relativistic corrections.
Alonso et al. [23] investigated the heat conduction for
the Lorentz gas by both the analytical and numerical
method and selected such crucial dynamical characters
which are related to the entire hyperbolic dynamics.
Herminghaus [24] discussed that if the working scenario
of the two conducting plates is different then the dielectric
between them undergoes dynamical instability. Moreover,
he suggested that predicted output is a result of the wave
intensifying. Herrera et al. [1] performed stability analysis
in order to calculate stability regimes through a perturba-
tion scheme. Bhatti with his collaborators extended their
results and investigated the collapse rate for those relativ-
istic systems that maintain plane [25,26], spherically
symmetric [27,28], cylindrically symmetric [29,30], and
axially symmetric [31] geometries in their evolution with
modified gravity.

The formulation of the paper is as follows. In Sec. II, the
field equations and dynamical equations for spherically
symmetric anisotropic fluid in the background of f(G)
gravity are explored. The perturbation scheme is introduced
for metric and material variables and applied to field
equations in Sec. III. In Sec. IV, the perturbation is applied
on the dynamical equations, and consequently the collapse
equation is calculated. In Sec. V, the range of stability is
discussed at N and post-Newtonian (pN) eras.

II. FLUID DISTRIBUTION AND
FIELD EQUATIONS

In order to continue a systematic investigation of
dynamical instability, we assume the fluid distribution to
be spherically symmetric and anisotropic. For such con-
figuration, the line element can be written as

ds* = —A2df> + B?dr* + R*(d#* + sin® 0d¢?), (1)

where A(t,r),B(t,r), and R(z,r) are metric coefficients.
The energy-momentum tensor depicts the anisotropic fluid
distribution of the normal matter, mathematically given as

Ty =W+ PL)VoVs+Prgos+ (Pt Pl)xaxp (2)

where 4 is the energy density, P, the radial pressure, P the
tangential pressure, V* the four-velocity of the fluid, and y,,
is unit four-vector along the radial direction. The unit four-
vectors satisfy the following identities

V(lv(l = -1 s Z{l){(l = ]’ )({IV{I =0. (3)
We define the four-acceleration and the expansion of the
fluid as
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g = Va;ﬂvﬂ’ 0=V, (4)

where; represents covariant derivative. The shearing motion

in the fluid can be characterized by the shear tensor whose
mathematical form is given by

1
Oup = V(a;ﬁ) + (1(0,‘//;) - §®(gaﬁ + VaVﬁ). (5)
The four-vectors in comoving formalism satisfy
Ve =Alsg, x* =B84 (6)

The nonzero components of four acceleration are evaluated
to be

where prime represents the derivative with respect to r
while the expression for expansion scalar is found to be

@:j‘<§+2§>, (7)

where the dot represents the derivative with regard to ¢. In a
similar manner, the nonvanishing components of shear
tensor are found as

2

2 1
o1 = §B2U 0y = 0338in 77 0 = —gR o, (8)

while the shear scalar turns out to be

D;/)’ - 4Rapﬂ5vpvaf6 + 4(Rpﬁgaa -
1
+ 2R(gaﬂgap - gaogﬂp)v/)vﬂfG + 5 (GfG - f)ga/}’

with Ricci tensor R4, Ricci scalar R, Riemannian tensor R

appio>

S o

Now, we will take the modified Gauss-Bonnet gravity
[f(G)] to study its effects on the dynamical analysis of
celestial objects. This theory is viable because it passes the
solar system tests under some reasonable choice of f(G)
model and may describe the late-time cosmic expansion
[2]. This theory manages to discuss the quintessence,
crossing acceleration, cosmological constant with a chance
to transit between accelerated and decelerated phases in a
quiet comprehensive way. The Einstein-Hilbert action can
be modified in this gravity theory as

s= [ axyma(3 R+ 16)) + Sulguw). (10)

where k = 8z, and S, is the matter action indicating the
matter field depending upon the geometry, while G =
R? — 4R, R" + R,z R** is the 4-dimensional topologi-
cal invariant named as Gauss-Bonnet invariant. Here, a
specific function f(G) = G + aG? of family f(G) is taken
under consideration. Now, by varying the above action
integral corresponding to the metric tensor, we obtain
following modified field equations as:

Gop + Do = Ty, (11)
where Gy = Rop — %Rgaﬁ is the Einstein tensor, and
Rpagaﬂ - Raﬁgap + Raagﬂp)vvafG
(12)

and the metric tensor g,;. The nontrivial components of

modified field equations with Egs. (1), (2), (6), and (11) are given as

B R\R [A\2[_R" [R\2
T- =uA2= (2242 )= (Z2) 2=+ (=) =
st = (2 1) 2 (3) 2o (%)

B'R' B\?
22 (2
ol

A2 . ~
_T(GfG = +xfe+xf¢+xfc+xfe (13)
R BR RA . ”
Ty =0= _2<E_EE_EX> +mfe+mfec+mnfc (14)
e (BYLR_(LA_R\R A R\R
era (B (A8 (452
B\2 B2 . .. .
_<E> + 5 (Gf = )+ if'o + dafo+ dafe+ bl (1)
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R\2[B R A(B R\  BR
Ty =T3sin™20 = P R? = — —t-—=(=+=)+=3
> A) |B"R A\B'R) BR

" R// A/ B/ R/ B/ R/ R2 . .
+ <§> {K+f—x<§—i> _EE] +5(Gfe=f) twife +vaf'c twsfo tyaf'c.  (16)

where y;,7;, ¢;, and y; are defined in the Appendix. The corresponding Ricci scalar is given as

= (2R"BRA® — 2RB3RA — BB2R?A 4+ A”BR*A* — R*B3A — 2R BRAB? + 2R A B°R + R?BA® — 2R'B'RA3
+ BAR?B? — BA'R?A — A3B3 + 2R'A'BRA?). (17)

The mass function m(z, r) which describes the total energy inside the radius r is provided by Misner-Sharp [32]. For our line

element, it turns out to be
R[/R\> [R\2
=—I[=) = (= 11. 1
SHIONOR 8

The nontrivial components of Bianchi identities using Eq. (11) turn out to be

1 B Rl 1 A B R
T =D )Wy =——|i P42 +P)~| = | (25 +5s+2-07
( N/} N/} ) a A[ﬂ+(ﬂ+ r)B+ (/’l+ J.)R:| A|:< A3+AQB+ RA2>

2

A? . . 11 . A2 . . .
X[T(ch—f)—)hf'—)(zfﬂc -x3f'c —)(4fc] +p |:AA(GfG_f)+7(GfG+GfG_f)
_)(.lj/G_)flf./G_j(Zf/é_)(Zf.”G -x3f'G _XSf/G_).(4fG_Z4fG:|

1 . . . .
) [—'7'1fG -mflc— ﬂ'zf’c —maf"c—1'sf'¢— ’73f”G]

B R : :
+ <_ - 2—> [=mfe—mf'c—mfcl - B

B} B’R

B[ B . . . : /
+E{_T(ch—f)—¢1fc—¢2fc—¢3fc—¢4fa}
2R[ R? . )
+F|:_7(GfG_f)_l//lfG_l//2f”G_l//3fG_l//4f/G:|:| =0, (19)
(T—a[)’ —a[)’ /_'_Z(P p )Rl _'_l i[ f i f +7 f/ + j/ +7 j/ + f/]
B A 3 BA2711G’71G’12G’12G’73G’73G

. . 2B A’ 2R’
( RA2> ’11fc—'72flc—’73flc]+<—F+E+W>
2 .
( S (Glo=f) = dif 6= b6 = dife - ¢4f/c>
2
+ 3 (<BB(Gfo— ) (G fa = Gfl~ f)
~ ¢\ flo—bif"c—Vafo—daf 6 — df'c — Pafe — daf"c)

A (A ;! 1 / .
+F <—(ch - =xif'¢=xf"c—x3fc —)(4fc>
R (R? . . . ,
+2R3< (Gfe - )+l//1fc+l//2fc+ll/3fc+ll/4fc>}—0- (20)

The extra curvature ingredients appearing in the above equations are given in the Appendix.
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III. THE PERTURBATION SCHEME

In this section, we will apply perturbation on the field
equations and the dynamical equations, which is the small
change in the physical system. Here, our concern is check
the stability of the system against the radial perturbation
scheme. So, initially, we consider that fluid and geometry is
described only by radial dependent coordinates; i.e., the
system is in static equilibrium. We also assume that with the
passage of time all the quantities have both radial and time
dependence. Also, we consider that 0 < e <« 1.

We are dealing with the nonlinear partial differential
equations. In order to have deep analysis to see the role of
radially dependent variables on the dynamical instability of
relativistic matter content, we use a particular mathematical
method to solve the equations. In literature, there are very
few methods of solving nonlinear differential equations;
among them there is a method of transforming subsequent
equations into separable forms [33,34]. The mathematical
profile of the f(G) model after a time =0 can be
expressed in a separable form. Therefore, we have

A(t.r) = Agr + eT(t)a(r), (21)
B(t.r) = Bo(r) + eT(1)b(r), (22)
R(t.7) = Ro(r) + eT()c(r). (23)

p(t,r) = po(r) + ep(t. r), (24)
P,(t.r) = PrO(r) + ¢P,(1.7), (25)

Py(t.r) =Pio(r) +eP (t.r), (26)

m(t, r) = mo(r) + em(t. ), (27)

O(r.r) = ed(1. r), (28)

- 1) ()0 - ()

o(t,r) =eal(t,r), (29)
G(t,r) = Gy(r) + €T (t)g(r), (30)
f(t.r) = Go(1 + aGy) + €Ty(1 + 2aGy).  (31)

We assume that the spherically symmetric anisotropic
system with an environment of f(G) gravity is in a static
state at a very large past time that can be described through
an equation 7(—o0) = 0, thereby putting f(G) as a radial
dependent function. After this, the system equipped with
f(G) dynamics enters in the present state with the passage
of time and continues to collapse, and moves on by
decreasing its areal radius.

Where the quantities with subscript zero only depend
on r, Egs. (13)-(16) by using Egs. (21)—(31) for static
configuration turn out to be

1 BIO CIGO2
2r—+B2-1}) -
o (rBy)? ( "B, P > 2
8aGj 8B(aG
——2(1 = By? 00 (By>=3), (32
rZBO4( 0) rzBO5 ( 0 ) ( )
» 1 Ay _po 1) 4 aGy?
r—_
OBy \ T A, 2
8aG/ AL By2A!
20[ 2<_3_0+M>’ (33)
r B() AO AO
po_ L (A By By A\, oGy’ SakiGy
L0 302 AO I"BO AOBO Aor 2 }"A()BO4
8
+ W (36(36146(;6 — aAgBOG6), (34)

and for perturbed configuration, from Egs. (13)—(16),
we have

b ¢ b
— 2\ = 2punT—
By r)] o By

bGy2 4 c\ bGy BOZG" B) c\’ bG),
—Ta |:QG0 +B—0 —W (4I’G6’ <;> - 2B, +dc——+2¢"(1 - By? ) ) — 4}’2305 —-12rGj, - + 18— B,
b'G) G)B,? b'GLB,?
-24(3-By?)+6 Z —4c Or O _8bByG) +2 g, 0 4+ 4c”G{)BO3)} . (35)
0 0
T b b 1 T AgByA! Ag2A!By?
0=2-— () == (2= ) 5| +Bagams [AoBoAiAf — "0 ApAy By + =0
A()BO r VB() Ao r Bo }" r
/ G/ 3 2 2 A2 AN _ 2 2 A/ b86 2
+ 8(1@ A B()C +A AOB()C + br A A AOAO BO bBO
+ 8ag —T [ag + r?AgAj B—6 - A(Z)B(z) + r2A0A4 (36)
PAB] By
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. T c T [(cY A) a\' Bi(b
P,=—2-— 42— 14720} 4 (2) B2 €
AO r rBO AO AO r B() r

b Gy qT
2Pr0TB + T(Z |:gG0 + b—:| + 8 W [2]’2A6/B0 - 27’2A636

ALT / G
+ AoBo = 4rAgBy = AgB] + da -l | =12rG ) 112020 6y
B A r BO

A Ao\ [ a G)T ¢
- 6G, <A?) <Ao> - 4G, Bz —+ 2G! 32( /) <A_0> +2 132] + 16aAsz 5 (37)

P_—TCer +l i”+c”+ Af %+li’ A76+1£’+7/37/+2£
L AZ BO B(z) AO r AO BO r A6 Ao r BO AO Bo r r

b G? T TA,, Ay (a’
2P, T—+Tal ¢Gy+b—-2) —8a——— (gB,, — ¢cByG! + cB, — b) — 8« 'Gy+ ¢
et ) <o~ - - (2]

erB4

INel

T G a
0~0 0
+2Tab FAoBS + 8a FAgB] [A6Boc”G6 + 3A} B, (gf —3b 5" 'G) + b’ + Go— A ( ))

Ao
G G G| G
—A{By <g +aA— 3p-2+4d" L4 b0 —|—cG’>]

(38)
0 A Ag By
The perturbation of the expansion scalar from Eq. (7) and shear from Eq. (9) yields
_ T (b c
O=—|—+2-], 39
A <Bo i r) 9
T
=L (b _c) (40)
AO BO r

while the static parts vanish.

IV. THE COLLAPSE EQUATION

The collapse equation will help to find the stability ranges for the anisotropic fluid. By making use of perturbation on the
Bianchi identities given in Egs. (19) and (20) with Egs. (21)—(31), we obtain

1 Ay 2 Al B, 2 B2 G,
O:B—{P’m%—(,u0+P,O)A—0+;(P,O—Pl0)]—i—( 0 —2—0+—) [——0 G2 - 8a
0 0

—3A}, + B}A|
AOB?] Bg )"B?) 2 alyg 2A BZ( 0 0 )

A , Al " G 1
+ aGE =2 — 8a—2: x (A2 — AB2) — 8 3B{A] + AJB3B)) | + —5 (—aByB,G3 — aB3G,G;
ASBo{ 05 “rng ( o) aAB( 0410 B8o) B3(0‘000 aB;GoGy)

020 0
-8 G46 A3 3A2A” 6A,AL% + 2A,2ByAl Bl + 2A,AL2B% + A2A! B
“(2A332)2r30( 040" + 240" BoAy By + 240A4°B; + AgAgBy)
A2 //
<2r 04+ 2r243 2+3r2A/ Bo) (—3A%A6+A(2)B§A(’))} - 8a 2A3B = (—3AA} + AGA(B])
0
2 G2 Gy G
2 2 2 2
+ B, [r a7 —8rA AOaA3B4 + 8a B — 5 (3rAjALB) — rAOBOAg)] . (41)
1 |. . b . C .
0=—— i+ (o + Pp)T -+ 2(po + Pro)T—+DiT|, (42)
AO BO r
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_ / _ ! 1
0——{P/r+(ﬂo+Pro)T<i) + (7 + P) 704 2(Py mo—§<1—p)’ (45)
0

m:—B%[rG—B%)JF(l—Bg)%} (46)

The perturbed configuration of the Ricci scalar given in
Eq. (17) gives a second order differential equation as

where D, D,, and Dy are the dark source terms, appearing
due to f(G) gravity, and are defined in the Appendix.
Integration of Eq. (42) with regard to ¢ gives

b c follows:
/1_—[(/40+Pr0)B—+2(ﬂ0+P¢o);+Dl]T- (44)
0 T—wl =0, (47)
The linear perturbation on the mass function m(z, r) from
Eq. (18) leads to here
|
T . I S L. O Y.
rA(z) A(Z)BO rB(z) AOB% Ay B(S) A(Z)B(z) rzB(z) r238 r3B(2) r B(3) rB(3) r? Bg
LelBo DAy _d By ABy g A0By nc p Ay @y bh ok, afh |
By biAy, AgB} AiB} Ao B} r rAgB3 rAgB} rAgB} r?AyB} rA3B3

(48)

The solution of the above equation contains oscillating and nonoscillating parts corresponding to stable and unstable
configurations of the stellar interior. Since we are interested in determining the dynamical instability, we neglect one part so
that the solution takes the form as

T(t) = —exp (Vor), (49)

which corresponds to the unstable (nonoscillating) function. We consider the second law of thermodynamics which relates
P and ji via the adiabatic index as

P § P
r0 - r 10

P, =I——" g, P, =I———
Mo+ Py Mo+ Pl

. (50)
where the adiabatic index, also known as Laplace’s coefficient, is the ratio of the heat capacity at constant pressure to the

heat capacity at constant volume. We can say that specific heat measures the stiffness of the fluid. Substituting the value of ji
in Eq. (50), we get

_ b P P
P, =-T [P,O—— 2P, <M) 5—4’01)1] T, (51)
By o+ P ) r po+ Py
5 b +P c P
PJ_——I—[PJ_O—<'MO—A)> +2—PJ_0 +¢D1:|T (52)
By \po + P 1o r o+ Pio
From Eq. (47), we obtain
i
— = ws. 53
T ()] ( )

Substituting the values of s, P, and P in Eq. (43), we get the collapse equation as
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1 b P P ! !
0——{F( P 2P,0<”0+ ”)5— 0 >+(u0+Pro)x<iﬂT
B By Mo+ P/ r pot+ Py Ap

o b + P\ ¢ P,
|:(ﬂ0+Pr0)_+2(ﬂ0+PLO) + D, +F[ProB—0+2Pro<ﬁu>;+7o>}

BA Ho + Pro Ho + Pro
cy 1 b ﬂ0+P¢0>C P ﬂ
+— 2Py —PLo) (=) —2r=(Pg—+2Po [ ) 4" D )|T
B[( 0 m)(’”) V( VOBO ro(ﬂo+Pr0 r Ho+ Py !
T b + P c P
—|—2F—[ —<M>+2PLO_+¢:| + Dyws — Ds. (54)
By | "By \po + P r po+Pio

This equation has a crucial significance in determining the stable/unstable regimes of the spherical star configuration.

V. STABILITY CONDITIONS UNDER NEWTONIAN AND POST-NEWTONIAN REGIMES

In this section, we will find the stability restraints from the collapse equation with the help of the adiabatic index at
both N and pN regimes.

A. Newtonian limit

At the N approximation, we assume that geometry is defined with the flat background metric by which instability of the
system is discussed in the framework of f(G) gravity. The metric coefficients are constrained as Ay = 1, By = 1. Also, we
consider that energy density is much greater than the pressure components. So we have py > P, pty > P . Then Eq. (55)
takes the form as

o=r|(ra0+20))

which is the condition for the hydrostatic equilibrium. From this equation, we can find a constraint on the adiabatic index for
unstable regions as

0 c Py c , c\’
b+2—)=2—=(b+2=)| = (uo+Pro)a —2(Pyy—Pyo)|{ =) — Dyws — Ds,

r r r r r

(59)

(Mo + Pry)d' +2(P,g — P1o)(8) + Dywy + Dy

S Pa(b 1 29) £ 2(b + 29 (Pro — Pro)

(56)

The system will be unstable if inequality (56) holds, i.e., if the effect of the numerator term is less than the term in the
denominator. If the term in the numerator is greater than the term in the denominator then the system will be in dynamical
stability. We found that I" plays an integral role in describing the stability of the system.

B. Post-Newtonian limits

For post-Newtonian background, we choose Aqg = 1 — mg/r, By = 1 + mg/r, and relativistic corrections up to order
myg/r. For this approximation, Eq. (54) becomes

o122 ) - i)

Koo Mmoko
—l—uoa’(l _T> + 2 (dr—a)+Pyyd —b o 2ﬂ0moﬁ

-2 ) (1) +2() P2 o 1-%)

r
_27(b+2§>(Pr0_PJ_O)+D2wZ+D3' (57)

From the above equation, we can extract the unstable constraint for our stellar interior as
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re po(d' —"5% —mg L +2¢0) + Poa’ +2(%) (Pyy— Plo)

PloL+PoM+2(b+25)(Py—Plo)
my _mg o mg
Dzwz +D3 —Dl(—_7+7)

r

+ b
PloL+ P, M +2(b+25)(P,y—Pio)

(58)

where L and M are defined as

) ()
o2 2]

The anisotropic spherical system will be unstable until
inequality (58) holds. The system will be in hydrostatic
equilibrium when both numerator and denominator terms
have the same effects and the system will enter the state of
stability when the numerator term has a greater effect than
the denominator term.

VI. CONCLUSION

In this paper, we discussed a systematic analysis for a
spherically symmetric, locally anisotropic fluid which
collapses adiabatically, and we calculated the instability
ranges for such a fluid in the background of f(G) gravity.
This objective is followed by acquiring the field equations
and the dynamical equation. In order to witness the
consequences of f(G) gravity on the stability ranges, we
have considered a particular class of f(G) family, i.e.,
f(G) = G + aG>. Then the field equations and dynamical
equations are perturbed, and, after some calculations, we
get the collapse equation which helps to estimate limits of
dynamical instability. Bekenstein [35] estimated the gravi-
tational collapse of a charged fluid ball by generalizing the
Oppenheimer-Volkoff equations of hydrostatic equilibrium
and calculating a Christodoulou formula. Toyozawa and
Shinozuka [36] analyzed the local and global stabilities of
an electron within adiabatic approximation. Ori [37]

|

)(l = m (ABR/ — ABR/ + A/BR),
4 .
1) = B4R2 (AZR/Z _ R232 —AQBQ),
AR
4
YT AR

The values of ¢; arising in Eq. (15) are given as

studied the inner structure of a generic rotating black hole
by applying the small perturbation approach. Moreover,
stages of formation of the black hole and generalization of
the Price’s analysis are also deliberated.

Blondin er al. [38] deliberated the stability of the
spherical accretion shocks occurring in star formation,
core-collapse supernovae, etc. Feng et al. [39] investigated
the aspects affecting stability of the shallow tunnel face.
Mostly, dynamical instability of compact objects is
described by the adiabatic index. We conclude that
dynamical instability given by I" depends upon anisotropic
pressure, energy density, and the dark source terms of the
f(G) gravity. Moustakidis [40] analyzed stability criteria
for the white dwarfs, neutron stars, and super-massive
stars, like compact objects in a similar fashion. We
concluded that

(i) The system will be dynamically unstable until
inequalities (56) and (58) hold.

(i) The compact objects will be in hydrostatic equilib-
rium when the inequalities (56) and (58) are
violated.

It is noteworthy that if the dark source terms are eliminated
then the constraints for dynamical instability in GR can be
obtained.
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APPENDIX

The extra curvature ingredients indicated by y; appearing
in Eq. (13) are given below:

(AB’B'R> — 3A>B'R” + B'B?A> + 2R"R'BA® — 2AB>BRR' — 2ABRR'B® + 2ARB>B R' —2A'B’BRR),

(3B*BR? — A’R”B + A’B?B — 2ABRR" + 2A*B'R'R — 2ARA'BR’ + 2ABRA'R' — 2A”BRR).
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8 . . .
1 =355 (ABR ~ ABR + A'BR).
4 .. .
$2 = g CAB'ABR —2A’B'BR® + 2B R°A" — 2A° P RPA'B

+4RA*B?R" — RA2B — 4A’B*RR B +A*B°R"” — 4A*B>RR'B' — A*BY),
4
~ ASR2R? (=
+ 2A2B2A'R'R — A'B'RA2BR — 2ARB*A”R + 2A’B*RA'R' — 2A’BRA'BR'),
4
9= g W

b3 2A2B2RAR’ + AB*R® — A2 BAR” — 2AB*R R

B*R? —3A2A'R”? + A’B?A’ + 2AB?R'R — 2A R B*R' + 2ARB*R' — 2ABRB R’ +2A'BRBR).

The terms y; occurring in Eq. (16) are

4

Vi= g (A2BRR" — BRBR —A’RR'B'),
V2= g (AB?RR — RB*A R —RA?A'R’),
Vs = 53 (A’BRA'R — ABRA®R — A’BRAR" + 3RB’A B R
+ A2RB'R'A — ARBB2R — AB*RR B+A2BRRA” — A2 RA'B'R),
W (—ABRR'B® + ABRB R' —A>BRA'R" + 3RA’A'B'R’

T A
— ARB?B'R + BRB'AR +ARB*R'B — A2 BRR'A” — B*RR'A B).

The expressions of #; which pop up in Eq. (14) are given as

n = ﬁ (—A’B’BRR + A’B*RR —-AB*R*A'B + A>B*R*A'A”
— A’B2A'R? + B3R2A’A B—A’R2BB'A” + A’B*A’),
N = g (—A*B*R'R' + A3B2A'R'R — A2B*R*B B +A3BR*BA"
+ A2B3BR? + AB*R2AB* — A’R2BB'A’ + A*B3B),
n 4 (AB2R2B — AB*R®> + A’BR™ — B’R?*A B +A2R?A'B' — A’B® — A2BR?A").

" ABR?
The dark source terms D, D,, and D5 in Egs. (42) and (43) are

1 a b c Gy G|

Di=——(2—+—+4+2-)|-8a—52 (1 - B}) —8a—2 (-3B,

! A0< A, By " r)[ @ gt 1= Bo) ar233< 0

1 /b c\ aG? 1 Gy

+ B, B> ] - <—+2—> —0 4 0gGy— — 8a————

80| =2, (5, 727) 2 “Ay T AY(rBY)

+ 2A%c" — 2aB} — 2bAyBy)r* B — (A§ — A3B}%)(2rcBS — 4br°B}))
g’ 2 Gy

1-B%) —8a—s 0

2agms B =8

—9aAlB) + b'A} B} + 2bA} B, B, + 3aA3B2B) + 2c"A}By)

[(2a

- 8a

[PRAoB(—6A3B)c' — 3b'A3
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— (=3A}ByA}B3B)) (2rcAgB) + r*aBy + 5br*a0By)]

a (B 1 g
G/
+ A}B3AY) — = ;’B4 (—=c'A§B} + cA{BJA[ + br*A}ByAj + bA}B}
00

/

— br*A}A(BY) (A}By + rPAJALB| — A{Bj — rPA§ByAY)

.
-8 [t (A B A + 2 AR i

+ 2rA A3B2AY + 2r*AgBIAZAY + rPALBIA]? — 2A3B2A),

— 2A3A| BB, — 3AZB3AZ — AJBLAY — 2r*AZByAL B,

— rPAZBoAZ By — 2rA3BoAZB) — 2r*AgBoAG Bl + r*AZAZ By

+ 4ABIB) + 3A3BLAG + AJBYAY) + (2rAYBg + 4r* A} By B,
+4r2ASB3B)) (rPA3B3AL AL — AJALB3 — P AZBAZB) + AJBLA))]

/

o (PARBRAGAG — ATBRAG — PARBOAT By + A3BAAY)
0~0
G/
* 2ty 5 oE [FPASB(—c'BJAS + cAYATBS + rPbASBoAj — rPbAJALB;,
0~0

+ bAYB]) — (rPASBG) (—¢'BSAS + cAQALBS + r*bAByAj + bAB}
"

G
- }"2bA(3)A686)] + }"27

" fB4 (—c'B3AS + cAAGBS + rPbAByA|
0%~0

9
(rPA3B})?
— A}BY — PA3BoA]) — (rPA3BY) (A3Bo + rPAZALB) — A} B}
‘d/

2 A3R3
r“AyBjg

— r’bAJAB| + bAGB]) + [PASB3 (A3 By + r*A§A B,

— rPAFByAY)] + (A3Bo + r*AGALB, — AGBy — r*AGBoAY)

+ AoB} \PA,B? Ay \ CABY " A\B]
_ a 9 242m2 3p2 242 2
D2 = SW(Z)BO [@ (r AOBOA6A6 - AOBOA6 —r AOBOBZ)A/O

/

G
+ AJALBY) + A4—§4 (—c'B3A} + cAYALB, + r*bAJByA) — rPbAGA)B;,
00

g

4p3
+ bAYB]) + yeTz

(A3Bo + PAZALB) — A3 — rzAgBOAg)]
B, A, 2
- E%on%B4 (—23—2 + A—E + ;> (2r2AyBy — 217 Ay B}, + Ay B,
00

G, By Ay 2
—4rAgB) — AgB3) — 16ac 52— ( 224+ 04+ =
AoBy = AoBy) =160 s (725, Ay T

g
= 80’7@2/4335)233 [(PA3B}) (2rPALBYAY — 2r2ASBRAL By + ASB}
—4rA3B3B) — AYBY) — (PA3B3) (2r2A3BiAY — 2r*A3B3A| B,
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