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Electromagnetic and linear gravitational radiation do not solely propagate on the null cone in 3þ 1

dimensions in curved spacetimes, contrary to their well-known behavior in flat spacetime. Their additional
propagation inside the null cone is known as the tail effect. A compact body will produce a signal whose tail
will interact with its future worldline, thus producing a tail-induced self-force. We present new results for
the tail-induced scalar, electromagnetic, and gravitational self-force for a test mass in orbit around a central
mass, including effects from the internal structure of that body.
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I. INTRODUCTION

With the recent direct detection by LIGO [1,2] of
gravitational waves (GWs) from inspiraling binaries, there
is now increasing interest in computing physical effects
beyond the leading-order Keplerian dynamics of idealized
point masses orbiting one another. Within the gravitational
waves literature, the so-called self-force problem has been
an outstanding issue for several decades and is usually
studied in the case of a small body orbiting a larger central
mass. The “extreme” versions of such systems are dubbed
“extreme-mass-ratio-inspiral” systems (EMRIs). These
typically involve order solar-mass compact objects orbiting
the order 106–109 solar-mass supermassive black holes
(SMBHs) that apparently reside within most, if not all,
galactic centers. By the 2030s, the space-based gravita-
tional wave detector LISA [3,4] will be launched to detect
GWs of much lower frequencies than those to which the
current LIGO and Virgo detectors are sensitive. Among
LISA’s primary targets are EMRIs. Hence, there is a need
for a practical scheme to compute EMRI waveforms, with
the associated self-force effects properly incorporated—
see, for instance, the reviews [5,6].
In curved spacetimes, massless waves such as those of

electromagnetism and gravitation no longer travel strictly
on the null cone—they also “scatter” off the background
geometry and develop “tails,” propagating inside the light
cone. At least within the de Donder gauge, this is
responsible for the dominant gravitational self-force expe-
rienced by a compact body orbiting a SMBH; in the strong-
gravity region of the latter, the former interacts with the tail

portion of the signal it generated in the past. This, in turn,
affects the orbital evolution of the system and the gravi-
tational wave signal that will be detected.
Abraham and Lorentz [7] first calculated the recoil force

on an accelerating charge caused by the emission of
electromagnetic radiation. Dirac [8] derived the relativistic
generalization of the Abraham-Lorentz force. Building on
work by Hadamard [9], it was DeWitt and Brehme [10]
(followed shortly by Hobbs [11]) who first pointed out the
novel contribution to the electromagnetic self-force from
the tail effect in curved spacetimes. (This has no analog in
four-dimensional Minkowski, where electromagnetic and
linear gravitational waves propagate strictly on the light
cone.) Mino et al. [12] derived the linear gravitational self-
force for a point particle moving in an arbitrary back-
ground, where the metric satisfies Einstein’s equations in
vacuum.1 Quinn andWald [15] derived similar results using
an “axiomatic approach.” Nowadays, this linear tail-
induced self-force vacuum-background equation carries
the acronym MiSaTaQuWa.
In thiswork,we focus on the tail-induced self-force, not in

theEMRI system, butwhere the central body is replaced by a
significantly smaller mass so that the spacetime is weakly
curved everywhere. This setup is more closely related to the
post-Newtonian/Minkowskian description of the compa-
rable-mass binary systems whose GWs are currently
detected by LIGO (see, for instance, Ref. [16]). In our
setup, and at first order in perturbation theory, the tail arises
from the null signal generated by the orbiting compact body
scattering off the central mass and its Newtonian potential,
before returning to exert a self-force on the orbiting body at a
later time. In particular, wewill improve upon themethods in*yizen.chu@gmail.com
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thework byDeWitt andDeWitt [17] as well as Pfenning and
Poisson [18] and show how to capture self-force effects that
are sensitive to the internal structure of the central body. Our
method allows the evaluation of these effects perturbatively
in the ratio of the size of the central object to its separation
from the point mass. We demonstrate this for a specific
choice of the radial density profile. Comparison with the
extant literature reveals finite-size self-force terms that had
previously been overlooked. This should not be confused
with the usual discussion on the quadrupole effects induced
by tidal forces in the post Newtonian literature [19]. This is
known to arise at 5 post-Newtonian (PN) order, but here we
are discussing the effect of the central body’s intrinsic
quadrupole moment on the orbiter’s self-force. In this work,
we show that for the scalar and electromagnetic case this
enters at a lower PN order and comment on the potential
appearance of finite-size effects at 2 PN for the gravita-
tional case.
Extended bodies have previously been considered in the

literature. Isoyama andPoisson [20] considered the self-force
acting on a (scalar or electric) charge held in place outside a
massive body. Harte considered extended sources moving in
an arbitrary background spacetime [21] while Harte et al.
[22] considered the electromagnetic problem nonperturba-
tively. The bodyofwork byHarte and collaborators lays out a
formalism to compute scalar, electromagnetic, and gravita-
tional self-forces in various dimensions. However, they did
not appear to carry out any concrete computations of the
finite-size dependence of these self-forces within the context
of binary systems. Finally, Pfenning andPoisson [18] studied
the gravitational self-force problem for pointlike objects in
theweak-field limit. They nominally considered an extended
central object but did not carry the relevant effects into the
ultimate calculation of the self-force.
This manuscript is organized as follows. In Sec. II, we

review the generic equations of the self-force, while in
Secs. III, IV, and V, we show the calculation involving the
finite-size effects. After discussing our results in Sec. VI,
we provide the reader with more technical details in the
Appendixes.

II. SELF-FORCE EQUATIONS

A. Scalar

We consider a massive spin-zero test particle with
trajectory zμðτÞ (where τ is the particle’s proper time),
moving in a background spacetime characterized by a
metric gαβ, the associated Ricci tensor Rαβ, and scalar R.
The particle is coupled to a classical scalar field and is
subject to an external force fαext.
The modified geodesic equation for this particle

[23] is2

muα;βuβ ¼ fαext þ
1

3

q2

m
ðδαβ þ uαuβÞ _fβext

þ 1

6
q2ðRα

β þ uαRβγuβuγÞ þ fαscalar: ð1Þ

This includes a “self-force” contribution

fαscalar ¼ q2ðgαβ þ uαuβÞ
Z

τ−

−∞
G;βðzðτÞ; zðτ0ÞÞdτ0; ð2Þ

where uαðτÞ≡ dzμ=dτ represents the 4-velocity of the
particle. The ;β denotes partial derivative with respect to
zβðτÞ; an overdot is the derivative with respect to proper
time; while q is the scalar charge of the scalar. G is the
scalar Green’s function, obeying

ð□ − ξRÞGðx; x0Þ ¼ −4π
δð4Þðx − x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þ4

p : ð3Þ

As is conventional, ξ is the nonminimal coupling of the
scalar field to the Ricci scalar R.
Pioneering work by Hadamard [9] informs us that the

retarded solution to the Green’s function equation—in a
region of curved spacetime where the observer at x can be
linked via a unique geodesic to the spacetime point source
at x0—is comprised of a term (proportional to Dirac’s delta
function) that propagates signals strictly on the light cone
and another (proportional to a step function) that transmits
signals within the null cone,

Gðx;x0Þ¼Θðt− t0Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðx;x0Þ

p
δðσÞþΘð−σÞVðx;x0ÞÞ; ð4Þ

where

Δðx; x0Þ ¼ −
det½∂μ0∂ν0σx;x0 �

jgg0j1=2 ; ð5Þ

is the Van Vleck determinant and V(x,x’) obeys the
homogeneous wave equation with the appropriate boun-
dary conditions on the light cone. Here, the σ is Synge’s
world function, half of the square of the geodesic distance
between x and x0, so that σ ¼ 0 is null while σ < 0 is
timelike. It is the presence of the tail V in (4) that gives rise
to (2). The integral in (2) extends over the entire past
history of the particle until “almost” the present time τ−.
The − indicates that the integral is only over the tail portion
of the Green’s function and does not include the light-
cone piece. We shall witness below that the same tail
phenomenon is responsible for the analogous history-
dependent contributions to the electromagnetic and linear-
gravitational self-forces in curved spacetimes.
When the particle is moving in vacuum, R ¼ 0, and,

if there are no external forces, fext ¼ 0. The remaining
piece is the tail integral. Quinn derived (1) using an
extended body coupled to a scalar field in the limit of

2Throughout the manuscript, we set c ¼ GN ¼ 1, unless
specified otherwise.
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small spatial extent.3 An extensive discussion and
delicate issues with this limit can be found in Ref. [15].

B. Electromagnetism

The electromagnetic force felt by a point charge is given
by [15]

muα;βuβ ¼ fαext þ
2

3

e2

m
ðδαβ þ uαuβÞ _fβext

þ 1

3
e2ðRα

βuβ þ uαRβγuβuγÞ þ fαem; ð6Þ

where the history-dependent self-force reads

fαem ¼ −e2
Z

τ−

−∞
ðGα

γ0;β −Gβγ0
;αÞuβuγ0dτ0: ð7Þ

Here and below, the primed index indicates the proper
velocity is evaluated at the integration time, namely, uγ

0≡
dzμ=dτ0. The Lorenz-gauge4 electromagnetic Green’s func-
tion itself obeys

□Gμν0 ðx;x0Þ−Rμ
σGσν0 ðx;x0Þ ¼−4πgμν0 ðx;x0Þ

δð4Þðx−x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þ4

p ;

ð8Þ

where gμν0 is the parallel propagator. Comparing (1) to (6),
we observe that the scalar case is technically simpler than
its electromagnetic counterpart. Nevertheless, their funda-
mental derivation follows the same rules.

C. Gravitation

Finally, up to quadratic order in the point mass m,
the gravitational force felt by a point mass is given by
[12,15,18]

muα;βuβ ¼ fαext −
11

3
mðδαβ þ uαuβÞ _fβext þ fαgrav; ð9Þ

where the tail-induced self-force is

fαgrav ¼ −2m2

Z
τ−

−∞
ð2Gα

βμ0ν0;γ − Gβγμ0ν0
;α

þ uαGβγμ0ν0;δuδÞuβuγuμ0uν0dτ0: ð10Þ

The gravitational Green’s function is related to the trace-
reversed Green’s function Ǧðx; x0Þμνα0β0 , via

Ǧμνα0β0 ðx; x0Þ ¼ P̌μν
σρðxÞP̌α0β0

λ0κ0 ðx0ÞGσρλ0κ0 ðx; x0Þ; ð11Þ

P̌μν
αβðxÞ≡ 1

2
ðδαμδβν þ δβμδαν − gαβgμνÞ: ð12Þ

Ǧ obeys the following vacuum (i.e., Rμν ¼ 0) equation in
the de Donder gauge5:

□Ǧμνα0β0 ðx; x0Þ þ 2Rμ
α
ν
βǦμνα0β0 ðx; x0Þ

¼ −2πðgμα0gνβ0 þ gμβ0gνα0 Þ
δð4Þðx − x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þ4

p : ð13Þ

The equations of motion in all of three cases [Eqs. (1), (6),
and (9)] are integrodifferential equations that require us to
know the entire past history of the particle.

III. TWO-POINT FUNCTIONS

Throughout the paper, we set fext ¼ _fext ¼ 0 so that we
are left only with the integral over the entire history of the
particle. We solve the wave equations (4), (8), and (13),
perturbatively to first order in the Newtonian potential, in
the weak-field limit of the Schwarzschild metric,

ds2 ¼ −ð1 − 2ΦÞdt2 þ ð1þ 2ΦÞδijdxidxj; ð14Þ

to obtain [18,24]6

Gðx; x0Þ ¼ Gflatðx; x0Þ þ Gð1Þðx; x0Þ þOðΦ2Þ; ð15Þ

Gα
β0 ðx;x0Þ¼Gflatðx;x0Þδαβ0 þGð1Þα

β0 ðx;x0ÞþOðΦ2Þ; ð16Þ

Gαβ
γ0δ0 ðx; x0Þ ¼

�
δðαγ0δβÞδ0 −

1

2
ηαβηγ0δ0

�
Gflatðx; x0Þ

þGð1Þαβ
γ0δ0 ðx; x0Þ þOðΦ2Þ; ð17Þ

where the flat retarded Green’s function is given by

Gflatðx; x0Þ ¼ δðt − t0 − jx⃗ − x⃗0jÞ
jx⃗ − x⃗0j ð18Þ

and satisfies the wave equation with a delta-function
source,

∂2Gflatðx; x0Þ ¼ δð4Þðx − x0Þ: ð19Þ

According to Eq. (3.14) of Ref. [18],

Gð1Þðx; x0Þ ¼ −2∂tt0Aðx; x0Þ − 2ξBðx; x0Þ; ð20Þ

whereas Eqs. (3.21) and (3.29) of the same reference read,
respectively, as

3Here, we are referring to the spatial extent of the orbiting
body, not the central mass.

4At the level of the vector potential Aμ, we mean ∇μAμ ¼ 0.

5At the level of the trace reversed metric perturbation γ̄μν,
we mean ∇μγ̄μν ¼ 0.

6Our Gð1Þ is equivalent to _G in Ref. [18].
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Gð1Þt
t0 ¼ −ΔΦGflat − 2∂tt0Aþ B;

Gð1Þt
a0 ¼ ð∂t0a − ∂ta0 ÞA;

Gð1Þa
t0 ¼ ð∂a

t0 − ∂a0
tÞA;

Gð1Þa
b0 ¼ δabðΔΦGflat − 2∂tt0A − BÞ þ ð∂a0

b − ∂a
b0 ÞA;

hΦi≡ΦðxÞ þΦðx0Þ ð21Þ

and

Gð1Þtt
t0t0 ¼−ðΔΦGflatþ∂tt0AÞ;

Gð1Þtt
t0a0 ¼ ð∂t0a−∂ta0 ÞA;

Gð1Þtt
a0b0 ¼−δab½hΦiGflatþ∂tt0Aþ2B�

þð∂aþ∂a0 Þð∂bþ∂b0 ÞA;
Gð1Þta

t0t0 ¼ ð∂a
t0 −∂a0

tÞA;

Gð1Þta
t0b0 ¼−δabð∂tt0AþBÞþ1

2
ð∂a

bþ2∂a0
bþ∂a0

b0 ÞA;
ð22Þ

Gð1Þta
b0c0 ¼ δaðbð∂cÞt0 − ∂c0ÞtÞA;

Gð1Þab
t0t0 ¼ δab½hΦiGflat − ∂tt0A� þ ð∂a þ ∂a0 Þð∂b þ ∂b0 ÞA;

Gð1Þab
t0c0 ¼ δðacð∂bÞ

t0 − ∂b0Þ
tÞA;

Gð1Þab
c0d0 ¼ ð2δðacδbÞd − δabδcdÞðΔΦGflat − ∂tt0AÞ

þ δabð∂c þ ∂c0 Þð∂d þ ∂d0 ÞA
− 2δðaðcð∂bÞ

dÞ þ 2∂bÞ
d0Þ þ ∂b0Þ

d0ÞÞA
þ δcdð∂a þ ∂a0 Þð∂b þ ∂b0 ÞA − 2δabδcdB:

ΔΦ≡ΦðxÞ −Φðx0Þ: ð23Þ

As noted in Ref. [18], the Gflat portion of Gð1Þ will not
contribute to the self-force, because it is nonzero only on
the null cone.
We review the steps of solving Eqs. (1), (6), and (9) by

introducing the common building blocks of the scalar,
electromagnetic, and gravitational self-force, the two-point
functions A and B,

Aðx; x0Þ ¼ 1

2π

Z
Gflatðx; x00ÞΦðx⃗00ÞGflatðx00; x0Þd4x00: ð24Þ

Equation (24) is nothing more than the first Born
approximation. The particle emits a signal at the point
x0; this in turn interacts with the gravitational potential at
the point x00 and then returns back to the particle at the new
location x.
Similarly for the density distribution,

Bðx; x0Þ ¼ 1

2π

Z
Gflatðx; x00Þρðx⃗00ÞGflatðx00; x0Þd4x00: ð25Þ

Inside the integrals in (24) and (25), the Gflatðx; x00Þ picks
out the past light cone of x, while the Gflatðx00; x0Þ picks
out the future light cone of x0. Substituting (18) into (24)
and (25), and denoting Δt≡ t − t0,

Aðx; x0Þ ¼ 1

2π

Z
Φðx⃗00Þ

jx⃗ − x⃗00jjx⃗00 − x⃗0j
× δðΔt − jx⃗ − x⃗00j − jx⃗00 − x⃗0jÞd3x00; ð26Þ

and

Bðx; x0Þ ¼ 1

2π

Z
ρðx⃗00Þ

jx⃗ − x⃗00jjx⃗00 − x⃗0j
× δðΔt − jx⃗ − x⃗00j − jx⃗00 − x⃗0jÞd3x00: ð27Þ

The delta function in (26) and (27) enforces the relation,

jx⃗ − x⃗00j þ jx⃗00 − x⃗0j ¼ Δt: ð28Þ

This defines a two-dimensional surface formed by the
intersection of the past light cone of x and the future light
cone of x0. The locus of this surface in 3-space is an
ellipsoid of revolution centered at

x⃗0 ¼
1

2
ðx⃗þ x⃗0Þ ð29Þ

of semimajor axis

s ¼ Δt
2
; ð30Þ

and half the interfocal distance

e ¼ 1

2
jx⃗ − x⃗0j ¼ 1

2
R: ð31Þ

We represent the vector x⃗00 as the sum of a vector pointing
from the origin to the center of the ellipsoid and a vector
pointing from the center of the ellipsoid to a point on its
surface, η⃗,

x⃗00 ¼ x⃗0 þ η⃗ðs; θ;ϕÞ: ð32Þ

We define η0 to be a vector from the center of the ellipsoid
to the center of the mass distribution. For convenience, we
choose the origin at the center of the mass distribution,
x⃗0 ¼ −η⃗0. Now,

x⃗00 ¼ η⃗ − η⃗0 ð33Þ

points from the center of the mass distribution to the surface
of the ellipsoid.
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The parametric equations of η⃗ are given by

η1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−e2

p
cosϕsinθ;

η2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−e2

p
sinϕsinθ; η3¼ scosθ: ð34Þ

Similarly,

η01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 − e2

q
cosϕ0 sin θ0

η02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 − e2

q
sinϕ0 sin θ0 η03 ¼ s0 cos θ0; ð35Þ

where

s0 ¼
1

2
ðrþ r0Þ ð36Þ

for r ¼ jx⃗j and r0 ¼ jx⃗0j.
For the special case of

Φðx⃗00Þ ¼ −
M
jx⃗00j ; ð37Þ

we substitute into (26) to obtain

Aðx; x0Þ ¼ −
M
4π

Z
1

jη⃗ − η⃗0j
dΩ: ð38Þ

The final results are

Aðx; x0Þ ¼ −
M
R
ΘðΔt − RÞ

�
Θðrþ r0 − ΔtÞ log rþ r0 þ R

rþ r0 − R

þ ΘðΔt − r − r0Þ logΔtþ R
Δt − R

�
; ð39Þ

and

Bðx; x0Þ ¼ M
rr0

δðΔt − r − r0Þ: ð40Þ
These expressions have been derivedpreviously inRef. [18].
In examining (39), we notice that it contains two parts. The
first one corresponds to the Δt < rþ r0 (i.e., s < s0) case.
This is the early piece of the tail and represents the part of the
ellipsoid before intersecting the mass distribution. The late-
time tail, which represents the case inwhich the ellipsoid has
swept past the mass distribution, is given by the second
piece, Δt > rþ r0 (i.e., s > s0). Here, we notice an abrupt
change in the behavior of the function, due to the pointlike
nature of the mass distribution. For later convenience, we
give the expressions for Aearly-pt and Alate-pt in terms of the
variables e, s, and s0,

Aearly-pt¼−
M
2e

log
s0þe
s0−e

; Alate-pt¼−
M
2e

log
sþe
s−e

: ð41Þ

Thus,

Apt ¼
�
Aearly-pt; for s < s0;

Alate-pt; for s > s0:
ð42Þ

The pointlike nature of the mass distribution is the reason
that Apt is continuous but not differentiable across s ¼ s0.
Aswe shall see below, the inclusion of finite-size effects will
smooth out this transition somewhat. This is the motivation
for the following analysis, since in order to properly capture
the finite-size effects, we must smooth out the central
singularity.

IV. INTERIOR OF THE MASS DISTRIBUTION

We start our analysis by considering the Newtonian
potential, which is a solution to Poisson’s equation

Φðx⃗Þ ¼
Z
R3

d3x⃗0
ρðx⃗0Þ

4πjx⃗ − x⃗0j ; ð43Þ

−∇⃗2Φ ¼ ρ: ð44Þ

The Green’s function of the Laplacian ð4πjx⃗ − x⃗0jÞ−1 may
be expanded as follows:

1

4πjx⃗ − x⃗0j ¼
1

r>

X∞
l¼0

Xl
m¼−l

Ym
l ðx̂ÞYm

l ðx̂0Þ
2lþ 1

�
r<
r>

�
l
: ð45Þ

Here, r> is the larger of the ðr≡ jx⃗j;r0≡ jx⃗0jÞ, and x̂≡ x⃗=r,
x̂0 ≡ x⃗0=r0. This formula implies Eq. (43) can be written as

Φðx⃗Þ¼
Z þ∞

0

dr0r02

×
Z
S2

dΩx̂0
ρðr0; x̂0Þ

r>

X∞
l¼0

Xl
m¼−l

Ym
l ðx̂ÞYm

l ðx̂0Þ
2lþ1

�
r<
r>

�
l
:

ð46Þ
If x⃗ lies well outside the matter source, i.e., ρðx⃗Þ ¼ 0, then
r> ¼ r, and we have

Φðx⃗Þ ¼
X∞
l¼0

Xl
m¼−l

Ym
l ðx̂Þ

r1þlð2lþ 1Þ
Z þ∞

0

dr0r02þl

×
Z
S2

dΩx̂0ρðr0; x̂0ÞYm
l ðx̂0Þ: ð47Þ

In this case in which x⃗ lies well outside the matter source,
we may also Taylor expand the Green’s function:

1

4πjx⃗ − x⃗0j ¼
1

4πr
þ
X∞
l¼1

ð−Þlx0i1…x0il

l!
∂i1…∂il

1

4πr
: ð48Þ

Comparing (47) and (48), we see that

Φ½x⃗� ¼ M
4πr

þ
X∞
l¼0

ð−Þl
l!

Mi1…il∂i1…∂il

1

4πr
; ð49Þ

M≡
Z
R3

d3x⃗0ρðx⃗0Þ; ð50Þ
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Mi1…il ≡
Z

d3x⃗0ρðx⃗0Þx0i1…x0il : ð51Þ

Equations (47) and (49) are equivalent.
However, when x⃗ lies inside the matter source, these

formulas are no longer valid. To see their breakdown,
simply put x⃗ ¼ 0⃗, and notice how Eqs. (47) and (49) blow
up at r ¼ 0, whereas the actual Newtonian potential inside,
say, a uniform spherical mass distribution is most definitely
not singular at the origin. In actuality, the r> and r< in the
Green’s function formula tells us that when x⃗ lies inside the
matter source the integration over r0 in (46) needs to be split
in two:

Φðx⃗Þ ¼
Z þ∞

r
dr0r02

Z
S2

dΩx̂0
ρðr0; x̂0Þ

r0

×
X∞
l¼0

Xl
m¼−l

Ym
l ðx̂ÞYm

l ðx̂0Þ
2lþ 1

�
r
r0

�
l

þ
Z

r

0

dr0r02
Z
S2

dΩx̂0
ρðr0; x̂0Þ

r

×
X∞
l¼0

Xl
m¼−l

Ym
l ðx̂ÞYm

l ðx̂0Þ
2lþ 1

�
r0

r

�
l
: ð52Þ

This situation needs to be accounted for in the tail integrals
in (26) and (27).

A. Small-angle approximation

To capture the finite-size effects, and to make progress
analytically, we choose a simple form for the density
distribution,

ρðrÞ ¼
8<
: ρ0

�
1 − r2

α2

�
n

for r < α;

0 for r > α;
ð53Þ

and fix n ¼ 2 for simplicity. This form for ρðrÞ was chosen
such that it is smooth at both the edges and the center.
Furthermore, the motivation for a spherically symmetric
(i.e., purely radial) profile can appeal to Birkhoff’s theo-
rem. If there were no self-force, the orbiter would expe-
rience a spacetime that is sensitive only to the central
body’s mass. But, we shall shortly see below that the self-
force is sensitive to the interior structure. We are now able
to perform the integrals in (52), to obtain

Φðx⃗00Þ ¼

8>>><
>>>:

−
M
4πα

105

48

�
1 −

jx⃗00j2
α2

−
1

7

jx⃗00j6
α6

þ 3

5

jx⃗00j4
α4

�
for jx⃗00j < α;

−
M

4πjx⃗00j for jx⃗00j > α;

ð54Þ

where

M≡ 4π

Z
α

0

ρðrÞr2dr ¼ 32π

105
ρ0α

3: ð55Þ

We want to use this expression for Φ in (26) and (27) to
calculate the two-point functions A and B. To obtain the
limits of integration, we use the parametric equation of a
sphere,

jη⃗ − η⃗0j2 ¼ α2: ð56Þ
This parametric equation defines the boundary jx⃗00j ¼ α,
which marks the jump in the interior vs exterior behavior of
theΦ in Eq. (54). While we were unable to exactly evaluate
(26) for a generic position of the central mass, we can do so
for locations x⃗ and x⃗0 where the small angle approximation
applies, i.e., where the size α of the central body is small
compared to its distance from the center of the ellipsoid. In
this case,

sin θ ¼ sin θ0 þ cos θ0χ −
1

2
χ2 sin θ0 þOðχ3Þ; ð57Þ

where χ ≡ θ − θ0 and

cosϕ ≈ 1 −
ϕ2

2
þOðϕ4Þ ð58Þ

with χ and ϕ both small angles. Using (34), (35), (57), and
(58), we can write

jη⃗ − η⃗0j2 ¼ η2pp þ Appχ
2 − Bppχ þ Cppϕ

2: ð59Þ

Here, in terms of the variables s, s0, γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − e2

p
,

γ0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 − e2

p
, and e, we have defined

η2pp ≡ ðγ − γ0Þ2 þ 2ðe2 − ss0 þ γγ0Þ cos θ20;
App ≡ e2 þ γγ0 þ ð−2e2 þ ss0 − γγ0Þ cos θ20;
Bpp ≡ −2ðe2 − ss0 þ γγ0Þ cos θ0 sin θ0;
Cpp ≡ γγ0 sin θ20: ð60Þ
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Of course, s can be regarded as a function of γ, and s0 can
be regarded as a function of γ0, or vice versa.
Solving (56), the ϕ limits of integration are

ϕmin ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bppχ − Appχ

2 þ α2 − η2pp
Cpp

s
;

ϕmax ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bppχ − Appχ

2 þ α2 − η2pp
Cpp

s
; ð61Þ

while the χ limits of integration are

χmin ¼
Bpp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
pp þ 4Appðα2 − η2ppÞ

q
2App

;

χmax ¼
Bpp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
pp þ 4Appðα2 − η2ppÞ

q
2App

: ð62Þ

Using (59) in conjunction with (26), (33), (54), and the
limits of integration, we calculate the integral over the
portion of the surface of the ellipsoid that is interior to
the spherical mass distribution, by first integrating with
respect to ϕ and then with respect to χ,

Ainterior ¼−M sinθ0
B2
ppþ4Appðα2−η2ppÞ
65536A9=2

pp C
1=2
pp α7

½5B6
ppþAppB4

ppð92α2−60η2ppÞ

þ16A2
ppB2

ppð47α4−46α2η2ppþ15η4ppÞþ64A3
ppð93α6−47α4η2ppþ23α2η4pp−5η6ppÞ�:

ð63Þ
We must also evaluate the integral over the portion of the ellipsoid exterior to the mass distribution. Since we are using the
small ϕ approximation, we cannot directly compute the exterior piece of A. However, we observe that the exterior
contribution to the integral is identical to the point-mass case. Therefore, we calculate the interior integral for the point mass
(i.e., with a 1=r potential),

Ainterior-pt ¼ −M
2

ffiffiffiffiffiffiffiffi
App

p
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−B2

pp þ 4Appη
2
pp

q
4App

ffiffiffiffiffiffiffiffi
Cpp

p : ð64Þ

This has two forms: either Ainterior-pt-late or Ainterior-pt-early, depending, respectively, on whether the ellipsoid has or has not
swept through the center of the mass distribution. We then subtract Ainterior-pt from the full-ellipsoid point-mass results
Aearly-pt or Alate-pt [i.e., Eq. (41)] as appropriate.
Following these steps, we write A as a piecewise function,

Aðx; x0Þ ¼

8>>>>><
>>>>>:

Aearly-pt; for χrange < 0; γ < γ0:

ðAearly-pt − Ainterior-pt-earlyÞ þ Ainterior; for χrange ≥ 0; γ < γ0:

ðAlate-pt − Ainterior-pt-lateÞ þ Ainterior; for χrange ≥ 0; γ > γ0:

Alate-pt; for χrange < 0; γ > γ0;

ð65Þ

where

χrange≡χmax−χmin¼ ½B2
ppþ4Appðα2−η2ppÞ�=App: ð66Þ

The terms in parentheses represent the exterior contribu-
tions to A.

B. Simplest case: Central body at θ0 =π=2

For an example of our formalism, we will apply our
method first to a simple situation: a structureless particle
in a circular orbit around a spherically symmetric mass

distribution. In this case, r ¼ r0, and for simplicity, we can
place the perturber (shown in blue in Fig. 1), i.e., the object
in orbit, on the equatorial plane of the ellipsoid given by the
coordinate s0, θ0, and ϕ0 (and parametrized by e), as in
(35). This is the solid ellipse shown in the three panels of
Fig. 1, with center at θ0 ¼ π=2, ϕ ¼ 0. The surface of
integration, given by the coordinate s, θ, and ϕ is shown as
the dashed ellipses in Fig. 1. At early times (middle panel),
the mass distribution lies outside the surface of integration,
while at late times (right panel), the mass distribution lies
inside it. Equation (65) can be rewritten as
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Aðx; x0Þ ¼

8>>>>><
>>>>>:

Aearly; for γ < γ0 − α:

Aearly-pt − Ainterior−
π
2
-pt-earlyþ Ainterior-x; for γ0 − α < γ < γ0:

Alate-pt − Ainterior−
π
2
-pt-lateþ Ainterior-x; for γ0 < γ < γ0 þ α:

Alate; for γ > γ0 þ α;

ð67Þ

with the various component functions having much simpler
forms:

Ainterior−
π

2
-pt-early¼ −M

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γγ0ðe2þ γγ0Þ

p ðαþ γ− γ0Þ; ð68Þ

Ainterior−
π

2
-pt-late ¼ −M

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γγ0ðe2 þ γγ0Þ

p ðα − γ þ γ0Þ; ð69Þ

and

Ainterior-π
2
¼ −M

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γγ0ðe2 þ γγ0Þ

p α

128

�
93 − 140

�
γ − γ0
α

�
2

þ 70

�
γ − γ0
α

�
4

− 28

�
γ − γ0
α

�
6

þ 5

�
γ − γ0
α

�
8
	
;

ð70Þ

where α ≪ 1.
To obtain a visual picture of the tail, we present the two-

point function AðtÞ and its time derivatives in Fig. 2. This
function appears to be quite sensitive to the smoothness of
the density profile of the source of gravity near its surface.
We chose n ¼ 2 in (53) so that A is three-times

differentiable with respect to t. This guarantees that we
will not encounter any delta function singularities in the
self-force.

C. B function

In a similar way, we construct the B two-point function
to first order in the metric perturbation from (27),

B ¼ 1

2

Z
ρðx⃗00ÞdΩ00: ð71Þ

This yields

B¼
8<
:

35MðB2
ppþ4Appðα2−η2ppÞÞ3

4096A7=2
ffiffiffiffiffiffi
Cpp

p
α7

; insideðjγ−γ0j<αÞ
0 outsideðjγ−γ0j>αÞ:

ð72Þ

For θ0 ¼ π
2
, Eq. (72) using (53) becomes

Bθ0¼π
2
¼

8<
:

35Mðα2−ðγ−γ0Þ2Þ3
64α7

ffiffiffiffiffi
γγ0

p ffiffiffiffiffiffiffiffiffiffiffi
γγ0þe2

p ; insideðjγ − γ0j < αÞ
0 outsideðjγ − γ0j > αÞ:

ð73Þ

FIG. 1. The leftmost figure denotes the position of the sphere in the ellipsoidal coordinate system used in the paper; see Eqs. (32), (34), and
(35). The dotted ellipsoid in the middle and rightmost figures represents the ellipsoid of integration in Eqs. (26) and (27). The middle figure
describes the early time tail (prior to intersection), while the rightmost one describes the late-time tail (after intersection).
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V. FINITE-SIZE EFFECTS

We now proceed to evaluate the finite-size effects on the self-force in the nonrelativistic and weak-field limits.

A. Scalar self-force

We first consider the spatial components of the scalar self-force. This includes two pieces:

fBscalar a ¼ −2ξq2
Z

t

−∞

�
B;a þ vaB;t −

1

2
B;av⃗02 þ B;bvbva

�
dt0;

fAscalar a ¼ −2q2
Z

t

−∞

�
A;tt0a þ vaA;tt0t þ A;tt0bvbva −

1

2
A;tt0av⃗02

�
dt0; v⃗02 ≡ vi

0
vi

0
: ð74Þ

Here and throughout the rest of this section, we will keep in fB and fA all explicit factors of velocity up to quadratic order.
Moreover, these expressions were derived using (2), assuming that v2 ¼ OðΦÞ, which holds for bound orbits, and in
virialized systems. For further details on the derivation of (74), see Ref. [18] and references therein. To enable us to compute
fscalar aB and fscalar aA simply, we choose a counterclockwise circular orbit in the 1–3 plane,

x ¼ b cos
v
b
t; z ¼ b sin

v
b
t; x0 ¼ b cos

v
b
t0; z0 ¼ b sin

v
b
t0: ð75Þ

We use (73) in combination with (75), to derive the radial component of fa scalarB to the leading 1 PN order,

fscalarBk ¼ 35ξ

16

q2Mb3

α6

�
5 −

22

3

α2

b2
−
�
1 −

α2

b2

�
2
�
5þ α2

b2

�
b
α
arctanh

�
α

b

�
þ α4

b4

	
: ð76Þ

(a) (b)

(d)(c)

FIG. 2. The integrated Newtonian potential as a function of time. We used the values r ¼ rp ¼ tp ¼ 2000, R ¼ 1000, M ¼ 1, and
α ¼ 100, to show the qualitative behavior of A and its derivatives.
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We computed this worldline integral and carefully derived
the angular limits of integration by solving7 γ − γ0 ¼ α for
t0 and using the appropriate expressions for γ; γ0 in terms of
t and R. Here, the integrals are evaluated from t0 ¼ −∞ to
t0 ¼ 0 with the nonzero part of the B function being
evaluated between t0 ¼ −2ðbþ αÞ þ αðbþαÞ

b v2 þOðv4Þ
and t0 ¼ −2ðb − αÞ þ αð−bþαÞ

b v2 þOðv4Þ. Notice that the
integrand should be expanded accordingly in powers of vc so
that the appropriate terms are kept in every PN order. We
need to expand (76) in powers of ζ ≡ α

b, and keep terms
only up toOðζ2Þ corrections to the leading term, so that we
are consistent with the small-angle approximation we
employed in Sec. III.8 As expected, the leading term is
the α-independent one, and

fscalarBk ¼ 2ξq2
M
b3

�
1þ 2

9
ζ2 þOðζ4Þ

�
: ð77Þ

There are, of course,Oðξq2Mv2=b3Þ corrections to this, but
they are order 2 PN.
An alternative way of deriving the coefficients is given in

Appendix B for a generic radial-density profile. We note
that the multipole expansion in Ref. [18] omitted certain
contributions to the static self-force which could have been
included. We present an improved version in Appendix B,
which indicates that in fact the finite-size corrections do
contribute to the calculation of self-forces, even though
they are suppressed by factors of the radius of the mass over
the radius of the orbit. That the next-order term of the static
self-force is sensitive to the interior structure was in fact
pointed out in Ref. [25] and later in Ref. [20]. Drivas and
Gralla9 pointed out finite-size effects for the static part of
the self-force; nevertheless, our results are general for any
density profile as shown in Appendix B. Moreover, their
mode sum representation of the relevant Green’s functions
does not provide as much insight into where the finite-size
effects are coming from, as far as the causal structure of the
signal is concerned. Here, we present a more insightful
derivation in terms of the tail integral. In addition, we are
able to prove concretely that not only is the static part of the
self-force sensitive to finite-size corrections, but the non-
conservative part is sensitive as well, meaning that the
radiation emitted will carry information about the internal
structure of the central body. The radial component of the
self-force will not contribute to the power radiated; never-
theless, these corrections would affect the orbital evolution
of the system.

Similarly, to leading order in v, the tangential component
of fα scalarB is

fscalarB⊥ ¼ 35ξ

16

q2Mb3

α6
v

�
1 −

8

3
ζ2 þ 11

5
ζ4 −

16

35
ζ6

−
1

2ζ
ð1 − ζ2Þ3 log

�
1þ ζ

1 − ζ

�	
; ð78Þ

with the perturbative result,

fscalarB⊥ ¼ 2ξq2
M
b3

�
1

18
ζ2 þOðζ4Þ

�
v: ð79Þ

This contributes to order 1.5 PN. To the same order, the
tangential component of fscalarA contributes as well, with

fscalarA⊥ ¼ −q2
M
3b3

v: ð80Þ

The integral for the A part of the self-force is evaluated from

t0 ¼ −∞ to t0 ¼ −2ðbþ αÞ þ αðbþαÞ
b v2 for late times, from

the latter to t0 ¼ −2b for the middle late, from t0 ¼ −2b to

t0 ¼ −2ðb − αÞ þ αð−bþαÞ
b v2 for the middle early, and from

the latter to 0 for the early piece. Looking at (80), it is quite
interesting that the finite-size corrections (which carry the
information about the choice of the mass distribution)
canceled perfectly for the part of the self-force that is related
to the potential. This is consistent mathematically with the
result obtained inRef. [18], though there it was argued that at
this PN order the evaluation of any integrals is unnecessary
since the integral can bemassaged to a boundary term. Here,
we have shown this explicitly by directly computing the
integral, showing that fscalarA , the part of the self-force that is
related to the integrated Newtonian potential, does not
receive finite-size corrections at leading order. Finite-size
effects do enter into fscalarB . This persists for the electromag-
netic case, as we show below. The total scalar self-force at
1.5 PN, ignoring the terms to Oðζ4Þ, is given by

fscalartot⊥ ¼ q2
M
3b3

�
−1þ 1

3
ξζ2

�
v: ð81Þ

In the limit of ζ → 0, we recover at 1.5 PN the result
obtained in the literature,

f⃗scalar ¼ 2ξq2
M
r3

r̂þ 1

3
q2

dg⃗
dt

: ð82Þ

For completeness, we report that the 2 PN contributions
to the scalar self-force are not incurred in fA, but do enter
fB—including finite-size corrections10:

fscalarBk ¼ −ξq2
M
b3

v2
�
1þ 1

3
ζ2 þOðζ4Þ

�
: ð83Þ

7We evaluate the self-force at t ¼ 0, and therefore in that limit,
γ − γ0 is the same as jη⃗ − η⃗0j.

8ζ is an independent small parameter. On the one hand,
we are working in the weak-field approximation, requiring
α ≫ GM ≃ ðv=cÞ2, where v is the orbital velocity of the perturber
around the source; on the other hand, we require α ≪ b, the
semimajor axis of that orbit.

9Their work was based on Ref. [26].

10Note that we have not included corrections that are of
order M2.
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B. Electromagnetic self-force

Just like the scalar, we find that the electromagnetic self-
force (7) has A and B contributions:

fEMa
A ¼ e2

Z
t

−∞

�
ðA;tta0 þA;tt0aÞþðA;ta0b−A;tab0 Þvb

þð2δabA;tt0t−A;ta0bþ2A;tab0 −A;t0abÞvb0

−2A;tt0avbvb0 þA;cb0avc
0
vb−Aa0bcvcvb

0 þ2Att0bvbva
0

þ1

2
Att0av2þ

1

2
Atta0v2

	
dt0 ð84Þ

and

fEM a
B ¼ −e2

Z
t

−∞

�
B;a − va

0
B;t − B;bvbva

0

þ B;avbvb
0 þ 1

2
B;av⃗2

�
dt0: ð85Þ

We use (73) in combination with (75) to derive the radial
component of fEMB to 1 PN order,

fEMBk ¼ e2
M
b3

�
1þ 2

9
ζ2 þOðζ4Þ

�
: ð86Þ

Again, there are Oðe2Mv2=b3Þ corrections to this,
but they are order 2 PN. Similarly, we calculate the
tangential component (i.e., parallel to the orbital velocity)
of fEMB ,

fEMB⊥ ¼ e2
M
b3

�
1

18
ζ2 þOðζ4Þ

�
v; ð87Þ

which contributes to order 1.5 PN. To the same order,

fEMA⊥ ¼ −
2M
3b3

e2v: ð88Þ

The total electromagnetic self-force at 1.5 PN, ignoring the
terms to Oðζ4Þ, is given by

fEMtot⊥ ¼ e2
2M
3b3

�
−1þ 1

12
ζ2
�
v: ð89Þ

The 2 PN contributions to the electromagnetic self-force
do include finite-size effects as well. For completeness, we
report the finite-size corrections to order 2 PN11 for fEMB
and fEMA ,

fEMBk ¼ e2
M
b3

v2
�
1

2
þ 5

18
ζ2 þOðζ4Þ

�
ð90Þ

and

fEMAk ¼ e2
M
b3

v2
�
1 −

2

9
ζ2 þOðζ4Þ

�
: ð91Þ

The total electromagnetic self-force at 2 PN to order M,
ignoring the terms to Oðζ4Þ, is given by

fEMtotk ¼ e2
3M
2b3

�
1þ 1

27
ζ2
�
v2: ð92Þ

These expressions for fEMB and fEMA were derived by
directly computing (85) and (84), unlike in Ref. [18] where
the result was derived using the near-coincidence limit. We
notice that in the limit of α → 0 we recover the result
obtained in the literature,

f⃗EM ¼ e2
M
r3

r̂þ 2

3
e2

dg⃗
dt

: ð93Þ

We immediately notice that we recover the Abraham-
Lorentz force along with the static self-force contribution.
The latter was obtained in Ref. [27] and was interpreted
as a repulsive force required to hold a charge at rest in
the presence of a matter distribution. In Eqs. (86) and
(87), we showed how this term would receive finite-size
corrections.
It is worth pointing out that, as we would have expected,

jf⃗EM · v⃗j gives the usual Larmor formula12 for the radiated
power

P ¼ 2e2

3
a2; ð94Þ

where a ¼ v2=b is the centripetal acceleration in the
circular orbit. Here, we observe the analog of the usual
electromagnetic Larmor radiation for a charged particle
moving in the gravitational field of a central mass, along
with its finite-size corrections.

C. Gravitational self-force

Similar to the electromagnetic and scalar case, we
can calculate the two parts of the gravitational self-
force (10),

11Note again that we have not included terms of
order M2.

12In the pure electromagnetic case, the Larmor formula shows
the classical instability of the hydrogen atom.
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fgravaA ¼−2m2

Z
t

−∞

�
ð2A;tta0 −A;tt0aÞþð−3δabA;tt0tþ2A;tabþ4A;ta0bþ2A;ta0b0 Þvbþð4δabA;tt0t−4A;ta0b−2A;ta0b0 þ2A;tab0 Þvb0

þ1

2
v⃗02A;tt0aþ v⃗02A;tta0 þ2A;a0bcvbvc−4A;a0bcvbvc

0 þ2A;a0bc0vbvc−2A;a0bc0vbvc
0 −A;ab0c0vbvcþ2A;ab0c0vbvc

0

−A;ab0c0vb
0
vc

0 þA;abcvbvc−A;abcvb
0
vc

0 þ4A;abc0vb
0
vc−2A;abc0vb

0
vc

0 −2A;tt0avd0vd−2A;tta0vd0vd

þ2A;tta0 v⃗2−5A;tt0bvavbþ2A;tt0bvavb
0 þ6A;tt0bva

0
vb−2A;tt0bva

0
vb

0 þ2A;ttb0vavb

−2A;ttb0vavb
0 −2A;ttb0va

0
vbþ2A;ttb0va

0
vb

0
	
dt0 ð95Þ

and

fgravaB ¼−8m2

Z
t

−∞

�
va

0
B;tþ

1

2
B;aðv⃗02−2v⃗ · v⃗0Þ

þB;bvbva
0
�
dt0: ð96Þ

Using the equations for the circular orbit, we obtain from
(95) to order 1.5 PN for the tangential component of the
force

fgravA⊥ ¼ 11M
3b3

m2v: ð97Þ

Equation (97) has been previously derived in Ref. [18].
As they observed, fgravA⊥ has the opposite sign as its order
1.5 PN electromagnetic counterpart fEMA⊥ [obtained in (88)],
suggesting problematic radiation antidamping.
The resolution of this puzzle is tied to the fact that the

MiSaTaQuWa self-force equation (13) was derived by
assuming the background spacetime is completely devoid
of matter. To account for the presence of matter, such as our
central mass, Pfenning and Poisson [18] demonstrated the
need to introduce a “matter mediated” force fgravmm . To
leading order, this matter mediated force would in fact
cancel the above antidamping self-force in Eq. (97),

fgravmm⊥ ¼ −
11M
3b3

m2v: ð98Þ

fgravmm⊥ was not introduced ad hoc. It arises from the fact that
the finite-mass central body is not fixed, so one should
simultaneously solve the equations of motion for the
orbiting particle and the central mass distribution.
There are no 1.5 PN corrections to fB and fA. Whereas at

2 PN order, there are no finite-size effects in the radial
component of fB,

fgravBk ¼ 4m2
M
b3

v2ð1 −Oðζ4ÞÞ; ð99Þ

but there are nontrivial ones occurring in the radial
component of (95),

fgravAk ¼ 4m2
M
b3

v2ð2 − ζ2 −Oðζ4ÞÞ: ð100Þ

These are the order Mv2 2 PN corrections. There
will be additional order M2 2 PN corrections, but these
are higher order in our perturbation theory and reserved for
a future work.
Although for the gravitational case there are no con-

tributions to the radiated power at order 1.5 PN, we were
able to provide a clear method for systematically deriving
the finite-size corrections to the gravitational self-force by
directly calculating the relevant integrals. In (99) and (100),
we showed the corrections that enter the conservative part
of the self-force to order 2 PN at order M. These finite-size
corrections to the radiated power may also enter at 2.5 PN,
making it unclear whether or how they would be canceled
through the matter mediated force. This will be addressed
in a future work.

VI. CONCLUSIONS

In this work, we computed the finite-size corrections to
the self-force, in a system involving a structureless particle
orbiting a finite-size central mass distribution. The first
corrections enter at 1 PN for the scalar and electromagnetic
self-force. For the gravitational case, our results suggest
finite-size effects enter only at order 2 PN. However,
because the MiSaTaQuWa self-force equation was derived
for vacuum spacetimes, as argued by Pfenning and Poisson,
we need to follow up our current work with the compu-
tation of a matter-mediated force so as to properly account
for the central mass distribution, in order to obtain the
complete 2 PN gravitational self-force. Nonetheless, we
have presented a concrete way of calculating these finite-
size corrections to self-forces, by assuming a model for the
density distribution and directly computing the appropriate
integrals. Our starting point was the Green’s function
method already used in Ref. [18] and generalized in
Ref. [24]. We calculated the building blocks, namely, the
potential-two-point function A [in Eq. (24)] and the
density-two-point function B [in Eq. (25)]. This allowed
us to see the sensitivity of the A function to the smoothness
of the central mass distribution at its surface. By picking a
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simple mass distribution, we were able to do all the
calculations analytically, allowing us to demonstrate clearly
the magnitude and nature of the finite-size effects. As a
check, we compared our findings with a previous similar
analysis [18]. In the Appendix, we provide the corrected
version of that calculation and verify that the methods
then match.
In the future, we are interested in extending our results to

higher orders in the post-Newtonian expansion. To do so,
we need to go to second order both inM and in perturbation
theory. Although that sounds formidable, it is a necessary
step to fully capture the finite-size effects for the gravita-
tional case and to find the first imprints on the radiated
power. These finite-size corrections are expected to enter at
2.5 PN order, and our aim is to address the possible
appearance of antidamping radiation. From a physical point
of view, an application of our results would be the inspiral
phase of a neutron star–black hole system.13 In this
situation, we might be able to employ the self-force as a
probe of the neutron star’s internal structure. However, in
truth, in this paper, we are at least equally interested in the
in-principle finite-size effects that we have been able to
demonstrate analytically with the specific approximations
that we needed to make in order to carry out the calculation.
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APPENDIX A: CHANGING COORDINATES

The small-ϕ approximation works well for angles close
up to the z axis. However, if we want to study what happens
where that the approximation breaks down, we have to
change coordinates. We use instead the modified para-
metric equations

η01 ¼ s0 cosϕ0 sin θ0; η02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 − e2

q
sinϕ0 sin θ0;

η03 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 − e2

q
cos θ0; ðA1Þ

for the center of the ellipsoid, and

η1 ¼ s cosϕ sin θ; η2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − e2

p
sinϕ sin θ;

η3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − e2

p
cos θ; ðA2Þ

for the points along the surface. Using (59), we obtain the
new coefficients,

η02pp ¼ ðs − s0Þ2 − 2ðe2 − ss0 þ γγ0Þ cos θ20; ðA3Þ

A0
pp ¼ −e2 þ ss0 þ ð−e2 þ ss0 þ γγ0Þ cos θ20; ðA4Þ

B0
pp ¼ −2ðe2 − ss0 þ γγ0Þ cos θ0 cos θ0; ðA5Þ

C0
pp ¼ ðss0 − e2Þ sin θ20: ðA6Þ

APPENDIX B: AN ALTERNATIVE WAY TO
CALCULATE THE STATIC SELF FORCE

We wish to evaluate the static limit of Eq. (5.19) of
Ref. [18]

fiB ≡ −e2
∂
∂xi

Z
t−0þ

−∞
Bðx ¼ ðt; z⃗Þ; x0 ¼ ðt0; z⃗ÞÞdt0; ðB1Þ

where z⃗ is the time-independent trajectory of the point
particle and, from Eq. (4.2) of Ref. [18],

Bðx;x0Þ ¼
Z

d3x⃗00ρðx⃗00Þδ½t− t0− jx⃗− x⃗00j− jx⃗00− x⃗0j�
jx⃗− x⃗00jjx⃗00− x⃗0j : ðB2Þ

When both x⃗ and x⃗0 lie outside the gravitational source
ρðx⃗00Þ, we may Taylor expand the factor multiplying ρ
in powers of x⃗00. The zeroth-order term would be propor-
tional to the total mass M≡ R

ρðx⃗00Þd3x⃗00; the first-order
term would be proportional to the center of mass
Ci ≡ R

ρðx⃗00Þx00id3x⃗00; the second-order term is proportional
to the (time-independent) quadrupole moment

Qij ≡
Z

x00ix00jρðx⃗00Þd3x⃗00: ðB3Þ

Note that all the terms proportional to derivatives of δ½t −
t0 − r − r0� in Eq. (27), arising from the Taylor expansion,
would yield zero when plugged into Eq. (85). Due to the
time-independent character of the rest of the integrand, a
typical term would be

QijΠij

Z
t−0þ

−∞
∂n
t0δ½t − t0 − r − r0�dt0

¼ QijΠij∂n−1
t0 δ½−r − r0� ¼ 0; ðB4Þ

for some integer n > 0. We have defined

r≡ jx⃗j and r0 ≡ jx⃗0j: ðB5Þ
13The black hole would need to have a mass much smaller than

the neutron star, such as might occur if the primordial black hole
were a primordial black hole.
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Therefore, for static self-forces, we merely need to
focus on Taylor expanding the denominator of Eq. (B2).
In particular,

1

jx⃗ − x⃗00j ¼
1

r
þ x⃗00 · r̂

r2
−
1

2

x00ix00j

r3
ðδij − 3r̂ir̂jÞ þ… ðB6Þ

1

jx⃗0− x⃗00j ¼
1

r0
þ x⃗00 · r̂0

r02
−
1

2

x00ix00j

r03
ðδij−3r̂0ir̂0jÞþ…; ðB7Þ

r̂≡ x⃗=jx⃗j; r̂0 ≡ x⃗0=jx⃗0j: ðB8Þ

This in turn implies14

fiB¼−e2
∂
∂xi

Z
t−0þ

−∞

�
M
rr0

þ…þQab

�
1

r
·
δab−3r̂0ar̂0b

−2r03

þδab−3r̂ar̂b

−2r3
1

r0
þ r̂ar̂0b

r2r02



þ…

�
δ½t− t0− r− r0�dt0

¼−e2
∂
∂xi

�
M
rr0

þ…þQab

�
r̂ar̂0b

r2r02
−
1

2

1

r
·
δab−3r̂0ar̂0b

r03

−
1

2

δab−3r̂ar̂b

r3
1

r0



þ…

�
x⃗¼x⃗0¼z⃗

: ðB9Þ

1. Example

Consider the mass density in Eq. (53),

ρðx⃗00Þ ¼

8>><
>>:

ρ0

�
1 −

�
r00

a

�
2
�

2

; for r00 ≤ a;

0; for r00 ≥ a:

ðB10Þ

Here, r00 ≡ jx⃗00j, and we have implicitly chosen the center of
mass to be at the origin x⃗00 ¼ 0⃗. Then, a direct calculation
yields

Qab ¼ δab ·
Ma2

9
; ðB11Þ

M ≡ 4π

Z
a

0

ρðr00Þr002dr00: ðB12Þ

Because Qab ∝ δab, only the first term in the quadrupole
contribution of Eq. (B9) matters,

fiB¼−e2
�
−r̂i

M
r2r0

þMa2

9

∂
∂xi

�
x⃗ · x⃗0

r3r03



x⃗¼x⃗0¼z⃗

þ…

�
ðB13Þ

¼−e2
�
−r̂i

M
r3
þMa2

9

�
x0i−3ðx⃗ · x⃗0Þx̂i=r

r3r03



þ…

�
x⃗¼x⃗0¼z⃗

ðB14Þ

¼ e2
M
b3

r̂i
�
1þ 2

9

a2

b2
þ…

�
; ðB15Þ

where b≡ jz⃗j ¼ jx⃗j ¼ jx⃗0j. This matches Eq. (86).
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