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Extending a previous work by the present authors, we investigate the existence of expansion-free
dynamical stars with nonzero spatial twist and rotation and show that such stars cannot exist. First, it is
shown that a rotating expansion-free dynamical star with zero twist cannot exist because such stars cannot
radiate and are shear-free, in which case the energy density ρ is time independent. Second, we prove that a
nonrotating expansion-free dynamical star with nonzero spatial twist also cannot exist, as either the strong
energy condition must be violated, i.e., ρþ 3p < 0, or the star must be shear-free, in which case the star is
static (Θ ¼ Ω ¼ Σ ¼ 0). Finally, if we insist that the rotation and spatial twist are simultaneously nonzero,
then the star cannot be shear-free, in which case we obtain a quadratic polynomial equation in ϕ and Σ with
no real solutions. Therefore, such stars cannot exist.

DOI: 10.1103/PhysRevD.101.104015

I. INTRODUCTION

Modelsof radiating stars in general relativityplay a central
role in thestudyofgravitational collapseand theastrophysics
of gravitating bodies. Physically relevant exact models were
obtained by Tewari and Charan [1], Tewari [2], and Ivanov
[3–5]. These examples provide interesting insights into the
processes involved during stellar evolution. It has also been
found by Reddy et al [6] that anisotropy and dissipative
effects during gravitational collapse have influence on the
collapse rate and temperature profiles in radiating stars.
Classes of exact solutions to Einstein’s field equations
(EFEs) have been obtained and are referred to as
Euclidean stars, which, in the appropriate limit, have been
shown to regain the solutions referred to as Newtonian stars
[7–9]. In recent years, the method of Lie analysis of differ-
ential equations using symmetry invariance has proved an
invaluable and systematic tool in obtaining general catego-
ries of exact solutions to the boundary condition of radiating
stellar objects [10–12]. There is an important class of
radiating stars, introduced by Herrera et al. [13], which
are expansion-free. Expansion-free dynamicalmodels imply
the existence of a cavity or void. One important feature of
expansion-free models is that matter distributions with a
vanishing expansion scalar have to be inhomogeneous.
These physical features should have important astrophysical
consequences for spherically symmetric distributions. Also,
such radiating astrophysical models might offer a plausible

explanation for the existence of voids that have been
observed on cosmological scales. Various authors have
explored expansion-free dynamical models with different
considerations. Studies containing descriptions of the physi-
cal properties of expansion-free dynamical radiating stars
can be found in several works [14–16]. The peak in interest
regarding these models is connected to the fact that such
models have the possibility of helping to explain the
existence of voids on cosmological scales. In 2008,
Herrera and co-authors [13] studied such models with
nonzero shear and showed that the appearance of a cavity
(see Ref. [17] for more discussion)within an anisotropic and
dissipative matter distribution that is undergoing an explo-
sion, is inevitable. The same authors followed up on this
result with a paper in 2009 [18] in which they ruled out the
Skripkin expansion-free dynamical model (see Ref. [19])
with constant energy density and isotropic pressure.Another
study in [20] involved the study of models collapsing
adiabaticallyandshowed that the instabilitywas independent
of the star’s stiffness. In particular, it was shown that the
instability was entirely governed by the pressure and the
radial profile of the energydensity. In a recentwork bySherif
et al. [21], the authors employed, for the first time, the 1þ
1þ 2 formalism (a semitetrad covariant method for analyz-
ing the field equations) to study the properties of expansion-
free models. With an emphasis on nonrotating and non-
twisting stars, the authors found that a necessary condition
for the existence of such stars is that they simultaneously
accelerate and radiate. It was also shown in the same paper
that these stars must possess a conformally flat geometry.
In this paper, we study the required geometric and

thermodynamic properties for the existence of a relativistic
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expansion-free dynamical star with, at least, the rotation or
spatial twist being nonzero. This analysis falls in the scope
of stability analysis of self-gravitating systems (given in
Refs. [22–26]). Our approach is to fix either the rotation or
the spatial twist to zero and see whether, indeed, expansion-
free dynamical models of such stars exist. In particular, we
would like to know the restrictions that the addition of
spatial twist and/or rotation induces on the geometric and
matter quantities such as acceleration, heat flux, etc. As
with our previous work [21], we make use of equivalent
forms of the field equations from the 1þ 1þ 2 semitetrad
covariant formulation of general relativity [27–32]. The
semitetrad formalism has proven to be an extremely useful
approach in displaying geometrical features in a transparent
fashion, which are generally very difficult to find using
other approaches.
In Sec. II, we briefly introduce the 1þ 1þ 2 semitetrad

formalism and provide a definition for locally rotationally
symmetric (LRS) spacetimes. In Sec. III, we present the
results of the paper, a complete analysis of the expansion-
free model with rotation and spatial twist. We conclude
with a discussion of the results in Sec. IV.

II. LOCALLY ROTATIONALLY SYMMETRIC
SPACETIMES AND THE 1+ 1+ 2

SEMITETRAD SPLITTING

We provide some background material in this section,
covering the 1þ 1þ 2 semitetrad covariant formalism as
well as notes on, and calculations of, useful quantities
utilized in this paper.
Stellar models that are rotating and twisting can be

studied using the spacetime models known as locally
rotationally symmetric spacetimes [33,34]. As such, we
use this model to investigate expansion-free dynamical
stars that are either rotating or possess spatial twist or both.
We start by explicitly defining LRS spacetimes.
Definition.—A spacetime in which at each point, p ∈ M,

there exists a continuous isotropy group generating a
multiple transitive isometry group on M [34–39]. The
general metric of LRS spacetimes is given by

ds2 ¼ −A2dt2 þ B2dχ2 þ F2dy2

þ ½ðFD̄Þ2 þ ðBhÞ2 − ðAgÞ2�dz2
þ ðA2gdt − B2hdχÞdz; ð1Þ

where A2, B2, F2 are functions of t and χ, D̄2 is a function
of y and k (k fixes the geometry of the 2-surfaces), and g, h
are functions of y.
In the limiting case where g ¼ h ¼ 0, we recover the

well-known spherically symmetric LRS II class of space-
times which generalizes spherically symmetric solutions to
EFEs. Such spacetimes with vanishing rotation and spatial
twist were employed in [21] to study expansion-free and
dynamic stellar models. LRS spacetimes, a generalization

of LRS II spacetimes, on the other hand, include solutions
with nonzero vorticity and nonzero spatial twist. Some of
these solutions include the Gödel world model, the
Kantowski-Sachs models, and the Bianchi models, invari-
ant under the G3 groups of types I, II, VIII, and IX (see, for
example, Ref. [40]). In fact, the Gödel world model, a
famous, albeit unphysical solution to the field equations
[41], is an expansion-free model that rotates with zero
spatial twist. Properties of such expansion-free dynamical
stars will be investigated in Sec. III A, and properties
necessary for their existence will be determined.
Next, we introduce the 1þ 1þ 2 covariant splitting of

spacetime and the resulting field equations for LRS space-
times, as well as derivatives of the unit vector fields [29,32].
To start with, let (M; gab) be a spacetime manifold, with

associated metric tensor gab. To any timelike congruence of
an observer, we may associate a unit vector field ua tangent
to the congruence which satisfies uaua ¼ −1. One may
then split M as follows: Given any 4-vector Ua in the
spacetime, the projection tensor hab ≡ gab þ uaub projects
Ua onto the 3-space as

Ua ¼ Uua þUhai;

where U is the scalar along ua and Uhai is the projected
3-vector [42]. This splits gab into components associated
with the ua and spatial directions. This naturally gives rise
to two derivatives:

(i) The covariant time derivative (or simply the dot
derivative) along the observer’s congruence. Given
any tensor Sa::bc::d, we have _Sa::bc::d ≡ ue∇eSa::bc::d.

(ii) Fully orthogonally projected covariant derivative D
with the tensor hab with the total projection carried
out on all the free indices. Given any tensor Sa::bc::d,
we have DeSa::bc::d≡hafhpc…hbghqdhre∇rSf::gp::q.

This 1þ 3 splitting of the spacetime irreducibly splits the
covariant derivative of ua as

∇aub ¼ −Aaub þ
1

3
habΘþ σab: ð2Þ

In (2), the vector Aa ¼ _ua is the acceleration vector, Θ≡
Daua (the trace of the fully orthogonally projected covariant
derivative of uaÞ is the expansion, and σab ¼ Dhbuai is the
shear tensor (wherever used in this paper, angle brackets will
denote the projected symmetric trace-free part of the tensor).
In the particular case of LRS spacetimes, all vector and
tensor quantities vanish identically (seeRef. [29] for details).
The splitting further allows for the energy momentum

tensor to be decomposed as

Tab ¼ ρuaub þ 2qðaubÞ þ phab þ πab; ð3Þ

where ρ≡ Tabuaub is the energy density, qa ¼ −hacTcdud

is the 3-vector defining the heat flux, p≡ ð1=3ÞhabTab is
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the isotropic pressure, and πab is the anisotropic stress
tensor.
If there is a preferred spatial direction along the unit

normal vector field ea, which is the case with LRS II
spacetimes, the metric gab can be split into terms along the
ua and ea directions (the vector field ea splits the 3-space),
as well as on the 2-surface, i.e.,

gab ¼ Nab − uaub þ eaeb; ð4Þ
where the projection tensor Nab projects any 2-vector
orthogonal to ua and ea onto the 2-surface defined by
the sheet (Na

a ¼ 2; uaNab ¼ 0; eaNab ¼ 0), and ea is
defined such that eaea ¼ 1, and it is orthogonal to ua,
i.e., uaea ¼ 0. This is referred to as 1þ 1þ 2 splitting.
This splitting of the spacetime additionally gives rise to the
splitting of the covariant derivatives along the ea direction
and on the 2-surface:

(i) The hat derivative is the spatial derivative along the
vector field ea: Given a 3-tensor ψa::b

c::d, we have
ψ̂a::b

c::d ≡ efDfψa::b
c::d.

(ii) The delta derivative is the projected spatial deriva-
tive on the 2-sheet (projection by the tensor Na

b),
and the projection is carried out on all free indices:
Given any 3-tensor ψa::b

c::d, we have δeψa::b
c::d ≡

Na
f::Nb

gNh
c::Ni

dNe
jDjψf::g

h::i.
The complete set of 1þ 1þ 2 covariant scalars fully

describing the LRS class of spacetimes is [29]

fA;Θ;ϕ;Σ; E;H; ρ; p;Π; Q;Ω; ξg:

The quantity ϕ≡ δaea is the sheet expansion, Σ≡ σabeaeb

is the scalar associated with the shear tensor σab, E ≡
Eabeaeb is the scalar associated with the electric part of the
Weyl tensor Eab,H≡Habeaeb is the scalar associated with
the magnetic part of the Weyl tensor Hab, Π≡ πabeaeb is
the anisotropic stress scalar, and Q≡ −eaTabub ¼ qaea is
the scalar associated with the heat flux vector qa. The
quantities ξ and Ω are the spatial twist and rotation scalar,
respectively, which are defined by ξ ¼ ð1=2Þεabδaeb
(where εab ≡ εabcec ¼ udηdabcdec is the Levi-Civita
2-tensor, the volume element of the 2-surface) and Ω ¼
eaωa (whereωa ¼ Ωea þΩa is the rotation vector, withΩa

being the sheet component of ωa).
The full covariant derivatives of the vector fields ua and

ea are given by [29]

∇aub ¼ −Auaeb þ eaeb

�
1

3
Θþ Σ

�
ð5aÞ

þNab

�
1

3
Θ −

1

2
Σ
�
; ð5bÞ

∇aeb ¼ −Auaub þ
�
1

3
Θþ Σ

�
eaub þ

1

2
ϕNab: ð5cÞ

We also note the useful expression

ûa ¼
�
1

3
Θþ Σ

�
ea: ð6Þ

Any given scalar ψ satisfies the commutation relation

_̂ψ − _̂ψ ¼ −A _ψ þ
�
1

3
Θþ Σ

�
ψ̂ : ð7Þ

We will utilize this relation throughout this work when
seeking constraint equations. The field equations for LRS
spacetimes are given as propagation and evolution of the
covariant scalars [29]:

(i) Evolution:

2

3
_Θ − _Σ ¼ Aϕ −

1

2

�
2

3
Θ − Σ

�
2

− 2Ω2 þ E −
1

2
Π

−
1

3
ðρþ 3pÞ; ð8aÞ

_ϕ ¼
�
2

3
Θ − Σ

��
A −

1

2
ϕ

�
þ 2ξΩþQ; ð8bÞ

_ξ ¼ −
1

2

�
2

3
Θ − Σ

�
ξþ

�
A −

1

2
ϕ

�
Ω; ð8cÞ

_Ω ¼ Aξ −
�
2

3
Θ − Σ

�
Ω; ð8dÞ

_H ¼ −3ξE −
3

2

�
2

3
Θ − Σ

�
Hþ ΩQ; ð8eÞ

_E −
1

3
_ρþ 1

2
_Π ¼ −

�
2

3
Θ − Σ

��
3

2
E þ 1

4
Π
�
þ 1

2
ϕQ

þ 3ξHþ 1

2

�
2

3
Θ − Σ

�
ðρþ pÞ;

ð8fÞ
(ii) Propagation:

2

3
Θ̂ − Σ̂ ¼ 3

2
ϕΣþ 2ξΩþQ; ð9aÞ

ϕ̂ ¼ −
1

2
ϕ2 þ

�
1

3
Θþ Σ

��
2

3
Θ − Σ

�
þ 2ξ2

−
2

3
ρ − E −

1

2
Π; ð9bÞ

ξ̂ ¼ −ϕξþ
�
1

3
Θþ Σ

�
Ω; ð9cÞ

Ω̂ ¼ ðA − ϕÞΩ; ð9dÞ

Ĥ ¼ −
�
3E þ ρþ p −

1

2
Π
�
Ω − 3ϕH −Qξ; ð9eÞ
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Ê −
1

3
ρ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�
−
1

2

�
2

3
Θ − Σ

�
Q

þ 3ΩH ð9fÞ

(iii) Evolution/Propagation:

Â − _Θ ¼ −ðAþ ϕÞA −
1

3
Θ2 þ 3

2
Σ2 − 2Ω2

þ 1

2
ðρþ 3pÞ; ð10aÞ

_ρþ Q̂ ¼ −Θðρþ pÞ − ð2Aþ ϕÞQ −
3

2
ΣΠ; ð10bÞ

_Qþ p̂þ Π̂ ¼ −
�
Aþ 3

2
ϕ

�
Π −

�
4

3
Θþ Σ

�
Q

− ðρþ pÞA; ð10cÞ

(iv) Constraint:

H ¼ 3Σξ − ð2A − ϕÞΩ: ð11Þ

Let us now analyze the expansion-free dynamical models
with rotation and spatial twist.

III. RESULTS

In [21], we considered expansion-free dynamical stars
that are nonrotating and nontwisting. It was shown that the
existence of such models requires the star to simultaneously
accelerate and radiate, in which case the star is necessarily
conformally flat. Here, we consider the case in which at
least one of Ω or ξ is nonvanishing. Thus, we consider the
following three cases [34,37,38]:
(1) ξ ¼ 0;Ω ≠ 0: These models fall under the class of

spacetimes known as LRS I spacetimes, with ea

hypersurface orthogonal and ua twisting. A well-
known example is the Gödel solution.

(2) ξ ≠ 0;Ω ¼ 0: These models fall under the class of
spacetimes known as LRS III spacetimes, with ea

twisting and ua hypersurface orthogonal.
(3) ξ ≠ 0;Ω ≠ 0: These models, investigated in [38],

have the property that the heat fluxQ cannot be zero
and specific energy conditions need to be satisfied,
i.e.,

−
1

2
ðρþ pþ ΠÞ < Q <

1

2
ðρþ pþ ΠÞ: ð12Þ

One therefore expects that an expansion-free
dynamical model to exist in models with ξ ≠ 0
and Ω ≠ 0. The star being dynamical implies that
all of the thermodynamic quantities, including p, ρ,
Π, Q, etc., are functions of time.

A. Case 1: ξ = 0;Ω ≠ 0

Let us start by considering the case of a rotating
expansion-free star with no spatial twist. From (9c) we have

0 ¼ ΣΩ: ð13Þ

Since by assumption Ω ≠ 0, we must have Σ ¼ 0.
Furthermore, from (8c) we obtain

0 ¼
�
A −

1

2
ϕ

�
Ω; ð14Þ

which, from (11), gives H ¼ 0, so that for such stars the
Weyl tensor is purely electric. Using (8e) one has

0 ¼ ΩQ; ð15Þ

from which we obtain Q ¼ 0. Therefore, the star is not
dynamical as the energy density is time independent, i.e.,
_ρ ¼ 0 from (10b). It is also not difficult to show that such
stars will necessarily accelerate. To see this, assume A ¼ 0.
Then, from (14), since by assumption Ω ≠ 0, we must have
ϕ ¼ 0 as well. From (8a), (9b), (9e), and (10a), we obtain
the constraints:

0 ¼ −2Ω2 þ E −
1

3
ðρþ 3pÞ − 1

2
Π; ð16aÞ

0 ¼ E þ 2

3
ρþ 1

2
Π; ð16bÞ

0 ¼ 3E þ ρþ p −
1

2
Π; ð16cÞ

0 ¼ −2Ω2 þ 1

2
ðρþ 3pÞ: ð16dÞ

Comparing (16b) and (16c), we obtain

0 ¼ −ρþ p − 2Π: ð17Þ

Substituting (17) and (16b) into (16a), we obtain the
constraint

0 ¼ −2Ω2 −
1

2
ðρþ 3pÞ; ð18Þ

which upon comparing to (16d) gives

0 ¼ ρþ 3p: ð19Þ

Therefore, Ω ¼ 0 [from either (16d) or (19)], which
contradicts the assumption that Ω ≠ 0. Hence, we have
A ≠ 0. In summary, we state the following theorems.
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Theorem III.1: There cannot exist an expansion-free
dynamical star with vanishing spatial twist and nonzero
rotation.
Though these stars are not dynamical, we have enumer-

ated several properties we expect such stars to have. In
particular, the star is shear-free and accelerates without
radiating.

B. Case 2: ξ ≠ 0;Ω= 0

Next, we consider nonrotating expansion-free dynamical
stars with nonzero spatial twist. We state and prove the
following:
Theorem III.2: There cannot exist an expansion-free

dynamical star with vanishing rotation and nonzero spa-
tial twist.
Proof: To prove this, we will show that for such a star to

exist, the star will either be static or it will violate the strong
energy condition (SEC). From (8d) we have

0 ¼ Aξ; ð20Þ

so we must have A ¼ 0 since by assumption ξ ≠ 0. Using
(10a) we have

Σ2 ¼ −
1

3
ðρþ 3pÞ: ð21Þ

Thus, for such a star to exist, we must have ρþ 3p < 0,
except in the instance where the star is shear-free, in which
case the star is static (Ω ¼ Θ ¼ Σ ¼ 0). ▪
In fact, in this case we have shown that even the

expansion-free condition cannot hold and, not only that,
it is also not dynamical.

C. Case 3: ξ ≠ 0;Ω ≠ 0

Finally, we consider the case of a simultaneously rotating
and twisting expansion-free dynamical star. We start by
taking the dot derivative of (8a) and the hat derivative of
(9a) and obtain, respectively,

− _̂Σ ¼ ϕÂþ Aϕ̂ − Σσ̂ − 4ΩΩ̂þ Ê −
1

2
Π̂ −

1

3
ρ̂ − p̂

¼ −A2ϕ −
3

2
Aϕ2 − A

�
2

3
ρþ E þ 1

2
Π
�
þ 3ϕΣ2

þ 2ϕΩ2 þ 1

2
ϕðρþ 3pÞ þ 3

2
ΣQþ 2ΩΣξþ 3ΩH

−
3

2
ϕ

�
E þ 1

2
Π
�
− ðp̂þ Π̂Þ; ð22aÞ

− _̂Σ ¼ 3

2
Σ _ϕþ 3

2
ϕ _Σþ 2Ω_ξþ 2ξ _Ωþ _Q

¼ −
3

2
AΣ2 þ 3

2
ϕΣ2 þ 6ΩΣξþ 3

2
ΣQ −

3

2
Aϕ2

þ 2ϕΩ2 −
3

2
ϕE þ 3

4
ϕΠþ 1

2
ϕðρþ 3pÞ þ 2AΩ2

þ 2Aξ2 þ _Q: ð22bÞ

Taking the difference of (22a) and (22b) and using (10c),
we obtain

− _̂Σþ _̂Σ ¼ −A2ϕþ 1

3
Aðρþ 3pÞ − A

�
E −

1

2
Π
�

þ 3

2
ϕΣ2 − 4ΩΣξ − 6AΩ2 þ 1

2
AΣ2 þ ΣQ

þ 3ΩH: ð23Þ

Using the commutation relation in (7) on Σ, we have

− _̂Σþ _̂Σ ¼ −A _Σþ ΣΣ̂

¼ −A2ϕþ 1

2
AΣ2 þ 2AΩ2 − A

�
E −

1

2
Π
�

þ 1

3
Aðρþ 3pÞ þ 3

2
ϕΣ2 þ 2ΩΣξþ ΣQ: ð24Þ

Comparing (23) and (24) and using (11), we obtain the
constraint

�
14

3
A − ϕ

�
Ω ¼ Σξ: ð25Þ

Now, taking the dot derivative of (8b) and the hat derivative
of (9b), we obtain, respectively,

_̂ϕ ¼ −ΣÂ − AΣ̂þ 1

2
Σϕ̂þ 1

2
ϕΣ̂þ 2Ωξ̂þ 2ξΩ̂þ Q̂

¼ A2Σþ 5

2
AϕΣ − 2Σ3 þ 4ΣΩ2 −

5

6
Σρ −

3

2
Σp

þ 4AΩξ − Σϕ2 þ Σξ2 þ 1

2
ð2A − ϕÞQ − 5ϕΩξ

−
1

2
ΣE −

1

4
ΣΠþ Q̂; ð26aÞ

_̂ϕ ¼ −ϕ _ϕ − 2Σ _Σþ 4ξ_ξ −
2

3
_ρ −

�
_E þ 1

2
_Π
�

¼ 3AϕΣ − Σ3 −
1

2
Σϕ2 − 4ϕΩξ −

3

2
ϕQþ 1

2
ΣE

− 4ΣΩ2 þ 2Σξ2 −
5

4
ΣΠþ 4AΩξ −

1

6
Σρ −

3

2
Σp

− 3ξH − _ρ: ð26bÞ
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Taking the difference of (26a) and (26b) and using (10b),
we obtain

_̂ϕ − _̂ϕ ¼ A2Σ −
1

2
AϕΣ − Σ3 þ 8ΣΩ2 −

2

3
Σρ −

1

2
Σϕ2

− Σξ2 − AQ − ϕΩξ − ΣE þ ΣΠþ 3ξH: ð27Þ

Using the commutation relation in (7) on ϕ, we have

_̂ϕ − _̂ϕ ¼ −A _ϕþ Σϕ̂

¼ A2Σ −
1

2
AϕΣ − 2AΩξ − AQ −

1

2
Σϕ2 − Σ3

þ 2Σξ2 −
2

3
Σρ − ΣE −

1

2
ΣΠ: ð28Þ

Comparing (27) and (28) and using (11), we obtain the
constraint

ð9Σξþ ϕΩ − 5AΩÞξþ
�
3

2
Πþ 8Ω2

�
Σ ¼ 0: ð29Þ

Next, taking the dot derivative of (8c) and the hat derivative
of (9c), we obtain, respectively,

_̂ξ¼ 1

2
ξΣ̂þ 1

2
Σξ̂þΩ

�
Â−

1

2
ϕ̂

�
þ
�
A−

1

2
ϕ

�
Ω̂

¼−
5

4
ϕΣξ− 2Ωξ2 −

1

2
ξQþ 5

2
ΩΣ2−

5

2
AϕΩ

þ 3

4
Ωϕ2− 2Ω3þ 5

6
Ωρþ 3

2
Ωpþ 1

2
ΩEþ 1

4
ΩΠ; ð30aÞ

_̂ξ ¼ −ξ _ϕ − ϕ_ξþ Ω _Σþ Σ _Ω

¼ 2AΣξ − ϕΣξ − 2Ωξ2 − ξQ − 2AϕΩþ 3

2
ΩΣ2

þ 1

2
Ωϕ2 þ 2Ω3 −ΩE þ 1

2
ΩΠþ 1

3
Ωðρþ 3pÞ: ð30bÞ

Taking the difference of (30a) and (30b), we obtain

_̂ξ − _̂ξ ¼ −
1

4
ϕΣξþ 1

2
ξQþΩΣ2 −

1

2
AϕΩþ 1

4
Ωϕ2

− 4Ω3 þ 1

2
Ωðρþ pÞ: ð31Þ

Using the commutation relation in (7) on ξ, we have

_̂ξ − _̂ξ ¼ −A_ξþ Σξ̂

¼ −
1

2
Σξ − A2Ωþ 1

2
AϕΩ − ϕΣξþΩΣ2: ð32Þ

Comparing (31) and (32), we obtain the constraint

�
Aþ 3

2
ϕ

�
Σξþ

�
2A2 þ 1

2
ϕ2 þ ρþ p

�
Ω ¼ ξQ: ð33Þ

Let us now prove the following proposition:
Proposition III.3: An expansion-free dynamical star

that is simultaneously rotating and twisting cannot be
shear-free, if it exists.
Proof: Here we assume the existence of such stars and

show that if Σ ¼ 0, then the weak energy condition must be
violated. We start by assuming that Σ ¼ 0. Then, from (25)
we obtain (taking into account that Ω ≠ 0)

A ¼ 3

14
ϕ; ð34Þ

and, therefore, from (29) we have

−
1

14
ϕΩξ ¼ 0: ð35Þ

Since by assumption ξ ≠ 0, Ω ≠ 0, we must have ϕ ¼ 0,
which implies A ¼ 0 as well. Now, from (9) and (33) we
have, respectively,

0 ¼ 2ξΩþQ; ð36aÞ

ðρþ pÞΩ ¼ ξQ: ð36bÞ

Substituting (36a) into (36b) and again noting that
Ω ≠ 0, we obtain the energy condition

ðρþ pÞ ¼ −2ξ2; ð37Þ

which gives ðρþ pÞ < 0. ▪
Finally, we state and prove the following:
Theorem III.4: There cannot exist an expansion-free

dynamical star with both rotation and spatial twist
nonvanishing.
Proof: As has been shown in [38], any scalar ψ in LRS

spacetimes obtained via the 1þ 1þ 2 decomposition
satisfies the relation

_ψΩ ¼ ψ̂ξ: ð38Þ

Using (8c) and (9c) to substitute _ξ and ξ̂ for _ψ and ψ̂ ;
respectively, in (38) we obtain

−ð2A − ϕÞΩ ¼ Σξ; ð39Þ

which, upon comparing to (25), gives

ϕ ¼ 10

3
A: ð40Þ

Using (8d) and (9d) to substitute _Ω and Ω̂ for _ψ and ψ̂ ;
respectively, in (38) we obtain
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−ϕξ ¼ ΩΣ: ð41Þ

Substituting (40) into (39) [or equivalently (25)], we obtain

2

5
ϕΩ ¼ Σξ: ð42Þ

It is clear that ϕ ≠ 0; otherwise, we would have A ¼ 0
[from (40)], in which case from (25) [or alternatively (39)]
we would have ξ ¼ 0 (we have already shown that Σ ≠ 0),
contradicting the assumption that ξ ≠ 0.
Now, multiplying both (41) and (42) by Ω, we obtain,

respectively,

−ϕΩξ ¼ Ω2Σ; ð43aÞ

2

5
ϕΩ2 ¼ ΩξΣ; ð43bÞ

which we can rewrite as

Ωξ ¼ −
Ω2Σ
ϕ

; ð44aÞ

Ωξ ¼ 2

5

ϕΩ2

Σ
; ð44bÞ

since ϕ ≠ 0, Σ ≠ 0. Equating (44a) and (44b) and sim-
plifying, we obtain

�
2

5
ϕ2 þ Σ2

�
Ω2 ¼ 0: ð45Þ

Since by assumptionΩ ≠ 0, wemust have ð2=5Þϕ2þΣ2¼0,
which is not possible over the set of real numbers R for
nonzero ϕ and Σ. ▪

IV. DISCUSSION

In a recent paper [21], expansion-free dynamical stars,
for which the rotation and spatial twist are simultaneously
zero, were investigated. It was shown that these stars exist
under the particular conditions that the stars radiate,
accelerate, and are conformally flat. As with the case of
[21], we have utilized the 1þ 1þ 2 semitetrad covariant
formalism to study such stars. In this paper, we have shown
that there cannot exist an expansion-free dynamical star
with non-vanishing rotation or spatial twist. In the case
where the spatial twist is zero and the star is rotating, the
star can be expansion-free, but both the heat flux and the
shear vanish, in which case the energy density is time
independent. Thus, such expansion-free stars are not
dynamical. If the rotation is zero and the spatial twist is
nonvanishing, then the star cannot be expansion-free since,
for this to happen, the star must be static (in which case the
star is not dynamical) or the SECmust be violated. Lastly, it
is shown that if we assume nonvanishing of both the
rotation and the spatial twist, then the shear cannot be zero.
Further analysis on the basis that the shear is nonzero, using
both the commutation relation and a result relating the dot
and hat derivatives of an arbitrary scalar [38], shows that
this leads to a quadratic polynomial equation in ϕ and Σ
with no real solution for nonzero ϕ and Σ. In our opinion,
this result is a valuable contribution to the increasing
literature on the expansion-free condition. This result has
also severely restricted the prevalence of such stars.
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