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It has recently been demonstrated that static spatially regular scalar fields, which are nonminimally
coupled to the electromagnetic field of a charged central black hole, can be supported in the exterior regions
of the black-hole spacetime. In the present paper, we use analytical techniques in order to study the
physical and mathematical properties of the externally supported linearized scalar field configurations
(scalar “clouds”) in the dimensionless large-mass regime μrþ ≫ 1 (here, μ and rþ are respectively the
proper mass of the supported scalar field and the outer horizon radius of the central supporting black hole).
In particular, we derive a remarkably compact analytical formula for the discrete resonant spectrum
fαnðμ;Q=MÞgn¼∞

n¼0 which characterizes the dimensionless coupling parameter of the composed black hole–
nonminimally coupled linearized massive scalar field configurations. The physical significance of this
resonant spectrum stems from the fact that, for a given value of the dimensionless black-hole electric charge
Q=M, the fundamental (smallest) eigenvalue α0ðμÞ determines the critical existence line of the composed
black hole–massive field system, a boundary line which separates nonlinearly coupled hairy charged black
hole–massive scalar field configurations from bald Reissner-Nordström black holes. The analytical results
derived in this paper are confirmed by direct numerical computations.
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I. INTRODUCTION

The canonical no-hair theorems presented in Refs. [1–3]
have revealed the physically interesting fact that, in the
composed Einstein-Maxwell-scalar theory, static scalar
field configurations cannot be supported in the exterior
regions of asymptotically flat black-hole spacetimes with
spatially regular horizons. This physically intriguing prop-
erty also characterizes black-hole spacetimes in which the
scalar fields are nonminimally coupled to the Ricci curva-
ture scalar of the spacetime [4,5].
Intriguingly, it has recently been demonstrated in the

physically interesting works [6,7] that spatially regular
massless scalar field configurations which are characterized
by a nonminimal coupling of the form fðϕÞFμνFμν to the
electromagnetic Maxwell tensor [see Eq. (4) below] can be
supported in spherically symmetric asymptotically flat
charged black-hole spacetimes. This phenomenon, which
is known by the name black-hole spontaneous scalariza-
tion, has also been studied in Refs. [8,9] in the physically
interesting context of massive scalar field configurations
which are nonminimally coupled to the electromagnetic
tensor of the charged black-hole spacetime.
As explicitly proved in Refs. [6,7], if the nontrivial

scalar field–electromagnetic field coupling function is char-
acterized by the weak-field functional behavior fðϕÞ ¼
1þ αϕ2 þOðϕ4Þ, then the bald (scalarless) charged

Reissner-Nordström black-hole spacetime is a valid solution
of the field equations in the trivial ϕ≡ 0 limit. This is a
physically desirable property of the nontrivially coupled
Einstein-Maxwell-scalar theory. Here, α > 0 is a dimension-
less physical parameter which determines the strength of the
nonminimal coupling between the supported scalar field
and the electromagnetic field of the charged black-hole
spacetime.
The numerical results presented in the physically inter-

esting works [6–9] have demonstrated that, for a given value
of the dimensionless charge-to-mass ratio Q=M [10] of the
black-hole spacetime, the nontrivially coupled Einstein-
Maxwell-scalar system is characterized by the existence
of a critical existence line α ¼ αðμ;Q=MÞ which marks the
boundary between hairy charged black hole–nonminimally
coupled massive scalar field configurations and bald (scalar-
less) Reissner-Nordström black-hole spacetimes (here, μ is
the proper mass of the nonminimally coupled scalar field). In
particular, the critical existence line of the composed system
corresponds to spatially regular linearized field configura-
tions which are supported by a central charged Reissner-
Nordström black hole (the term “scalar clouds” is usually
used in the physics literature [11,12] in order to describe
these linearized scalar field configurations which sit on the
critical existence line of the system).
It is important to emphasize the fact that, as nicely

demonstrated in Refs. [6,7], the critical existence line of
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the black hole–field system is universal in the sense that
different scalar field–electromagnetic field coupling func-
tions ffðϕÞg with the same weak-field behavior, fðϕÞ ¼
1þ αϕ2 þOðϕ4Þ, are characterized by the same functional
behavior α ¼ αðμ;Q=MÞ of the critical existence line.
The main goal of the present paper is to study, using

analytical techniques, the physical and mathematical prop-
erties of the composed Einstein-Maxwell–nonminimally
coupled scalar field theory in the dimensionless regime
Mμ ≫ 1 of large field masses. In particular, we shall derive
a remarkably compact analytical formula for the critical
existence line α ¼ αðμ;Q=MÞ which characterizes the
Reissner-Nordström black hole–linearized massive scalar
field cloudy configurations. Interestingly, the analytically
derived resonance formula [see Eq. (31) below] for the
composed black-hole-field system would provide a simple
analytical explanation for the numerically discovered [8,9]
monotonic functional behavior of the relation α ¼
αðμ;Q=MÞ along the critical existence line of the system.

II. DESCRIPTION OF THE SYSTEM

We shall study the physical and mathematical properties
of linearized massive scalar field configurations (scalar
clouds) which are nontrivially coupled to the electromag-
netic field of a charged Reissner-Nordström black hole. The
line element of the spherically symmetric charged black-
hole spacetime can be expressed in the form [13]

ds2 ¼ −hðrÞdt2 þ 1

hðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where

hðrÞ ¼ 1 −
2M
r

þQ2

r2
: ð2Þ

Here,M and Q are respectively the black-hole mass and its
electric charge. The black-hole horizon radii frþ; r−g are
determined by the polynomial equation hðr ¼ r�Þ ¼ 0,
which yields

r� ¼ M þ ðM2 −Q2Þ1=2: ð3Þ

The composed charged black hole–nonminimally
coupled massive scalar field system is characterized by
the action [6–9]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2∇αϕ∇αϕ − 2μ2ϕ2 − fðϕÞI �; ð4Þ

where the nontrivial coupling between the scalar field ϕ
and the electromagnetic Maxwell tensor Fμν of the central
charged black hole is induced by the source term

I ¼ FμνFμν: ð5Þ

The coupling function fðϕÞ of the supported massive scalar
field configurations is characterized by the universal
quadratic behavior [6–9]

fðϕÞ ¼ 1þ αϕ2 ð6Þ

in the weak-field regime, where the dimensionless expan-
sion constant α is the physical coupling parameter of
the composed black-hole-field theory. We shall henceforth
assume α > 0.
The action (4), when varied with respect to the wave

function of the massive scalar field, yields the differential
equation [6–9]

∇ν∇νϕ ¼ 1

4
f;ϕI : ð7Þ

Substituting into (7) the line element (1) of the curved black-
hole spacetime and using the field decomposition [14]

ϕðr; θ;ϕÞ ¼
X
lm

ψ lmðrÞ
r

YlmðθÞeimϕ; ð8Þ

one finds that the spatial behavior of the static nonminimally
coupled massive scalar field configurations, which are
supported by the central charged Reissner-Nordström black
hole, is determined by the ordinary differential equation

d2ψ
dy2

− Vψ ¼ 0; ð9Þ

where the tortoise coordinate y in the Schrödinger-like
equation (9) is related to the radial coordinate r by the
compact differential relation [15]

dr
dy

¼ hðrÞ: ð10Þ

Here [6–9],

VðrÞ ¼
�
1 −

2M
r

þQ2

r2

�

×

�
μ2 þ lðlþ 1Þ

r2
þ 2M

r3
−
2Q2

r4
−
αQ2

r4

�
ð11Þ

is the effective potential of the composed black hole–
nonminimally coupled massive scalar field system.
In the next section, we shall use analytical techniques

in order to determine the discrete resonant spectrum
fαnðμ; l;M;QÞgn¼∞

n¼0 of the dimensionless physical param-
eter α. This resonant spectrum is determined by the
Schrödinger-like radial differential equation (9) with the
following boundary conditions [6–9]:
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ψðr ¼ rþÞ < ∞; ψðr → ∞Þ → 1

r
e−μr: ð12Þ

These physically motivated boundary conditions at the
outer black-hole horizon and at spatial infinity correspond
to spatially regular bound-state massive scalar field con-
figurations which are supported by the central charged
black hole.

III. DISCRETE RESONANT SPECTRUM OF THE
COMPOSED CHARGED BLACK

HOLE–LINEARIZED MASSIVE SCALAR
FIELD SYSTEM: WKB ANALYSIS

In the present section, we shall derive a remarkably
compact analytical formula for the discrete resonant spec-
trum fαnðμ; l;M;QÞgn¼∞

n¼0 which characterizes the com-
posed charged black hole–linearized massive scalar field
configurations in the dimensionless large-mass regime

Mμ ≫ maxf1; lg: ð13Þ

As we shall now show explicitly, the Schrödinger-like
equation (9), which determines the radial functional behav-
ior of the spatially bounded nonminimally coupled massive
scalar field configurations in the charged black-hole space-
time (1), is amenable to a Wentzel-Kramers-Brillouin
(WKB) analysis in the large-mass regime (13). In particu-
lar, a standard second-order WKB analysis of the
Schrödinger-like radial equation (9) yields the well-known
discrete quantization condition [16–18]

Z
ytþ

yt−

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vðy;M;Q; l; μ; αÞ

p
¼

�
nþ 1

2

�
· π;

n ¼ 0; 1; 2;…: ð14Þ

The two integration boundaries fyt−; ytþg of the WKB
formula (14) are the classical turning points [with
Vðyt−Þ ¼ VðytþÞ ¼ 0] of the composed charged black
hole–massive field binding potential (11). The reso-
nant parameter n (with n ∈ f0; 1; 2;…g) characterizes
the infinitely large discrete resonant spectrum
fαnðμ; l;M;QÞgn¼∞

n¼0 of the black hole–field system.
Using the relation (10) between the radial coordinates y

and r, one can express the WKB resonance equation (14) in
the form

Z
rtþ

rt−

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vðr;M;Q; l; μ; αÞp

hðrÞ ¼
�
nþ 1

2

�
· π;

n ¼ 0; 1; 2;…; ð15Þ

where the two polynomial relations [see Eq. (11)]

1 −
2M
rt−

þQ2

r2t−
¼ 0 ð16Þ

and

lðlþ 1Þ
r2tþ

þ 2M
r3tþ

−
2Q2

r4tþ
−
αQ2

r4tþ
¼ 0 ð17Þ

determine the radial turning points frt−; rtþg of the
composed black-hole-field binding potential (11).
We shall now prove that the WKB resonance equa-

tion (15) can be studied analytically in the regime (13) of
large field masses. To this end, it proves useful to define the
dimensionless physical quantities

x≡ r − rþ
rþ

; τ≡ rþ − r−
rþ

; ð18Þ

in terms of which the composed black hole–massive field
interaction term (11) has the form of a binding potential
well,

V½xðrÞ� ¼ −τ
�
αQ2

r4þ
− μ2

�
· x

þ
�
αQ2ð5rþ − 6r−Þ

r5þ
− μ2

�
1 −

2r−
rþ

��
· x2

þOðx3Þ; ð19Þ

in the near-horizon region

x ≪ τ: ð20Þ

From the near-horizon expression (19) of the black-hole-
field binding potential, one obtains the dimensionless
expressions

xt− ¼ 0 ð21Þ
and

xtþ ¼ τ ·

αQ2

r4þ
− μ2

αQ2ð5rþ−6r−Þ
r5þ

− μ2ð1 − 2r−
rþ
Þ

ð22Þ

for the classical turning points of the WKB integral
relation (15).
Taking cognizance of Eqs. (20) and (22), one finds that

our analysis is valid in the regime [see Eq. (31) below]

α ≃
μ2r4þ
Q2

; ð23Þ

in which case the near-horizon binding potential and its
outer turning point can be approximated by the remarkably
compact expressions
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VðxÞ ¼ −τ
��

αQ2

r4þ
− μ2

�
· x − 4μ2 · x2

�
þOðx3Þ ð24Þ

and

xtþ ¼ 1

4

�
αQ2

μ2r4þ
− 1

�
: ð25Þ

In addition, from Eqs. (2) and (18), one finds the near-
horizon relation

hðxÞ ¼ τ · xþ ð1 − 2τÞ · x2 þOðx3Þ: ð26Þ

Substituting Eqs. (18), (24), (25), and (26) into Eq. (15),
one obtains the integral relation

1ffiffiffi
τ

p
Z

xtþ

0

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQ2

r2þ
− μ2r2þ
x

− 4μ2r2þ

s
¼

�
nþ 1

2

�
· π;

n ¼ 0; 1; 2;…: ð27Þ

Defining the dimensionless radial coordinate

z≡ x
xtþ

; ð28Þ

one can express the WKB resonance equation (27) in the
mathematically compact form

2μrþxtþffiffiffi
τ

p
Z

1

0

dz

ffiffiffiffiffiffiffiffiffiffiffi
1

z
− 1

r
¼

�
nþ 1

2

�
· π; n ¼ 0; 1; 2;…;

ð29Þ

which yields the relation [19]

μrþxtþffiffiffi
τ

p ¼ nþ 1

2
; n ¼ 0; 1; 2;…: ð30Þ

From Eqs. (25) and (30), one finds the discrete resonant
spectrum

αn ¼
μ2r4þ
Q2

�
1þ 4

ffiffiffi
τ

p
μrþ

�
nþ 1

2

��
; n ¼ 0; 1; 2;… ð31Þ

for the dimensionless coupling parameter of the composed
charged black hole–nonminimally coupled linearized mas-
sive scalar field configurations in the regime μrþ ≫ 1
[see (13)] of large field masses. The analytically derived
relation (31) can also be written as the discrete resonant
formula [20]

ðμrþÞn¼
ffiffiffiffiffiffiffiffi
α
r−
rþ

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ−r−
rþ

r
·ð2nþ1Þ for α≫1 ð32Þ

for the dimensionless mass parameter which characterizes
the nonminimally coupled massive scalar field clouds in the
large-coupling α ≫ 1 regime.

IV. NUMERICAL CONFIRMATION

It is of physical interest to test the accuracy of the
analytically derived resonant spectrum (32) in the large-
coupling (large-α) regime against the corresponding exact
(numerically computed [8,9]) resonant spectrum.
In Table I, we present the analytically calculated [see

Eq. (32)] dimensionless mass parameter ½μrþðαÞ�analytical,
which characterizes the composed charged black hole–
nonminimally coupled massive scalar field cloudy con-
figurations in the large-coupling α ≫ 1 regime, for various
values of the dimensionless coupling parameter α of the
theory. We also present the corresponding exact (numeri-
cally computed [8]) values of the dimensionless mass
parameter ½μrþðαÞ�numerical which characterizes the com-
posed black-hole-field system. The data presented in
Table I reveal the fact that the agreement between the

TABLE I. Composed Reissner-Nordström black hole–nonminimally coupled massive scalar field cloudy configurations. We display,
for various values of the dimensionless coupling parameter α of the theory and for various values of the discrete resonant parameter n,
the analytically calculated values of the dimensionless mass parameter ½μrþðαÞ�analytical which characterizes the composed black-hole-
field system [see the analytically derived resonant spectrum (32)]. We also display the corresponding exact (numerically computed [8])
values ½μrþðαÞ�numerical of the dimensionless mass parameter of the composed black-hole-field system. The data presented are for the
case of a central supporting charged black hole with the dimensionless charge-to-mass ratio Q=M ¼ 0.7. One finds that the agreement
between the analytically derived resonant spectrum (32) and the corresponding numerically computed spectrum [8] becomes extremely
good in the dimensionless large-coupling α ≫ 1 regime of the composed black-hole-field system. Interestingly, the data presented reveal
the fact that the agreement between the analytically derived resonant spectrum (32) and the numerical results of Ref. [8] is quite good
already in the dimensionless μrþ ¼ Oð1Þ regime.

αðnÞ 82.52(0) 256.6(0) 469.8(0) 675.5(1) 2194(1) 4074(1)

ðμrþÞanalytical 2.80 5.63 7.94 7.88 16.39 23.33
ðμrþÞnumerical 2.75 5.60 7.92 7.88 16.39 23.33
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approximated (analytically derived) resonant spectrum (32)
and the corresponding exact (numerically computed)
resonant spectrum becomes extremely good in the dimen-
sionless large-coupling α ≫ 1 regime of the theory. In fact,
the agreement between the analytically derived resonant
spectrum (32) and the numerical results of Ref. [8] is found
to be quite good already in the μrþ ¼ Oð1Þ regime.

V. α=μ2r2+ → r2+ =Q2 LIMIT

Interestingly, it has been demonstrated numerically in
Refs. [8,9] (see, in particular, Fig. 4 of Ref. [8]) that the
dimensionless physical parameter α diverges in the β → βc
limit, where the physical parameter β is defined by the
dimensionless relation

α

β
≡ μ2r2þ: ð33Þ

Here, the critical parameter βc is given by the simple
relation [8]

βc ≡ r2þ
Q2

: ð34Þ

Remarkably, our results provide a simple analytical
explanation for the numerically observed [8,9] intriguing
divergent functional behavior of the coupling parameter
α in the β → βc limit. In particular, from the resonant
spectrum (31), one finds the simple relation

αn ¼
16βcτðnþ 1

2
Þ2

ð ββc − 1Þ2 for β → βþc : ð35Þ

We have therefore proved analytically that, in agreement
with the numerical results presented in Refs. [8,9], the
physical coupling parameter α of the composed black
hole–massive field system diverges quadratically in the
β → βc limit.

VI. SUMMARY AND CONCLUSIONS

The recently published highly important works [6–9]
have explicitly proved, using numerical techniques, that
asymptotically flat charged black holes with spatially
regular horizons can support external static matter con-
figurations which are made of (massless as well as massive)
scalar fields. This physically intriguing phenomenon owes
its existence to a nonminimal coupling between the
supported scalar fields and the electromagnetic field of
the charged black-hole spacetime [see Eq. (4)].
The interesting numerical results presented in

Refs. [6–9] have revealed the fact that, in the nonrivial
field theory (4), the boundary between hairy charged black
hole–nonminimally coupled scalar field configurations
and bald (scalarless) Reissner-Nordström black holes is
determined by a critical existence line α ¼ α0ðμ;Q=MÞ,
where the physical parameter α determines the strength
of the nontrivial coupling between the supported scalar

configurations and the electromagnetic field of the central
charged black hole. In particular, the critical existence
line of the system is composed of linearized scalar field
configurations which are supported by central charged
Reissner-Nordström black holes. Interestingly, it has been
demonstrated in Refs. [6–9] that the linearized external
scalar configurations (scalar clouds), which are supported
in the charged black-hole spacetime, are characterized
by a discrete resonant spectrum fαnðμ;Q=MÞgn¼∞

n¼0 of the
nontrivial scalar field–electromagnetic field coupling
parameter α.
In the present paper,we have used analytical techniques in

order to explore the physical and mathematical properties
of the composed Reissner-Nordström black hole–
nonminimally coupled linearized massive scalar field sys-
tem in the dimensionless large-coupling regime α ≫ 1.
In particular, we have derived the discrete WKB resonant
spectrum (32) for the dimensionless mass parameter μrþ
which characterizes the composed black hole–massive field
cloudy configurations. Furthermore, we have explicitly
demonstrated that the analytically derived resonant spec-
trum (32) for the dimensionless mass parameter of the
composed black-hole-field system agrees remarkably well
(see the data presented in Table I) with the corresponding
numerically computed resonant spectrum of Ref. [8].
Interestingly, the analytically derived resonant for-

mula (32) yields the remarkably compact expression [21]

ðμrþÞmax ¼
ffiffiffiffiffiffiffiffiffi
α
r−
rþ

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ − r−

rþ

r
for α ≫ 1 ð36Þ

for the critical existence line which characterizes the
charged black hole–massive scalar field configurations.
The α-dependent critical line (36) is physically important

in the composed Einstein-Maxwell–massive scalar theory
(4) since it marks, in the large-mass regime, the boundary
between the hairy charged black hole–massive scalar
field configurations and the bald (scalarless) Reissner-
Nordström black-hole spacetimes. In particular, for given
parameters fM;Qg of the central supporting black hole
and for a given value of the nontrivial coupling parameter α,
the hairy charged black hole–massive scalar field con-
figurations are characterized by the critical inequality
μðα;Q=MÞ ≤ μmaxðα;Q=MÞ.
It is physically interesting to point out that the analyti-

cally derived formula (36) for the critical existence line of
the composed charged black hole–massive scalar field
system implies, in agreement with the recently published
important numerical results of Refs. [8,9], that, for given
values of the black-hole physical parameters fM;Qg, the
dimensionless mass parameter μrþ of the nonminimally
coupled linearized scalar field configurations is a mono-
tonically increasing function of the dimensionless coupling
parameter α of the theory.
In addition, our analysis provides a simple analytical

explanation for the numerically observed [8,9] divergent
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functional behavior of the coupling parameter α in the
β → βc ≡ r2þ=Q2 limit, where β≡ α=μ2r2þ. In particular,
using analytical techniques, we have explicitly proved that
the dimensionless physical parameter α diverges quadrati-
cally [see Eq. (35)] in the β → βc limit.
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