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We present results from a numerical study of rotating black hole formation in 3-dimensional
asymptotically anti–de Sitter (AdS) spacetime, focusing on the structure of the black hole interior. While
black holes in AdS3 are of theoretical interest for a wide variety of reasons, we choose to study this system
primarily as a toy model for astrophysical (4-dimensional) black holes formed from gravitational collapse.
We investigate the effect of angular momentum on the geometry inside the event horizon, and see
qualitative changes in the interior structure as a function of the spin parameter. For low spins, we find that a
central spacelike curvature singularity forms, connecting to a singular, null Cauchy horizon. For spins
above a threshold consistent with the linear analysis of Dias, Reall and Santos, curvature on the Cauchy
horizon remains bounded, signaling a violation of the strong cosmic censorship conjecture. Further
increasing the spin leads to a decrease in the relative size of the spacelike branch of the singularity, which
vanishes completely above a second threshold. In these high-spin cases, the interior evolution is bounded
by a regular Cauchy horizon, which extends all the way inward to a regular, timelike origin. We further
explore the geodesic focusing (“gravitational shock-wave”) effect predicted to occur along the outgoing
branch of the inner horizon, first described by Marolf and Ori. Remarkably, we observe the effect at late
times in all of the black holes we form, even those in which the inner apparent horizon collapses to zero
radius early in their evolution.
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I. INTRODUCTION

If governed by general relativity, the exterior structure of
a sufficiently isolated black hole is expected to be well
described by a member of the celebrated Kerr family of
solutions [1]. The historic LIGO measurement of gravita-
tional waves from the merger of two black holes [2] has
given the first quantitative evidence supporting this expect-
ation, which is also consistent with the first image of a
black hole taken by the EHT Collaboration [3].
Given the aforementioned results, it is natural to ask

why the Kerr model has such relevance for astrophysics,
especially since it possesses a high degree of symmetry
(axisymmetry, stationarity) not present in any natural
setting. Several properties of strong-field general relativity
in 4-dimensional (4D) spacetimes give the answer: (1) the
only stationary black hole solutions in vacuum are the Kerr
family (the “no-hair theorems” [4–7]); (2) when gravita-
tional collapse occurs, the singularities that necessarily
form are hidden behind an event horizon (Penrose’s weak
cosmic censorship conjecture); and (3) dynamical pertur-
bations of the black hole exterior geometry always decay,
and either fall into the black hole or are radiated away. The

third effect is especially strong, since the “perturbations”
can initially be arbitrarily large (case in point the collision
of two black holes), transitioning to the linear regime of
exponential quasinormal mode decay, followed at late times
by a power law decay [8]. Taken all together, these
properties are sometimes referred to as the final state
conjecture [9], or the conjectured nonlinear stability of
the Kerr solution, a mathematical proof of which remains
elusive.
The features that allow the Kerr geometry to be so

successful in modeling the black hole exterior do not have
the same effect on the interior. Crucially, there is no
“decay” property which will allow the interior to asymp-
totically approach a unique end state; as a result, the
detailed structure inside any particular black hole will
depend strongly on the properties of the matter that
collapsed to form it. This dependence on the black hole’s
history endows the interior with a much richer structure,
though at the cost of increased mathematical complexity,
and a number of interesting problems remain unsolved.
Perhaps one of the most pressing open questions about

the black hole interior is the generic nature of the
singularity (or whatever form of spacetime incompleteness
we know must be present [10]). Early on in the study of
interiors, the similarity of the Schwarzschild interior to a
Kasner spacetime, together with the relevance of the latter
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in the analysis of Belinksi, Lifschitz and Khalatnikov
(BKL) [11] on singularities in so-called cosmological
spacetimes, spurred many to argue such a spacelike
curvature singularity would denote the classical end of
the generic black hole interior [12,13].
The reliance of these arguments on the spherically

symmetric Schwarzschild solution, however, significantly
weakens their claims to the structure inside realistic black
holes. Relaxing the symmetry to axisymmetry, one arrives
at the aforementioned Kerr geometry, which is vastly
different from Schwarzschild in the interior for any nonzero
dimensionless spin parameter a. In particular, in Kerr there
is a null Cauchy horizon that is expected to become
singular when subject to the perturbations present in a
realistic collapse. Some have argued such a null singularity
should be part of the generic black hole interior1 [14,15];
others have countered that due to the nonlinearity of the
field equations, a spacelike singularity might form in the
interior well before any Cauchy horizon, restoring the BKL
picture even in rotating collapse.
A recent breakthrough by Dafermos and Luk, however,

has proven otherwise [16], showing that if the exterior
stability of Kerr is assumed, the piece of the Cauchy
horizon “connecting” to it (on a Penrose diagram—see the
left panel of Fig. 1) will always be present. Moreover, this
branch of the Cauchy horizon will be “weakly singular” in
the sense that although a curvature singularity is present,
the metric itself is well defined there and can be extended
continuously across it. Thus, the C0-inextendible formu-
lation of Penrose’s strong cosmic censorship conjecture

[17] is false in this case, though a weaker version such as
that of Christodoulou’s [18] likely holds (for a compre-
hensive discussion of the cosmic censorship conjecture in
this context see the introduction of [16], and references
cited therein).
One problem hampering the development of a more

complete understanding of the realistic black hole interior
is that there are no explicit solutions known for guidance,
numerical or otherwise. For numerical evolution, one
difficulty in obtaining such solutions is the lack of
symmetries that can be applied in the generic case, and
this, together with the rather extreme spacetime dynamics
expected to unfold, makes it unclear what coordinate
conditions to impose in order to reveal the full Cauchy
development of relevant initial data. For example, any
observer reaching the Cauchy horizon will do so in finite
proper time, at which point the entire future evolution of the
full exterior spacetime must be complete, as by then it will
be in the past domain of dependence of these observers. To
circumvent such difficulties, earlier studies have either
focused on spherically symmetric charged collapse as a toy
model for Kerr [19–22], or ignored the collapse and
perturbed about a segment of the inner horizon of Kerr [23].
The reason charged collapse is used as a toy model for

rotating collapse is that the analogous Reissner-Nordstrom
black hole solution has a similar Penrose diagram to Kerr,
including a null Cauchy horizon (the left panel of Fig. 1),
but in contrast to Kerr, formation of a charged black hole
can be studied in spherical symmetry. This additional
symmetry offers many simplifications for both numerical
and analytical studies. For numerics, spherical symmetry
makes it straightforward to construct global coordinates
adapted to the radial causal structure of the spacetime, and
that map all the relevant infinities on a Penrose diagram to
finite grid locations. What numerical studies of charged

FIG. 1. Spacetime (Penrose) diagrams illustrating the Kerr geometry (left panel), BTZ geometry (center panel) and a possible
dynamical rotating collapse geometry in asymptotically AdS spacetime (right panel). In the 4D Kerr case, each point on the diagram
represents a 2-sphere geometry with proper area ∝ r̄2, and for the 3D cases each point represents a circle with proper circumference ∝ r̄.
In each of the two eternal black hole cases the spacetimes beyond r̄ ¼ r̄− contain causal curves that terminate at the dashed lines, never
intersecting the red Cauchy surface Σ. This fact implies that the blue (gradient) shaded regions cannot be uniquely evolved from the
earlier spacetimes without somehow specifying data on the dashed lines, and thus r̄ ¼ r̄− is a Cauchy horizon. Note also the similarities
between the Kerr and BTZ spacetimes, which differ only at r̄ ¼ ∞. Future timelike infinity iþ is marked on each diagram; on the right
panel the solid yellow region represents collapsing matter, and spacelike/null singularities to its causal future are denoted by dotted lines.

1Note that the “textbook” timelike singularity in Kerr is more
an artifact of demanding an analytic extension of the metric
across the Cauchy horizon, and is not expected to be relevant in
any collapse solution of the interior.
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scalar field collapse in spherical symmetry have revealed in
a handful of select cases [19,20] is that a curvature
singularity forms in the interior which has a central
spacelike branch connected to a singular Cauchy horizon,
giving a Penrose diagram similar to that on the right panel
of Fig. 1 (except these studies have been in asymptotically
flat 4D spacetime, replacing the timelike infinity of AdS
with null infinity). The singularity on the Cauchy horizon is
“mild” in the sense of tidal forces there [24], and exhi-
bits the “mass inflation” phenomenon first discovered by
Poisson and Israel [25] (see also [26]) where the Hawking
quasilocal mass function diverges.
Another interesting question about the interior in a

collapse scenario involves what happens to the inner
horizon (the left branch of r̄− on the left panel of
Fig. 1): does it form, and are similar pathologies present
there as in the approach to the Cauchy horizon? One could
expect problems, as the inner horizon is the Cauchy horizon
from the perspective of the “other universe” in an eternal
black hole spacetime. On the other hand, what governs the
stability and regularity of the Cauchy horizon is ultimately
the influx of radiation from the exterior, which is controlled
by the essentially unique decay rates outside the black hole.
Studies of perturbations of the inner horizon have not been
subject to such strong guidance on appropriate initial data,
and more ad hoc prescriptions have been used. Marolf and
Ori [27] first explored this region of the interior at the
perturbative level, finding that an observer crossing the
inner horizon would be met with an extremely rapid
variation in the metric, stress-energy, and curvature near
it, likely being destroyed by diverging tidal forces before
meeting the singularity. They dubbed this a null shockwave
singularity, though showed it only becomes a true “shock”
in the sense of a discontinuity in the metric when it reaches
the Cauchy horizon. Numerical studies of similar setups
about the Reissner-Nordstrom [22,28–30] and Kerr inner
horizons [23] confirmed this result at the nonlinear level,
though the evolutions could not proceed all the way to the
Cauchy horizon.
In this work we study a different toy model for the

realistic black hole interior: formation of rotating black
holes in 3D asymptotically AdS spacetime (AdS3). This
model shares two of the main features Reissner-Nordstrom
offers as a (potentially) useful analogue of Kerr: the
Penrose diagrams are similar (Fig. 1), and the problem
can be explored in circular symmetry (the analogue in 3D
of spherical symmetry in 4D). An advantage over the
charged collapse models is that here we use rotating matter,
and can study how angular momentum itself affects the
interior structure.2 However, there are several differences in

3 vs 4-dimensional gravity that bare keeping in mind in
anticipating how closely the 3D model might be able to
capture qualitative features of the 4D case. Key among
these are that in 3D a negative cosmological constant is
required for black hole solutions [35], that 3D Einstein
gravity does not admit a Newtonian limit [36], and
furthermore that there are no freely propagating (gravita-
tional wave) degrees of freedom, as the Weyl tensor is
identically zero and matter fully constrains the dynamics
and curvature through the Einstein equations.
It is therefore quite surprising that an analogue to the

Kerr solution even exists in 3D, namely the celebrated
Bañados, Teitelboim, and Zanelli (BTZ) black hole sol-
ution [37], which moreover shares many of the properties
of Kerr black holes [38,39]. In a rough sense one can
envision the geometry of a BTZ black hole as close to that
of an equatorial slice of the Kerr geometry, which is why
adding rotation to a nonrotating BTZ black hole does not
break circular symmetry, and allows the problem to be
studied with a (1þ 1)-dimensional numerical code.
In order to dynamically form BTZ-type black holes, we

choose to use a scalar field as the matter source. However,
for a scalar field to carry angular momentum it cannot be
circularly symmetric; we bypass this difficulty with a
common “trick” by using a complex scalar field, and
arranging for the real and imaginary components to
individually have azimuthal dependence, but be out of
phase to give a net circularly symmetric (real) stress-energy
tensor. Regarding earlier work within this gravity plus
matter model, critical collapse and the interior of non-
rotating black holes was studied in [40] (see also [41]), and
critical collapse of rotating black hole formation in [42].
Our formalism and code are based on the latter, with
extensions to be able to explore the black hole interior.
Figure 2 gives a pictorial summary of our main results.

For low spins, much like in the 4D charged collapse case,
we find that a curvature singularity forms that is composed
of a central spacelike branch connected to a null branch.
However, as the spin increases, the “strength” of the
singular behavior on the null branch decreases, and above
a dimensionless spin of a ∼ 0.6 the Cauchy horizon ceases
being singular. This is consistent with a recent linear
analysis of perturbations of the Cauchy horizon of the
BTZ black hole carried out by Dias, Reall and Santos [43].
We also find that as the spin increases, the size of the
spacelike branch on the Penrose diagram shrinks, even-
tually vanishing for spins above a ∼ 0.87. Thus for such
rapidly spinning black holes the interior evolution ends
along a regular Cauchy horizon that extends all the way to a
regular, timelike origin. In all cases, the exterior appears to
asymptote to a stationary BTZ solution. In the interior an
inner horizon does form, though it is never stationary, and
for slowly rotating black holes it moves inward and
terminates at the spacelike singularity. Nevertheless, in
all cases we see an outgoing shocklike feature form in the
interior as found by Marolf and Ori.

2An added benefit of this model is its potential relevance to
string theory and conformal field theories (CFTs) through the
AdS=CFT correspondence (see e.g. [31–34]), though we do not
explore that here.
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The remainder of this work will begin with a brief
overview of the BTZ spacetime and the Marolf-Ori focus-
ing effect (Sec. II), the system of equations we solve
(Sec. III), and then our numerical algorithm (Sec. IV). This
section is followed by our results (Sec. V), and we conclude
with a discussion (Sec. VI). We leave the full expressions of
the equations we solve, and some convergence results, to
the appendix (Secs. A-B). We use geometric units where
the speed of light c ¼ 1 and Newton’s constant G ¼ 1=2,
and use the −þþ signature for the metric tensor. Unless
otherwise stated, we will use a prime ( 0) to denote the
ordinary partial derivative of a function fðt; rÞ with respect
to the radial coordinate r, and similarly the overdot (_) for
the partial with respect to coordinate time t, i.e. f0 ≡
∂fðt; rÞ=∂r and _f ≡ ∂fðt; rÞ=∂t.

II. THE BTZ GEOMETRY

The Einstein field equations with a negative cosmologi-
cal constant Λ≡ −1=l2 are

Rμν −
1

2
gμνRþ Λgμν ¼ κTμν; ð1Þ

where Rμν is the Ricci tensor, R the Ricci scalar, gμν the
metric tensor, Tμν the stress-energy tensor of matter, and κ a
coupling constant (that we set to 4π). The BTZ black hole is
a solution to the above with Tμν ¼ 0. Using the analogue of
Boyer-Lindquist coordinates, the line element of the BTZ
geometry can be written as

ds2 ¼ −f̄dt2 þ f̄−1dr̄2 þ r̄2ðdθ þ β̄dtÞ2; ð2Þ

with

f̄ ¼ −M þ r̄2

l2
þ J2

4r̄2

β̄ ¼ −
J
2r̄2

: ð3Þ

Here M and J are the black hole mass and angular
momentum, respectively (and note that in 3D gravity M
is dimensionless, while J has dimension of length). This
line element represents a space of constant curvature (e.g.
the Kretschmann scalar K ≡ RμνρσRμνρσ evaluates to
K ¼ 12=l4), and all of the nontrivial causal structure
encoded in the metric can be considered topological in
nature.3 Without spin, the metric above only describes a
black hole spacetime for M > 0; the M ¼ −1 case is pure
AdS3, and −1 < M ≤ 0 correspond to spacetimes with
naked conical singularities at the origin. Hence if we want
to form a black hole by gravitational collapse beginning
from regular initial data (in particular, data with no initial
conical singularity), a finite amount of total mass in matter
energy is required to lift the asymptotic spacetime mass
above M ¼ 0.
Including spin a≡ jJj

Ml, the BTZ solution admits a
number of features analogous to those of Kerr. Among
these is that there is an extremal limit a ¼ 1 above which
there are no horizons; below this limit, the two horizons are
distinct and are located at

r̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ

r
: ð4Þ

Also as with Kerr, BTZ possesses an ergoregion between
the event horizon at r̄þ and the circle with radius

FIG. 2. Penrose diagrams for the AdS3 black hole spacetimes we observe in our numerical solutions (similar annotation as explained
in the caption of Fig. 1, and in contrast to the eternal BTZ black hole shown in the middle panel there). Note that the structure interior to
the event horizon is strongly dependent on the value of the spin parameter a. See Sec. V B for a detailed explanation.

3In fact, one way to derive the BTZ solution is by making
appropriate identifications within AdS spacetime [38], and even
more complicated multi-black hole/wormhole solutions can be
constructed in this manner [44].
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r̄erg ¼ l
ffiffiffiffiffi
M

p
; within this region all causal curves are

required to rotate about the black hole in the same sense
as its spin. BTZ black holes also admit a no-hair theorem
[32]—which is important for the structure of the Cauchy
horizon (see Sec. I)—among a number of other interesting
results; see [38] and the reviews in [32,39,45].
To close this section, we will outline a derivation of the

Marolf-Ori focusing effect along the inner horizon of an
eternal BTZ spacetime, as this analytic result will be useful
to compare with our subsequent numerical results. The
question here is the following: suppose there is a pulse of
outgoing radiation (always coming from matter in the 3D
case) propagating near the inner horizon; how is this pulse
perceived by an infalling observer at late times?
Specifically, how will the observed profile of the pulse
change as a function of when the infalling observer crosses
the event horizon, as measured by an external timekeeper?
For simplicity, we will begin the calculation by consid-

ering our observers to be ingoing null geodesics with zero
angular momentum (in the code we study both timelike and
null observers). To that end, we rewrite the BTZ metric in
ingoing Eddington-Finkelstein coordinates, which are
regular at both horizons, by transforming to a null coor-
dinate v and new angular coordinate θ̃:

dt ¼ dv −
dr̄
f̄
; dθ ¼ dθ̃ þ β̄

f̄
dr̄ ð5Þ

giving

ds2 ¼ −f̄dv2 þ 2dvdr̄þ r̄2ðdθ̃ þ β̄dvÞ2: ð6Þ

For the remainder of this section let an overdot denote the
derivative with respect to affine parameter λ, i.e.
ð_Þ≡ dðÞ=dλ. A zero angular momentum geodesic has
_̃θ ¼ −β̄ _v; of these, ingoing null geodesics are v ¼
const: curves (with _̄r ¼ const:), and outgoing null geo-
desics satisfy

2v̈þ ∂f̄
∂r̄ _v2 ¼ 0; ð7Þ

of which a first integral can be written as

dv
dr̄

¼ 2

f̄
: ð8Þ

Our numerical code does not use ingoing Eddington-
Finkelstein coordinates, and of course the metric will not
be the exact BTZ spacetime, so some care must be taken in
defining quantities that can be meaningfully compared. To
do so, we integrate affine time λþ along the outgoing null
generator of the event horizon r̄ ¼ r̄þ; this is unique up to
an overall constant scale and shift. We will then define the
time parameter ṽ to be the affine time λþ at which the

infalling geodesic crosses the event horizon. For the BTZ
spacetime above, it is straightforward to find the relation-
ship between affine parameter and Eddington-Finkelstein
coordinate v along either horizon from (7):

λ� ∝ e�κ�v; ð9Þ

where κ� ¼ ðr̄2þ − r̄2−Þ=ðl2r̄�Þ is the surface gravity on the
corresponding horizon (note also that from (9) it is clear
that inner horizon generators reach the Cauchy horizon as
v → ∞ in finite affine time λ−). Thus we define

ṽ ¼ Nðeκþv − 1Þ; ð10Þ

where N is some (arbitrary) overall constant scale, and we
(arbitrarily) set ṽðv ¼ 0Þ ¼ 0.
At an initial time v ¼ 0, let the extent of our outgoing

test pulse range in proper circumference from r̄− to r̄− þ
δr̄0 (to which side of r̄− the pulse is, i.e. the sign of δr̄0,
does not matter). Then, from (8), it is possible to compute
the extent of the pulse r̄− þ δr̄ at some later time v; to
leading order in δr̄0=r̄− it is

δr̄ ∼ δr̄0e−κ−v: ð11Þ

This result shows the sharpening of the pulse is exponential
in ingoing Eddington-Finkelstein time, at a rate controlled
by the surface gravity of the inner horizon. In terms of the
time ṽ (defined above) that we compute in the code, (11)
translates to the following power law relationship:

δr̄ ∼ δr̄0ðṽ=N þ 1Þ−κ−=κþ : ð12Þ

The steepening of features implied by (12) is the
analogue of the blueshift effect on the Cauchy horizon,
and one can anticipate that it could have a similar drastic
backreaction on the geometry, provided an inner horizon of
similar structure forms during collapse. Marolf and Ori
considered this possibility and suggested that when back-
reaction is taken into account, features of the geometry are
similarly focused, effectively producing an asymptotically
divergent tidal force experienced by observers crossing r̄−.
Thus even though they argued that this “gravitational
shock-wave” never becomes a true curvature singularity
until it reaches the Cauchy horizon, at late times it is
nevertheless just as disastrous to an infalling observer (or
perhaps even more so, depending on how the spacetime
extends across the Cauchy horizon).

III. THE EINSTEIN-KLEIN-GORDON SYSTEM IN
ASYMPTOTICALLY AdS3 SPACETIME

As described in Sec. I, it is possible to solve for the
formation of rotating black holes in AdS3 while retaining
the circular symmetry of the governing partial differential
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equations (PDEs). In order to do so, we follow the work of
Jalmuzna and Gundlach [46], and study the dynamics of a
spacetime with the following metric ansatz

ds2 ¼ fð−dt2 þ dr2Þ þ r̄2ðdθ þ βdtÞ2; ð13Þ

where f ≡ e2Aðt;rÞ= cos2ðr=lÞ, proper circumference
r̄≡ eBðt;rÞl tanðr=lÞ, and βðr; tÞ is also in general a
function of r and t. Pure AdS spacetime is given by the
limit A, B, β → 0. The radial coordinate r ∈ ½0; lπ

2
� is

compactified, with timelike infinity reached in the limit
r → lπ=2. That the ðr; tÞ sector of the metric is conformal
to Minkowski spacetime −dt2 þ dr2 then also implies the
timelike coordinate t is similarly compactified, and (barring
the appearance of singularities, coordinate or otherwise),
the full Cauchy development should by revealed in finite t.
It is also straightforward to see that any causal curve must
be interior to the radial lightcones dt ¼ �dr, and thus this
coordinate system automatically gives us a Penrose com-
pactification of solutions. Both r ¼ 0 and r ¼ lπ=2 are
timelike curves, hence we need boundary conditions for a
well-posed Cauchy evolution; at the origin we impose
regularity, and at timelike infinity that the metric is AdS
with no incoming radiation (Dirichlet conditions on the
matter). These boundary conditions are written down
explicitly in Appendix A.
To source dynamics in the spacetime, we couple the

Einstein equations (1) to a complex scalar field Ψðt; r; θÞ,
satisfying the Klein-Gordon equation

□Ψ ¼ 0; ð14Þ

with stress-energy tensor

Tμνðt; rÞ ¼
1

2
ð∂μΨ�∂νΨþ ∂μΨ∂νΨ� − gμνgρσ∂ρΨ∂σΨ�Þ;

ð15Þ

where an asterisk denotes complex conjugation. To allow
the scalar field to carry angular momentum, yet maintain
a circularly symmetric stress-energy tensor, we impose
the following ansatz for the scalar field profile (this is the
m ¼ 1 case in Jalmuzna and Gundlach [46]):

Ψðt; r; θÞ ¼ eiθ sinðr=lÞ½ϕðt; rÞ þ iψðt; rÞ�: ð16Þ

The net, conserved angular momentum of matter is

Jnet ¼ −4
Z
Γ
Tμνξ

μnν
ffiffiffi
h

p
d2x; ð17Þ

where the integral is performed over a spacelike hypersurface
Γ with unit timelike normal vector nν ¼ ½ð∂=∂tÞν−
βð∂=∂θÞν�= ffiffiffi

f
p

, axial Killing vector ξν ¼ ð∂=∂θÞν, and

induced metric determinant h ¼ fr̄2 [47].4 From (17) we
can define an angular momentum density

J0ðt; rÞ ¼ −8πTμνξ
μnν

ffiffiffi
h

p
: ð18Þ

Using the Einstein equations we can reexpress (18) in terms
of themetric only, giving the following expression for the net
angular momentum within a disk of radius r at some time t:

Jðt; rÞ ¼ r̄3β0

f
: ð19Þ

For the vacuum (Tμν ¼ 0) BTZ spacetimes (19) evaluates to
the corresponding (constant) angular momentum of the BTZ
black hole [46].
The explicit form of the Einstein (1), (15) and Klein-

Gordon (14) equations in terms of our metric (13) and
scalar field (16) ansatz are given in Appendix A.

A. Diagnostics

To help interpret aspects of the geometry, we integrate
various sets of timelike and null geodesics. Owing to the
circular symmetry of the spacetime, each geodesic pos-
sesses a conserved angular momentum L; we have only
investigated L ¼ 0 geodesics here. We also compute a few
other diagnostic quantities. Among these are the Ricci
scalar (R≡ Rμ

μ) and Kretschmann scalar (K ≡ RμνρσRμνρσ),
constructed from the Riemann curvature tensor Rμνρσ. We
also compute the Hawking quasilocal mass aspect
MH ≡ r̄2

l2 − ð∇r̄Þ2, which in vacuum equals the BTZ mass
M in the limit r → lπ

2
. Throughout our evolution we

monitor the outgoing null expansion Θ ¼ ð∂t þ ∂rÞr̄,
and keep track of the corresponding horizons where
Θ ¼ 0. In our dynamical spacetimes MH and J (19)
asymptote (r → lπ

2
) to the conserved mass and angular

momentum of the spacetime; when a black hole forms, at
late times these values converge to quantities consistent
with the proper circumference of the corresponding BTZ
black hole’s event horizon (4), which we measure on the
outermost apparent horizon (outermost marginally trapped
surface).

IV. NUMERICAL METHODS

We follow the methods of [40,46] to evolve the Einstein-
Klein-Gordon system outlined above and in Appendix A.
In brief, we use a so-called free evolution scheme. Here, the
constraint equations are only solved at t ¼ 0, after which
the Einstein evolution and Klein-Gordon equations are
used to evolve all metric and scalar quantities forward in

4We have a factor of 4 difference compared to the equivalent
expression in [47] due to a different normalization of our scalar
field and different normalization of Newton’s constant G.
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time. The constraints are monitored during evolution, and
their convergence to zero checked to ensure we have a self-
consistent solution (see Appendix B). We adopt a Crank-
Nicolson finite difference scheme that is second order
accurate in time, along with fourth order spatial differences
in r. We also implement Kreiss-Oliger style dissipation
[48], which significantly improves the stability of our
algorithm near the outer spatial boundary. We solve the
finite difference equations using Gauss-Seidel relaxation,
with typical resolutions of up to 8193 gridpoints in r, and a
Courant factor λ≡ Δt

Δr ¼ 0.1.

A. Singularity excision

The novel feature of our numerical method is our
excision procedure, which improves upon that of [40,46]
in that it allows us to evolve the spacetime significantly
beyond the formation of an apparent horizon. Unlike
studies of black hole exteriors, where the purpose of
excision is to remove the interior singularities from the
domain to allow long-term evolution of the exterior, here
we are of course very much interested in uncovering as
much of the interior as possible. Therefore, we choose for
our excision criterion growth of the magnitude of metric
variables above a certain threshold (specifically, j _Aj ≥ 300

and/or j _Bj ≥ 300), above which a divergence is usually
imminent. When the threshold is reached at a given point,
we excise it and all points to its causal future. This
procedure results in an excision boundary which is locally
only null or spacelike, with the latter occurring if our
threshold criterion is satisfied at multiple spacelike sepa-
rated points. Such an excision boundary makes physical
sense, and is necessary for a mathematically well-posed
problem. Physically, if somehow a timelike singularity
formed, then to reveal it would require a prescription to
“resolve” the singularity to allow evolution of the spacetime
within its lightcone, which the Einstein equations cannot
provide. Mathematically then, we cannot place boundary
conditions on the excision surface.Numerically, this can only
be stably implemented if no physical characteristics of the
equations point into the computational domain from the
excised region; such behavior is guaranteed by causality if
the excision boundary is spacelike or null. To ascertain the
nature of the excision boundary in a given scenario in the
continuum limit, we do convergence studies by both increas-
ing the grid resolution and raising our excision threshold
criterion, then extrapolating relevant diagnostic quantities
(such as curvature scalars or matter energy density) to an
extrapolated continuum limit of the excision surface.
One technical difficulty in implementing excision within

our coordinate system is integrating our evolved variable γ to
find themetric variable β. In the reduction of the equations to
first order form (see Appendix A), we define γðt; rÞ≡
β0ðt; rÞ, and evolve a function of γ forward in time using
the Einstein equations. Specifically, we evolve J ≡ r̄3γ=f
(19) via (A6), then after each timestep compute β using

βðt; rÞ ¼ −
Z

r

ro

γðt; r̃Þdr̃þ βoðt; roÞ: ð20Þ

Hence we integrate from a larger radius ro inward, and βo is
essentially an arbitrary function of time representing residual
gauge freedom in our choice of angular coordinate θ. When
the outer boundary is at timelike infinity, ro ¼ lπ=2, we
require βoðt;lπ=2Þ ¼ 0 for regularity (which is why we
integrate from large radii inward, as it makes it easy to
enforce this condition). The difficulty with excision comes in
when the event horizon curve r̄þðt; rÞ reaches the outer
boundary, and we then need to excise inward along the
Cauchy horizon, so ro < lπ=2. At first,we imposedwhatwe
thought would be the simplest choice for the integration
constant along the Cauchy horizon, βoðt; roÞ ¼ 0. However,
βðt; rÞ tends to grow very rapidly moving inward in r just
prior to excision (see Fig. 3), so setting βoðt; roÞ ¼ 0 on the
ingoing excision surface introduces significant gauge
dynamics that make it challenging to achieve convergent
results. Instead then, at each timestep tþ Δt, we set
βoðtþ Δt; roÞ ¼ βðt; ro); this procedure essentially freezes
β at a given point ro on the excision surface to the value it had
at the most recent timewhen r ¼ ro was in the interior of the
computational domain.

V. RESULTS

In this section we present our results, beginning in
Sec. VA with a description of the initial data we use.
We have explored other classes of initial data and a large

FIG. 3. Plot of the metric quantity βðt; rÞ at the first timestep
where a portion of the grid is excised (t ¼ tEXC; solid gray line),
along with β one timestep later for the two choices of βo
mentioned in Sec. IVA. Note that the case with βo ¼ 0 (dotted
red line) introduces a significant jump in time at the outermost
nonexcised gridpoint ro, while the choice βoðtþ Δt; roÞ ¼
βðt; roÞ (dashed blue line) does not. We adopt the latter choice
for βo, as it improves the stability of our algorithm.
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range of parameters, though for clarity of the discussion we
focus on three particular cases that are representative of the
three qualitatively different interior structures we have
found, as depicted in the right three panels of Fig. 2.
Detailed descriptions of the solutions for these three cases
are given in Sec. V B.

A. Initial data

We follow the same procedure as [46] to construct our
initial data. Of the scalar field variables, the quantities ϕ, ψ ,
V ≡ _ϕþ βψ and W ≡ _ψ − βϕ, are freely specifiable at
t ¼ 0. For our metric variables, at t ¼ 0 we can choose
B ¼ _B ¼ 0; A; _A and β (via γ) are then constrained via
Eqs. (A1), (A2) and (A3) respectively.
Here we investigate evolution of the following family of

approximately ingoing Gaussian pulses for the scalar field:
first defining

Fðr; A0; r0; σÞ ¼ A0e−ðr−r0Þ
2=σ2 ; ð21Þ

where A0, r0 and σ are constant parameters, we choose

ϕðt¼ 0; rÞ ¼ Fðr;A0; r0ϕ;σÞ þFð−r;A0; r0ϕ;σÞ;
Vðt¼ 0; rÞ ¼ F0ðr;A0; r0ϕ;σÞ þF0ð−r;A0; r0ϕ;σÞ;
ψðt¼ 0; rÞ ¼ Fðr;A0; r0ψ ;σÞ þFð−r;A0; r0ψ ;σÞ;
Wðt¼ 0; rÞ ¼ F0ðr;A0; r0ψ ;σÞ þF0ð−r;A0; r0ψ ;σÞ: ð22Þ

Superposing a Gaussian with its reflection about r ¼ 0 is a
simple way to ensure regularity of the field at r ¼ 0. There
are numerous ways to provide angular momentum in the
initial data [see the source term Sγ0 in (A7)]; in the above it
comes from the Gaussians for ϕ and ψ being centered at
different locations (r0ϕ and r0ψ respectively). We quantify
the amount of spin in terms of the BTZ spin parameter
a≡ jJj=ðMlÞ ∈ ½0; 1�, and we study the formation of black
holes with spins ranging from a ¼ 0.2 to a ¼ 0.97. For
a < 0.2 the qualitative structure of the black hole is similar
to that of the a ¼ 0.22 case, but the size of the spin-
dependent features, in particular the Cauchy horizon,
shrinks as a → 0, presumably smoothly connecting to
the a ¼ 0 case (see [40]). Thus, we focus on higher spins
where we can clearly resolve all the interior features. For
0.97 < a < 1 our method breaks down at the numerical
resolutions we are currently able to achieve. We have
checked a couple of cases where the initial data has a > 1,
and no black hole (or any singular structure) formed within
the time it took for the pulse of scalar field to traverse the
universe several times.
In the remainder of this section, we present results from

three specific cases, a ∈ ð0.22; 0.77; 0.91Þ, that are repre-
sentative of the qualitatively different interiors we observe,
as illustrated in Fig. 2 above. The particular initial data
parameters are σ ¼ 0.05 for all cases, and: r0ϕ ¼ 0.225,

r0ψ ¼ 0.232, A0 ¼ 0.28 for a ¼ 0.22; r0ϕ ¼ 0.2, r0ψ ¼
0.25, A0 ¼ 0.28 for a ¼ 0.77; r0ϕ ¼ 0.2, r0ψ ¼ 0.25, A0 ¼
0.26 for a ¼ 0.91.

B. The black hole interior for three representative cases

1. Penrose diagrams and trapped regions

In Figs. 4–6, we show proper circumference r̄ and Ricci
scalar R on Penrose diagrams for the evolutions with
a ¼ 0.22, 0.77 and 0.91 respectively. In all cases a trapped
region forms soon after evolution begins, though it does so
more rapidly for the two lower spin cases. The trapped
region first appears at a single nonzero proper circum-
ference, and as it grows is bounded by an outer and inner
apparent horizon. The former rather quickly asymptotes to
the null event horizon of the spacetime, whose late-time
circumference is consistent with that of a BTZ black hole,
r̄þ (4), with the same mass M and angular momentum J as
that of the spacetime. For the lowest spin case (Fig. 4), the
inner horizon quickly collapses to r̄ ¼ 0, and never
resembles an outgoing null surface as in the BTZ space-
time. For the intermediate spin case (Fig. 5), at intermediate
times the inner horizon does appear close to null and to
r̄ ¼ r̄−, though at late times also collapses to r̄ ¼ 0. For the
high spin case (Fig. 6), the inner horizon also is almost null
at intermediate times, though not at the r̄ ¼ r̄− of the
corresponding BTZ spacetime, and eventually runs into the
Cauchy horizon (we discuss below in Sec. V B 2 why we
identify the ingoing null part of the excised region as the
Cauchy horizon, and not merely the causal future of a
coordinate singularity). In other words, for the high spin
case, there is a large portion of the Cauchy development of
the interior that never becomes trapped.

2. The Cauchy horizon

Figs. 4–6 suggest that the extrapolated point where the
apparent horizon meets the outer boundary is iþ, and that
the ingoing null branch of the excision surface emanating
from the point on the outer boundary near iþ is asymptoting
to the Cauchy horizon. If this is the case, the exterior of the
spacetime should be complete in the sense that iþ can only
be reached in infinite proper time by any causal curve, and
the event horizon only “reaches” the corresponding point
on the Penrose diagram in infinite affine time (and of course
the fact that these disparate limits are at the same location
on the diagrams is only an artifact of the Penrose com-
pactification). Moreover, in the interior the opposite should
hold: any causal curve should reach the Cauchy horizon in
finite affine (proper) time. We performed several checks on
the numerical solutions to confirm that this behavior
occurs. First, we integrated proper time τ along r̄ ¼
const: timelike curves exterior to the horizon (note that
these curves are not geodesics), and extrapolated to the
point where τ → ∞; these points are shown as the open
black circles in Figs. 4–6, and converge to the extrapolated
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location where the event horizon generator reaches the
boundary. We also integrated sets of outgoing null geo-
desics throughout the spacetime (see Fig. 7 for an example
of their trajectories for the a ¼ 0.77 case), confirming those
interior to the event horizon end on the Cauchy horizon or
central singularity in finite affine time.

3. Focusing of ingoing geodesics in the interior

Given how different the inner horizon structures are from
their vacuumBTZ black hole counterparts, one might expect
the Marolf and Ori focusing effect discussed in Sec. II to be
significantly lessened, or even absent. However, in all three
cases (a ¼ 0.22, 0.77, 0.91), at late times approaching the

FIG. 5. Contour plots analogous to those of Fig. 4, for an evolution with a ¼ 0.77. Note that the size of the spacelike branch in
coordinate r has decreased significantly, and that the dotted red line on the right panel indicating a surface of infinite curvature (as
measured by R, K) is only present beyond this small spacelike branch.

FIG. 4. Penrose diagrams from an evolution with spin parameter a ¼ 0.22. Left panel: the color contours correspond to lnðr̄Þ. The
thick solid white contour indicates the location where the null expansion Θ ¼ 0, and cross hatching (thin diagonal white lines) denotes
the trapped region Θ < 0. For reference, the two contours r̄ ¼ r̄� are highlighted by dashed black lines, and correspond to the proper
circumferences of the inner and outer horizons of a BTZ black hole (4) with the same massM and spin a as that of this spacetime. Right
panel: the color contours depict the Ricci scalar R—specifically a signed function that goes like � lnðRÞ at large R, and linearly
interpolates between the two branches near R ¼ 0. In both panels, the solid white region is excised from the grid during numerical
evolution as explained in Sec. IVA. The red dotted line along the spacelike and null parts of the excision boundary on the right panel
indicates the surface where curvature is infinite (measured by both R and the Kretschmann scalarK), as determined by extrapolation (see
Sec. V B 2). The black circle is the location of future timelike infinity iþ, also determined by extrapolation. (Note that there is a piece of
the spacelike excision surface that looks almost outgoing null, however our extrapolation to the singularity still gives
a spacelike surface here.)
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Cauchy horizon, we find a quantitatively similar growth in
the rate of change of interior features as experienced by
infalling observers. In Fig. 8 we show proper circumference
versus proper time r̄ðτÞ for several infalling timelike observ-
ers, beginning from rest at r̄ ¼ 3r̄þ, for the a ¼ 0.77 case.
Notice the near steplike drop in proper circumference that

occurs near r̄−. Figure 9 shows the rate of growth of this
feature measured a couple of ways (one following the BTZ
calculation outlined in Sec. II), as well as the change in the
observed scalar field, for both ingoing timelike and null
geodesics (again for the a ¼ 0.77 case). At late times the rate
of steepening for the null geodesics follows the power law
prediction (12) quite closely; we have not derived the
analogous result for timelike geodesics, though the numeri-
cal data also shows a power law, but with a different slope
than in the null case. Extrapolating these curves to the
Cauchy horizon (ṽ → ∞) suggests the knee becomes an
actual step function there. In the notation of [49] (see also
[50,51]), this behavior implies that the Cauchy horizon is
composed of two null segments, the initial piece CHiþ

emanating from (but not including) iþ, where r̄ is nonzero
except possibly at its future endpoint, connected to Siþ , on
which r̄ extends continuously to zero.
Such a feature in r̄ðτÞ and r̄ðλÞ further implies infalling

observers are subject to an asymptotically divergent tidal
force, experienced in a region of the Penrose diagram well
before any singularity (for the lower a cases) or the Cauchy
horizon.5 We emphasize that although this feature is
encountered as the observers cross r̄ ∼ r̄−, in the dynamical
spacetimes this is not the location of the inner horizon at
late times. It is remarkable and puzzling then that the
Marolf-Ori calculation still manages to give the quantita-
tively correct growth rate, as it seemed to be an essential
part of the calculation that r̄− was marginally trapped—i.e.
outgoing geodesics at larger radii have negative expansion,

FIG. 7. Outgoing null rays plotted as a function of the circum-
ferential radius r̄ and a coordinate advanced time v≡ tþ r, for
the case with a ¼ 0.77 (compare to Fig. 5). Note that there are
three groups of null rays: those that begin at the origin and return
to the origin, at which time r̄ ¼ 0 has become a spacelike
singularity; those that asymptote to the Cauchy horizon, reaching
a finite value of r̄ at late times; and those that escape before the
black hole forms, eventually reaching the timelike AdS boundary
r̄ ¼ ∞.

FIG. 6. Analogous plot to Fig. 4, except this time with a ¼ 0.91. Note the absence of a spacelike excised branch, as well as the absence
of surfaces of infinite curvature (as measured by R, K) on the right panel.

5Though “well before” is somewhat an artifact of how the
region beyond the near-shock feature is magnified on the Penrose
diagram; this region is crossed in vanishingly small proper/affine
time by geodesics.
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while geodesics at smaller radii have positive expansion,
resulting in the localization of features near r̄−. In the
dynamical case, the asymptotic scaling regime where the
power law rate matches the vacuum calculation is in a
region of the spacetime that is fully trapped, and moreover

r̄ ¼ r̄− is clearly spacelike there, as is evident from the
Penrose diagrams (Figs. 4–6).
Though more work is needed to completely understand

the geodesic focusing effect, it is worth pointing out a few
key features of our solutions which hint at the true cause.
After the ingoing pulse of scalar radiation triggers apparent
horizon formation, it passes through the origin and moves
outward on a null trajectory, the entire time remaining in a
region of spacetime where the null expansion Θ, though

FIG. 9. On the top (bottom) panel, sharpening of various
quantities along ingoing null (timelike) geodesics in terms of
their affine parameters λ (proper times τ), as a function of the
timing coordinate ṽ (see Sec. II and the caption of Fig. 8),
from an evolution with a ¼ 0.77. The gradients of r̄ and
square of the magnitude of the scalar field ϕ2 þ ψ2 are measured
when the corresponding geodesic crosses r̄ ¼ 0.75r̄−, and the net
elapsed affine time Δλ (proper time Δτ) is counted between the
crossing at r̄ ¼ 0.75r̄− and r̄ ¼ 0.25r̄− (see Fig. 8). The mea-
sured slopes do not depend much on the particular values
chosen for the crossing radii, as long as they are past the knee
at r̄ ∼ r̄− (Fig. 8).

FIG. 8. Top: proper circumferences versus proper time r̄ðτÞ for
several ingoing timelike geodesics, beginning from rest at
r̄ ¼ 3r̄þ, at successively later times ṽ, for the a ¼ 0.77 case.
Bottom: the same geodesics on a contour plot of r̄, along with iþ

and the infinite curvature surface as in Fig. 5. The time parameter
ṽ is, as discussed in Sec. II, the affine time along the outgoing null
generator of the event horizon when the given geodesic crosses it.
For clarity in the top figure a constant shift has been added to τ for
each geodesic to display them in increasing order in ṽ, and the
horizontal solid line is the location of the inner horizon if the
spacetime were BTZ, r̄ ¼ r̄− (which is not the location of the
inner horizon in the dynamical spacetime; see Fig. 5). Note that
the geodesics are strongly focused to the origin beyond r̄ ¼ r̄−,
and the sharpness of the focusing increases with ṽ. The same
phenomenon occurs for null geodesics in terms of their affine
parameters; see Fig. 9 for measurements of the sharpening rate for
both classes of geodesic.
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negative, is very close to zero. As a result, the pulse
effectively sits at a constant value of r̄ (on the nearly null
contours of r̄ roughly between 0.25r̄− and 0.75r̄− in the
bottom panel of Fig. 8) throughout the entire history of the
black hole, until it eventually runs into the Cauchy horizon.
This behavior leads us to speculate that the backreaction of
this pulse of matter on the geometry gives rise to the large
coordinate acceleration the geodesics experience, as shown
in the top panel of Fig. 8 (this is consistent with a similar
effect calculated in a 4D charged shell model of collapse to
a Reissner-Nordstrom black hole [52]). It remains unclear,
though, why the calculation in the eternal BTZ background
(see Sec. II) correctly predicts the sharpening rate for null
geodesics, in particular that the growth is controlled by a
number close to the surface gravity of the inner horizon of
the vacuum case.

4. Regularity of the Cauchy horizon, and presence of a
spacelike singularity

Dias, Reall, and Santos [43], through study of linear
perturbations of BTZ, found that a massless scalar field
should be of differentiability class Cbbc (where b·c gives the
largest integer strictly less than its argument) at the Cauchy
horizon, where

b ¼ 2
r̄þ
r̄−
− 1

: ð23Þ

As a function of a≡ jJj=ðMlÞ, one may easily combine
the above equation with (4) to find that the field should be
C0 for a ≤ 0.6, C1 for 0.6 < a ≤ 0.8, and increasingly
regular for higher spins. Furthermore, by full contraction of
the Einstein equation we have that the Ricci scalar is
proportional to the trace of the stress-energy tensor, so the
Ricci scalar R, and consequently the Kretschmann scalarK,
should diverge if the scalar field is C0, but not if it is C1 or
greater.
Our fully nonlinear results appear to agree with this

linear analysis. In Fig. 10 we illustrate the behavior of the
scalar field and K along a representative outgoing null
geodesic approaching the Cauchy horizon. To determine
the infinite curvature surfaces denoted by the dashed red
lines on the right panels of Figs. 4 and 5, we extrapolate the
growth of R and K in coordinate time t along coordinate
r ¼ const: lines, as illustrated in Fig. 11. As a secondary
check, we also extrapolate along ingoing and outgoing null
geodesics; both approaches yield consistent locations for
the infinite curvature surface. Of the three cases presented
here, only the a ¼ 0.22 case shows singular behavior of R
and K on the Cauchy horizon. The Hawking mass MH
displays a similar trend, only diverging on the Cauchy
horizon for the a ¼ 0.22 case. In the larger spin cases
where curvature is finite, the analysis of [43] suggests there
should still be some loss of regularity at the Cauchy
horizon; with our second order accurate code and the
resolutions we have run, we are not able to extrapolate
higher derivatives of the scalar field with enough accuracy
to make any definitive statements in this regard.
As evident from the Penrose diagrams of the three cases,

Figs. 4–6, the relative size of the spacelike branch of the
excision surface (which is always singular when present)
decreases compared to the size of Cauchy horizon as the
spin increases. Particularly interesting is that for spins
greater than a ≈ 0.87 the spacelike branch vanishes, and the
then-regular Cauchy horizon extends all the way in from iþ
to meet the regular, timelike origin at r̄ ¼ 0. To our
knowledge this is the first example of a null Cauchy
horizon formed in a collapse scenario that does not “break
down” (in the language of [49]) to a different class of
singularity in the interior.6 Figure 12 shows the behavior of
the Ricci scalar R as a function of time at the origin, and
illustrates the qualitative change in late-time dynamics
toward smaller curvature with increasing a.

FIG. 10. Behavior of the norm of the scalar field components
ϕ2 þ ψ2 and the Kretschmann scalar K for a ¼ 0.22 (left
column) and a ¼ 0.77 (right column) along a representative
outgoing null ray approaching the Cauchy horizon. Note that
ϕ2 þ ψ2 does not diverge in either case, although its derivative
appears to for low spin (upper left panel), sourcing a divergence
in the stress-energy and curvature (bottom left panel). For higher
spin (right column) the time derivative of the scalar field remains
finite and so does curvature. For a ¼ 0.91, the behavior is
qualitatively similar to the a ¼ 0.77 case shown in the right
column.

6In the “two ended” 4D Reissner-Nordstrom case, examples
have been presented where the Cauchy development of small
perturbations in the interior leads to a bifurcate null Cauchy
horizon with no spacelike singularity [53]; “two-ended” models
have fundamental differences from the “one-ended” spacetimes
relevant to gravitational collapse, however [50].
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VI. CONCLUSION

We have numerically constructed circularly symmetric
solutions to the Einstein-Klein-Gordon equations in asymp-
totically AdS3 spacetime, which describe the gravitational

collapse of a scalar field with angular momentum to form
rotating black holes. We have implemented an excision
algorithm that appears to be able to reveal (in the con-
tinuum limit) the full Cauchy development of a family of
initially (approximately) ingoing smooth Gaussian scalar
field pulses. Our main findings, summarized schematically
in Fig. 2, are that there are four qualitatively different
geometric structures describing the future boundary of the
Cauchy development, and that which one occurs in a
particular collapse depends on the spin parameter a of
the black hole that forms. For zero spin, the earlier work
[40] revealed that a central (proper circumference r̄ ¼ 0),
spacelike singularity forms in the interior. For small spins
0 < a≲ 0.60, we find that a null branch of a Cauchy
horizon forms, emanating from future timelike infinity iþ
on the Penrose diagram (but not coincident with iþ), along
which r̄ continuously decreases from the event horizon
circumference r̄ ¼ r̄þ to r̄ ¼ 0, eventually meeting up with
a central spacelike singularity. In this case the Cauchy
horizon is “weakly singular,” in that the metric and scalar
field are finite there, but their gradients diverge so that the
curvature scalars R and K are singular. The Hawking mass
also grows here (the “mass inflation” phenomenon),
seemingly to a divergence as the Cauchy horizon meets
the central singularity. For 0.60≲ a ≲ 0.87 we find a
similar Penrose diagram to the lower spin cases, except
that the Cauchy horizon never becomes singular, i.e. scalar
field gradients and curvature invariants extrapolate to finite
values on it. This behavior is consistent with the linear
analysis of [43], and as they conclude, shows that formation

FIG. 12. The magnitude of the Ricci scalar R as a function of
coordinate time t at r ¼ 0 as a function of spin a. We find that for
spins greater than a ≈ 0.87, RðtÞ remains finite and goes through
a local maximum before decreasing in the approach to the
Cauchy horizon, whereas for lower spins it trends toward a
divergence there.

FIG. 11. Plots illustrating the method we use to find the presumed surface of infinite curvature, depicted by the dashed red lines on the
right panels of Figs. 4 and 5. Along each r ¼ const: line, if a quantity hðtÞ appears to be diverging approaching the excision surface, we
assume it does so like hðtÞ ∝ ðtc − tÞ−α, with a constant power α and time-of-divergence tc, and measure the two constants by fitting to
the late time behavior as depicted above (this is done independently at each r, so in general the “constants” vary with r). It is important to
note that this approach is not based on any theoretical model for the divergence of these quantities; we are merely extrapolating the
numerical data. The above examples show the divergence of the Ricci (R) and Kretschmann (K) curvature invariants approaching the
spacelike singularity (left plot) and the singular Cauchy horizon (right plot) for the case with spin a ¼ 0.22. Note that K grows at double
the rate R does, as one would expect due to the fact that in 3D they obey the relation K ¼ 4RμνRμν − R2.
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of rapidly rotating black holes in 3D asymptotically AdS
spacetime violates the strong cosmic censorship conjecture
(though this picture might change in light of quantum
effects; see [54]). For 0.87≲ a ≲ 0.97 we find that the
central spacelike singularity vanishes, and a regular, null
Cauchy horizon extends all the way inward to a regular,
timelike origin at r̄ ¼ 0. Our algorithm is not able to follow
the full development of the interior for near-extremal
(0.97≲ a ≤ 1) black holes, and though we do not see
any hints of qualitatively new features emerging compared
to the highest spin case we can fully resolve, we cannot
make definitive statements about this limit.
For all a > 0 cases we have studied, we find that the

focusing effect experienced by infalling geodesic observers
crossing the inner horizon r̄ ¼ r̄− of a vacuum BTZ black
hole also occurs in the dynamical collapse interiors.
Remarkably, the rate of focusing is quantitatively similar
to the vacuum case (as originally derived in [27]), and
moreover it still occurs at roughly the same radius, despite
that now r̄ ¼ r̄− isnot an inner horizon (for low spin cases the
inner horizon collapses to the origin r̄ ¼ 0 well before the
rate of focusing begins tomatch the background calculation).
One dramatic consequence of this focusing is that timelike
(null) observers experience a drop in proper circumference
from r̄ ¼ r̄− to r̄ ¼ 0 in ever decreasing proper (affine) time
the closer to theCauchy horizon they cross, extrapolating to a
step function drop at the Cauchy horizon. This behavior
implies a diverging tidal force is experienced before any
singularity (if present) is encountered. Similar conclusions
were reached for the eternal 4D Kerr and Reissner-
Nordstrom cases with a perturbative analysis [27] and a
few fully nonlinear case studies with numerics [23,28–30].
Statements about what the 3D AdS collapse case might

say about the astrophysically relevant 4D black hole
interior would be pure speculation. However, for some
properties we already know there are qualitative differences
between the two. For example, the work of Dafermos and
Luk [16] implies that in a black hole whose exterior
approaches Kerr, the branch of the Cauchy horizon ema-
nating from iþ is weakly singular for all subextremal spins,
unlike our high (a ≳ 0.87) spin cases. The work of Van de
Moortel [50,51] shows a similar result for Reissner-
Nordstrom, and moreover that the null Cauchy horizon
(under reasonable assumptions) always “breaks down” to
a central singularity, again in contrast to our high spin cases.
It is unclear whether the latter difference is a consequence of
charge versus angular momentum influencing the interior; a
simple way to gain more insight would be to look at the
interiors of black holes formed from charged circularly
symmetric collapse in 3D AdS. Of course, the ultimate goal
would be to study both 3D and 4D collapse with angular
momentum and charge without any symmetry restrictions,
though that would pose significant challenges for either
analytic or numerical studies. The surprisingly rich set of
outcomes found in the AdS3 case, however—which is

expected to be much simpler than the higher dimensional
cases,where true dynamical gravitational degrees of freedom
come into play—suggests that taking on the challengewould
be well worth the effort.
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APPENDIX A: EQUATIONS OF MOTION

In this appendix we explicitly write down the particular
variables we use, equations we solve, and the corresponding
boundary and regularity conditions, closely following [46].
We use the metric ansatz (13), and scalar field ansatz (16)

with corresponding stress-energy tensor (15). The Einstein
field equations (1) can be decomposed into the Hamiltonian
constraint

B00 þB0
�
B0 −A0 þ 1þ cos2ðr=lÞ

l sinðr=lÞ cosðr=lÞ
�

−
A0

l sinðr=lÞcosðr=lÞ−
_A _BþC3 þ

1

4
C4γ

2 þ 4πSB0 ¼ 0;

ðA1Þ
the radial component of the momentum constraint

_B0 þ _B

�
B0 − A0 þ cosðr=lÞ

l sinðr=lÞ
�

− _A

�
B0 þ 1

l sinðr=lÞ cosðr=lÞ
�
þ 4πS _B ¼ 0; ðA2Þ

the angular component of the momentum constraint

J0 þ 8πr̄Sγ0 ¼ 0; ðA3Þ

and three independent components of the evolution
equations

− B̈þ B00 þ 2

r
B0 þ ðB0Þ2 þ B0

�
2

l sinðr=lÞ cosðr=lÞ −
2

r

�

− _B2 þ 2C3 þ
1

2
C4γ

2 þ 4πSB ¼ 0; ðA4Þ
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−Äþ A00 þ C3 −
3

4
C4γ

2 þ 4πSA ¼ 0; ðA5Þ

and

_J þ 8πr̄S_γ ¼ 0: ðA6Þ
In the above, the matter source terms are

SA; SB0 ¼ 1

2
sin2ðr=lÞ½ðX2 þ Y2Þ ∓ ðV2 þW2Þ� þ 1

2l2
ðcos2ðr=lÞ ∓ e2A−2BÞðϕ2 þ ψ2Þ þ cosðr=lÞ sinðr=lÞ

l
ðXϕþ YψÞ

SB ¼ 1

l2
e2A−2Bðϕ2 þ ψ2Þ

S _B ¼ sin2ðr=lÞðVX þWYÞ þ cosðr=lÞ sinðr=lÞ
l

ðVϕþWψÞ
S_γ ¼ sin2ðr=lÞðYϕ − XψÞ
Sγ0 ¼ sin2ðr=lÞðWϕ − VψÞ; ðA7Þ

and we have introduced the following auxiliary variables:
γ ≡ β0, X ≡ ϕ0, Y ≡ ψ 0, V ≡ _ϕþ βψ , W ≡ _ψ − βϕ, C1≡
2=ðl tanðr=lÞÞþ1=ðlsinðr=lÞcosðr=lÞÞ−3=rþB0, C2≡
B0=ðl tanðr=lÞÞ þ ðcos2ðr=lÞ − e2A−2BÞ=ðl2 sin2ðr=lÞÞ,
C3 ¼ ð1 − e2AÞ=ðl2 cos2ðr=lÞÞ, C4 ¼ l2 sin2ðr=lÞe2B−2A,
and J ≡ r̄3γ=f.
In terms of the above first order variables, the Klein-

Gordon equation for the two independent components of
the complex scalar field take the form

− _X þ V 0 − ðβY þ γψÞ ¼ 0

− _Y þW0 þ ðβX þ γϕÞ ¼ 0

− _V þ X0 þ 3

r
X þ C1X − βW − _BV þ C2ϕ ¼ 0

− _W þ Y 0 þ 3

r
Y þ C1Y þ βV − _BW þ C2ψ ¼ 0: ðA8Þ

We impose the following regularity conditions at the
origin r ¼ 0

A0ðt; 0Þ ¼ B0ðt; 0Þ ¼ β0ðt; 0Þ ¼ 0

Aðt; 0Þ ¼ Bðt; 0Þ
ϕ0ðt; 0Þ ¼ ψ 0ðt; 0Þ ¼ 0; ðA9Þ

and the following regularity/outer boundary conditions at
r ¼ lπ=2

Aðt;lπ=2Þ ¼ B0ðt;lπ=2Þ ¼ βðt;lπ=2Þ ¼ 0

ϕðt;lπ=2Þ ¼ ψðt;lπ=2Þ ¼ 0: ðA10Þ

APPENDIX B: CONVERGENCE TESTS

We have performed many tests to check the correctness
of our code, including conservation of the asymptotic

mass and angular momentum, and that the scheme is
converging at the expected order. The latter rate of
convergence should be second order throughout the

FIG. 13. Plotsof the rateofconvergence tozeroQNðtÞ (B1) for the
residuals of the three constraint equations (A1)–(A3), here for the
casewitha ¼ 0.77.EachshouldbeconvergingtozerowithQNðtÞ ¼
4 (in the continuum limit).We see a trendwith increasing resolution
to this expected behavior until very near the end, at which timemost
of the grid is excised and some field gradients have become quite
large. In extracting properties from the numerical solutions for the
resultspresentedhere,wedonotusedata from this “noisy” region; in
particularall theextrapolationofquantities tothepresumedspacelike
singularity (when present), Cauchy horizon, and iþ are performed
with data in the region where we have good convergence. Dotted
black lines are shown at QNðtÞ ¼ 2, 4 to help guide the eye.
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evolution, though we sometimes see slightly better than
second order for lower resolutions, presumably due to our
use of fourth order spatial differences. For brevity, here we
only show—in Fig. 13—one set of convergence tests from
a representative case, namely convergence of the three
constraint equations to zero for the a ¼ 0.77 case. As
mentioned in the main text, we use a free evolution
scheme, where the constraints are only solved at the initial
time, and this is therefore a rather nontrivial test that we
are solving the correct system of equations. Specifically,
what is plotted in the figure are a set of ratios of the L2

norms versus time of the residuals of each constraint,

taken between pairs of successively higher resolution
runs:

QNðtÞ ¼
jjL2hu2hjj
jjLhuhjj ; ðB1Þ

where Lhuh denotes a residual operator L acting on the
discrete solution u at resolution (grid spacing) h (and
analogously for the half resolution case at 2h), and N is
the number of points in the higher resolution run, related
to h by h ¼ ðrmax − rminÞ=ðN − 1Þ ¼ ðlπÞ=ð2ðN − 1ÞÞ. In
the continuum limit,QNðtÞ should asymptote to 2m, where
m is the order of convergence.
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