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We investigate the conditions for the (in)stability of the isotropic pressure condition in collapsing
spherically symmetric, dissipative fluid distributions. It is found that dissipative fluxes, and/or energy
density inhomogeneities and/or the appearance of shear in the fluid flow, force any initially isotropic
configuration to abandon such a condition, generating anisotropy in the pressure. To reinforce this
conclusion we also present some arguments concerning the axially symmetric case. The consequences of
our results are analyzed.
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I. INTRODUCTION

In theoretical physics it is usual to resort to different
kinds of assumptions in order to solve (almost) any specific
problem. Assumptions are restrictions imposed to simplify
the problem under consideration, reflecting some of the
essential aspects of the systems. Since all physical systems
are subject to fluctuations, those essential aspects are as
well. Accordingly, the following questions naturally arise
in the study of almost any physical problem:

(i) Is any result obtained under assumption A similar to
that obtained under the “quasiassumption” Aþ ϵ
(where ϵ ≪ 1)? This question concerns the stability
of the result.

(ii) Under which conditions does assumption A remain
valid all along the evolution of the system? This
question concerns the stability of the assumption
itself.

In this paper we endeavor to answer the questions above,
in relation to the isotropic pressure condition.
For many years, both in the Newtonian and the

relativistic regime, the isotropy of the pressure (the
Pascal principle) has been a common (and a fundamental)
assumption in the study of stellar structure and evolution.
Therefore, the two questions above deserve to be answered
for the isotropic pressure condition.
The first question, concerning the stability of the result,

has a known answer. Indeed, let us recall that even a small
pressure anisotropy may lead to results drastically different
from the ones obtained by assuming isotropic pressure, due
to the possible appearance of crackings in the fluid
distributions produced by the presence of arbitrarily small
pressure anisotropy [1]. Thus, the stability of a specific
result against small deviations from the isotropic pressure

condition is not assured in general, and should be checked
in each case.
Here, we focus on the question concerning the stability

of the isotropic pressure condition, i.e., under which
conditions such an assumption remains valid all along
the evolution. More specifically, we endeavor to answer the
following (related) questions:

(i) What physical properties of the fluid distribution are
related (and how) to the appearance of pressure
anisotropy in an initially isotropic fluid?

(ii) Under which conditions does an initially isotropic
configuration remain isotropic all along its evolution
(stability problem)?

The relevance of the problem under consideration is
illustrated, on the one hand, by the fact that many important
results concerning relativistic fluids rely on the Pascal
principle, and on the other hand, by the fact that pressure
anisotropy is expected to be produced by physical processes
usually present in very compact objects. This in turn explains
the renewed interest in self-gravitating systems with aniso-
tropic pressure observed in recent years. Indeed, the number
of papers devoted to this issue is so large that we ask for the
indulgence of the reader for not being exhaustive with the
corresponding bibliography. Just as a small partial sample, let
us mention the review paper [2] with a comprehensive
bibliography until 1997, and some of the recent works that
have appeared so far in the current (2020) year [3–38].
Our approach heavily relies on a differential equation

relating the Weyl tensor to different physical variables. It is
an evolution equation containing time derivatives of those
variables. This equation was first derived in [39–41] for
configurations without any specific symmetry; afterwards it
was reobtained and used in different contexts (see for
example [42–44]).
We consider general fluid distributions endowed with

anisotropic pressure and dissipating energy during its*lherrera@usal.es
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evolution. The specific physical (microscopic) phenomena
behind these fluid characteristics are not discussed here;
instead we are concerned only by the macroscopic (hydro-
dynamic) manifestations of those phenomena.
As we see, only a highly unlikely cancellation of terms

containing the heat flux, the energy-density inhomogeneity
and the shear of the fluid could ensure that the pressure
isotropy condition remains valid all along the evolution. To
complement our discussion, we also consider the axially
symmetric case.
Themanuscript is organized as follows: In the next section

we introduce all the variables and conventions used through-
out the paper, for the spherically symmetric case. In Secs. III
we briefly present the basic differential equation our study is
based upon. Thenwith all these elementswe tackle in Sec. IV
the problem of identifying the conditions required for the
pressure isotropy assumption to remain valid all along the
evolution of the system, and of identifying the physical
causes of the departure from such a condition. In order to
strengthen further our case, we expose some arguments
concerning the axially symmetric case in Sec. V. A summary
of the obtained results and a discussion on their potential
consequences are presented in Sec. VI. Finally an appendix
with the expressions of Einstein equations and conservation
equations for the spherically symmetric case is included.

II. ENERGY-MOMENTUM TENSOR, RELEVANT
VARIABLES AND FIELD EQUATIONS

Let us consider a spherically symmetric distribution of
collapsing fluid, non-necessarily bounded. The fluid is
assumed to be locally anisotropic (principal stresses
unequal) and undergoing dissipation in the form of heat
flow (to model dissipation in the diffusion approximation).
Choosing comoving coordinates, the general metric can

be written as

ds2 ¼ −A2dt2 þ B2dr2 þ R2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where A, B and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼ θ
and x3 ¼ ϕ.
The matter energy-momentum tensor Tαβ has the form

Tαβ ¼ ðμþ P⊥ÞVαVβ þ P⊥gαβ þ ðPr − P⊥Þχαχβ þ qαVβ

þ Vαqβ; ð2Þ

where μ is the energy density, Pr the radial pressure, P⊥ the
tangential pressure, qα the heat flux describing dissipation
in the diffusion approximation, Vα the four velocity of the
fluid, and χα a unit four vector along the radial direction.
These quantities satisfy

VαVα¼−1; Vαqα ¼ 0; χαχα ¼ 1; χαVα ¼ 0: ð3Þ

We do not explicitly add dissipation in the free streaming
approximation, bulk viscosity and/or shear viscosity to the
system because they can be absorbed into the energy
density μ, and the radial and tangential pressures, Pr and
P⊥, of the collapsing fluid.
Alternatively, we may write the energy-momentum

tensor in its canonical form,

Tαβ ¼ μVαVβ þ Phαβ þ Παβ þ qðVαχβ þ χαVβÞ ð4Þ

with

P ¼ Pr þ 2P⊥
3

; hαβ ¼ gαβ þ VαVβ;

Παβ ¼ Π
�
χαχβ −

1

3
hαβ

�
; Π ¼ Pr − P⊥:

Since we assume that our observer is comoving with the
fluid,

Vα ¼ A−1δα0; qα ¼ qB−1δα1; χα ¼ B−1δα1; ð5Þ

where q is a function of t and r.
The four acceleration aα and the expansionΘ of the fluid

are given by

aα ¼ Vα;βVβ; Θ ¼ Vα
;α; ð6Þ

and its shear σαβ by

σαβ ¼ Vðα;βÞ þ aðαVβÞ −
1

3
Θhαβ: ð7Þ

From (6) with (5) we have for the four acceleration and
its scalar a

a1 ¼
A0

A
; a2 ¼ aαaα ¼

�
A0

AB

�
2

; ð8Þ

where aα ¼ aχα, and for the expansion

Θ ¼ 1

A

�
_B
B
þ 2

_R
R

�
; ð9Þ

where the prime stands for differentiation with respect to r
and the dot stands for differentiation with respect to t.
With (5) we obtain for the shear (7) its nonzero

components

σ11 ¼
2

3
B2σ; σ22 ¼

σ33
sin2 θ

¼ −
1

3
R2σ; ð10Þ

and its scalar
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σαβσαβ ¼
2

3
σ2; ð11Þ

where

σ ¼ 1

A

�
_B
B
−

_R
R

�
: ð12Þ

Then, the shear tensor can be written as

σαβ ¼ σ

�
χαχβ −

1

3
hαβ

�
: ð13Þ

We can define the velocity U of the collapsing fluid as
the variation of the areal radius R as measured from its area,
with respect to proper time, i.e.,

U ¼
_R
A
: ð14Þ

A. Weyl tensor

In general the Weyl tensor Cρ
αβμ may be defined through

its electric and magnetic parts. However in the spherically
symmetric case the magnetic part vanishes identically, and
the electric part of the Weyl tensor is defined by

Eαβ ¼ CαμβνVμVν; ð15Þ

with the following nonvanishing components,

E11 ¼
2

3
B2E;

E22 ¼ −
1

3
R2E;

E33 ¼ E22 sin2 θ; ð16Þ

where

E¼ 1

2A2

�
R̈
R
−
B̈
B
−
�
_R
R
−
_B
B

��
_A
A
þ

_R
R

��

þ 1

2B2

�
A00

A
−
R00

R
þ
�
B0

B
þR0

R

��
R0

R
−
A0

A

��
−

1

2R2
: ð17Þ

Observe that we may also write Eαβ as

Eαβ ¼ E
�
χαχβ −

1

3
hαβ

�
: ð18Þ

Finally, using the field equations the following expres-
sion may be obtained for E (see [43] or [44] for details):

E ¼ −4πΠþ 4π

R3

Z
r

0

R3μ0dr̃ −
12π

R3

Z
r

0

qUBR2dr̃: ð19Þ

III. AN EVOLUTION EQUATION FOR E

As mentioned in the introduction a differential equation
for the Weyl tensor plays a central role in our work; this
equation, which follows from the Bianchi identities, was
originally found in [39,40] and was reobtained in [42]. Here
we use the notation used in [44]; it reads

∂
∂t½E−4πðμ−ΠÞ�¼3 _R

R
½4πðμþP⊥Þ−E�þ12πq

AR0

BR
: ð20Þ

In the next section we elaborate on this equation,
rewriting it in such a way that it may be regarded as an
evolution equation for the anisotropy Π, thereby providing
the conditions ensuring the propagation in time of pressure
isotropy.

IV. THE EVOLUTION OF THE PRESSURE
ISOTROPY CONDITION

Let us start our discussion by noticing a fact which is
seldom mentioned in the study of relativistic hydrodynam-
ics; we have in mind the “asymmetry” in the role played
by the radial and tangential pressure in the context of
general relativity. Indeed, in the static case the Tolman-
Oppenheimer-Volkoff equation may be written at once
from (A7) as

P0
r þ ðμþ PrÞ

A0

A
þ 2ðPr − P⊥Þ

R0

R
¼ 0: ð21Þ

The above equation is the hydrostatic equilibrium
equation and the physical meaning of its different terms
is well known: the first term is just the gradient of pressure
opposing gravity, the second term describes the gravita-
tional “force” and finally the third term describes the effect
of the pressure anisotropy, whose sign depends on the
difference between principal stresses.
The remarkable fact is that while the radial pressure

enters into the gravitational force term, the tangential
pressure does not. In other words there is not a “self-
regenerative effect” of the tangential pressure, which
explains why anisotropic spheres may be more compact
than isotropic ones (if P⊥ > Pr). This is a purely relativistic
effect, since in the Newtonian limit the radial pressure in the
second term of (21) vanishes and both principal stresses
appear symmetrically in the hydrostatic equilibrium equa-
tion. In other words, in relativistic hydrodynamics there
seems to be an intrinsic anisotropy, in the sense that the role
played by principal stresses is different.
A hint about the origin of the departure from the pressure

isotropy condition during the evolution is provided by the
following “qualitative” analysis of a system leaving the
equilibrium from a static fluid distribution with isotropic
pressure.
Thus, let us assume that our system is forced to abandon

the state of equilibrium, and we take a “snapshot” of the
system immediately after that, at a time scale shorter than
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the thermal relaxation time, the thermal adjustment time
and the hydrostatic time. Therefore, at this time scale we
have

q ≈ U ≈ Θ ≈ σ ≈ 0 ⇒ _R ≈ _B ≈ 0; ð22Þ

obviously the time derivatives of the above quantities are
small but nonvanishing.
Then, evaluating the anisotropic scalar Π at this time

scale, we obtain from (A4) and (A5)

8πΠ ≈
1

A

�
B̈
B
−
R̈
R

�
≈ _σ; ð23Þ

where the fact has been assumed that the fluid is initially
isotropic in the pressure.
Thus it appears that unless we assume that the fluid

evolves shear free, at least within the time scale under
consideration, it will depart from the initial isotropic
pressure condition. It might be argued that for some
unknown physical reasons, some “isotropization” process
brings the system back to the isotropic pressure condition.
However this is a highly speculative assumption and the
fact remains that the expected tendency of the system is to
develop pressure anisotropy.
This result, although valid only for the time scale under

consideration, should not be underestimated. Indeed, once
the system is removed from equilibrium, it faces two
possible scenarios: (a) the fluid is stable and gets back
to a static regime within a time scale of the order of
hydrostatic time, or (b) it is unstable, and enters into a
dynamic regime until eventually reaching a final equilib-
rium state. In the former case (a), there is no reason to think
that the acquired anisotropy given by (23) would disappear
in the new equilibrium state, and therefore the resulting
configuration, unlike the initial one, even if it is static
should in principle exhibit pressure anisotropy.
In the latter case (b),we see next that thedeparture from the

isotropic pressure condition is the rule, for any time scale,
even if we assume that the evolution proceeds shear free.
To do so we elaborate on (20) as follows.
Using (A6) and (12) we may write (20) in the form

∂
∂tðEþ4πΠÞþ

_R
R
ð3Eþ4πΠÞ

¼−4πðμþPrÞAσ−
4πq
B

�
2A0−

AR0

R

�
−
4πq0A
B

; ð24Þ

or introducing for simplicity the dissipative factor (Ψdiss),

Ψdiss ≡ −
4π

B

��
2A0 −

AR0

R

�
qþ q0A;

�
; ð25Þ

we may rewrite (24) as an evolution equation for the
anisotropy Π as

_Πþ
_R
R
Πþ 1

4π

�
_Eþ3E _R

R

�
¼−ðμþPrÞAσþ

1

4π
Ψdiss: ð26Þ

The above equation may be integrated, producing

Π ¼ −
1

4πR

Z
t

0

R

�
_E þ 3E _R

R

�
dt̃ −

1

R

Z
t

0

ðμþ PrÞAσRdt̃

þ 1

4πR

Z
t

0

RΨdissdt̃; ð27Þ

where the initial conditionΠðt ¼ 0Þ ¼ 0 has been imposed.
At this stage, we may identify in the equation above three

different factors forcing the system to abandon the pressure
isotropy condition. The first integral provides the contri-
bution from the Weyl tensor, the second one depends on the
shear of the flow and the last one describes the role played
by the dissipative processes through the dissipative factor.
We next transform the equation above by expressing the

Weyl tensor terms in the first integral, through its expres-
sion (19).
Thus using (19) in (27), we obtain after some simple

calculations

Π _R ¼ R
2
ðμþ PrÞAσ −

RΨdiss

8π
−

3

2R2

∂
∂t

�Z
r

0

qUBR2dr̃

�

þ 1

2R2

∂
∂t

�Z
r

0

R3μ0dr̃
�
: ð28Þ

We see from the above equation that unless a highly
unlikely cancellation of the four terms on the right occurs,
the system will abandon the pressure isotropic condition.
We next analyze the axially symmetric dissipative case.

V. THE AXIALLY SYMMETRIC CASE

A general approach to analyze axially and reflection
symmetric fluids was developed in [45] based on the 1þ 3
formalism [39–41]. Thus it is not difficult to realize that
the analysis presented in the previous section could be
extended to the axially symmetric case, by using
Eqs. (B10)–(B13) in [45]. However such analysis would
involve extremely long expressions, making it difficult to
extract useful information. Instead, still using the results of
[45], we present in this section a more qualitative approach,
which however provides enough arguments as to consider
the departure from the pressure isotropy as the rule instead
of the exception, in this case too.
More specifically, as we already did at the beginning of

the previous section, we analyze the behavior of the system
immediately after its departure from equilibrium. By
immediately we mean at the smallest time scale at which
we can observe the first signs of dynamical evolution. Such
a time scale is assumed to be smaller than the thermal
relaxation time, the hydrostatic time, and the thermal
adjustment time.
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Thus, we consider axially (and reflection) symmetric
sources. For such systems the line element may be
written as

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ
þ C2dϕ2 þ 2Gdθdt; ð29Þ

where A, B, C, G are positive functions of t, r and θ. We
number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼ θ, x3 ¼ ϕ.
We assume that our source is filled with an anisotropic

and dissipative fluid.
The energy-momentum tensor may be written in the

canonical form, as

Tαβ ¼ðμþPÞVαVβþPgαβþΠαβþqαVβþqβVα: ð30Þ
Choosing the fluid to be comoving in our coordinates,

Vα ¼
�
1

A
; 0; 0; 0

�
; Vα ¼

�
−A; 0;

G
A
; 0
�
: ð31Þ

We next define a canonical orthonormal tetrad (say eðaÞα ),

by adding to the four velocity vector eð0Þα ¼ Vα, three
spacelike unitary vectors (these correspond to the vectors
K;L;S in [45])

eð1Þα ¼ð0;B;0;0Þ; eð2Þα ¼
�
0;0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2þG2

p

A
;0

�
; ð32Þ

eð3Þα ð0; 0; 0; CÞ; ð33Þ
with a ¼ 0, 1, 2, 3 (latin indices labeling different vectors
of the tetrad).
Then the anisotropic tensor may be expressed through

three scalar functions defined as (see [46] for details)

Πð2Þð1Þ ¼ eαð2Þe
β
ð1ÞTαβ; ð34Þ

Πð1Þð1Þ ¼
1

3
ð2eαð1Þeβð1Þ − eαð2Þe

β
ð2Þ − eαð3Þe

β
ð3ÞÞTαβ; ð35Þ

Πð2Þð2Þ ¼
1

3
ð2eαð2Þeβð2Þ − eαð3Þe

β
ð3Þ − eαð1Þe

β
ð1ÞÞTαβ: ð36Þ

The heat flux vector may be defined in terms of the two
tetrad components qð1Þ and qð2Þ, as

qμ ¼ qð1Þe
ð1Þ
μ þ qð2Þe

ð2Þ
μ ð37Þ

or, in coordinate components (see [45])

qμ ¼
�

qð2ÞG

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p ;
qð1Þ
B

;
Aqð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þG2
p ; 0

�
; ð38Þ

qμ ¼
�
0; Bqð1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
qð2Þ

A
; 0

�
: ð39Þ

The four acceleration may be expressed through two
scalar functions

aα ¼ VβVα;β ¼ að1Þe
ð1Þ
μ þ að2Þe

ð2Þ
μ ; ð40Þ

with

að1Þ ¼
A0

AB
; að2Þ ¼

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2þG2

p
�
A;θ

A
þ G
A2

�
_G
G
−
_A
A

��
;

ð41Þ

where the dot and the prime denote derivatives with respect
to t and r respectively.
For the expansion scalar we obtain

Θ¼Vα
;α

¼ 1

A

�
2 _B
B
þ

_C
C

�
þ G2

AðA2B2r2þG2Þ
�
−
_A
A
−
_B
B
þ

_G
G

�
; ð42Þ

whereas the shear tensor is defined in terms of two scalar
functions σð1Þð1Þ and σð2Þð2Þ, which may be written in terms
of the metric functions and their derivatives as (see [45])

σð1Þð1Þ ¼
1

3A

�
_B
B
−

_C
C

�

þ G2

3AðA2B2r2 þG2Þ
�
_A
A
þ

_B
B
−

_G
G

�
; ð43Þ

σð2Þð2Þ ¼
1

3A

�
_B
B
−

_C
C

�

þ 2G2

3AðA2B2r2 þ G2Þ
�
−
_A
A
−

_B
B
þ

_G
G

�
: ð44Þ

Finally, for the vorticity tensor

Ωβμ ¼ ΩðaÞðbÞe
ðaÞ
β eðbÞμ ; ð45Þ

we find that it is determined by a single basis component,

Ωð1Þð2Þ ¼ −Ωð2Þð1Þ ¼ −Ω ¼ −
GðG0

G − 2A0
A Þ

2B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p : ð46Þ

It is important to recall that we have to impose regularity
conditions, necessary to ensure elementary flatness in the
vicinity of the axis of symmetry, and in particular at the
center (see [47–49]); thus as r ≈ 0

Ω ¼
X
n≥1

ΩðnÞðt; θÞrn; ð47Þ

implying, because of (46), that in the neighborhood of the
center
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G ¼
X
n≥3

GðnÞðt; θÞrn: ð48Þ

Next, we need a transport equation; here we use the Müller-
Israel-Stewart second order phenomenological theory
for dissipative fluids [50–53]. However, the main conclu-
sions generated by our analysis are not dependent on the
transport equation chosen, as far as it is a causal one, i.e.,
that it leads to a Cattaneo-type equation [54], leading
thereby to a hyperbolic equation for the propagation of
thermal perturbations.
Thus, the transport equation for the heat flux reads

[51–53]

τhμνqν;βV
β þ qμ ¼ −κhμνðT;ν þ TaνÞ

−
1

2
κT2

�
τVα

κT2

�
;α

qμ; ð49Þ

where τ, κ, T denote the relaxation time, the thermal
conductivity and the temperature, respectively. Contracting

(49) with eð2Þμ we obtain

τ

A
ð _qð2Þ þAqð1ÞΩÞþqð2Þ ¼−

κ

A

�
G _TþA2T;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2þG2

p þATað2Þ

�

−
κT2qð2Þ

2

�
τVα

κT2

�
;α

; ð50Þ

whereas the contraction of (49) with eð1Þμ produces

τ

A
ð _qð1Þ − Aqð2ÞΩÞ þ qð1Þ ¼ −

κ

B
ðT 0 þ BTað1ÞÞ

−
κT2qð1Þ

2

�
τVα

κT2

�
;α

: ð51Þ

Let us now take a snapshot of the system, just after it has
abandoned the equilibrium. As mentioned before, by “just
after” we mean on the smallest time scale, at which we can
detect the first signs of dynamical evolution. The following
results follow from this evaluation (see [46] for details).

(i) At the time scale at which we are observing the
system, which is smaller than the hydrostatic time
scale, the kinematical quantities ΩðGÞ, Θ, σð1Þð1Þ,
σð2Þð2Þ keep the same values they have in equilib-
rium; i.e., they are neglected [of course not so for
their time derivatives, which are assumed to be
small, say of order OðϵÞ (where ϵ ≪ 1)] but non-
vanishing.

(ii) The heat flux vector should also be neglected (once
again, not so for its time derivative).

(iii) From the above conditions it follows at once that
first order time derivatives of the metric variables A,
B, C can be neglected.

Then, we have for the four acceleration

að1Þ ¼
A0

AB
; að2Þ ¼

1

Br

�
A;θ

A
þ

_G
A2

�
; ð52Þ

and from the remaining kinematical variables

_Θ¼ 1

A

�
2B̈
B

þ C̈
C

�
; _σð1Þð1Þ ¼ _σð2Þð2Þ≡ _̄σ ¼ 1

3A

�
B̈
B
−
C̈
C

�
;

ð53Þ

_Ω ¼ 1

AB2r

�
_G0

2
−

_GA0

A

�
: ð54Þ

Now, at thermal equilibrium, when the heat flux van-
ishes, the Tolman conditions for thermal equilibrium [55]

ðTAÞ0 ¼ ðTAÞ;θ ¼ 0 ð55Þ

are valid.
Thus, the evaluation of (51) and (50) just after leaving

the equilibrium produces respectively

_qð1Þ ¼ 0; ð56Þ

and

τ _qð2Þ ¼ −
κAT;θ

Br
− κATað2Þ; ð57Þ

or, using (55),

τ _qð2Þ ¼ −
κT _G
ABr

: ð58Þ

Therefore, at the very beginning of the evolution, the
dissipative process starts with contributions along the eð2Þμ

(meridional) direction.
With the information above we may calculate the

components of the Einstein tensor Gαβ and evaluate them
just after the system leaves the equilibrium. At this time
scale, this tensor has three types of terms: On the one hand,
there are terms with first time derivatives of the metric
functions A, B, C, which are set to 0, next, there are terms
that neither contain G nor first time derivatives of A, B, C
(these correspond to the expressions in equilibrium), and
finally, there are terms with first time derivatives of G and/
or second time derivatives of A, B, C, which of course are
not neglected. Then it follows from the Einstein equations
(see [46] for details)

8πμ ¼ 8πμðeqÞ; ð59Þ

8πP ¼ 8πPðeqÞ −
2

3A
_Θþ 2

3A2B2r2

�
_G;θ þ _G

C;θ

C

�
; ð60Þ
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8πΠð1Þð1Þ ¼ 8πΠð1Þð1ÞðeqÞ þ
_̄σ

A

þ 1

3A2B2r2

�
_G;θ − _G

�
3B;θ

B
−
C;θ

C

��
; ð61Þ

8πΠð2Þð2Þ ¼ 8πΠð2Þð2ÞðeqÞ þ
_̄σ

A

þ 1

3A2B2r2

�
−2 _G;θ þ _G

�
3B;θ

B
þC;θ

C

��
; ð62Þ

8πΠð2Þð1Þ ¼ 8πΠð2Þð1ÞðeqÞ −
_Ω
A
þ

_G
A2B2r

�ðBrÞ0
Br

−
A0

A

�
; ð63Þ

where ðeqÞ stands for the value of the quantity at
equilibrium.
Now, let us assume that initially the pressure of

the system is isotropic, i.e., Πð1Þð1ÞðeqÞ ¼ Πð2Þð2ÞðeqÞ and
Πð2Þð1ÞðeqÞ ¼ 0. The fundamental question we have to
answer is the following: may these conditions propagate
in time? To simplify the discussion, let us assume that out
of equilibrium, at the time scale considered here, we still
have Πð1Þð1Þ ¼ Πð2Þð2Þ; then it follows from (60), (61) that

_G ¼ B2fðt; rÞ; ð64Þ

which by an appropriate choice of the arbitrary function f
(referred to as the fluid news function in [46]) satisfies
regularity conditions and is not in contradiction with any of
the equations describing the system. Thus in principle we
may assume that once the system abandons the equilibrium,
it may keep (at the time scale under consideration) the
condition Πð1Þð1Þ ¼ Πð2Þð2Þ. However, the situation is quite
different for the scalar Πð2Þð1Þ. In fact, if we impose the
condition Πð2Þð1Þ ¼ 0, then because of (63), we have

_Ω
A
¼

_G
A2B2r

�ðBrÞ0
Br

−
A0

A

�
; ð65Þ

which together with (46) produces

_G ¼ B2r2gðt; θÞ; ð66Þ

where g is an arbitrary function of its arguments. But (66)
clearly violates the regularity condition (48), close to the
center. Accordingly, at the time scale under consideration
we must have Πð2Þð1Þ ≠ 0, more precisely

8πΠð2Þð1Þ ¼
fðt; rÞ
2A2r

�
ln
r2

f

�0
: ð67Þ

Thus we see that, after leaving the equilibrium, at the time
scale under consideration, the condition Πð1Þð1Þ ¼ Πð2Þð2Þ
may be assumed to hold. However for the off diagonal

tension Πð2Þð1Þ the situation is quite different, at our time
scale. Indeed, the function f controls the evolution of the
system as it abandons the equilibrium; accordingly it must
be different from 0, and so should Πð2Þð1Þ, even if we
assume it to vanish initially.
It is worth emphasizing that a nonvanishing function f

triggers the onset of dissipative processes as it follows from
(58), and the appearance of shear, according to Eq. (62) in
[46]. Additionally, as shown in [45] (Sec. X), the dis-
sipative processes are responsible (among other factors)
for the appearance of energy-density inhomogeneities.
Therefore, as in the spherically symmetric case, here too
the above-mentioned physical factors bring on the onset of
pressure anisotropy as the system exits from the initial state
with isotropic pressure.
Although the above argument is valid only for the time

scale under consideration, it nevertheless brings out the
tendency of the system to develop pressure anisotropy
during the evolution. More so, it should be stressed, as we
did in the spherically symmetric case, that if the system
returns to a static regime within a time scale of the order of
hydrostatic time scale, it will do so keeping the non-
vanishing value of Πð2Þð1Þ acquired after leaving the
equilibrium; i.e., in the new static regime the fluid would
be anisotropic.

VI. DISCUSSION

Fundamental results have been obtained during the last
decades concerning Newtonian and relativistic fluids, under
the assumption that the pressure is isotropic. However we
know that the appearance of small amounts of pressure
anisotropymay be enough to produce quite different results,
under otherwise the samegeneral conditions.Also,we know
that many physical processes producing pressure anisotropy
are expected to be present in very compact objects. Based on
these comments we felt compelled to pose the following
question: under which conditions would an initial fluid
configuration with isotropic pressure remain so during its
evolution?
For the spherically symmetric case the qualitative analysis

presented at the beginning of Sec. IV points out the tendency
of the system to abandon the isotropic pressure condition (at
least for a specific time scale). Furthermore, this result
strongly suggests that if the system is stable and gets back
to equilibrium after having been removed from it, in this new
state of equilibrium the fluid would be anisotropic. Themore
rigorous analysis presented next confirmed this tendency for
an arbitrary scale time, and allows us to identify the physical
factors inducing the appearance of pressure anisotropy.
According to (28) these factors are the shear, the heat flux
vector through the dissipative factor and the first integral in
(28), and the energy-density inhomogeneity. This point
deserves a deeper analysis.
Indeed, as is apparent from (28), in order for an initial

fluid configuration with isotropic pressure to remain
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isotropic all along the evolution, we must require the fluid
to be nondissipative, shear free and homogeneous in the
energy density, unless we admit the highly unlikely
cancellation of the four terms on the right of (28).
Alternatively, as can be seen from (27), the conditions
ensuring the stability of the pressure isotropic condition are
conformal flatness, vanishing shear and absence of dis-
sipation, unless, again, we assume the exceptional cancel-
lation of the three terms on the right of (27).
Now, it has been shown in [44] that the shear and/or local

anisotropy of pressure and/or dissipative fluxes entail the
formation of energy-density inhomogeneities. On the other
hand it has been shown in [43] that the departure from the
shear-free condition is controlled by a single scalar function
defined in terms of the anisotropy of the pressure, the
dissipative variables and the energy-density inhomogeneity.
Thus even if we assume that initially not only the pressure
anisotropy but also the shear and the energy-density inho-
mogeneity vanishes, the dissipative flux would enhance the
departure of the isotropic pressure condition through two
different channels: on the one hand by its contribution as
described by (28), and on the other hand by inducing
departures from the shear-free condition and energy-density
homogeneity. Thus only imposing the conformal flatness, the
nondissipation, and the shear-free conditions all along the
evolution can we ensure that the fluid evolves keeping
the isotropic pressure condition at all times. However, it is
worth recalling that dissipation due to the emission of
massless particles (photons and/or neutrinos) is the only
plausible mechanism to carry away the bulk of the huge
binding energy of the collapsing star, leading to a neutron star
or black hole. In other words, the adiabatic condition
imposed by a collapsing scenario is very unrealistic and
dissipation has to be taken into account in any physically
meaningful description of stellar evolution, thereby entailing
the departure from the isotropic pressure condition.
In Sec. VI we analyzed the same question for axially

symmetric fluid systems. However, for simplicity, we did
not deduce the explicit equation of evolution for the
anisotropic scalars, but, instead, considered the system at
the shortest time scale at which the first signs of dynamical
evolution can be observed. It was shown that starting from
an initially isotropic fluid, at the time scale under consid-
eration, the evolution leads to an anisotropic fluid. Indeed,
it appears that even if we assume that the two anisotropic
scalar functions Πð1Þð1Þ and Πð2Þð2Þ remain equal after the
departure from equilibrium, the third anisotropic scalar
Πð2Þð1Þ must be necessarily different from 0 after leaving the
initial state. Also, as in the spherically symmetric case,
shear, dissipative processes and energy-density inhomoge-
neities are related to the onset of pressure anisotropy. Once
again, since we expect that the final stages of stellar
evolution should be accompanied by intense dissipative
processes, we should expect some degree of pressure
anisotropy to appear in the nonspherical collapse too.

To summarize, what we have learned so far is that an
initial fluid configurationwith isotropic pressurewould tend
to develop pressure anisotropy as it evolves, under con-
ditions expected in stellar evolution. Of course the magni-
tude of the acquired pressure anisotropy would depend on
the specific data of the system. However the obtained result
allows us to conclude that as well as it is wise to check the
stability of any specific result obtained under the assumption
of the isotropic pressure condition against fluctuations of
this latter condition, it would also be wise to check the
stability of the condition itself, in each case.
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APPENDIX: EINSTEIN EQUATIONS AND
CONSERVATION EQUATIONS FOR THE

SPHERICALLY SYMMETRIC CASE

Einstein’s field equations for the interior spacetime (1)
are given by

Gαβ ¼ 8πTαβ; ðA1Þ
and its nonzero components with (1) and (2) become

8πT00¼ 8πμA2

¼
�
2
_B
B
þ

_R
R

�
_R
R

−
�
A
B

�
2
�
2
R00

R
þ
�
R0

R

�
2

−2
B0

B
R0

R
−
�
B
R

�
2
�
; ðA2Þ

8πT01 ¼ −8πqAB ¼ −2
�
_R0

R
−

_B
B
R0

R
−

_R
R
A0

A

�
; ðA3Þ

8πT11 ¼ 8πPrB2

¼ −
�
B
A

�
2
�
2
R̈
R
−
�
2
_A
A
−

_R
R

�
_R
R

�
þ
�
2
A0

A
þ R0

R

�
R0

R

−
�
B
R

�
2

; ðA4Þ

8πT22¼
8π

sin2 θ
T33

¼ 8πP⊥R2

¼−
�
R
A

�
2
�
B̈
B
þ R̈
R
−
_A
A

�
_B
B
þ

_R
R

�
þ

_B
B

_R
R

�

þ
�
R
B

�
2
�
A00

A
þR00

R
−
A0

A
B0

B
þ
�
A0

A
−
B0

B

�
R0

R

�
: ðA5Þ

The nontrivial components of the Bianchi identities,
Tαβ
;β ¼ 0, from (A1) yield
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Tαβ
;β Vα ¼ −

1

A

�
_μþ ðμþ PrÞ

_B
B
þ 2ðμþ P⊥Þ

_R
R

�

−
1

B

�
q0 þ 2q

ðARÞ0
AR

�
¼ 0; ðA6Þ

Tαβ
;β χα ¼

1

A

�
_qþ2q

�
_B
B
þ

_R
R

��

þ 1

B

�
P0
rþðμþPrÞ

A0

A
þ2ðPr−P⊥Þ

R0

R

�
¼ 0: ðA7Þ
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