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Thin shell wormholes are constructed by joining two asymptotically flat spacetimes along their inner
boundaries. The junction conditions imposed on the spacetimes specify the equation of state of the matter
called thin shell distributed along the joined boundaries. Barcelo and Visser (2000) reported that spherically
symmetric thin shell wormholes have their shells, namely the wormhole throats, on the photon spheres if
the wormholes are Z2-symmetric across the throats and the shells are of pure tension. In this paper, first, we
consider general joined spacetimes (JSTs) and show that any Z2-symmetric pure-tensional JST (Z2PTJST)
of Λ-vacuum has its shell on a photon surface, a generalized object of photon spheres, without assuming
any other symmetries. The class of Z2PTJSTs also includes, for example, brane world models with the
shells being the branes we live in. Second, we investigate the shell stability of Z2PTJSTs by analyzing the
stability of the corresponding photon surfaces. Finally, applying the uniqueness theorem of photon spheres
by Cederbaum [Contemp. Math. 653, 86 (2015)], we establish the uniqueness theorem of static wormholes
of Z2PTJST.
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I. INTRODUCTION

Wormholes are spacetimes having two different asymp-
totic regions and a throat connecting them. Their structure
enables us to travel to another universe. Holes connecting
two regions of an asymptotic region as a shortcut are also
called wormholes. The wormhole solutions to general
relativity (GR) and the modified theories of GR have been
provided by the many authors [1–3] (see also [4] and the
citation therein). The uniqueness of wormholes has been
proved for Einstein-phantom scalar theory [4–6]. One of
the most important properties of wormholes is that they
necessarily violate the energy conditions, which makes it
difficult to construct physically reasonable wormhole
spacetimes [7,8].
Visser [9] proposed a procedure consisting of truncation

and gluing of two spacetimes to construct thin shell
wormholes. By the truncation, inner regions of the two
spacetimes are removed and the resulting spacetimes are
manifolds with the inner boundaries. By gluing the two
spacetimes along the inner boundaries, we obtain a worm-
hole spacetime partitioned by the hypersurface, or in other
words the throat, into the two regions corresponding to the
original two spacetimes. Through the junction conditions
[10,11] imposed on the hypersurface, the singularity of the
curvature there is interpreted as an infinitesimally thin
matter distribution called thin shell.
Barcelo and Visser [12] investigated four-dimensional

thin shell wormholes consisting of two isometric, static and

spherically symmetric spacetimes joined at the same radii
and found that the radii of the throats coincide with those of
photon spheres, i.e., null circular geodesics. Subsequently,
Kokubu and Harada [13] extended the analysis to arbitrary
dimensions of spacetime and the field equations with the
cosmological constant. From their analysis, we can also
find the coincidence of the throats and photon spheres. The
key features of those models are that (1) the wormhole
spacetimes are Z2-symmetric across their throats and
(2) the shells on the throats have pure tension surface
stress energy tensors.
Photon spheres have attracted much attention due to the

variety of their applications to astrophysical problems,
black hole (BH) shadows [14,15], quasinormal modes
[16,17], and spacetime instability [18,19], for example.
Claudel, Virbhadra, and Ellis introduced a photon surface
as the generalization of photon spheres. It is the geometrical
structure which inherits the local properties of photon
spheres but does not necessarily have the spherical sym-
metry. Photon surfaces have been found in, for example, the
accelerated Schwarzschild BH, which is no longer spheri-
cally symmetric [20]. Uniqueness theorems of spacetimes
possessing photon surfaces have been established by the
authors [21–24]. See also [25–29] for investigations con-
cerning photon surfaces.
In this paper, we see that any joined spacetime which is

Z2-symmetric across the shell having pure tension surface
stress energy tensor has the coincidence shown in [12] in
Λ-vacuum. That is, for any Z2-symmetric spacetime
joined by a pure tension shell in Λ-vacuum, the glued
inner boundaries of the two original spacetimes must*koga@rikkyo.ac.jp

PHYSICAL REVIEW D 101, 104022 (2020)

2470-0010=2020=101(10)=104022(15) 104022-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.104022&domain=pdf&date_stamp=2021-02-12
https://doi.org/10.1090/conm/653/13178
https://doi.org/10.1103/PhysRevD.101.104022
https://doi.org/10.1103/PhysRevD.101.104022
https://doi.org/10.1103/PhysRevD.101.104022
https://doi.org/10.1103/PhysRevD.101.104022


be photon surfaces. We call the spacetime Z2-symmetric
pure-tensional joined spacetime (Z2PTJST). Not only the
thin shell wormholes but also the brane world models by
Randall and Sundrum [30,31] and baby universes [9,12] are
in the class of Z2PTJST. The theorem we prove allows us to
construct Z2PTJSTs from any Λ-vacuum spacetime having
a photon surface.
This paper is organized as follows. In Sec. II, we define a

joined spacetime (JST) and review Israel’s junction con-
ditions, the field equations the joined spacetime has to
satisfy in addition to Einstein equation. In Sec. III, we
define the Z2-symmetry of the joined spacetime and see
that the junction conditions reduce to simple forms. In
Sec. IV, we define a pure-tensional joined spacetime and
establish one of our main theorems, the coincidence
between pure-tensional shells and photon surfaces. In
Sec. V, we analyze the stability of the JST against
perturbations of the shell preserving the Z2-symmetry
and find the stability also coincides with the stability of
the corresponding photon surfaces. In Sec. VI, we establish
the uniqueness theorem of Z2-symmetric pure-tensional
wormholes applying the uniqueness theorem of photon
spheres by Cederbaum [21] to the JST. Section VII is
devoted to the conclusion. We suppose that manifolds and
fields on them are smooth and the spacetimes are (dþ 1)-
dimensional with d ≥ 2 if it is not mentioned particularly.

II. JOINED SPACETIME

We consider joining two spacetimes ðM�; g�Þ along
their inner boundaries Σ�. The resulting spacetime
ðM; g;ΣÞ with the hypersurface Σ corresponding to the
joined boundaries Σ� is called a joined spacetime. The
procedure for constructing the manifold M consists of
truncation and gluing of M�. We also introduce the field
equations interpreted as Einstein equation for ðM; g;ΣÞ.

A. Truncation and gluing of manifolds

Let M� be manifolds with hypersurfaces Σ� which
partitionM� into two regionsMex

� andMin
� and assume Σ�

are diffeomorphic. TruncatingM� along Σ�, we obtain the
manifolds M̄� ≔ M�nMin

� with the inner boundaries Σ�.
Gluing M̄� along Σ�, i.e., identifying Σ� by a diffeo-
morphism ψ∶Σþ → Σ−, we construct a new manifold M
[9].M is a manifold such that a hypersurface Σ partitions it
into two regions corresponding to Mex

� .
The gluing also induces tensor fields onM fromM�. As

we see below, we are concerned with a tensor distribution
and jump of tensor fields onM across Σ. Their values on Σ
are given by summations of each the tensor fields ofM� on
Σ�. To deal with the summations, we need to specify the
diffeomorphism which identifies the tangent bundles
TΣ�M� ofM� on Σ�. Since ψ induces the diffeomorphism
ψ�∶TΣþ → TΣ− of the tangent bundles TΣ� of Σ�, it is
sufficient to specify the diffeomorphism ψN∶NΣþ → NΣ−

of the normal bundles NΣ� ¼ TΣ�M�=TΣ� of Σ�. Given
metrics g� on M�, it is natural to require

ψN∶Nþ ↦ N− ð1Þ

for the unit normal vector fields N� ∈ NΣ� of Σ� which
are given so that g�ðN�; N�Þ ¼ 1 and Nþ and N− points
inside Mexþ and Min

− , respectively. The requirement is
frequently seen in, for example, [11–13].
Then, in the current paper, we express the gluing by

M ¼ M̄þ ∪ψ ;ψN
M̄−; ð2Þ

which is characterized by the diffeomorphisms ψ and ψN
above. Note that ψ and ψN are dependent. The projections
of NΣ� to Σ� give ψ from ψN . Note also that we have
denoted Mex

� as the regions we keep for convenience. We
can exchange the roles of the exterior regions Mex

� and the
interior regions Min

� freely. See Fig. 1 for the picture of the
construction of M.

B. Tensor distribution

Let l be a smooth function in the neighborhood of Σ in
M satisfying l ¼ 0 on Σ, l > 0 on Mþ, and l < 0 on M−.

FIG. 1. (a) Two manifoldsM� partitioned by the hypersurfaces
Σ� are (b) truncated and glued along Σ� (identified at Σ�) by ψ
and ψN . (c) The resulting manifold M possesses the regionsMex

�
partitioned by Σ.
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The tensor distribution T on M of tensors T� on M� is
defined by

T ¼ ΘðlÞTþ þ Θð−lÞT−; ð3Þ

where ΘðlÞ is Heaviside distribution,

ΘðlÞ ¼
8<
:

1 ðl > 0Þ
1=2 ðl ¼ 0Þ
0 ðl < 0Þ:

ð4Þ

The metric g on M is defined as the distribution,

g ¼ ΘðlÞgþ þ Θð−lÞg−: ð5Þ

C. Definition

According to the discussion above, we define the joined
spacetime constructed from the spacetimes ðM�; g�Þ as
follows.
Definition 1. [joined spacetime (JST)].—A triple

ðM; g;ΣÞ of a manifoldM, a metric g, and a hypersurface
Σ is called a joined spacetime constructed from ðM�; g�Þ if
the hypersurfaces Σ� partitioning ðM�; g�Þ into Min

� and
Mex

� are timelike and

M ¼ M̄þ ∪ψ ;ψN
M̄−; ð6Þ

Σ ¼ Σþ ≡ Σ−; ð7Þ

g ¼ ΘðlÞgþ þ Θð−lÞg−; ð8Þ

where the diffeomorphisms

ψ∶Σþ → Σ−; ð9Þ

ψN∶Nþ ↦ N− ð10Þ

are the identifications of Σ� and NΣ�, respectively. Σ is
called the shell of the joined spacetime.

D. Einstein equations

The distribution g of ðM; g;ΣÞ may not be smooth
across Σ. Israel’s junction conditions [10,11], which we
assume on g on Σ, are motivated from Einstein equation.
Here we consider the system consisting of Einstein equa-
tion and the junction conditions for joined spacetimes. We
call the system Einstein equations.
Definition 2. [Einstein equations].—A joined spacetime

ðM; g;ΣÞ is said to satisfy Einstein equations if ðM̄�; g�Þ
satisfy Einstein equation and the first junction condition
Eq. (11), the second junction condition Eq. (14), and the
equation of motion (EOM) of the shell Eq. (16) in the
following are satisfied on Σ.

1. First junction condition

Israel’s first junction condition requires the induced
metrics h� of Σ� to equal. It is expressed as

½h� ¼ 0; ð11Þ

where [A] is the jump of tensor fields A� of M� across Σ,

½A� ≔ AþjΣþ − A−jΣ−
: ð12Þ

Note that the condition together with the gluing condition,
Eq. (10), implies

½g� ¼ 0: ð13Þ

Thus, the first junction condition for a joined spacetime
ðM; g;ΣÞ guarantees the continuity of the metric distribu-
tion g across Σ [11].

2. Second junction condition

The distribution g may not be smooth across Σ and the
curvature, the second derivative of g, can be singular there.
The second junction condition is what relates such singu-
larity on Σ to the infinitesimally thin matter distribution on
the hypersurface. In the presence of the singular terms in
Einstein tensor distribution, Einstein equation leads to

−
1

8π
ð½χ� − ½θ�hÞ ¼ S; ð14Þ

where χ� is the second fundamental form of Σ� inM� with
respect to N�, θ� is the trace of χ�, h is the induced metric
on Σ given by hðX; YÞ ¼ gðX; YÞ∀X; Y ∈ TΣ, and S is the
surface stress energy tensor of the matter on Σ [11]. This is
called Israel’s second junction condition.
The corresponding stress energy tensor TΣ of the shell as

the matter on ðM; g;ΣÞ is given by

TΣ ¼ δðlÞΦ�ðSÞ; ð15Þ

where Φ�∶TpΣ → TΦðpÞM is the push forward associated
with the embedding Φ∶Σ → M and δðlÞ is the delta
function, or Dirac distribution. As a physical interpretation,
Σwith S is called a thin shell. Equation (14) is equivalent to
the ordinary Einstein equation with the stress energy tensor
TΣ. Therefore, the brane world models can be regarded as
joined spacetimes [30,31]. See [9] for the details of the
interpretation.
If S ¼ 0, i.e., ½χ� ¼ 0, Christoffel symbols are continuous

across Σ and Riemann curvature has no singular terms [11].

3. EOM of the shell

From Einstein equation, the surface stress energy tensor
S of the shell satisfies a conservation law on Σ as ordinary
matter does in M. It is given by
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∇h · Sþ ½TN � ¼ 0; ð16Þ

where ∇h is the covariant derivative associated with h,
∇h · S expresses ∇hbSab, and TN� is given by TN�a ≔
T�μνe

μ
aNν

� with the coordinate basis feμag on Σ [11].

III. Z2-SYMMETRY OF A JOINED SPACETIME

We focus on a Z2-symmetric joined spacetime ðM; g;ΣÞ
across Σ. The Z2-symmetry is also called reflection
symmetry across Σ in literatures.

A. Definition

Definition 3. [Z2-symmetric joined spacetime
(Z2JST)].—A joined spacetime ðM; g;ΣÞ constructed
from ðM�; g�Þ is said to be Z2-symmetric across Σ if
there exists an isometry ϕ∶ðMþ; gþÞ → ðM−; g−Þ such that

ϕjΣþ∶Σþ → Σ−; ð17Þ

ϕjΣþ ¼ ψ ; ð18Þ

ϕ�∶Nþ ↦ −N−; ð19Þ

where ϕjΣþ is the restriction of ϕ to Σþ, ψ∶Σþ → Σ− is the
diffeomorphism in Eq. (9) in Definition 1, and ϕ�∶TMþ →
TM− is the map induced from ϕ.
The condition Eq. (19) together with Eq. (17) implies

ϕ∶Mexþ → Mex
− ∶Minþ → Min

− . The picture of the definition is
shown in Fig. 2. For the validity of Definition 3, see
Appendix A.

B. Junction conditions under the Z2-symmetry

The Z2-symmetry of a joined spacetime simplifies the
junction conditions.
Proposition 1.—Let ðM; g;ΣÞ be a Z2JST. Then, the

first junction condition,

½h� ¼ 0; ð20Þ

is satisfied and the second junction condition reduces to

−
1

4π
ðχ − θhÞ ¼ S; ð21Þ

where χ ≔ χþ ¼ −χ− and θ is the trace of χ.
Proof.—Let X; Y ∈ TΣ� be arbitrary vectors which are

identical under the isometry ϕ, i.e., the map ϕ�∶TMþ →
TM− induced from ϕ maps the vectors as X ↦ X, Y ↦ Y.
Note that the map ϕ� is also regarded as the map of any
types of tensors [32]. The induced metrics h�ðX; YÞ ≔
g�ðX; YÞ are mapped as

hþðX; YÞ ¼ gþðX; YÞ ↦ g−ðX; YÞ ¼ h−ðX; YÞ ð22Þ

by ϕ�. The second fundamental forms χ�ðX; YÞ ≔
ð∇�n�ÞðX; YÞ are mapped as

χþðX; YÞ ¼ ð∇þnþÞðX; YÞ ↦ ð∇−ϕ
�ðnþÞÞðX; YÞ

¼ −ð∇−n−ÞðX; YÞ ¼ −χ−ðX; YÞ; ð23Þ

by ϕ�, where ∇� are the covariant derivatives associated
with g� and n� ¼ g�ðN�; ·Þ are the normal 1-forms dual to
N�, which are mapped as ϕ�∶nþ ¼ gþðNþ; ·Þ ↦
g−ð−N−; ·Þ ¼ −n− from Eq. (19). Since h� and χ� are
tensors of Σ�, i.e., tensors taking the values on the space
TΣ� ⊗ TΣ�, we can regard Eqs. (22) and (23) as the
mapping induced from ϕjΣþ rather than ϕ due to Eq. (17).
That is, the map ðϕjΣþÞ�∶TΣþ → TΣ− induced from ϕjΣþ is
a map such that

ðϕjΣþÞ�∶hþ ↦ h− ð24Þ

∶χþ ↦ −χ−: ð25Þ

Therefore, from Eq. (18), we have

ψ�∶hþ ↦ h− ð26Þ

∶χþ ↦ −χ− ð27Þ

for the map ψ�∶TΣþ → TΣ− induced from ψ . This means
hþ ¼ h− and χþ ¼ −χ− on Σ since ψ� is the identification.

FIG. 2. (a) Points p1; p2;… ∈ Mþ in the regionsMinþ,Mexþ , and
Σþ are mapped by the isometry ϕ to q1; q2;… ∈ M− in the
corresponding regions Min

− , Mex
− , and Σ−, respectively. (b) After

the truncation and gluing of M�, ϕ acts on M as the reflection
across Σ with the fixed points p1 ≡ q1; p2 ≡ q2 ∈ Σ, which have
been identified by ψ ¼ ϕjΣþ.
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Then the first junction condition,

½h� ¼ hþ − h− ¼ 0; ð28Þ

is satisfied. The second fundamental form and its trace
satisfy

½χ� ¼ χþ − χ− ¼ 2χþ; ð29Þ

½θ� ¼ θþ − θ− ¼ 2θþ: ð30Þ

Defining χ ≔ χþ and θ ≔ TrðχÞ, the second junction
condition reduces to

S ¼ −
1

8π
ð½χ� − ½θ�hÞ ¼ −

1

4π
ðχ − θhÞ: ð31Þ

▪

IV. PURE-TENSIONAL JOINED SPACETIME

Here, we define a pure-tensional joined spacetime. After
reviewing photon surfaces, we prove that the shell of the
spacetime is a photon surface of the original spacetimes.

A. Definition

A thin shell having pure-trace stress energy tensor is
called a pure tension shell. We consider a joined spacetime
with a pure tension shell.
Definition 4. [pure-tensional joined spacetime

(PTJST)].—Let ðM; g;ΣÞ be a joined spacetime con-
structed from ðM�; g�Þ. Let S be the surface stress energy
tensor of Σ and T� be the stress energy tensors of ðM�; g�Þ.
ðM; g;ΣÞ is called a pure-tensional joined spacetime
(PTJST) if ðM; g;ΣÞ satisfies Einstein equations with
the conditions,

S ¼ −ϵh; ð32Þ

T� ¼ −
Λ�
8π

g� ð33Þ

where ϵ∶Σ → R is the tension of the shell Σ, h is the
induced metric on Σ, and Λ� are the cosmological con-
stants of ðM�; g�Þ. Σ is called the pure tension shell
of ðM; g;ΣÞ.

B. Photon surface

A photon surface was first introduced by Claudel
et al. [33] as the generalization of a photon sphere of
Schwarzschild spacetime. The photon surface need not
have any global symmetries such as stationarity and
spherical symmetry. It inherits only the local properties
of the photon sphere.
Definition 5. [photon surface].—A photon surface of

ðM; gÞ is an immersed, nowhere-spacelike hypersurface S

of ðM; gÞ such that, for every point p ∈ S and every null
vector k ∈ TpS, there exists a null geodesic γ∶ð−ε; εÞ → M
of ðM; gÞ such that _γð0Þ ¼ k; jγj ⊂ S.
Claudel et al. [33] and Perlick [34] proved the theorem

about the equivalent condition for a timelike hypersurface
to be a photon surface. Photon surfaces are characterized by
the second fundamental forms.
Theorem 1. [Claudel et al. (2001), Perlick (2005)].—Let

S be a timelike hypersurface of spacetime ðM; gÞ with
dþ 1 ≔ dimM ≥ 3. Let hab, χab, and θ be the induced
metric, the second fundamental form, the trace of χab,
respectively. Then S is a photon surface if and only if it is
totally umbilic, i.e.,

χab ¼
θ

d
hab ∀ p ∈ S: ð34Þ

The following proposition is necessary for the proof of
our theorem.
Proposition 2. [photon surfaces in Λ-vacuum].—Let

ðM; gÞ be a Λ-vacuum spacetime with dim M ≥ 3. Then,
a timelike photon surface S of ðM; gÞ is constant mean
curvature (CMC).
Proof.—Let nμ, hμν ¼ gμν − nμnν, and χμν be the unit

normal vector, the induced metric, and the second funda-
mental form of S, respectively. From the Codazzi-Mainardi
equation, we have

Rμανβh
μ
ρhαγhνσnβ ¼ ∇h

ρχγσ −∇h
γ χρσ

¼ 1

d
½ð∇h

ρθÞhγσ − ð∇h
γ θÞhρσ�; ð35Þ

where d is the dimension of S, θ ¼ hργχργ is the mean
curvature, and∇h

ρ is the covariant derivative on S associated
with hργ. We have used Theorem 1 in the last equality.
Contracting with hγσ , the equation reduces to

hγσRμανβh
μ
ρhαγhνσnβ ¼ −Rμβh

μ
ρnβ ¼ d − 1

d
∇h

ρθ: ð36Þ

From that ðM; gÞ is Λ-vacuum, i.e., Rμν ¼ ½2=ðd − 1Þ�Λgμν
for some constant Λ, we have

∇h
ρθ ¼ 0: ð37Þ

Therefore, θ ¼ const along S and S is CMC. ▪
See also Proposition 3.3 in [21] for general totally

umbilic hypersurfaces.

C. Photon surfaces as pure tension shells

The following theorem states about the coincidence of
pure-tensional shells of joined spacetimes and photon
surfaces.
Theorem 2. [photon surface as a pure tension shell].—

Let ðM; g;ΣÞ be a Z2JST constructed from ðM�; g�Þ with
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dþ 1 ≔ dim M ¼ dim M� ≥ 3. Then ðM; g;ΣÞ is a
PTJST if and only if ðM̄�; g�Þ are Λ-vacuum and Σ�
are photon surfaces. The tension ϵ and the mean curvature θ
of the shell Σ are constant and given by the rela-
tion θ ¼ �θ� ¼ −4π½d=ðd − 1Þ�ϵ.
Proof.—From the Z2-symmetry of ðM; g;ΣÞ and

Proposition 1, the first junction condition is automatically
satisfied and the second junction condition reduces to
Eq. (21) where χ ≔ χþ ¼ −χ− and θ ≔ TrðχÞ ¼ θþ ¼
−θ−. Then the Einstein equations for ðM; g;ΣÞ consist
of the reduced second junction condition, Eq. (21), the
EOM of the shell Σ, Eq. (16), and Einstein equation on
ðM̄�; g�Þ. The induced metric on Σ is given by h ¼ hþ ¼
h− due to the fact that the first junction condition is satis-
fied. In fact, hðX;YÞ≔gðX;YÞ¼ 1

2
ðgþðX;YÞþg−ðX;YÞÞ¼

1
2
ðhþðX; YÞ þ h−ðX; YÞÞ ¼ hþðX; YÞ ¼ h−ðX; YÞ∀X; Y ∈

TΣ ≡TΣ�.
We prove the “if” part. From that ðM̄�; g�Þ are isometric

and Λ-vacuum, the energy momentum tensors satisfy T� ¼
−ðΛ=8πÞg� for the common cosmological constant Λ and
Eq. (33) in Definition 4 is satisfied. From Theorem 1, the
photon surfaces Σ� give the conditions

χ ¼ �χ� ¼ �θ�
d

h� ¼ θ

d
h: ð38Þ

From Proposition 2, we have

θ ¼ �θ� ¼ const: ð39Þ

The second junction condition Eq. (21) then reduces to

1

4π

d − 1

d
θh ¼ S: ð40Þ

Letting ϵ be a function on Σ given by

ϵ ¼ −
1

4π

d − 1

d
θ; ð41Þ

the surface stress energy tensor becomes

S ¼ −ϵh ð42Þ

and Eq. (32) in Definition 4 is satisfied. From Eqs. (39) and
(41), we have ∇hϵ ¼ 0 implying

∇h · S ¼ 0: ð43Þ

Therefore, from the fact that T� ¼ −ðΛ=8πÞg�, the EOM
of the shell Σ, Eq. (16),

∇h · Sþ ½TN � ¼ 0; ð44Þ

is satisfied. ðM; g;ΣÞ is a joined spacetime satisfying
Definition 4 of PTJST.

We prove the “only if” part. From Definition 4, the
PTJST ðM; g;ΣÞ satisfies S ¼ −ϵh and T� ¼ −ðΛ=8πÞg�.
Then ðM̄�; g�Þ are Λ-vacuum and the second junction
condition, Eq. (21), under Z2-symmetry requires that

χ ¼ χþ ¼ −χ− ∝ h; ð45Þ

i.e., Σ� are timelike totally umbilic hypersurfaces. From
Theorem 1, Σ� are photon surfaces of ðM̄�; g�Þ.
From Eqs. (39) and (41), we finally obtain

θ ¼ �θ ¼ −4π
d

d − 1
ϵ ¼ const ð46Þ

for the PTJST. ▪
Theorem 2 applies to the static and dynamical cases of

the wormholes investigated in [12,13]. From the viewpoint
of symmetries of the photon surfaces, the throats of
the static cases correspond to R × SOðdÞ, R × Eðd − 1Þ,
and R × SOð1; d − 1Þ-invariant photon surfaces while
the dynamical cases correspond to SOðd − 1Þ, EðdÞ, and
SOðd − 2; 1Þ-invariant photon surfaces in the R×SOðdÞ,
R × Eðd − 1Þ, and R × SOðd − 1; 1Þ-invariant spacetimes,
respectively. We can see that the spherical and nonspherical
throats are photon surfaces from [28].
The theorem states that any Λ-vacuum spacetimes with

photon surfaces found in literatures are joined to give
Z2PTJST. For example, we can join two Minkowski
spacetimes nontrivially to give a Z2PTJST by gluing them
at the timelike photon surfaces shown in Examples 1–3 in
[33]. The accelerated black holes also have photon surfa-
ces, which correspond to the photon spheres in zero
acceleration [20] and thus, we can construct “accelerated
wormholes” and “accelerated baby universes” from the
spacetimes. For less symmetric Λ-vacuum spacetimes
possessing photon surfaces, see [35].
We can also confirm that the positive and negative branes

in [30,31] are indeed located on the four-dimensional
timelike photon surfaces of the five-dimensional bulk
spacetime from the facts that the bulk spacetime is con-
formally transformed Minkowski spacetime and photon
surfaces are invariant manifolds under conformal trans-
formations [33].

V. STABILITY OF PURE-TENSIONAL
JOINED SPACETIME

We consider a shell perturbation of Z2JST preserving its
Z2-symmetry. That is, perturbing the hypersurfaces Σ� of
ðM�; g�Þ to Σ̃�, we rejoin the spacetimes along the new
boundaries Σ̃� to give a new perturbed Z2JST ðM̃; g; Σ̃Þ
(Fig. 3). Since ðM�; g�Þ are isometric to each other
including their hypersurfaces Σ� and Σ̃�, it is sufficient
to focus only on the “plus” ones and we denote them as
ðM; gÞ, Σ, Σ̃, and so on in the following.
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After reviewing the deformation formalism of surfaces
given by Capovilla and Guven [36], we apply it to
Z2PTJSTs, that is, the case where Σ is a photon surface.
We also see that the stability of Σ corresponds to the
stability of null geodesics on Σ defined in [25].

A. Deformation of a hypersurface

Let Σ be a timelike hypersurface of a spacetime ðM; gÞ.
Consider a one-parameter family of the deformation,

F ε∶Σ → Σε; ð47Þ

with the parameter ε where Σ0 ¼ Σ. Expanding in ε, points
on the surfaces are expressed as

Σμ
ε ¼ Σμ þ εXμ þOðε2Þ ð48Þ

in a coordinate system fxμg. The vector field X on Σ is
called the deviation between Σ and its infinitesimal
deformation limε→0 Σε. Without loss of generality, we
assume X to be orthogonal to Σ by diffeomorphisms on
Σ and Σε [36]. Define a scalar field Φ on Σ by

X ¼ ΦN; ð49Þ

where N is the unit normal vector of Σ. This quantity
represents the distance between Σ and its infinitesimal
deformation. According to the deformation formalism by
Capovilla and Guven [36], we have equations which relate
Φ with the geometrical quantities on Σ. A tiny fraction of
the calculation processes in [36] is incorrect and we
recalculate it for our purpose following their procedure
in Appendix B.

The deformation of the intrinsic geometry of Σ is related
to Φ by

ð∇NRÞΦ ¼ −2Rabχ
abΦþ 2∇h

a∇h
bðχabΦÞ − 2ΔhðθΦÞ

ð50Þ

where Δh ≔ hab∇h
a∇h

b and Rab and R are the Ricci tensor
and scalar of Σε, respectively. This is the codimension one
version of Eq. (B10) in Appendix B. The indices a; b;…
are with respect to the coordinate basis vectors feag of Σ.
For example, a quantity Aab is the scalar resulting from the
contraction Aðea; ebÞ of a tensor A acting on TΣ ⊗ TΣ. We
lower and raise the indices by hab ¼ hðea; ebÞ and its
inverse matrix hab, respectively. For the deformation of the
extrinsic geometry, Φ obeys

∇h
a∇h

bΦ ¼ −½∇Nχab − χacχ
c
b þ RaNbN �Φ; ð51Þ

where the subscripts of N represent the contraction with it,
RaNbN ¼ Rμανβe

μ
aNαeνbN

β. We obtain the equation from
Eq. (4.6) in [36] by setting the codimension one. Note that
χab and Rab is now defined on each surface Σε and can be
differentiated along N. The equation,

2χab ¼ ∇Nhab; ð52Þ

is also useful in the calculations. See Eq. (3.8) in [36] for
the derivation.
In the case where each surface Σε obeys the same

equations of motion, the deformation F ε should be called
a perturbation. Then we say Σ is stable against the
perturbation if Φ is bounded as time evolves along Σ
and otherwise unstable.

B. Perturbation of a photon surface

We consider the Z2-symmetric perturbation of a
Z2PTJST ðM; g;ΣÞ. The perturbed spacetime ðM̃; g; Σ̃Þ
is also Z2PTJST and therefore, from Theorem 2, the
hypersurface Σ̃ is another photon surface of the original
spacetime ðM�; g�Þ. More precisely, Σ and Σ̃ corresponds
to CMC photon surfaces Σ� and Σ̃� of the Λ-vacuum
spacetime ðM�; g�Þ, respectively, because of Theorem 2
and Proposition 2. Then, what we do in the following is to
impose the conditions, CMC, totally umbilic (recall
Theorem 1), and Λ-vacuum on the deformation formalism,
Eqs. (50) and (51).
Let Σ be a CMC photon surface of a Λ-vacuum

spacetime ðM; gÞ. The EOMs of Σ are given by

χab ¼
θ

d
hab; ð53Þ

θ ¼ const ð54Þ

FIG. 3. (a) The unperturbed inner boundaries Σ� (dashed lines)
are perturbed to Σ̃� (solid lines). (b) The truncation and gluing of
M� along Σ̃� gives the perturbed joined manifold M̃ with the
perturbed shell Σ̃ ≔ Σ̃þ ≡ Σ̃−.
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with the Λ-vacuum condition on the spacetime,

Gμν ¼ −Λgμν; ð55Þ

where Gμν is the Einstein tensor. We denote the pertur-
bation of Σ to Σε, which also obeys the EOMs, as
F PS

ε ∶Σ → Σε.
First we calculate Eq. (50) for F PS

ε . The contracted
Gauss-Codazzi relation in Λ-vacuum reads

Rþ χabχab − θ2 ¼ −2GNN ¼ 2Λ: ð56Þ

From Eq. (53), the equation reduces to

R ¼ d − 1

d
θ2 þ 2Λ: ð57Þ

Then the lhs of Eq. (50) reduces to

ð∇NRÞΦ ¼ 2
d − 1

d
ðθ∇NθÞΦ: ð58Þ

The rhs of Eq. (50) reduces to

− 2χabRabΦþ 2∇h
a∇h

bðχabΦÞ − 2ΔhðθΦÞ

¼ −2
θ

d
RΦþ 2∇h

a∇h
b

�
θ

d
habΦ

�
− 2ΔhðθΦÞ

¼ −2
θ

d
RΦ − 2

d − 1

d
θΔhΦ; ð59Þ

where we have used Eqs. (53) and (54) in the first and last
equalities, respectively. Equating both sides with the use of
Eq. (57), we finally obtain

∇Nθ ¼ −
θ2

d
−

2

d − 1
Λ −Φ−1ΔhΦ: ð60Þ

Next we calculate Eq. (51) for F PS
ε . From Eq. (53), the

first term in the brackets in Eq. (51) reduces to

∇Nχab ¼ ∇N

�
θ

d
hab

�

¼ 1

d

�
θ2

d
−

2

d − 1
Λ −Φ−1ΔhΦ

�
hab; ð61Þ

where Eqs. (52) and (60) were used in the last equality.
Then the lhs of Eq. (51) reduces to

− ½∇Nχab − χacχ
c
b þ RaNbN �Φ

¼ 1

d
ΔhΦhab þ

�
−RaNbN þ 2

dðd − 1ÞΛhab
�
Φ; ð62Þ

where Eqs. (53) and (61) were used. Substituting the result
into Eq. (51), we obtain

∇h
a∇h

bΦ −
1

d
ΔhΦhab ¼

�
−RaNbN þ 2

dðd − 1ÞΛhab
�
Φ;

ð63Þ

or from the Λ-vacuum condition Eq. (55),

∇h
a∇h

bΦ −
1

d
ΔhΦhab ¼ −CaNbNΦ: ð64Þ

We have another expression of Eq. (64). The contraction
of Gauss-Codazzi relation,

Rαμβνhαah
μ
ch

β
bh

ν
d ¼ Racbd − χabχcd þ χadχcb; ð65Þ

with hcd gives

Rαβhαah
β
b − RaNbN ¼ Rab − θχab þ χacχ

c
b ð66Þ

from hcdhμchνd ¼ hμν ¼ gμν − NμNν. Using the fact that the
spacetime is Λ-vacuum and the hypersurface is totally
umbilic, the equation reduces to

−CaNbN þ 2

d
Λhab ¼ Rab −

d − 1

d2
θ2hab: ð67Þ

From Eq. (57), we have

−CaNbN ¼ Rab −
R
d
hab: ð68Þ

Then Eq. (64) is rewritten as

∇h
a∇h

bΦ −
1

d
ΔhΦhab ¼

�
Rab −

R
d
hab

�
Φ: ð69Þ

The expression tells us that the linear perturbation Φ is
governed only by the intrinsic geometry, the Ricci curva-
ture Rab, of ðΣ; hÞ.
Note the master equation of the perturbation, Eq. (64) or

(69), does not have its trace part. Therefore, Φ−1ΔhΦ is
unspecified a priori and will be determined after we solve
the trace-free part of the equation for given initial values
of Φ.

C. Stability of the shell and a photon surface

Let us physically interpret the master equation, Eq. (64),
for the perturbation Φ of the photon surface Σ.
Let kp ∈ TpΣ be a null vector at a point p ∈ Σ. Since Σ

is a photon surface, there always exists a null geodesic γðλÞ
everywhere tangent to Σ such that kp ¼ _γð0Þ. The con-
traction of Eq. (64) with k ¼ _γðλÞ gives

∇h
k∇h

kΦ ¼ −CkNkNΦ: ð70Þ

Therefore, we have
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d2

dλ2
ΦðλÞ ¼ −CkNkNΦðλÞ ð71Þ

along γðλÞ. This implies that given the initial values Φjt¼t0
and ∂aΦjt¼t0 at time t ¼ t0, the value of Φ at the point p in
the future is determined by integrating the ordinary differ-
ential equation Eq. (71) along γðλÞ from q ¼ γðλt¼t0Þ to p.
The factor −CkNkN in Eq. (71) coincides with what

determines the stability of the null geodesic γ against the
perturbation orthogonal to Σ [25]. That is, an orthogonally
perturbed null geodesic γ̃ from γ is stable (attracted to Σ) if
−CkNkN < 0 and unstable (repelled from Σ) if −CkNkN > 0
in our Λ-vacuum case (see Proposition 2 in [25]). In
particular, if Σ is a strictly stable photon surface, i.e., all
the null geodesics on Σ are stable, the factor in Eq. (71) is
always negative along any null geodesics. This is sugges-
tive that Φ will be bounded as time evolves. In fact, in the
case where −CkNkN varies sufficiently slowly, Φ oscillates
with the almost constant amplitude along any null geodesic
and will be bounded. This is quite natural from the physical
point of view. Since a photon surface is a hypersurface
generated by null geodesics, the photon surface Σε per-
turbed from Σ is generated by the orthogonally perturbed
null geodesics γ̃. Therefore, if all the perturbed null
geodesics γ̃ are attracted to Σ, Σε should also be attracted
to Σ and is stable.
Then our conclusion is this: if Σ is a strictly stable photon

surface, then Σ is stable against the linear perturbation
given by F PS

ε ∶Σ → Σε. For Z2PTJSTs, we also conclude as
this: if Σ� is a strictly stable photon surface of ðM�; g�Þ,
then the Z2PTJST ðM; g;ΣÞ constructed from ðM�; g�Þ is
stable against shell perturbations preserving the Z2-
symmetry.
In Appendix C, we explicitly solve the perturbation

equation, Eq. (64), in the case where the geometry of Σ is
static and spherically, planar, and hyperbolically symmet-
ric. The case is frequently seen in, for example, [9,12,13].
The induced metric is given by

h ¼ a2ð−dt2 þ σÞ; ð72Þ

where a is constant and σ represents the metric of the
(d − 1)-dimensional space of constant curvature α ¼ �1, 0.
The general solution in spherically (α ¼ 1) and hyperboli-
cally (α ¼ −1) symmetric case is given by

Φ ¼ Ce
ffiffi
α

p
t þ Fe−

ffiffi
α

p
t ðα ¼ �1Þ ð73Þ

with the arbitrary constants C and F from Eq. (C41). In the
planar case (α ¼ 0), we have

Φ ¼ Dηabxaxb þ Baxa þ C ðα ¼ 0Þ ð74Þ

with the arbitrary constants D, Ba, and C from Eq. (C42).
xa ¼ ðt; xiÞ is the Cartesian coordinate on Σ. Since the

Weyl curvature gives −CkNkN ¼ Rkk ¼ α for any null
vector k ∈ TΣ with an appropriate scaling, Σ is a strictly
stable photon surface if and only if α ¼ −1, i.e., the
hyperbolic case, and it is only the case where the solution
Φ is bounded for any possible perturbation. Therefore, the
result agrees with the above conclusion, indeed. See
Appendix C for the derivation and the detailed interpreta-
tions of the result.

VI. UNIQUENESS OF PURE-TENSIONAL
WORMHOLES

A. Pure-tensional wormhole

A joined spacetime ðM; g;ΣÞ is a wormhole spacetime if
both regions M̄� have asymptotically flat domains. If,
additionally, ðM; g;ΣÞ is Z2-symmetric and pure tensional,
the spacetimes ðM̄�; g�Þ constituting ðM; g;ΣÞ are asymp-
totically flat spacetimes with their inner boundaries Σ�
being photon surfaces according to Theorem 2. Cederbaum
established the uniqueness theorem of such spacetimes,
ðM̄�; g�Þ, with some assumptions [21]. Using the theorem,
we prove the uniqueness theorem of pure-tensional thin
shell wormholes.
In Cederbaum’s uniqueness theorem, the spacetime is

assumed to be AF-geometrostatic (“AF” stands for “asymp-
totically flat”) (see below) and the lapse function with
respect to the static Killing vector is assumed to be constant
along the photon surface being the inner boundary. In the
following, we call the photon surface under the assump-
tions Cederbaum’s photon sphere (Definition 2.6 in [21]).
An AF-geometrostatic spacetime (Definition 2.1 in [21])

is a spacetime which is static, asymptotically flat, and
a vacuum solution to Einstein equation with the cos-
mological constant Λ ¼ 0. We define the following AF-
geometrostatic wormhole spacetime.
Definition 6. [static pure-tensional wormhole].—Let

ðM; g;ΣÞ be a Z2PTJST constructed from ðM�; g�Þ.
ðM; g;ΣÞ is called a static pure-tensional wormhole if
ðM̄�; g�Þ are AF-geometrostatic spacetimes and their inner
boundaries Σ� are static.

B. Proof of the uniqueness

We impose a technical assumption on a static pure-
tensional wormhole ðM; g;ΣÞ to prove the uniqueness
theorem. Since ðM; g;ΣÞ is Z2-symmetric and Σ is static,
ðM̄�; g�Þ have a common static Killing vector field ∂t
which are tangent to Σ� on Σ� and satisfies ψ�∶∂tjΣþ ↦
∂tjΣ−

for the identification of the inner boundaries ψ∶Σþ →
Σ−. The lapse functions N � of ðM̄�; g�Þ and N of
ðM; g;ΣÞ with respect to the Killing vector are given by
N 2

�¼−g�ð∂t;∂tÞ and N 2¼−gð∂t;∂tÞ, respectively. Since
the first junction condition is satisfied from the Z2-
symmetry, N 2¼−gð∂t;∂tÞ¼−1

2
½gþð∂t;∂tÞþg−ð∂t;∂tÞ�¼

−g�ð∂t;∂tÞ¼N 2
�. Then we assume that N � are constant
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along Σ� in M̄� and therefore, N ¼ const along Σ in M.
This is equivalent to the requirement that the time-
time component of the surface stress energy Sab is con-
stant, Stt ¼ −ϵhtt ¼ ϵN jΣ2 ¼ const, since ϵ ¼ const from
Theorem 2. Although the assumption may restrict the class
of solutions, the pure-tensional wormholes which have
been investigated satisfy it [12,13]. We have the following
theorem.
Theorem 3. [uniqueness of static pure-tensional worm-

hole spacetimes].—Let ðM; g;ΣÞ be a four-dimensional
static pure-tensional wormhole constructed from ðM�; g�Þ.
Let ϵ and θ be the tension and the mean curvature of Σ,
respectively. Assume that the lapse functions N � of
ðM̄�; g�Þ regularly foliate M̄� and are constant along
Σ�. Then, each of the regions M̄� of ðM; g;ΣÞ is isometric
to the Schwarzschild spacetime with the mass m ¼ 1=
ð ffiffiffi

3
p

θÞ ¼ −1=ð6 ffiffiffi
3

p
πϵÞ > 0.

Proof.—From Definition 6, M̄� ≔ M�nMin
�, which

constitute M by M ¼ M̄þ ∪ψ ;ψN
M̄−, are the manifolds

with the asymptotically flat regions and the inner bounda-
ries Σ�. From Theorem 2, Σ� of ðM̄�; g�Þ are photon
surfaces with the constant mean curvatures

θ� ¼∓ 6πϵ: ð75Þ

Therefore, from the assumptions, ðM̄�; g�Þ are AF-
geometrostatic spacetimes regularly foliated by N � and
the inner boundaries Σ� are Cederbaum’s photon spheres,
i.e., they are photon surfaces with the constant lapse
functions N � along them in the AF-geometrostatic space-
times (Definition 2.6 in [21]). Then, from the uniqueness
theorem of photon spheres (Theorem 3.1 in [21]),
ðM̄þ; gþÞ is Schwarzschild spacetime with the mass
m ¼ 1=ð ffiffiffi

3
p

θþÞ > 0. From Eq. (75), we have

m ¼ 1ffiffiffi
3

p
θþ

¼ −
1

6
ffiffiffi
3

p
πϵ

> 0 ð76Þ

and ϵ < 0. Since the Z2-symmetry of ðM; g;ΣÞ implies that
ðM̄�; g�Þ are isometric, ðM̄−; g−Þ is also Schwarzschild
spacetime with the mass

m ¼ 1ffiffiffi
3

p
θþ

¼ −
1ffiffiffi
3

p
θ−

¼ −
1

6
ffiffiffi
3

p
πϵ

> 0: ð77Þ

Note that the static photon surface in Schwarzschild
spacetime is the hypersurface of radius 3m [33]. ▪

VII. CONCLUSION

We defined a joined spacetime (JST), which is obtained
by truncating and gluing two spacetimes along the boun-
daries, in Sec. II. Z2-symmetry of JSTs was defined in
Sec. III. A pure-tensional JST (PTJST) was defined as a Λ-
vacuum JST with a pure tension shell. For a Z2-symmetric

pure-tensional joined spacetime (Z2PTJST), we proved that
its shell must be photon surfaces of the original spacetimes
constituting the JST (Theorem 2) in Sec. IV. Conversely, if
two isometric Λ-vacuum spacetimes have photon surfaces,
we can join them to give a Z2PTJST. Therefore, we have
solutions of Z2PTJSTs as many as the photon surfaces
found in, for example, [20,28,33,35].
Z2PTJSTs have been widely investigated in the contexts

of wormholes [12,13], baby universes [12], and brane
worlds [30,31]. The shells correspond to the throat in the
wormhole cases and the brane we live in in the brane world
cases. One can infer that we can extend Theorem 2 to
electrovacuum cases because the coincidence of the shells
and photon spheres holds in electrovacuum in [12,13]. It is
fascinating since the electric charges enrich the variety of
thin shell wormhole solutions.
Theorem 2 can be used to deny the possibility to

construct Z2PTJST from a given spacetime. In a stationary
axisymmetric spacetime like Kerr spacetime, there can be
null circular geodesics, however, photon surfaces would not
exist on the radii. It is because the corotating and counter-
rotating circular orbits have the different radii in general.
Even if the corotating orbits generate a hypersurface on the
radius, the counterrotating orbits cannot be tangent to the
surface. Then the hypersurface does not satisfy the defi-
nition of photon surface. Therefore, we cannot join the two
copies of the spacetime along the radii of null circular
geodesics to give Z2PTJST. One needs to violate the Z2-
symmetry, the pure tension equation of state of the shell, or
Λ-vacuum condition to construct shell wormholes from
axisymmetric spacetimes.
Since the shell of a Z2PTJST coincides with a photon

surface, the stability of the JST against the shell pertur-
bation also coincides with the stability against the surface
perturbation of the photon surface in the original space-
time. In Sec. V, after deriving the master equation for the
perturbation of photon surfaces, Eq. (69), from the
surface deformation formalism by Capovilla and Guven
[36], we found its close relationship to the stability of
null geodesics on a photon surface introduced in [25].
Namely, if null geodesics on a photon surface are stable
(unstable), the photon surface itself, and therefore the
Z2PTJST, is stable (unstable). We also confirmed it by
solving the perturbation equation for photon surfaces
explicitly in Appendix C with the specific induced
metrics.
It is remarkable that the perturbation equation, Eq. (69),

is also useful to seek photon surfaces in the vicinity of a
given photon surface. Actually, we found the hyperboloid
Eq. (C40) by perturbing the plane of y ¼ 0 in Minkowski
spacetime M3. The hyperboloid, as well as the plane, is
known to be a timelike photon surface of M3, indeed [33].
In contrast with the planar case, in the spherically and
hyperbolically symmetric cases, it is suggested that
there would not be photon surfaces violating the spatial
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symmetries because the perturbation Φ in Eq. (C41)
depends only on the time t.
In the wormhole cases of Z2PTJSTs with the vanishing

cosmological constant, we applied the uniqueness theorem
of photon spheres by Cederbaum [21] and established the
uniqueness theorem of static pure-tensional wormholes
with Z2-symmetry (Theorem 3) in Sec. VI. The theorem
states that both sides of the wormhole are isometric to
Schwarzschild spacetime with the same masses. It is also
interesting that the tension of the shell and the mass of the
wormhole are inversely proportional to each other and the
positive mass implies the negative tension and the negative
energy of the shell. This is consistent with the result that
wormhole spacetimes have to violate energy conditions in
the vicinity of the throats [7,8].
The static pure-tensional wormhole in our uniqueness

theorem has the photon surface (shell) of the geometry
Eq. (72) with α ¼ þ1. Therefore, from the general solution
of the perturbation, Eq. (73), in Sec. V, the static pure-
tensional wormhole is unstable against general throat
(shell) perturbation preserving Z2-symmetry.
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APPENDIX A: GAUSSIAN NORMAL
COORDINATES ON A Z2-SYMMETRIC

JOINED SPACETIME

We consider a coordinate system of ðM; g;ΣÞ which
respects the Z2-symmetry. With the coordinate system, we
can verify Definition 3 explicitly.
Let ðM; g;ΣÞ be Z2-symmetric joined spacetime of

ðM�; g�Þ. Consider Gaussian normal coordinates C�∶
p� ∈ M� ↦ ðl�; x�Þ ∈ Rdþ1 with respect to Σ� such that

g� ¼ dl2� þ h�ijð�l�; x�Þdxi�dxj� ðA1Þ
with the conditions,

Σ� ¼ fl� ¼ 0g; ðA2Þ

N� ¼ ∂l�: ðA3Þ

With the isometry ϕ∶ðMþ; gþÞ → ðM−; g−Þ in Definition 3,
we can impose that C−∘ϕ∘C−1þ ∶ðlþ; xþÞ ↦ ð−l−; x−Þ on the
coordinates. It leads to

hþijðl; xÞ ¼ h−ijðl; xÞ ðA4Þ
for a variable l. Indeed, the assumption on the coordinates
satisfies the requirement for ϕ, Eqs. (17) and (19):

ϕjΣþ∶Σþ ¼ flþ ¼ 0g → fl− ¼ 0g ¼ Σ−; ðA5Þ

ϕ�∶Nþ ¼ ∂lþ ↦ −∂l− ¼ −N−: ðA6Þ

Since C−∘ϕjΣþ∘C−1þ ∶ð0; xþÞ ↦ ð0; x−Þ, Eq. (18) implies
that M ¼ M̄þ ∪ψ ;ψN

M̄− is obtained by, after the trunca-
tion M� → M̄�, identifying the coordinates on Σ� as

C−∘ψ∘C−1þ ∶ð0; xþÞ ↦ ð0; x−Þ: ðA7Þ

From the identification of the normal vectors
ψN∶Nþ ↦ N−, Eq. (10), we also have

∂lþjlþ¼0 ¼ ∂l−jl−¼0: ðA8Þ

Then we introduce the coordinate system C∶p ∈ M ↦
ðl; xÞ into M by

ðl; xÞ ¼
� ðlþ; xþÞ ðl ≥ 0Þ
ðl−; x−Þ ðl < 0Þ: ðA9Þ

This choice satisfies the conditions for the gluing,
Eqs. (A7) and (A8). Finally, we obtain the metric distri-
bution on M,

g ¼ dl2 þ hijðjlj; xÞdxidxj; ðA10Þ

where hijðl; xÞ ≔ hþijðl; xÞ ¼ h−ijðl; xÞ for l ≥ 0.
Obviously, the transformation l → −l leaves g and Σ

invariant and exchanges the regions of M as Mexþ ↔ Mex
− .

Definition 3 gives a Z2-symmetric joined spacetime,
indeed.
The quantities appearing in the junction conditions are

given as follows. From h�ðX; YÞ ¼ g�ðX; YÞ∀X; Y ∈
TΣ�, the induced metric is

hþ ¼ hijð0; xÞdxidxj ¼ h−: ðA11Þ

From χ� ¼ ð1=2ÞLN�h� [32], the second fundamental
form is

χþ ¼ 1

2
hij;lð0; xÞdxidxj ¼ −χ−: ðA12Þ

We can easily see that Proposition 1 holds from the
expressions.

APPENDIX B: CALCULATIONS IN
DEFORMATION OF HYPERSURFACES

We recalculate a part of the calculation in [36] following
their procedure. The notations in [36] are converted to ours
in the following.
We consider an embedded surface Σ of a spacetime

ðM; gÞ and its deformation. The dimension d ≔ dimðΣÞ ≥
1 is arbitrary here and therefore we have (D − d) unit
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normal vectors Ni and the deviation scalars Φi where
i ¼ 1;…; D − d. From Eq. (3.9) in [36], the deformation of
the Christoffel symbol Γab

c with respect to the induced
metric hab of the surface Σ is given by

∇δΓab
c ¼ 1

2
hcd½∇h

að∇δhbdÞ þ∇h
bð∇δhadÞ −∇h

dð∇δhabÞ�
¼ hcd½∇h

aðχbdiΦiÞ þ∇h
bðχadiΦiÞ −∇h

dðχabiΦiÞ�;
ðB1Þ

where δ ≔ ΦiNi, ∇ is the covariant derivative associated
with g, ∇h is the covariant derivative associated with hab,
χab

i is the ith extrinsic curvature of Σ with respect to Ni,
and ∇δ ≔ δμ∇μ. In general, a variation of a metric gμν →
gμν þ Δgμν gives the variations Δ of the connection
coefficients Γα

μν and the curvatures Rα
μβν, Rμν, and R of

a spacetime as [11,37]

ΔRα
μβν ¼ ∇βΔΓα

μν −∇νΔΓα
μβ; ðB2Þ

ΔRμν ¼ ∇αΔΓα
μν −∇νΔΓα

μα; ðB3Þ

ΔR ¼ −RμνΔgμν þ gμνð∇αΔΓα
μν −∇νΔΓα

μαÞ; ðB4Þ

Δð ffiffiffiffiffiffi
−g

p
RÞ ¼ 1

2
gμνΔgμν

ffiffiffiffiffiffi
−g

p
Rþ ffiffiffiffiffiffi

−g
p

ΔR: ðB5Þ

Applying the equations to our case and replacing Δ by ∇δ,
we have

∇δRa
cbd ¼ ∇h

bð∇δΓcd
aÞ −∇h

cð∇δΓbd
aÞ; ðB6Þ

∇δRcd ¼ ∇h
að∇δΓcd

aÞ −∇h
dð∇δΓca

aÞ ðB7Þ

∇δR ¼ −Rcd∇δhcd þ hcdð∇h
a∇δΓcd

a −∇h
d∇δΓca

aÞ; ðB8Þ

∇δð
ffiffiffiffiffiffi
−γ

p
RÞ ¼

ffiffiffiffiffiffi
−h

p �
1

2
hab∇δhabRþ∇δR

�
ðB9Þ

for the curvatures of ðΣ; hÞ. In particular, substituting
Eq. (B1) into the identities, we obtain

∇δR ¼ −2Rcdχcd
iΦi þ 2∇h

a∇h
cðχaciΦiÞ − 2ΔhðθiΦiÞ;

ðB10Þ

∇δð
ffiffiffiffiffiffi
−h

p
RÞ ¼ −2

ffiffiffiffiffiffi
−h

p
Gabχab

iΦi þ ∂að
ffiffiffiffiffiffi
−h

p
JaÞ; ðB11Þ

where we have used the fact ∇δhab ¼ 2χab
iΦi from

Eq. (3.8) in [36], Ja ≔ 2ð∇h
cðχaciΦiÞ −∇haðθiΦiÞÞ and

Gab is the Einstein tensor of ðΣ; hÞ. Note that, modulo a
divergence, Eqs. (B10) and (B11) coincide with Eqs. (3.11)
and (3.12) of [36], respectively.

APPENDIX C: EXAMPLE: THE GENERAL
SOLUTIONS OF THE

PERTURBATION EQUATION

The perturbation equation, Eq. (69),

∇h
a∇h

bΦ −
1

d
ΔhΦhab ¼

�
Rab −

R
d
hab

�
Φ; ðC1Þ

for CMC photon surfaces was derived in Sec. V. Here
we solve the equation explicitly and derive the general
solutions in specific cases.
Consider the case where the induced metric h on the

photon surface Σ is given by

h ¼ a2ð−dt2 þ σÞ; ðC2Þ

where a is a constant and σ is the metric of the (d − 1)-
dimensional space of constant curvature α ¼ 0;�1. This
corresponds to the static cases of [12,13] with an appro-
priate scaling of time t. We express the space part as

σ ¼ dχ2 þ s2ðχÞΩd−2 ðC3Þ

with sðχÞ ¼ χ; sinðχÞ; sinhðχÞ for α ¼ 0;þ1;−1, respec-
tively, and the metric of the unit (d − 2)-sphere Ωd−2.
Hereafter we omit the subscript d − 2 of Ωd−2. For
simplicity, we scale h by a constant so that

h ¼ −dt2 þ σ ðC4Þ

and solve the perturbation equation, Eq. (69), with this
induced metric in the following. Note that it is sufficient to
specify only the intrinsic geometry ðΣ; hÞ to solve the
equation.

1. α= � 1

Consider α ¼ �1 cases. The Ricci curvatures of ðΣ; hÞ
are given by

Rtt ¼ 0; Rti ¼ 0 Rij ¼ ασij; R ¼ ðd − 1Þα;
ðC5Þ

where i; j ¼ χ; xA and xAðA ¼ 1;…; d − 2Þ are the spheri-
cal coordinates of Ω. The double null coordinates fλ� ≔
t� χ; xAg give null geodesics of ðΣ; hÞ with the tangents

k� ¼ ∂λ� : ðC6Þ

From the fact that Rk�k� ¼ α and the contraction of
Eq. (69) with k�, we have

∂2
λ�Φðλþ; λ−; xAÞ ¼

1

4
αΦðλþ; λ−; xAÞ: ðC7Þ
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The integration of the “plus” one of the equation gives

Φðλþ; λ−; xAÞ ¼ Aðλ−; xAÞe
ffiffi
α

p
λþ=2 þ Bðλ−; xAÞe−

ffiffi
α

p
λþ=2

ðC8Þ
for the arbitrary functions Aðλ−; xAÞ and Bðλ−; xAÞ.
Substituting this into the “minus” one, we have

∂2
λ−
Aðλ−; xAÞ ¼

1

4
αAðλ−; xAÞ; ðC9Þ

∂2
λ−
Bðλ−; xAÞ ¼

1

4
αBðλ−; xAÞ ðC10Þ

leading to

Aðλ−; xAÞ ¼ CðxAÞe ffiffi
α

p
λ−=2 þDðxAÞe− ffiffi

α
p

λ−=2; ðC11Þ

Bðλ−; xAÞ ¼ EðxAÞe ffiffi
α

p
λ−=2 þ FðxAÞe− ffiffi

α
p

λ−=2: ðC12Þ

Therefore, we obtain

Φ ¼ CðxAÞe ffiffi
α

p ðλþþλ−Þ=2 þDðxAÞe ffiffi
α

p ðλþ−λ−Þ=2

þ EðxAÞe− ffiffi
α

p ðλþ−λ−Þ=2 þ FðxAÞe− ffiffi
α

p ðλþþλ−Þ=2

¼ CðxAÞe ffiffi
α

p
t þDðxAÞe ffiffi

α
p

χ

þ EðxAÞe− ffiffi
α

p
χ þ FðxAÞe− ffiffi

α
p

t ðC13Þ
for the arbitrary functions CðxAÞ,DðxAÞ, EðxAÞ, and FðxAÞ.
The Christoffel symbols Γa

bc with respect to hab are
calculated as

Γt
ab ¼ Γa

tb ¼ Γχ
χχ ¼ Γχ

χA ¼ 0

Γχ
AB ¼ −ss0ΩAB; ΓA

χχ ¼ 0;

ΓA
χB ¼ s0

s
δAB; ΓA

BC ¼ ΩΓA
BC; ðC14Þ

where ΩΓA
BC is the Christoffel symbol with respect to ΩAB.

The nondiagonal components of Eq. (69) reduce to

∂a∂bΦ − Γi
ab∂iΦ ¼ 0 ða ≠ bÞ: ðC15Þ

For ða; bÞ ¼ ðt; χÞ, Eq. (C15) gives

∂t∂χΦ ¼ 0 ðC16Þ

and this is consistent with Eq. (C13). For ða; bÞ ¼ ðt; AÞ,
we have

∂t∂AΦ ¼ ffiffiffi
α

p ½CðxAÞ;Ae
ffiffi
α

p
t − FðxAÞ;Ae−

ffiffi
α

p
t� ¼ 0 ðC17Þ

by using Eq. (C13). This implies CðxAÞ;A ¼ FðxAÞ;A ¼ 0

and thus they are constant,

CðxAÞ ¼ C; FðxAÞ ¼ F: ðC18Þ

For ða; bÞ ¼ ðχ; AÞ, we have

∂χ∂AΦ −
s0

s
∂AΦ ¼ DðxAÞ;A

� ffiffiffi
α

p
−
s0

s

�
e

ffiffi
α

p
χ

− EðxAÞ;A
� ffiffiffi

α
p þ s0

s

�
e−

ffiffi
α

p
χ ¼ 0: ðC19Þ

This implies DðxAÞ;A ¼ EðxAÞ;A ¼ 0 and thus they are
constant,

DðxAÞ ¼ D; EðxAÞ ¼ E: ðC20Þ

Now we have

Φ ¼ Ce
ffiffi
α

p
t þDe

ffiffi
α

p
χ þ Ee−

ffiffi
α

p
χ þ Fe−

ffiffi
α

p
t ðC21Þ

from Eqs. (C13), (C18), and (C20).
From Eq. (C21), we have ∂AΦ ¼ 0 and thus,

∇h
a∇h

bΦ ¼ ∂a∂bΦ − Γχ
ab∂χΦ: ðC22Þ

Together with Eq. (C14), we have

ΔhΦ ¼ −∂2
tΦþ ∂2

χΦþ ðd − 2Þ s
0

s
∂χΦ: ðC23Þ

Then the tt-, χχ-, and AB-component of Eq. (69) gives

∂2
tΦþ 1

d

�
−∂2

tΦþ ∂2
χΦþ ðd − 2Þ s

0

s
∂χΦ

�
¼ d − 1

d
αΦ;

∂2
χΦ −

1

d

�
−∂2

tΦþ ∂2
χΦþ ðd − 2Þ s

0

s
∂χΦ

�
¼ 1

d
αΦ;

s0

s
∂χΦ −

1

d

�
−∂2

tΦþ ∂2
χΦþ ðd − 2Þ s

0

s
∂χΦ

�
¼ 1

d
αΦ;

ðC24Þ

respectively. The sum of the first and second equations
gives

∂2
tΦþ ∂2

χΦ ¼ αΦ ðC25Þ

and this is already satisfied by Eq. (C21). The subtraction of
the second equation times (d − 1) from the first equation
gives

D½ ffiffiffi
α

p
s − s0�e ffiffi

α
p

χ þ E½ ffiffiffi
α

p
sþ s0�e− ffiffi

α
p

χ ¼ 0 ðC26Þ

with the substitution of Eq. (C21). This requires

D ¼ E ¼ 0 ðC27Þ

and therefore ∂χΦ ¼ 0. The third equation in Eq. (C24)
then reduces to
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∂2
tΦ ¼ αΦ ðC28Þ

and this is already satisfied by Eq. (C24) with the vanishing
of D and E.
As a consequence, the general solution of Eq. (69) with

the geometry Eq. (C4) for α ¼ �1 is given by

Φ ¼ Ce
ffiffi
α

p
t þ Fe−

ffiffi
α

p
t ðC29Þ

with the arbitrary constants C and F.

2. α= 0

Consider the α ¼ 0 case of the geometry of Eq. (C4).
Since the geometry ðΣ; hÞ is the d-dimensional Minkowski
spacetime, we adopt Cartesian coordinates ft; xig on it and
the curvatures and the Christoffel symbols identically
vanish. Then the master equation, Eq. (69), for the
perturbation Φ reduces to

∂a∂bΦ −
1

d
ηcd∂c∂dΦηab ¼ 0: ðC30Þ

From the nondiagonal components, Φ must be the sum of
one-variable functions of t and xi. We express it as

Φ ¼ ftðtÞ þ
Xd−1
j¼1

fjðxjÞ ðC31Þ

with the arbitrary functions ftðtÞ and fiðxiÞ. The tt- and ii-
component give

ðd − 1Þ∂2
tΦþ

Xd−1
j¼1

∂2
jΦ ¼ 0; ðC32Þ

∂2
tΦþ d∂2

iΦ −
Xd−1
j¼1

∂2
jΦ ¼ 0; ðC33Þ

respectively. The equations give

∂2
tΦþ ∂2

iΦ ¼ 0 ðC34Þ

by the summation of them. From Eq. (C31), this leads to

−∂2
t ftðtÞ ¼ ∂2

i fiðxiÞ ¼ 2D ðC35Þ

with the arbitrary constant D. Integrating the equations, we
have the general solution of Φ for α ¼ 0,

Φ ¼ D

�
−t2 þ

Xd−1
j¼1

ðxjÞ2
�
þ Cttþ

Xd−1
j¼1

Cjxj þ C; ðC36Þ

with the arbitrary constants D, Ct, Ci, and C. The solution
satisfies Eq. (C30), indeed.

The solution can be rewritten as

Φ ¼ Dηabxaxb þ Baxa þ C ðC37Þ

with xa ¼ ðt; xiÞ and Ba ¼ ðCt; CiÞ. C represents the
perturbation parallel to Σ, or the shift of Σ. It displaces
Σ → Σε by a constant distance Cε at each point p ∈ Σ. Ba
rotates Σ with the fixed axes Aa given by BaAa ¼ 0. Points
satisfying xa ∝ Aa are fixed by the perturbation and the set
of Aa spans (d − 1)-dimensional surface, actually. If the
surface is timelike, the perturbation is a spatial rotation of Σ
while if spacelike, it is a Lorentz boost of Σ.D provides the
perturbation which depends only on the length of xa and
fixes the origin xa ¼ 0 and the null rays ηabxaxb ¼ 0
passing the origin. We can understand D as follows.
To imagine the effect of D, let us consider that Σ is

embedded into (dþ 1)-dimensional Minkowski spacetime
Mdþ1 by the embedding xa∈Σ↦xμ¼ðxa;y¼0Þ∈Mdþ1,
for example. Suppose Ba ¼ C ¼ 0 for simplicity. The
photon surface Σ is given by y ¼ 0 with the normal vector
Nμ ¼ ð0; 1Þ. The perturbed photon surface Σε is given by

xμε ¼ xμ þΦNμε ¼ ðxa;DεηabxaxbÞ ðC38Þ

from Eqs. (48) and (49). In the case of d ¼ 2 and xa ¼
ðt; xÞ for simplicity, it is xμε ¼ ðt; x; Dεð−t2 þ x2ÞÞ, or
expressed as the quadratic equation,

−t2 þ x2 −
1

Dε
y ¼ 0: ðC39Þ

This coincides with the expansion about y of the one-
sheeted hyperboloid given by

−t2 þ x2 þ ðy − aÞ2 ¼ a2 ðC40Þ

in M3 around y ¼ 0 in linear order, where the “radius” a is
specified by a ¼ ð2DεÞ−1. In fact, timelike planes and one-
sheeted hyperboloids are known to be timelike photon
surfaces of Minkowski spacetime [33]. Furthermore, by the
large radius limit, or equivalently the zero-curvature limit,
a → ∞, the local geometry of the hyperboloid approaches
to that of planes. The limit corresponds to ε → 0 in our
case. Therefore, the parameter D gives the perturbation of
the plane Σ to a hyperboloid Σε of infinitely large radius
a ¼ ð2DεÞ−1. Note that although the local geometries
coincide with each other in the limit, their global topol-
ogies, which would be subject to the nonlinear order, in
Minkowski spacetime are different. It is also worth noting
that the hyperboloid in Minkowski spacetime has the
geometry of de Sitter spacetime [33].

3. Stability

The scaling of Eq. (C4) to Eq. (C2) gives α → a−2α and
t → at. As a result, the most general solutions of the linear
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perturbation Φ of the photon surface which has the surface
geometry of Eq. (C2) are

Φ ¼ Ce
ffiffi
α

p
t þ Fe−

ffiffi
α

p
t ðα ¼ �1Þ ðC41Þ

with the arbitrary constants C, F and

Φ ¼ Dηabxaxb þ Baxa þ C ðα ¼ 0Þ ðC42Þ

with the arbitrary constants D, Ba, and C. The photon
surface is stable, i.e., Φ is bounded, against all the possible
perturbations if and only if the spatial geometry is hyper-
bolically symmetric,R ¼ ðd − 1Þα < 0. The case is where
−CkNkN ¼ Rkk < 0 for any null vector k ∈ TpΣ at any
point p ∈ Σ, i.e., Σ is a strictly stable photon surface [25] as
we expected. The α ¼ 0 case corresponds to a marginally
stable case where −CkNkN ¼ Rkk ¼ 0. If one perturbs
Σ with the initial condition ∂aΦjt¼t0 ¼ 0, it leads to
D ¼ Ba ¼ 0 and the deviation remains constant, Φ ¼ C,
and is bounded. It is worth noting that any perturbation
violating the spatial symmetry of the surface is not allowed

for α ¼ �1. The relatively high degrees of freedom of the
perturbation for α ¼ 0 come from that the geometry ðΣ; hÞ
restores the maximal symmetry on it.
If we apply the results to the perturbation of Z2PTJST in

Sec. V, it is consistent with the Λ-vacuum case of [12,13]
and implies that the perturbations the authors investigated
for the spherically and hyperbolical symmetric cases are the
most general under the Z2-symmetry of the JST in the sense
of Eq. (C41).
Equation (64) or (69) can shed light on seeking photon

surfaces around a given photon surface. This is because the
existence of the possible linear perturbations of a photon
surface should imply the existence of nearby photon
surfaces. The result, Eq. (C41), in the example tells us
that, in the vicinity of the spherically and hyperbolically
symmetric photon surface of Λ-vacuum spacetime, there
would be no photon surface which does not have the same
spatial symmetry. Equation (C42) indicates that there exist
photon surfaces around a given planar photon surface. They
are obtained by the shift, the rotation, the boost, and the
transformation to hyperboloids.
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