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We consider the gravitational collapse of a self-gravitating spherical dust cloud in the Hamiltonian
formalism. We address both homogeneous and inhomogeneous cases. Our novel derivation of the
Hamiltonian of the system is based on an improved variational principle. It differs from usual treatments
due to the presence of an extra boundary term added to the Hilbert action. As expected, the standard
equations of motion are retrieved. However, differently from other treatments, the total Hamiltonian
obtained with our procedure in the Schwarzschild time gauge is identical to the total mass of the system
as measured from infinity, as it would be expected. Implications for the quantization of the system
are suggested.
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I. INTRODUCTION

Analytical toy models for gravitational collapse in
General Relativity (GR) are of great importance from
several perspectives. First, they provide dynamical scenar-
ios that lead to the formation of black holes from regular
initial data [1]. Second, they can be used to investigate the
mathematical properties of the theory, for example, in the
Hamiltonian formalism [2]. Third, they provide a simple
test bed to study possible pathways toward the quantization
of the gravitational field, since we expect that the singu-
larities that generically arise in GR should not be present in
a fully quantum-gravitational model (see, e.g., Refs. [3,4]).
Einstein’s equations for collapse of perfect fluids are

formally identical to the equations describing the Universe
expansion in the Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmological models. The simplest and most
studied solution of Einstein’s equations describing collapse
is the so-called Oppenheimer-Snyder-Datt (OSD) model,
which describes the complete collapse of a spherical cloud
composed of homogeneous pressureless matter (i.e., dust)
[5]. It is well known that OSD collapse in comoving
coordinates leads to the formation of a static black hole in a
finite comoving time, even though far-away observers
never see the boundary of the cloud crossing the horizon.
The simplest extension of the OSD solution is the

so-called Lemaître-Tolman-Bondi (LTB) collapse model,

which describes a spherical cloud composed of inhomo-
geneous dust [6]. The interest in the LTB solution as a
theoretical toy model for collapse resides in the fact that,
depending on the radial dependence of the energy density at
the initial time, the complete collapse may produce a naked
singularity; i.e., at the instant of formation, the central
singularity may not be covered by the horizon [7].
Obtaining the Hilbert action and a global Hamiltonian for

an asymptotically flat solution of Einstein’s equations is not
a trivial matter since typically integrals diverge at spatial
infinity. However, one would expect the Hamiltonian of the
system to be related to the total energy as measured by
observers at spatial infinity. In Ref. [8], it was shown that by
performing the Legendre transformations on an appropriate
finite surface one obtains a quasilocal Hamiltonian, which
in turn leads to the correct global Hamiltonian once the
surface is shifted to infinity.
In the present article, we apply the above idea to the OSD

and LTB cases. The same procedure was used in the case of
collapse of a thin shell in Ref. [9], in which the Hamiltonian
for an observer at infinity was found to be equal to the total
mass of the collapsing shell regardless of the equation of
state of the matter content. As expected, the equations of
motion obtained from the improved variational principle
coincide with the equations of motion obtained by different
procedures. For a different derivation of this equality, see
Ref. [10] and references therein.
The importance of finding the Hamiltonian that correctly

describes the energy of the system, however, appears
when one attempts to quantize the system. It is well
known that different quantization procedures, based on dif-
ferent Hamiltonian formulations, provide different results,
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making nontrivial the issue of quantizing even the simplest
gravitating systems [3]. The hope is that the results
obtained for collapse with the improved variational prin-
ciple may provide a path toward a viable quantization of
gravitational systems.
The paper is organized as follows. In Sec. II, we review

the matching between the collapsing dust cloud and the
exterior Schwarzschild spacetime. Section III is devoted to
the application of the variational principle developed in
Ref. [8] to the case of dust collapse. In Sec. IV, we obtain
the Hamiltonian for dust collapse using the above varia-
tional principle. Finally, in Sec. V, we summarize the results
of this article and mention the possible implications for
quantum gravity.
Throughout the paper, we make use of natural units

setting c ¼ G ¼ 1.

II. MATCHING DUST COLLAPSE TO
SCHWARZSCHILD EXTERIOR

The general theory for matching two manifolds across a
hypersurface was developed by Darmois [11], and it was
applied to spherical symmetry by many authors [12]. In the
following, we will consider the matching between the
collapsing dust and an exterior Schwarzschild metric across
a spherical surface. Cosmological models can be used, to
some extent, for describing collapse to a black hole after
implementing the condition that one deals with an isolated
object. In our case, this reduces to the problem of matching a
finite region of FLRW or LTB spacetime with the
Schwarzschild geometry. Therefore, in what follows, the
interior region is described by a portion of FLRW or LTB
that extends up to a finite boundary radius, whereas the
exterior region is described by the Schwarzschild line
element. The interface between the matter field in the
interior and the vacuum exterior is used to match both
spacetimes. In what follows, we apply the standard method
of matching, thus requiring continuity of the first and second
fundamental forms across the hypersurface separating the
two manifolds (see, e.g., Ref. [13]).

A. Matching conditions for FLRW

For the interior, we consider the homogeneous collapse
of dust with the line element in comoving hyperspherical
coordinates fτ; χ; θ;ϕg given by

ds2− ¼ −dτ2 þ aðτÞ2½dχ2 þ h2ðχÞdΩ2�: ð1Þ

We consider the marginally bound (corresponding to flat
cosmological models) and bound (corresponding to closed
cosmological models) cases simultaneously. The unbound
(i.e., open) case is somehow less relevant for collapse as it
describes a matter cloud with positive initial velocity at
spatial infinity. The function hðχÞ is given by

hðχÞ ¼
8<
:

χ; in the flat caseðk ¼ 0Þ
sinðχÞ; in the closed caseðk ¼ þ1Þ
sinhðχÞ; in the open caseðk ¼ −1Þ

: ð2Þ

The interior is filled with a homogeneous field of comoving
dust particles; that is, the energy-momentum tensor is
given by

Tμν
− ¼ ϵuμuν; where u ¼ uμ∂μ ¼ ∂τ: ð3Þ

The conservation of energy momentum implies that
ϵ ¼ ϵ0=a3 with ϵ0 > 0. For the exterior, we have the
Schwarzschild geometry in Schwarzschild coordinates
ft; r; θ;ϕg,

ds2þ ¼ −
�
1 −

2M
r

�
dt2 þ 1

1 − 2M
r

dr2 þ r2dΩ2: ð4Þ

The matching will be performed on the hypersurface Σ
defined in parametric form by Φ−ðτ; χÞ ¼ χ − χb ¼ 0 in
the interior, and Φþðt; rÞ ¼ r − ψðtÞ ¼ 0 in the exterior.
Note that χb > 0 in the flat case while 0 < χb < π=2 in the
closed case. On Σ, we can consider τ ¼ fðtÞ. We choose
the coordinates ft; θ;ϕg to parameterize the hypersurface.
The metrices on Σ are then given by

ds2þjΣ ¼ −
�
1 −

2M
ψ

−
_ψ2

1 − 2M
ψ

�
dt2 þ ψ2dΩ2; ð5Þ

ds2−jΣ ¼ − _f2dtþ a2h2ðχbÞdΩ2: ð6Þ

Then, the first matching condition gives (see Appendix),

_f2 ¼
�
dτ
dt

�
2

¼ 1 −
2M
ψ

−
_ψ2

1 − 2M
ψ

; ð7Þ

ψðtÞ ¼ hðχbÞaðτðtÞÞ; ð8Þ

where with a dot we denote partial differentiation with
respect to the Schwarzschild time t. We can eliminate ψ
from (7) by using (8) to obtain

_f2 ¼
ð1 − 2M

hð χbÞaÞ2
1 − 2M

hð χbÞa þ ðhðχbÞa0Þ2
; ð9Þ

where the prime denotes differentiation with respect to τ.
The normal covectors n� ¼ n�μ dx

μ
� on both sides read

nþ ¼ j _fj−1ðdr − _ψdtÞ; n− ¼ a dχ; ð10Þ

where we made use of Eq. (7) for brevity. The nonvanishing
components of the second fundamental form and their
traces on Σ are given by
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Kþ
tt ¼ −

_f2

_ψ
∂t

�
1

j _fj

�
1 −

2M
ψ

��
;

Kþ
θθ ¼ j _fj−1ðψ − 2MÞ; Kþ

ϕϕ ¼ j _fj−1ðψ − 2MÞsin2θ;
K−

θθ ¼ ah∂ χhj χ¼ χb
; K−

ϕϕ ¼ asin2ðθÞh∂ χhj χ¼ χb

K− ¼ 2

ah
∂ χhj χ¼ χb

: ð11Þ

The matching condition

½Kθθ� ¼ 0 ¼ ½Kϕϕ� ð12Þ

then yields that

ða0Þ2 þ k ¼ 2M
h3ðχbÞa

; ð13Þ

where we used the first matching condition, that is, Eqs. (7)
and (8). The remaining matching condition Kþ

tt ¼ 0 can be
shown to be satisfied if the other matching conditions (7),
(8), and (12) are already imposed.
So far, we have three equations that might be used

to determine the unknown functions a, ψ , and f.
What remains undetermined is the mass parameter M in
the exterior region. This can be fixed by imposing the
Friedmann equation

ða0Þ2 þ k ¼ 8π

3
ϵa2: ð14Þ

Comparing this to equation (13) yields

M ¼ 4π

3
h3ðχbÞϵ0: ð15Þ

Let us now investigate the hyperbolic angle μ between
surfaces τ ¼ const on one side and surfaces t ¼ const
on the other. The unit vector orthogonal to the surfaces
τ ¼ const on the OSD side is

mμ
− ¼ f1; 0; 0; 0g; ð16Þ

whereas the unit vector orthogonal to the surfaces t ¼ const
on the Schwarzschild side reads

mμ
þ ¼

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p ; 0; 0; 0

�
: ð17Þ

The hyperbolic angle μ is defined to be

jμj ≔ arcoshjgμνmμ
þmν

−j: ð18Þ

Consider the normalized 4-velocity of the dust particles on
the boundary Σ. In the FLRW coordinates, it is given by

u ¼ ∂τ ¼ mμ
−∂μ ¼ m−; ð19Þ

while in the Schwarzschild ones, it is given by

u ¼ ∂t þ _ψ∂r

k∂t þ _ψ∂rk
: ð20Þ

Since m− ¼ u, it follows that

cosh μ ¼ jhu; nij ¼
1 − 2M

ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2M

ψ Þ2 − _ψ2
q : ð21Þ

Furthermore, wewill choose the sign of μ in such a way that
it coincides with the sign of _ψ . One can then write

_ψ ¼
�
1 −

2M
ψ

�
tanh μ: ð22Þ

Using the above equation, the matching condition (12),
which is simply the second Friedmann equation, can then
be written as

1 −
2M
ψ

¼ 1 − h2ðχbÞk
cosh2 μ

: ð23Þ

B. Matching conditions for LTB

The above derivation can be extended in a straight-
forward way to the case of inhomogeneous dust. Again,
we use comoving coordinates fτ; ρ; θ;ϕg on the LTB
side and Schwarzschild coordinates ft; r; θ;ϕg on the
Schwarzschild side.
The Schwarzschild metric is given by (4), while the LTB

metric reads

ds2− ¼ −dτ2 þ ð∂ρRÞ2
1þ 2E

dρ2 þ R2dΩ2; ð24Þ

where R ¼ Rðρ; τÞ is the aerial radius and E ¼ EðρÞ is one
arbitrary function resulting from the integration of
Einstein’s equations. Another function that is useful to
consider is the Misner-Sharp mass FðρÞ, which defines the
amount of matter contained within the comoving shell
labeled by ρ [14]. FðρÞ is related to the dust density by

4πϵ ¼ ∂ρF

R2∂ρR
; ð25Þ

from which it is easy to see that it represents the active
gravitational mass. Notice that for dust collapse F does not
depend on τ, meaning that the amount of matter contained
within the comoving radius ρ is conserved throughout

HAMILTONIAN FORMULATION OF DUST CLOUD COLLAPSE PHYS. REV. D 101, 104017 (2020)

104017-3



collapse. Then, the system of Einstein’s equations is fully
solved once one integrates the equation of motion for
Rðτ; ρÞ, which can be given in the form

ð∂τRÞ2 ¼
2F
R

þ 2E: ð26Þ

Solutions to (26) read (in parametric form)

E < 0; R ¼ −
F
2E

ð1 − cos αÞ;

α − sin α ¼ ð−2EÞ3=2
F

ðτ − tBÞ; ð27Þ

E ¼ 0; R ¼
�
9

2
Fðτ − tBÞ2

�
1=3

; ð28Þ

E > 0; R ¼ F
2E

ðcoshα − 1Þ;

sinh α − α ¼ ð2EÞ3=2
F

ðτ − tBÞ; ð29Þ

where α is an auxiliary angle and tB is another function of ρ,
which in cosmology is called the big bang time. Notice that,
in general, Schwarzschild exterior and LTB interior may
define one LTB spacetime as the Schwarzshild metric
belongs to the LTB family.
The matching hypersurface Σ has the topology of

S2 ×R. Similarly to the OSD case, we parametrize this
hypersurface in the following way: Φ−ðτ; ρÞ ¼ ρ − ρb ¼ 0
from the interior, and Φþðt; rÞ ¼ r − ψðtÞ ¼ 0 from the
exterior. It follows that

dr ¼ _ψdt; ð30Þ

and by choosing ft; θ;ϕg with τ ¼ fðtÞ as a coordinates on
the hypersurface, we get the line elements as

dsþjΣ ¼ −
�
1 −

2M
ψ

−
_ψ2

1 − 2M
ψ

�
dt2 þ ψ2dΩ2;

ds−jΣ ¼ − _f2dt2 þ R2
bdΩ2; Rb ¼ Rðρb; tÞ: ð31Þ

Again, we have the following conditions for continuity of
the metric, i.e., the first matching conditions:

_f2 ¼ 1 −
2M
ψ

−
_ψ2

1 − 2M
ψ

; ð32Þ

ψ ¼ Rb; _ψðtÞ ¼ ∂τ
∂t ∂τRb ¼ _f∂τRb: ð33Þ

In analogy with Eq. (9), combining the above equations
gives

_f2 ¼
ð1 − 2M

Rb
Þ2

1 − 2M
Rb

þ ð∂τRbÞ2
: ð34Þ

Normal vectors to the boundary hypersurface read

nþ ¼ j _fj−1ðdr − _ψdtÞ; n− ¼ j∂ρRb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Eb

p
jdρ:
ð35Þ

We can calculate the extrinsic curvature of the boundary
surface as

Kþ
tt ¼ −

_f2

_ψ
∂t

�
1

j _fj

�
1 −

2M
ψ

��
;

Kþ
θθ ¼ j _fj−1ðψ − 2MÞ; K−

θθ ¼ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Eb

p
;

Kþ
ϕϕ ¼ Kþ

θθsin
2ðθÞ; K−

ϕϕ ¼ K−
θθsin

2ðθÞ: ð36Þ

In addition, the trace of the extrinsic curvature reads

K− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Eb

p
Rb

: ð37Þ

The second matching conditions then reduce to

Kþ
θθ ¼ K−

θθ; j _fj−1ðψ − 2MÞ ¼ Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Eb

p
; ð38Þ

and using (34), we obtain

ð∂τRbÞ2 ¼
2M
Rb

þ 2Eb; ð39Þ

which is equivalent to (26) provided that M ¼ Fb.
Finally, performing calculations analogously to (16)–(21),

we can express the field equation (26) in terms of hyperbolic
angle (with no explicit time derivative) as follows:

1 −
2M
ψ

¼ 1þ 2Eb

cosh2 μ
: ð40Þ

III. VARIATIONAL PRINCIPLE

Following Ref. [9], the full action for our model contains
the following contributions:

S ¼
Z
D−

Lgrav þ
Z
D−

Ldust þ
Z
Σ
Lgrav

þ
Z
Dþ

Lgrav þ
Z
∂D

Lboundary: ð41Þ

The domains are sketched in Fig. 1. The matching between
Friedmann or LTB interior D− and Schwarzschild exterior
Dþ is implemented here by a boundary term on the
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matching hypersurface Σ, given by the jump in the trace
of the Arnowitt-Deser-Misner (ADM) momentum on Σ.
The mass of the Schwarzschild exterior is taken to be
dynamical, M ¼ MðtÞ. All the necessary Gibbons-
Hawking-York (GHY) terms are included in the boundary
term

R
∂D Lboundary. In addition to the GHY terms on the

surfaces of constant timeK1 andK2, we require edge terms
on the intersection Σ ∩ K, where K ≔ K1 ∪ K2. For a
discussion of such terms, see Ref. [15]. Lastly, we require a
GHY term on the spacelike boundary of infinite curvature
radius CRjR→∞.
When we have the Lagrangian in place, the dyna-

mical quantities to be varied will be the degrees of
freedom left open for the FLRW or LTB interior and
Schwarzschild exterior: the rescaled scale factor ψðtÞ and
the Schwarzschild massMðtÞ. As usual, when applying the
variational principle, these dynamical quantities are kept
fixed at the timelike boundaries K1=2.
We will further work in a gauge fixed picture where we

choose the coordinate frames in the interior and exterior as
we have done in the last section. The final result will thus
be an actual physical Hamiltonian generating evolution in
Schwarzschild Killing time t, and not a constraint.

A. Schwarzschild exterior

Let us first take care of all exterior terms in the action.
We start with the boundary terms in

R
∂D Lboundary, exclud-

ing the one forDþ ∩ K1=2. The latter will be discussed with

the respective interiors. First, we have the GHY term on
CR. For this, we need the extrinsic curvature on that
surface. The spacelike normal vector on CR is given by

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
∂r: ð42Þ

The only nonvanishing component of nμ is nr ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
. Therefore, the extrinsic curvature tensor is

given by

Kij ¼ −Γr
ijnr; where i; j ¼ t; θ;ϕ: ð43Þ

The nonvanishing components of the Christoffel symbols
Γr
ij are

Γr
tt ¼

ðR − 2MÞM
R3

; Γr
θθ ¼ −ðR − 2MÞ;

Γr
ϕϕ ¼ −ðR − 2MÞsin2θ: ð44Þ

Finally, we obtain the trace of the ADM momentum as
defined in Appendix,

Q ¼ 2ð3M − 2RÞ sin θ: ð45Þ

This gives for the corresponding GHY boundary term

−
1

16π

Z
CR

d3yQ ¼ Rðt2 − t1Þ −
3

2

Z
t2

t1

dtM: ð46Þ

To obtain the final expression for
R
CR

Lboundary, we need
take the term from above and subtract the same surface term
which we would obtain by embedding the surface into flat
spacetime, e.g., by using the metric

ds20 ¼ −
�
1 −

2M
R

�
dt2 þ dr2 þ r2dΩ2 ð47Þ

and considering the surface r ¼ R. The trace of the ADM
momentum for this surface is given by

Q0 ¼ −2ðR −MÞ sin θ þOð1=R2Þ: ð48Þ

Then,

Z
CR

Lboundary ¼ −
1

16π
lim
R→∞

Z
∂D

d3yðQ − Q0Þ

¼ −
1

2

Z
t2

t1

dtM: ð49Þ

Next, we compute the GHY term on surfaces of constant
t ¼ t1=2 (i.e., Dþ ∩ K1=2). The timelike normal vector on
that surface reads

FIG. 1. Total domain of integration D, consisting of Fried-
mann (and LTB) interior D− and Schwarzschild exterior Dþ,
with Σ as the matching surface. For boundaries, we have a
surface of constant Schwarzschild radius CR, where we take
R → ∞ at the end, and two surfaces of constant time K1=2. Note
that K1=2 are not smooth where they overlap Σ, since in the
interior we use dust proper time and in the exterior we use
Schwarzschild Killing time.
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n ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ∂t; ð50Þ

where we take the upper sign for the surface with constant
t2 and the lower sign for the surface with constant t1.
The only nonvanishing component of the covector nμ is

nt ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
. Therefore, the extrinsic curvature on

Dþ ∩ K1=2 is given by

Kij ¼ −Γt
ijnt; where i; j ¼ r; θ;ϕ: ð51Þ

The only nonvanishing component of the connection is
Γt
rr ¼ _Mr2=ðr − 2MÞ3, and therefore the only nonvanish-

ing component of the extrinsic curvature is

Krr ¼ �
_Mr3=2

ðr − 2MÞ5=2
				
t¼t1=2

: ð52Þ

This gives

Q ¼ �2
_Mr3

ðr − 2MÞ2 sin θ: ð53Þ

The corresponding boundary term is therefore

Z
Dþ∩K1

Lboundary þ
Z
Dþ∩K2

Lboundary

¼ 1

2

�Z
R

ψðtÞ
dr

_Mr3

ðr − 2MÞ2
�t2
t1

: ð54Þ

There are joint terms on the intersections between Σ with
K1 and K2. Following Ref. [15], they are given by

Z
Σ∩K1=2

Lboundary ¼
1

8π

Z ffiffiffi
γ

p
d2y arsinhðnμmμÞ; ð55Þ

where n ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=ψ

p
dt is the normal covector toK1=2

on the Schwarzschild side andm ¼ −ð1= _fÞdx is the normal
covector to Σ. We obtain that

Z
Σ∩K

Lboundary ¼
1

2
½ψ2μ�t2t1 : ð56Þ

Next, we want to compute the Schwarzschild bulk term

Z
Dþ

Lgrav ¼
1

16π

Z
Dþ

d4x
ffiffiffiffiffiffiffiffiffi
−gþ

p ð4ÞRþ: ð57Þ

The Ricci scalar for the Schwarzschild spacetime with a
time-dependent mass term M ¼ MðtÞ is given by

ð4ÞRþ ¼ ∂
∂t

2 _Mr
ðr − 2MÞ2 : ð58Þ

Using Leibniz’s integral rule, we find that

Z
Dþ

d4x
ffiffiffiffiffiffiffiffiffi
−gþ

p ð4ÞRþ ¼ 4π

Z
t2

t1

dt
Z

R

ψðtÞ
dr r2ð4ÞRþ

¼ 8π

�Z
R

ψðtÞ
dr

_Mr3

ðr − 2MÞ2
�t2
t1

þ 8π

Z
t2

t1

dt
_ψ _Mψ3

ðψ − 2MÞ2 : ð59Þ

Hence,

Z
Dþ

Lgrav ¼
1

2

�Z
R

ψðtÞ
dr

_Mr3

ðr− 2MÞ2
�t2
t1

þ 1

2

Z
t2

t1

dt
_ψ _Mψ3

ðψ − 2MÞ2 :

ð60Þ

The first term on the right-hand side cancels with the GHY
term on K ∩ Dþ given by Eq. (54).

B. FLRW interior

Next, we want to consider the gravitational and matter
terms on the Friedmann side, that is, on D− including the
GHY terms on D− ∩ K,

Sinterior ¼
Z
D−

Lgrav þ
Z
D−

Ldust þ
Z
D−∩K

Lboundary: ð61Þ

The Gibbons-Hawking-York term SGHY provides a
contribution on the spacelike boundary at constant times
on the Friedmann side. The Ricci scalar on the Friedmann
side is given by

ð4ÞR− ¼ 6

a2
ða02 þ aa00 þ kÞ; ð62Þ

and the trace for the extrinsic curvature on D− ∩ K
is K ¼ 3a0=a.
According to Brown and Kuchař [16], we can model the

matter action by

Ldust ¼ −
1

2

ffiffiffiffiffiffi
−g

p
ϵðgμνuμuν þ 1Þ; ð63Þ

with ϵ being the dust density and u ¼ dT ¼ T0dτ being the
4-velocity covector of the dust field. The variable TðτÞ is
the proper time of the dust particles. The dust density ϵ is
not dynamical and serves a Lagrange multiplier, which
ensures the normalization of u.
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The full action now reads

Sinterior ¼
C
2

Z
τ2

τ1

dτ a3
�
−
a02

a2
þ k
a2

þ 4π

3
ϵðT02 − 1Þ

�
; ð64Þ

where we defined the constant C ≔ 3
R χb
0 dχh2ðχÞ.

For the sake of simplicity, we first perform the Legendre
transform in the matter sector. The momentum conjugate to
the dust proper time reads

pT ¼ 4πCa3ϵ
3

T 0: ð65Þ

Variation with respect to ϵ yields the primary constraint
pϵ ¼ ∂L=∂ϵ0 ¼ 0. The secondary constraint p0

ϵ ¼ 0 yields
that ϵ ¼ 3pT=ð4πCa3Þ. We immediately implement this

constraint equation after performing the Legendre trans-
form in T. The action then becomes

Sinterior ¼
C
2

Z
τ2

τ1

dτ

�
a3
�
−
a02

a2
þ k
a2

−
2pT
Ca3

��
: ð66Þ

Since pT is a constant of motion, we can keep it in the action
not as a dynamical quantity but as an external parameter,
controlling the dust density in the interior. To this end, we
have dropped in the above the Liouville term pTT 0. Note that
matching exterior and interior as done in the last section
leads to the identificationM ¼ h3ðχbÞpT=C, but we will not
implement this before variation.
We now switch to the variable ψ ¼ a=hðχbÞ and to the

Schwarzschild time t to get

Sinterior ¼
1

2

Z
t2

t1

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

−
_ψ2

1 − 2M
ψ

s 0
B@−2pT þ

Ckψ
hðχbÞ

−
Cψ

h3ðχbÞ
_ψ2

1 − 2M
ψ − _ψ2

1−2M
ψ

1
CA

¼ 1

2

Z
t2

t1

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s �−2pT þ C
hð χbÞ kψ

cosh μ
−

C
h3ðχbÞ

ðψ − 2MÞ sinh
2μ

cosh μ

�
: ð67Þ

Next, we wish to compute the term on the matching
surface Σ. We need to compute the jump [Q] in the trace of
the ADMmomentum on the surface Σ. We already have the
extrinsic curvature on the Friedmann side. The result on
the Schwarzschild side in (11) changes due to the time
dependence of M. For the computation, we switch to the
coordinate x ¼ r − ψ . The normal covector is then

n ¼ 1

_f
dx: ð68Þ

Kþ
θθ and Kþ

ϕϕ stay the same as in (11), but

Kþ
tt ¼ −

_f2

_ψ
∂t

�
1

j _fj

�
1−

2M
ψ

��
−

_M _f ½ψ2 _ψ2 þ ðψ − 2MÞ2�
ψ _ψðψ − 2MÞ2 :

ð69Þ

From this, we get

½Q� ¼ 4 sin θ

�
ψ2

2 _f
Kþ

tt − ψ þ 2M þ ∂ χhðχbÞψ _f

�
: ð70Þ

Finally,

Z
Σ
Lgrav ¼ −

1

16π

Z
Σ
½Q�d3y

¼
Z

t2

t1

dt

�
−
1

2

_ψ _Mψ3

ðψ − 2MÞ2 −
1

2
ψ2 _μ

þ 3M
2

− ψ þ ∂ χhðχbÞ _fψ
�
; ð71Þ

where we have used that

ψ2ψ̈

2 _f2
¼ 1

2
ψ2 _μþ _ψψ

_f2ð1 − 2M
ψ Þ

�
− _M þM _ψ

ψ

�
: ð72Þ

The first term cancels with the one from the Schwarzschild
bulk (60), and the second term can be partially integrated.
The resulting boundary term on the t ¼ const. surfaces
cancels with the edge (56).
Now, combining everything, we see that what remains is

the Friedmann term (67) and the boundary term onCR and Σ
apart from the first term. Finally, the Lagrangian is given by

Ltot ¼ −
ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
cosh μ

�
C

2h3ðχbÞ
�
1 −

2M
ψ

�
sinh2μ

−
C

2hðχbÞ
kþ pT

ψ
− ∂ χhðχbÞ

�
þM − ψ þ ψ _ψμ: ð73Þ
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Since this Lagrangian does not depend on _M, one can
express the mass as a function of ψ and _ψ by enforcing the
equation of motion for M,

∂Ltot

∂M ¼ 0: ð74Þ

Using

∂μ
∂M ¼ 2

ψ

sinh μ cosh μ
1 − 2M

ψ

; ð75Þ

we then find

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s
cosh μþ C

2h3ðχbÞ
�
1 −

2M
ψ

�

sinh2μ ¼ −
C

2hðχbÞ
kþ pT

ψ
− ∂ χhðχbÞ: ð76Þ

This expression will now defineM as a function of ψ and
μ. We can then simplify (73) and get

Ltot ¼ −
C

h3ðχbÞ
ψ

�
1 −

2M
ψ

�3
2 sinh2μ
cosh μ

−M þ ψ _ψμ: ð77Þ

C. LTB interior with E= const

First, we calculate the action for LTB interior and τ ¼
const boundaries. The Ricci scalar built from LTB metric is

ð4ÞR
ffiffiffiffiffiffi
−g

p ¼ ∂ρðRþ Rð∂ρRÞ2 − ð1þ 2EÞRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p sin θ: ð78Þ

To perform the integration along the ρ coordinate, we will
impose the condition E ¼ const, which reduces the class of
LTB models but still includes inhomogeneous matter and
curvature distribution cases. Thus, the gravitational part of
LTB interior and boundary action reads

SLTB ¼ 1

4

Z
t2

t1

ðRbð∂ρRbÞ2 − 2ERbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dτ

−
1

2

Z
ρ0

0

R2∂ρRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�∂τ∂ρR

∂ρR
þ 2

∂τRb

R

�
dρ: ð79Þ

The boundary term can be written as

Sboundary ¼
3

4

Z
t2

t1

dτ
Rbð∂ρRbÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p ; ð80Þ

which leads to the total action

Sgrav ¼ −
1

2

Z
t2

t1

dτ

�
Rbð∂ρRbÞ2 þ ERbffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

�
: ð81Þ

Changing variables to t and ψ gives

Sgrav ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
Z

t2

t1

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

−
_ψ2

1 − 2M
ψ

s

×

 
_ψ2ψ

1 − 2M
ψ − _ψ2

1−2M
ψ

þ Eψ

!
; ð82Þ

which, using the hyperbolic angle, can be rewritten as

Sgrav ¼
1

2

Z
t2

t1

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s �
−Eψ

cosh μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

−
ðψ − 2MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p sinh2μ
cosh μ

�
: ð83Þ

The jump in the extrinsic curvature on the shell reads

½Q� ¼ 4 sin θ

�
ψ2

2 _f
Kþ

tt − ψ þ 2M þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
ψ _f

�
: ð84Þ

Lastly, we consider the matter. The Lagrangian density
for dust is

Ldust ¼ −
1

2

ffiffiffiffiffiffi
−g

p
ϵðgμνuμuν þ 1Þ: ð85Þ

The action can be written as

Sdust ¼ 2π

Z
dτ
Z

dρ
R2∂ρRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ϵðρÞðT02 − 1Þ: ð86Þ

In the following, we will assume that the density has an
integral form given by the equation of motion (25) for LTB.
When putting Fð0Þ ¼ 0, this allows us to write

Sdust ¼
1

2

Z
dτ

Fbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ðT02 − 1Þ: ð87Þ

Comparing with (64), we see that, in analogy to the FLRW
case, the momentum pT is given by

pT ¼ Fbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p T 0; ð88Þ

and as a secondary constraint, we get the identification

pT ¼ Fbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p : ð89Þ
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Recall that matching interior and exterior is done by
setting Fb ¼ M. To implement this here, we will set
M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

pT after variation.
In total, this leads to the Lagrangian

Ltot ¼ −
ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
cosh μ

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
1 −

2M
ψ

�
sinh2μ

þ E

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þ pT

ψ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p �
þM − ψ þ ψ _ψμ:

ð90Þ

Note that this Lagrangian can be obtained from the
Lagrangian for an FLRW interior (73) using the following
identifications:

hðχbÞ
C3

→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
; h2ðχbÞk → −E;

∂ χhðχbÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
: ð91Þ

It follows that the reduction undertaken for FLRW leading
to (77) can also be done here. The result will be (77) with
the replacement (91).

IV. HAMILTONIAN FORMULATION

We can now discuss the Hamiltonian formulation for
both the FLRW and LTB interior at the same time. We will
work with the Lagrangian (77), keeping in mind that all
results apply to the LTB model when identifying the
constants involved according to (91). In a first step to find

the corresponding Hamiltonian, we want to compute the
momentum conjugate to ψ . As Ltot ¼ Ltotð _ψ ; μð _ψÞ;MðμÞÞ,
we get

pψ ¼ dLtot

d _ψ
¼ ∂Ltot

∂ _ψ
þ
�∂Ltot

∂μ þ ∂Ltot

∂M
∂M
∂μ
� ∂μ
∂ _ψ

: ð92Þ

From (77) and (76), we find

∂Ltot

∂ _ψ
¼ ψμ; ð93Þ

∂Ltot

∂μ ¼ −ψ
�
1 −

2M
ψ

�

× tanh μ

 
C

h3ðχbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s
cosh2μþ 1

cosh μ
− 1

!
;

ð94Þ

∂Ltot

∂M ¼ 3C
h3ðχbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s
sinh2 μ
cosh μ

− 1; ð95Þ

∂M
∂μ ¼ ψ

�
1 −

2M
ψ

�
sinh μ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
cosh μ − 1

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
sinh2 μ − cosh μ

;

ð96Þ

and from (22), we find

∂μ
∂ _ψ

¼ cosh2 μ

ð1 − 2M
ψ Þ − 2

ψ
∂M
∂μ sinh μ cosh μ

ð97Þ

¼ cosh2μ
1 − 2M

ψ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
sinh2μ − cosh μ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
sinh2μð1 − 2cosh2μÞ − cosh μð1 − 2sinh2μÞ

: ð98Þ

The momentum is then given by

pψ ¼ ψμ −
C

h3ðχbÞ
ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
ψ

s
sinh μ: ð99Þ

Finally, the Hamiltonian can be expressed as

H ¼ pψ _ψ − Ltot ¼ M; ð100Þ

as was the case in Ref. [9].

We will now demonstrate that the Hamiltonian (100)
really gives the correct equations of motion for the
Oppenheimer-Snyder model. We have to keep in mind that
Mðμ;ψÞ is given by (76) and μðψ ; pψÞ in turn is implicitly
given by (99). This gives us the equations of motion as

_ψ ¼ ∂M
∂μ

∂μ
∂pψ

; ð101Þ

_pψ ¼ −
∂M
∂ψ −

∂M
∂μ

∂μ
∂ψ : ð102Þ
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As it turns out, it is more useful to consider _μ instead of _pψ ,
which is then given by

_μ ¼ −
∂M
∂ψ

∂μ
∂pψ

: ð103Þ

From (76), we get (96) as well as

∂M
∂ψ ¼ M

ψ
þ pT

ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
C

h3ð χbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
sinh2 μ − cosh μ

; ð104Þ

and from (99),

∂μ
∂pψ

¼ 1

ψ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
sinh2 μ − cosh μ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
cosh2 μ − cosh μ

; ð105Þ

where we have used (96).

In total, this gives us the equations of motion as

_ψ ¼
�
1 −

2M
ψ

�
tanh μ; ð106Þ

_μ¼−
M
ψ2

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

ψ

q
ðsinh2μþh3ð χbÞpT

CM Þ−coshμ

C
h3ð χbÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

ψ

q
cosh2μ−coshμ

: ð107Þ

We can see that the first equation simply gives us back
the definition of the hyperbolic angle μ from the canonical
formalism.
To bring the equation for _μ into a recognizable form, we

have to do a bit more work. Wewant to demonstrate that the
above is equivalent to the second Friedmann equation in the
form (23). Recall that for dust the first Friedmann equation
follows directly from the second one, meaning that this is
sufficient to demonstrate that our Hamiltonian gives the
correct dynamics.
To this end, we solve (76) for cosh μ,

cosh μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
"
h3ðχbÞ

C
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ χhðχbÞ −

h3ðχbÞ
C

�
2

þ 2

ψ

�
h3ðχbÞ

C
pT −M

�s #
: ð108Þ

In principle, the sign should be fixed such that cosh μ is always positive, but since it will not influence the result, we will
leave it open. Inserting this into the right-hand side of (107) allows us to integrate the equation with regard to t, giving

cosh μ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q
"
h3ðχbÞ

C
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ χhðχbÞ −

h3ðχbÞ
C

�
2

þ 2

ψ

�
h3ðχbÞ

C
pT −M

�s #
; ð109Þ

where A is a positive real constant of integration. Note that
we used here that the Hamiltonian M is a constant of
motion. This expression is, aside from a constant, identical
to (108), demonstrating that (107) is simply the time
derivative of (108) and in turn (76).
Imposing pT ¼ CM=h3ðχbÞ, we see that (108) gives us

coshμ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

ψ

q �
h3ðχbÞ

C
�
				∂ χhðχbÞ−

h3ðχbÞ
C

				
�
; ð110Þ

where the sign has to be chosen such that cosh μ is positive.
For k ¼ 0, this does not make a difference since there
h0ðχbÞ ¼ h3ðχbÞ=C ¼ 1, giving (23), using that h0ðχbÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2ðχbÞk

p
. For k ¼ �1, both signs give different

positive results, in addition to (23) also giving the solution

cosh μ ¼ 2
h3ð χbÞ

C − ∂ χhðχbÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

ψ

q : ð111Þ

In summary, we see that the Hamilton equations of
motion simply give us the definition of μ (or alternatively
express pψ in terms of _ψ) and the time derivative of the
equationH ¼ M ¼ const, while this equation itself already
gives the dynamics of the Oppenheimer-Snyder model,
provided we choose pT ¼ CM=h3ðχbÞ.
It is for both k ¼ �1 possible to identify an effective

curvature k̃ with 0 < �k̃ < 1 as 2h3ðχbÞ=C − ∂ χhðχbÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2ðχbÞk̃

q
. One can then rescale all other quantities

here, normalizing k̃, such that (111) can be seen as a
rescaled Friedmann equation.
For an LTB interior with E ¼ const, the situation is a bit

more simple. Applying (110) to the LTB case by using (91)
only gives the single equation of motion (40).

V. CONCLUSIONS

In this article, we have developed the Hamiltonian
formulation of dust collapse with the use of a quasilocal
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variational principle. The main result is that the global
HamiltonianH of the OSD or LTB gravitational system, for
an observer at spatial infinity, is positive definite. This is
consistent with the theorem in general relativity on pos-
itivity of the total energy of an isolated gravitational
system with non-negative local mass density (see, e.g.,
Refs. [17–19] and references therein). Furthermore, the
Hamiltonian obtained is equal to the total mass of the
system, H ¼ M, as measured by observers at infinity. This
result, which resembles what is usually obtained in
Newtonian systems, albeit intuitive, is not readily obtained
from standard Hamiltonian treatments in general relativity.
Our results are obtained by making use of the improved

variational principle [8] that was later applied to the
dynamics of a gravitational dust shell [9]. Roughly speak-
ing, it consists in considering an extra boundary term added
to the Hilbert action and assuming that M, treated as a
dynamical variable, is a function of an evolution parameter
at the level of the variational procedure. Then, the fact that
M is a constant becomes a consequence of the equations of
motion in Hamilton’s dynamics. We can see that the
variational principle used for the simple shell model [9]
extends to the more realistic cases of the OSD and LTB
systems and encourages applying to still more realistic
models of collapsing massive stars.
In the Schwarzschild black hole, M is just a parameter

that determines the position of the event horizon. In our
case, like a true Hamiltonian, it has an additional dynamical
structure as it depends on configuration variables and
matter fields and turns out to be constant only as a
consequence of the equations of motion.
In this article, we have restricted our analysis to a single

outermost dust shell of the LTB system, and we consider
only the case with E ¼ const, which reduces the original
field theory LTB model to a mechanical system. This
allows us to reduce the dynamics to a simple one-
dimensional system where the configuration variables are
position and velocity of the outermost shell. In the
homogeneous OSD case, all shells obey the same dynamics
as the outermost, while in the inhomogeneous LTB case
with E ¼ const, the radial position of the inner shells can
be treated as a parameter, rather than a true degree of
freedom. Because of this simplification, both gravitational
systems, the LTB and OSD, can be described within one
formalism. However, it should be noted that the LTB case
is particularly interesting as it may admit the existence of
naked singularities (see, e.g., Refs. [20–22]), which are
appealing both from the observational and theoretical
perspectives as they may provide the valuable keys to
the construction of a viable theory of quantum gravity.
More specifically, assuming that the dust density has radial
dependence with a quadratic term, i.e., ϵðρÞ ¼ ϵ0 þ ϵ2ρ

2,
it can be shown that there exist values for ðϵ2; EÞ for
which the comoving time of formation of the singularity
coincides with the comoving time of formation of trapped

surfaces [23]. Then, for a set of values of the boundary
radius of the matter cloud, there exist null geodesics
originating at the singularity that reach far-away observers
[24]. This seemingly nonphysical result can be understood
if one treats the singularity as the limit of a regime where
quantum gravity effects dominate. Then, a naked singu-
larity merely describes a system where quantum gravity
effects may be observable for far-away observers.
Quantization of the interior of both the LTB and OSD

black holes has already been done in Refs. [25,26].
Robustness of these results will be analyzed in the near
future. In fact, if a different quantization procedure for dust
collapse were to provide the same results, this could be
taken as an indication of the general validity of the results.

ACKNOWLEDGMENTS

We would like to thank Claus Kiefer and Jerzy Kijowski
for helpful discussions and Dejan Stojkovic for feedback
on our paper. This work was partially supported by
the German-Polish bilateral project DAAD and MNiSW,
Grant No. 57391638, and by Nazarbayev University
Faculty Development Competitive Research Grant
No. 090118FD5348.

APPENDIX: THEORY OF MATCHING

Consider two four-dimensional manifolds Mþ and M−

separated by a three-dimensional timelike hypersurface Σ.
In general, we may express the line element on both sides in
terms of the coordinates fx0�; x1�; x2�; x3�g as

ds2� ¼ g�μνdx
μ
�dx

ν
�; ðA1Þ

while the line element on the hypersurface, in terms of the
coordinates fy1; y2; y3g, is

ds2Σ ¼ γabdyadyb ðA2Þ

where a, b ¼ 1, 2, 3. The hypersurface may be expressed in
parametric form on either side of the matching as

Φ�ðxμ�ðyaÞÞ ¼ 0 ðA3Þ

so that the line element on the surface in terms of the
coordinates on M� is

γ�ab ¼
∂xμ�
∂ya

∂xν�
∂yb g

�
μν: ðA4Þ

The induced metric is the same on both sides if we can find
a set of coordinates for which

γ�ab ¼ γab: ðA5Þ
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Let us now define the unit vector normal to Σ on both
sides as

n�μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ∂Φ�
∂xα

∂Φ�
∂xβ g

αβ
� j

q ∂Φ�

∂xμ� : ðA6Þ

The second fundamental form (or extrinsic curvature) is
defined by

K�
ab ¼

∂xμ�
∂ya

∂xν�
∂yb ∇μn�ν

¼ −n�σ
� ∂2xσ�
∂ya∂yb þ Γσ

μν
∂xμ�
∂ya

∂xν�
∂yb

�
: ðA7Þ

The boundary surface does not carry any energy-momentum
tensor, and therefore the matching is smooth, if

½γab� ¼ 0 ðA8Þ

½Kab� ¼ 0; ðA9Þ

where we have used the notation

½A� ¼ Aþ − A−

for a generic quantity A. The ADM momentum density of
the hypersurface is given by

Qab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γcdj

p
ðγabK − KabÞ; ðA10Þ

and its trace reads

Q ¼ γabQab ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γcdj

p
γabKab: ðA11Þ

For more details, see Ref. [13].
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(1995).
[17] R. Schön and S. T. Yau, Commun. Math. Phys. 65, 45

(1979); 79, 47 (1981); 79, 231 (1981).
[18] E. Witten, Commun. Math. Phys. 80, 381 (1981).
[19] J. Jezierski and J. Kijowski, Phys. Rev. D 36, 1041

(1987).
[20] R. Giambò and G. Magli, Differential Geometry and its

Applications 18, 285 (2003).
[21] P. S. Joshi and I. H. Dwivedi, Phys. Rev. D 47, 5357

(1993).
[22] D. Malafarina, Universe 3, 48 (2017).
[23] P. S. Joshi and D. Malafarina, Int. J. Mod. Phys. D 20, 2641

(2011); P. S. Joshi, D. Malafarina, and R. V. Saraykar, Int. J.
Mod. Phys. D 21, 1250066 (2012).

[24] P. S. Joshi, Gravitational Collapse and Spacetime Singu-
larities (Cambridge University Press, Cambridge, England,
2008).

[25] C. Kiefer and T. Schmitz, Phys. Rev. D 99, 126010
(2019).

[26] T. Schmitz, Phys. Rev. D 101, 026016 (2020).

NICK KWIDZINSKI et al. PHYS. REV. D 101, 104017 (2020)

104017-12

https://doi.org/10.1142/S0218271811020792
https://doi.org/10.1142/S0218271811020792
https://doi.org/10.1103/PhysRevD.62.044025
https://doi.org/10.1142/S0218271801001578
https://doi.org/10.1142/S0218271801001578
https://doi.org/10.1140/epjc/s10052-019-6571-4
https://doi.org/10.1140/epjc/s10052-019-6571-4
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1007/BF01374951
https://doi.org/10.1073/pnas.20.3.169
https://doi.org/10.1093/mnras/107.5-6.410
https://doi.org/10.1007/BF02102631
https://doi.org/10.1007/BF02102631
https://doi.org/10.1023/A:1010268818255
https://doi.org/10.1103/PhysRevD.74.084017
https://doi.org/10.1103/PhysRevD.74.084017
https://doi.org/10.1103/PhysRevD.89.044003
https://doi.org/10.1088/0264-9381/8/11/015
https://doi.org/10.1103/PhysRevD.45.2732
https://doi.org/10.1103/PhysRevD.45.2732
https://doi.org/10.1103/PhysRevD.54.4862
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRevD.47.3275
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1007/BF01940959
https://doi.org/10.1007/BF01940959
https://doi.org/10.1007/BF01208285
https://doi.org/10.1007/BF01942062
https://doi.org/10.1007/BF01208277
https://doi.org/10.1103/PhysRevD.36.1041
https://doi.org/10.1103/PhysRevD.36.1041
https://doi.org/10.1016/S0926-2245(02)00163-8
https://doi.org/10.1016/S0926-2245(02)00163-8
https://doi.org/10.1103/PhysRevD.47.5357
https://doi.org/10.1103/PhysRevD.47.5357
https://doi.org/10.3390/universe3020048
https://doi.org/10.1142/S0218271811020792
https://doi.org/10.1142/S0218271811020792
https://doi.org/10.1142/S0218271812500666
https://doi.org/10.1142/S0218271812500666
https://doi.org/10.1103/PhysRevD.99.126010
https://doi.org/10.1103/PhysRevD.99.126010
https://doi.org/10.1103/PhysRevD.101.026016

