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The holographic interpretation of the Randall-Sundrum model based on the adaptation of the AdS=CFT
correspondence to the braneworld scenario states that the black holes localized on the brane are quantum
corrected. This can be better understood from the fact that the classical AdS5 bulk dynamics is dual to
gravity coupled with conformal field theory (CFT) on the four-dimensional brane. Based on the
backreaction of the CFT on the classical black hole geometry, localized on the brane, it is expected
that there exist possible near-horizon modifications. This may result in the black hole horizon becoming
partially reflective, thus giving rise to echoes in the ringdown signal in gravitational wave observations. In
this paper, we investigate the existence of such echoes in the ringdown phase of a black hole localized on
the brane, carrying a negative tidal charge, and establish the layout for future investigation of higher-
dimensional effects in the ringdown signal. Confirmed detections of echoes at the current levels of
instrumental sensitivity can constrain the dimensionless value of tidal charge to jQj ≲M2.
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I. INTRODUCTION

The detection of gravitational waves [1–5] due to the
coalescence of compact binary objects opened the door to
test various nontrivial aspects of spacetime geometry in the
strong gravity regime. Improved and/or next generation of
detectors, will make it possible to probe deeper inside the
signal from the merger event, giving us an insight about the
strong gravity regime dominated by possible quantum
effects, or novel semiclassical physics.
Out of the three different phases of a binary merger,

based on the completely different physics behind each one
of them, the ringdown phase is of particular interest to us.
Broadly speaking, the ringdown phase involves the final
relaxation of the composite object, formed due to collision
of two binary objects, in this case black holes, as it settles
down to a final equilibrium configuration. The ringdown
phase is expected to shed light on the nature of the event
horizon and can help us either verify the classical no-hair
theorem, or rather discover nontrivial quantum effects at
play close to the horizon [6].

In classical general relativity, the final ringdown phase is
primarily dominated by the quasinormal modes (QNMs) of
the black hole (e.g., Ref. [7]). For obtaining the QNMs, one
generally imposes the following boundary conditions:
purely outgoing waves at spatial infinity and purely ingoing
waves at the horizon. The situation may change drastically
if quantum effects near the horizon are taken into account.
In particular, due to various quantum effects near the
horizon (e.g., fuzzball [8], the firewalls [9] scenario, and
Kerr wormholes [10]) or upon interpreting the black hole as
a multilevel quantum system [11], the ingoing waves can
get partially reflected from a region very close to the
horizon and reach back to the asymptotic observer at
infinity with a time delay. This produces an echolike
pattern in the spectrum of the gravitational waves, where
the echo signals are separated from the primary ringdown
signal by the associated time delay due to reflection
[6,12–15]. Several studies claimed to have found potential
evidence of echoes in the LIGO data [13,16–20], although
such evidence remains controversial (e.g., Refs. [21–24]).
Given the significant modifications made to the ring-

down phase, pertaining to the reflective boundary condition
at the horizon, it is instructive to understand whether there
exists any model where such reflective boundary conditions
are a necessity. We demonstrate in this work that such is
indeed the scenario when one introduces extra spatial
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dimensions to the spacetime. In particular, the reflective
boundary conditions become essential when brane local-
ized black holes in the Randall-Sundrum braneworld
paradigm are considered. As in the standard scenario with
an extra spatial dimension, the matter fields are localized on
a four-dimensional brane, and only gravity can propagate in
the five-dimensional bulk spacetime [25–27]. Such an
approach calls for obtaining the effective gravitational
field equations on the four-dimensional brane, which
was derived using the Gauss-Codazzi formalism in
Refs. [28–32]. The effective gravitational field equations
so obtained can be solved for a static and spherically
symmetric spacetime, yielding a metric which resembles a
Reissner-Nordström black hole with a “tidal charge”
instead of the usual electric charge [33]. Because of
nontrivial effects inherited from the bulk, the effective
gravitational field equations on the brane are modified, and
these modifications are manifested in the brane localized
black hole solution as the tidal charge. This motivates one
to look if the presence of the tidal charge due to higher
spacetime dimensions can have any observational signifi-
cance. Several analyses have been performed in various
observational avenues to look for the presence of this
negative tidal charge [34–37], including its effect on
gravitational waves [38–43]. However, it should be empha-
sized that it is difficult to obtain static black hole solutions
that are localized on the 3-brane and free of any pathology
when extended to the bulk [33,44–49].
From the adaptation of the AdS=CFT conjecture to the

braneworld model [26], it was argued that solving the
classical five-dimensional Einstein’s equations in the bulk
is equivalent to solving the semiclassical Einstein’s equa-
tions in the four-dimensional dual conformal field theory
(CFT) theory coupled with gravity on the brane [50–52].
Therefore, on the brane hypersurface, the CFT stress
energy tensor would induce quantum effects, hence affect-
ing the black hole solutions localized on the brane. Thus,
one may conclude that the black hole solutions derived
from the classical bulk gravitational field equations will
inherit nontrivial quantum corrections on the brane.
Based on the above discussion, we will consider the

brane localized black hole solution presented in Ref. [33] as
a quantum black hole and compute the QNMs due to scalar
perturbation by imposing reflective boundary condition at
the horizon, rather than purely ingoing boundary condition.
In particular, we solve for the propagation of the massless
scalar field modes, whose evolution is governed by the
Klein-Gordan equation in the above background geometry
of a braneworld black hole. As we will demonstrate, the
QNMs derived in such an approach exhibit echoes.
The paper is organized as follows: In Sec. II, we give the

general form of the scalar perturbation equation in a static
and spherically symmetric spacetime that we will solve
analytically, with a low-frequency approximation, as well
as numerically in order to determine the ringdown modes
and hence the nature of echoes. Subsequently, in Sec. III,
we have reviewed the static, spherically symmetric black

hole solution localized on a 3-brane and hence motivate the
necessity of reflective boundary condition at the horizon.
The real and the imaginary parts of the frequencies
associated with QNMs using an analytic method have
been presented in Sec. IV. Finally, in Sec. V, we perform a
numerical analysis in order to obtain the frequencies of
the QNMs and show how the quantum black holes in the
braneworld scenario would give rise to echoes in the
ringdown. We further comment on the dependence of
the ringdown spectrum on the tidal charge of the black
hole as well as on future directions of exploration.

II. SCALAR FIELD IN A STATIC AND
SPHERICALLY SYMMETRIC SPACETIME

Our objective in this paper is to study the scalar
perturbation of a black hole localized on the brane, which
presumably experiences quantum corrections near the
horizon, resulting in partial reflection of the in-falling
modes which appear as echoes to the asymptotic observer
at infinity. To arrive at the main conclusion, we will keep
our analysis simple and consider perturbations due to a
massless scalar field living in this background geometry of
a brane localized black hole. This is because the qualitative
predictions for higher spin perturbations would be more or
less identical with the much simpler scalar perturbation
and, in this paper, our primary objective is to motivate the
scenario in which one can justify the existence of the
quantum black holes that would give rise to such echoes in
the ringdown spectrum.
Given this preamble, in this section, we will briefly

discuss the basic ingredients necessary to compute how a
scalar field evolves in a static and spherically symmetric
spacetime. The results derived in this section will be useful
in the later parts of this work when we apply the formalism
to a specific solution of the effective gravitational field
equations on the brane. The scalar field will be assumed to
be a free field, i.e., without any potential term and without
any mass. Thus, the evolution of the scalar field is
determined by the Klein-Gordon equation in the static
background spacetime, respecting spherical symmetry. As
we will see, the Klein-Gordon equation reduces to a linear
second-order differential equation on which appropriate
boundary conditions must be imposed. Then, one finds that
the evolution of the scalar field must exhibit certain
characteristic timescales, whose inverses are known as
the QNMs associated with the spacetime.
For generality, we start by writing down the generic

metric ansatz depicting a static and spherically symmetric
spacetime, which takes the following form:

dS2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ: ð1Þ

Here, fðrÞ and hðrÞ are arbitrary functions of the radial
coordinate. In this background geometry, the propagation
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of the scalar field ψ is governed by the equation □ψ ¼ 0.
Because of spherical symmetry and staticity of the space-
time, it is possible to decompose the scalar field Ψ as

Ψðt; r; θ;ϕÞ ¼ 1

r

X∞
l¼0

Xl
m¼−l

e−iωtYlmðθ;ϕÞψlmðrÞ; ð2Þ

where Ylmðθ;ϕÞ corresponds to the spherical harmonics.
Inserting the above expansion of the scalar field in its field
equation, i.e., □ψ ¼ 0, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p ∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p ∂rψlm

�
þfω2−VlðrÞgψlm¼0;

ð3Þ

where the potential VlðrÞ appearing in the above expres-
sion is given as

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 1

2r

�
h0ðrÞ þ hðrÞf0ðrÞ

fðrÞ
��

: ð4Þ

Thus, the Klein-Gordon equation can be reduced to an
ordinary differential equation for ψlmðrÞ in the radial
coordinates. It is advantageous to rescale the field
ψlmðrÞ, such that ψlmðrÞ ¼ rRlmðrÞ. Thus, the differential
equation satisfied by the function RlmðrÞ immediately
follows from Eq. (3) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p ∂r

�
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p ∂rRlm

�

þ ½r2ω2 − fðrÞlðlþ 1Þ�Rlm ¼ 0: ð5Þ

Thus, given any spacetime geometry, one can express the
above equation as a second-order differential equation in
the radial coordinate. To determine the solution, it is
necessary to impose suitable boundary conditions, which
tells us how the field asymptotes. Using such a set of
appropriate boundary conditions, from the poles of the
Green’s function of the above equation, one can determine
the frequencies associated with the QNMs of the system.
This is the approach wewill take in the later sections, where
the above differential equation will be used to determine the
associated QNMs with appropriate boundary conditions.

III. VACUUM SOLUTION ON THE BRANE

It is difficult to obtain static black hole solutions on the
brane, and the first attempt was made in Ref. [44] by
replacing the Minkowski metric on the brane by a
Schwarzschild metric. Even though one would expect
the black hole horizon to extend into the bulk, it is desirable
that the singularity should always stay confined on the
brane. The problem with the black string solution of
Ref. [44] is that it extends all the way up to the anti-
de Sitter (AdS) horizon. Also, it was shown that the

solution suffers from classical instability for a certain range
of parameter space [53,54]. Because of such complications
arising out of extension of black hole horizon in the bulk
and possible instability of the spacetime, an exact solution
for a black hole localized on a four-dimensional brane is not
known, and it has also been proposed that a static classical
black hole formed by gravitational collapse does not exist
on the brane [45]. For this reason, various approximate
methods are used to gain a better understanding of the black
holes localized on the brane. In this section, we will
describe one such way to arrive at vacuum solutions that
are localized on the brane. This corresponds to finding out
the “effective” gravitational field equations from the
perspective of a brane observer and then determining its
solution.
To derive such effective gravitational field equations,

one starts with the gravitational field equations in the bulk,
which is taken to be the five-dimensional Einstein’s
equations with a negative bulk cosmological constant Λ.
The gravitational field equations on the four-dimensional
brane are obtained by projecting various geometrical
quantities, appearing in the bulk gravitational field equa-
tions, onto the brane. This is achieved by using the
projector hAB ¼ δAB − nAnB, where nA is the unit normal,
perpendicular to the four-dimensional hypersurface, i.e.,
normal to the brane. The fact that hAB is a projector can be
understood by noting that it satisfies the following proper-
ties: nAhAB ¼ 0 and hACh

C
B ¼ hAB. Thus, one uses this

projector to define various geometrical quantities intrinsic
to the brane hypersurface. In the context of curvature
tensor, such a relation between intrinsic curvature on the
brane with bulk curvature is given by the Gauss-Codazzi
equations. This can be further contracted to determine the
projection of the bulk Einstein’s equations on the brane.
Since we are considering the case of vacuum brane, there is
no matter energy momentum tensor on the brane. However,
there is a nonzero brane tension λb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð6Λ=8πG5Þ

p
,

where G5 is the five-dimensional gravitational constant.
This choice of λb ensures that the effective four-dimen-
sional cosmological constant identically vanishes. Thus,
the “effective: gravitational field equations on the vacuum
brane take the following form:

ð4ÞGab þ Eab ¼ 0: ð6Þ

In the above expression, ð4ÞGab is the Einstein tensor
constructed exclusively using the metric induced on the
brane, i.e., hab. The other quantity appearing in Eq. (6)
corresponds to Eab ≡WACBDeAanCeBbn

D, where WABCD is
the bulkWeyl tensor and eAa ≡ ð∂xA=∂yaÞ is another way of
expressing the projector. Even though the bulk gravitational
field equations were purely Einstein in nature, the effective
theory on the brane inherits additional corrections over
and above the Einstein term and is related to the Weyl
tensor in the bulk.

ECHOES FROM BRANEWORLD BLACK HOLES PHYS. REV. D 101, 104014 (2020)

104014-3



A. Exact solution with negative tidal charge

It turns out that it is indeed possible to solve Eq. (6) in the
context of static and spherically symmetric vacuum
four-dimensional spacetime. The metric derived with the
above symmetry requirements has the following line
element [33]:

ds2 ¼ −
�
1 −

2M
r

−
Q
r2

�
dt2 þ

�
1 −

2M
r

−
Q
r2

�
−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð7Þ

The term ðQ=r2Þ is originating from the projection of the
bulk Weyl tensor, i.e., Eab, the correction term in the
effective gravitational field equations. The metric structure
resembles the Reissner-Nordström solution, since the
tensor Eab coming from bulk geometry has a structure,
similar to that of the energy momentum tensor of a
Maxwell field. Thus, the charge parameter Q must have
its origin in the bulk spacetime, whose understanding
requires extending the brane solution into the bulk. This
can be achieved by starting with an ansatz for the bulk
spacetime, which can reproduce the correct solution on the
brane, and then solving for the unknown functions using
the evolution equation for the extrinsic curvature. Such an
evolution is not possible analytically; rather, one must look
for numerical techniques to solve them. This was achieved
in Ref. [46], where care was taken so that at each stage of
the evolution the Hamiltonian and momentum constraint
equations were satisfied. Such an analysis reveals that the
horizon indeed penetrates into the bulk up to a certain
distance, which depends on the tidal charge parameterQ. In
particular, as the tidal charge parameter increases, the
extent of the horizon in the bulk spacetime decreases;
i.e., the black hole becomes more and more localized. Thus,
the tidal chargeQ can be taken to be a parameter estimating
the extension of the black hole horizon in the bulk
spacetime. As the numerical analysis of Ref. [46] demon-
strates, as far as the evolution of the brane into the bulk is
considered, there is no restriction on the tidal charge Q
from bulk dynamics.
It should be emphasized that, despite the superficial

similarity of the metric presented in Eq. (7) with the
Reissner-Nordström solution, the solution is actually asso-
ciated with vacuum spacetime, where Q is appearing (with
a distinctive negative sign before it) due to the existence of
the extra dimension. To reiterate, in Reissner-Nordström
metric the coefficient of the ð1=r2Þ term, defined as the
electric charge, is always positive, while here the coef-
ficient of the ð1=r2Þ term can have negative sign, and it is
defined as the tidal charge.1 In particular, when Q > 0, the

coefficient of ð1=r2Þ term has a negative sign and is a
distinctive signature of the presence of higher spacetime
dimensions. Given the structure of the metric as depicted
in Eq. (7), one can easily read off fðrÞ ¼ hðrÞ ¼
1 − ð2M=rÞ − ðQ=r2Þ and use this functional form in
Eq. (4) in order to determine the potential a massless
scalar field experiences when living on this black hole
spacetime. For illustrative purposes and keeping in mind
future applications, we have depicted the potential asso-
ciated with the evolution of a massless scalar field in the
above black hole background for different values of the
tidal charge Q in Fig. 1. As evident from Fig. 1, with larger
and larger values of the tidal charge parameterQ, the height
of the potential decreases, and the location of the maxima
of the potential shifts to the larger radial distances. As we
will demonstrate, these features will have significant
implications on the ringdown phase of the black hole.
From the perspective of an observer located on the brane

hypersurface, the above metric with positive Q, i.e.,
negative tidal charge, inherits a single horizon located at

rh ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
. Thus, one may interpret this solution

as a black hole solution with a horizon, from the perspec-
tive of a four-dimensional observer. The above result also
demonstrates another nontrivial feature associated with this
solution as it admits a single horizon, unlike the Reissner-
Nordström solution, which possesses two horizons.
Further, note that, unlike the case of Reissner-Nordström
black hole, the existence of horizon does not enforce any
condition on the tidal charge parameter Q. The only
constraint on Q may come from local physics, e.g.,
perihelion precession and bending angle measurement from
Sun, where one obtains ðQ=M2Þ ≲ 0.1 [55]. However, this
assumes a certain behavior for the interior of the star, which
need not be true. It is even possible to design the stellar
interior, such that the external spacetime is identical to

FIG. 1. The maxima of the potential is at rmax ∼ 3M, forQ ¼ 0,
but as we can see, with the increasing value of the tidal charge, the
peak of the potential decreases, and the maxima shifts toward
larger and larger values of the radial coordinate. This will have
serious implications for the echoes.

1It enters the metric as an integration constant, but one can
think of the tidal charge as an effective charge parameter
containing the information about the extra dimension.
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Schwarzschild. However, for black holes, the external
geometry is still given by Eq. (7). Hence, it is indeed
possible that black holes have larger values of the tidal
charge parameter. A further hint for larger value for tidal
charge parameter follows from black hole shadow meas-
urement, where the observations were consistent with
Q=M2 ∼ 1 [34]. Thus, a priori larger values for the tidal
charge parameter cannot be ruled out. Further, in the
AdS=CFT perspective, such a tidal charge parameter must
have its origin in the backreaction of the CFT on the brane,
which makes Q related to energy scale of the CFTwith the
possibility of running in the strong gravity regime. This
also makes a strong case for larger values of the tidal charge
parameter Q.
To infer the true nature of this horizon, i.e., whether it

is an event horizon, one needs the global structure of the
spacetime, which includes the bulk geometry as well. In
the context of the brane metric presented in Eq. (7), one
can integrate the evolution equations for the extrinsic
curvatures into the bulk, while the constraint equations
take care of the accuracy of the method. Since the bulk
inherits a negative cosmological constant, the volume
decreases exponentially as one probes more and more
into the bulk geometry; thus, after certain length scale
into the bulk, the numerical evolution cannot be con-
tinued any further. However, it turns out that in the above-
mentioned scheme of evolution into bulk, the surface
r ¼ rh appears as an apparent horizon, i.e., the outermost
surface having a negative expansion for the outgoing null
geodesic congruence [46].

B. Quantum corrections at the horizon

As we demonstrated earlier, the extension of the black
hole spacetime on the brane hypersurface, presented in
Eq. (7), into the bulk geometry makes the surface r ¼ rh an
apparent horizon. Thus, it is no longer justified to introduce
a purely ingoing boundary condition at r ¼ rh. Further
motivation and support for the above statement originates
from considering the AdS=CFT duality, according to which
the boundary theory of an AdS bulk is a CFT. In the
Randall-Sundrum (RS) braneworld scenario, we have a
similar setup where our Universe is assumed to be a
hypersurface in a AdS5 bulk spacetime. As a consequence
of this, the zero mode of the five0dimensional gravity gets
trapped on the brane, inducing four-dimensional gravity
coupled to the dual CFT on the brane. Thus, the holo-
graphic interpretation of the RS scenario states that the
classical bulk dynamics is dual to four-dimensional gravity
coupled to a cutoff CFTon the brane. This would imply that
black holes localized on the brane are always quantum
corrected, since there would be a backreaction on them due
to the CFT coupling [50–52]. The quantum interpretation
of the black holes on the brane further explains why static
solutions were hard to obtain on the brane which has a
pathology free bulk extension. It was further shown that the
correction to Newtonian potential in the RS scenario [56]

can be accounted from the one loop correction to the
graviton propagator [57].
Following such discussions regarding quantum correc-

tions at the horizon for brane localized black hole, in
Ref. [52], a plausible “quantum” modification of the
horizon, due to the bulk dynamics, was studied. This
was achieved by investigating the null geodesics related
to the massive KK mode trajectories in the bulk. It was
demonstrated that the apparent horizon of the brane
localized black hole indeed gets shifted due to quantum
corrections and is given as

ΔrðbraneÞh ≡ ϵ ∼
N2l2p
M

; ð8Þ

where lp is the four-dimensional Planck length, M is the
black hole mass, and N are the degrees of freedom of the
dual CFT living on the brane. Note that the above result is
forG ¼ 1 ¼ c unit. If we want to restore the units, then, the
black hole mass must be replaced by GM=c2. For a black
hole of mass 1 M⊙, the quantity GM=c2 ¼ 1.48 × 103 m,
while GM=c3 ¼ 0.49 × 10−5 s. Using the holographic
principle, the effective CFT degrees of freedom N can
be written as

N2 ∼
�
L
lp

�
2

∼ 1030
�

L
1 mm

�
2

; ð9Þ

where L is the bulk AdS radius and one can impose bounds
on L from various observations since it would also
determine the lifetime of a black hole [58] as well as the
extent of the extra dimension. Other evidence for the
quantum corrected black holes based on the holographic
interpretation of Randall-Sundrum-2 model was provided
in Ref. [51], where it was argued that the quantum
corrections due to backreaction will act on the
Schwarzschild metric localized on the brane and thus
would modify the classical horizon.

C. Boundary condition at the horizon

Having elaborated on the black hole solution derived
from the effective gravitational field equations as well as
possible quantum modifications to the horizon, we now
turn our attention to the discussion of the boundary
condition at the apparent horizon and how it may depend
on the quantum effects near the horizon. The scalar field as
well as the horizon is affected by the existence of bulk
spacetime, through either the potential in the Klein-Gordon
equation or quantum corrections. Thus, it is safe to assume
that the boundary condition at the (apparent) horizon need
not be strictly ingoing as it would have been for the case for
an event horizon in a static black hole spacetime.
To quantify this speculation, we assume that the

black hole will partially reflect the ingoing scalar modes.
Further, to make things simple, we will assume following
Refs. [13–15] and the discussion leading to Eq. (8) that
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there is a membrane outside the horizon, at r0 ∼ rh þ ϵ due
to some quantum effects, possibly originating from the
backreaction of the CFT on the brane, a consequence of
the AdS=CFT correspondence. Such quantum effects
naturally lead to reflecting boundary conditions at r0 (at
least for frequencies less than Hawking temperature [14]).
To be consistent with the semiclassical gravity on the brane,
we place the membrane at η times the Planck proper length
away from the horizon, motivated by Eq. (8). Thus, we
have the following relation determining the parameter η,
which encapsulates the modifications to the location of the
horizon:

Z
rhþϵ

rh

ffiffiffiffiffiffi
grr

p
dr ∼ ηlp: ð10Þ

Solving the integral in the near-horizon limit, one can fix
the location of the membrane,2 i.e., η in terms of black hole
parameters and Planck length lp, as

η2 ∼
N2

M
4r2h

ðrh − r0Þ ¼ 2N2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQ=M2Þ

p
Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðQ=M2Þ
p ; ð11Þ

where r0 ≡M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
is introduced in the above

expression for later convenience. Even though r0 has
similarity with the inner horizon of a Reissner-
Nordström black hole, in the present context with negative
tidal charge, i.e., positive values of Q, it does not represent
any physical length scale associated with the system. It
further follows from the above expression that η2 ∼ N2, and
for L ¼ 1 mm, it follows that η2 ∼ 1030. Thus, the mem-
brane is located at ∼10−18 m. Note that the smaller the AdS
radius, the smaller the value of η, and hence the location
of the membrane depends strongly on the AdS curvature
scale. Thus, the presence of the extra dimension and its
length indeed affects the location of the membrane, and as
we will demonstrate, this in turn will affect the echo
spectrum. Hence, echoes have a direct correspondence
with the length of the extra dimension.

IV. STRUCTURE OF QUASINORMAL
MODES AND ECHO

In this section, we solve for the QNMs associated with
the scalar field perturbation in the background spacetime
described by the metric presented in Eq. (7). In the case of

classical black holes, the boundary condition at the horizon
will be ingoing (for such a boundary condition, the QNM is
calculated in Ref. [59]); however, as argued above, the
apparent horizon r ¼ rh will be modified due to quantum
effects from the coupled CFT, so it gives us the freedom to
introduce a reflecting boundary condition at the horizon, or
at a surface Planck proper length away from it.
In the general context, it is not possible to determine the

QNMs analytically, but in the regime Mω ≪ 1,3 one can
determine the QNMs using analytical techniques as we will
now demonstrate. We will follow the approach used in
Refs. [61–63] by matching the asymptotic expansion with
the corresponding solution in the near-horizon regime and
hence solving for the discrete frequencies of the QNMs
associated with the spacetime described in Eq. (7). In brief,
we solve the radial part of the scalar wave equation in the
near-horizon limit as well as in the asymptotic regime, and
then we match the solutions in an overlapping region
defined as M ≪ ðr − rhÞ ≪ 1=ω, leading to the frequen-
cies of the discrete tower of the QNMs.

A. Asymptotic solutions

In this section, we will take the first step in obtaining
analytical solutions for the QNMs, by determining the
asymptotic behavior of the solutions. For simplicity,
we introduce the definition Δ≡ r2 − 2Mr −Q ¼
ðr − rhÞðr − r0Þ, where, as mentioned earlier, r0 ¼
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
is used just as a notation; it does not

represent any physical horizon. Thus, plugging the space-
time metric presented in Eq. (7) in the wave equation, i.e.,
Eq. (5) and using the result r2

ffiffiffiffiffiffi
fh

p ¼ Δ, we get

Δ∂rðΔ∂rRlmÞ þ ½r4ω2 − Δlðlþ 1Þ�Rlm ¼ 0: ð12Þ

Since we are interested in the asymptotic behavior of this
differential equation, we use the result that asymptotically
Δ ∼ r2, and thus Eq. (12) takes the following form:

∂rðr2∂rRlmÞ þ ½r2ω2 − lðlþ 1Þ�Rlm ¼ 0: ð13Þ

This differential equation can be solved in terms of
spherical Bessel functions as

Rlm ¼ 1ffiffiffi
r

p fαJlþ1=2ðωrÞ þ βJ−l−1=2ðωrÞg; ð14Þ

2Even though the black string solution used in Ref. [52], to
conclude about the quantum ergosphere, does not take into
consideration the effect of the tidal charge, we use the induced
black hole metric on the brane with the tidal charge parameter to
make the argument more general while capturing the quantitative
behavior of the presence of any quantum effects in the near-
horizon region. Also, in the Q ∼ 0 limit, the black hole metric, as
presented in Eq. (7), reduces to the form that was used in
Refs. [44,52].

3For studying the gravitational wave echoes, this is the most
interesting regime since they are obtained from the ringdown
signal after the merger, which initially is mostly dominated by the
black-hole-like QNMs and subsequently decay with time. The
photon sphere, corresponding to the maxima of the potential,
acts as a high-pass filter. This decreases the frequency content for
each subsequent echo. Hence, at late times, the low-frequency
approximation becomes more accurate [60].
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where α and β are arbitrary constants of integration. This
solution is in the asymptotic regime, while we want to
match this solution with the near-horizon solution in the
intermediate regime. Thus, we consider the small r limit of
the above equation, yielding

Rlm ∼ α
ðω=2Þlþ1=2

Γðlþ 3=2Þ r
l þ β

ðω=2Þ−l−1=2
Γð−lþ 1=2Þ r

−l−1: ð15Þ

To arrive at the above expression, we have used the
following expansion of the Bessel function for small values
of r, JbðrÞ ¼ f1=Γðbþ 1Þgðr=2Þb.
Along identical lines, we can also determine the behavior

of the solution written down in Eq. (14) for large values of
the radial coordinate r, which yields

Rlm ∼
1

r

ffiffiffiffiffiffi
2

πω

r
½α sinðωr − lπ=2Þ þ β cosðωrþ lπ=2Þ�:

ð16Þ

We will need both the small r as well as large r behavior of
the solution, as presented above, in the next section when
we include appropriate boundary conditions and solve for
the frequencies of the QNMs.

B. Near-horizon solutions

As in the above section, we can perform a similar
computation and write Eq. (12) in the near-horizon limit,
i.e., r ∼ rh. In this context, it is useful to define a new
variable,

x ¼ r − rh
rh − r0

; ∂x ¼ ðrh − r0Þ−1∂r: ð17Þ

Using this, we can express the metric components, which
effectively are determined by the quantity Δ alone, in terms
of the newly defined variable x as

Δ ¼ ðr − rhÞðr − r0Þ ¼ xðxþ 1Þðrh − r0Þ2: ð18Þ

Thus using this result as well as the near-horizon approxi-
mation appropriately, from Eq. (12), we obtain the follow-
ing form for the differential equation depicting radial
evolution of the scalar field:

ðrh − r0Þ4xðxþ 1Þ∂xfxðxþ 1Þ∂xRlmg
þ fω2r4h − ðrh − r0Þ2xðxþ 1Þlðlþ 1ÞgRlm ¼ 0: ð19Þ

Redefining the frequency ω appearing in the above
expression as ω̄≡ ωr2h=ðrh − r0Þ, the above differential
equation, presented in Eq. (19), can be reexpressed as

x2ðxþ 1Þ2∂2
xRlm þ xðxþ 1Þð2xþ 1Þ∂xRlm

þ fω̄2 − ðxðxþ 1Þlðlþ 1ÞgRlm ¼ 0: ð20Þ

At this stage, it is instructive to define a new radial function
FlmðrÞ such that RlmðrÞ ¼ ð1þ xÞiω̄x−iω̄FlmðrÞ, and per-
forming a change of variable z≡ 1 − x, Eq. (19) can be
presented in the known hypergeometric form, which reads

zð1 − zÞF00
lm þ fð1 − 2iω̄Þ − 2zgF0

lm þ lðlþ 1ÞFlm ¼ 0:

ð21Þ

The solution of the above equation can be expressed in
terms of hypergeometric functions and hence determine
FlmðzÞ as a suitable linear combination of these hyper-
geometric functions, from which one can reverse the
transformation and read of the scalar perturbation Rlm,
which in terms of the variable x takes the form

Rlm ¼ ð1þ xÞiω̄½Ax−iω̄2F1ð−l;lþ 1; 1 − 2iω̄;−xÞ
þ Bxiω̄2F1ð−lþ 2iω̄;lþ 1þ 2iω̄; 1þ 2iω̄;−xÞ�;

ð22Þ

where A and B are arbitrary constants of integration. For
small values of x, i.e., closer to the horizon, we can expand
the hypergeometric functions and obtain the following
power law solution:

Rlm ∼ Ax−iω̄ þ Bxiω̄: ð23Þ

On the other hand, we need to obtain the behavior of the
near-horizon solution in the large r regime, in order to
match with the asymptotic solutions in the small radial
distance limit, obtained in Eq. (15). For large values of x
(or, equivalently r), we can expand the hypergeometric
functions as power series in the radial distance. Keeping the
leading-order terms in the expansion, and using suitable
identities involving Γ functions, we finally arrive at the
following expression for the radial perturbation Rlm
associated with the scalar field:

Rlm ∼
�

r
rh − r0

�
l Γð2lþ 1Þ
Γðlþ 1Þ

�
A

Γð1 − 2iω̄Þ
Γð1þ l − 2iω̄Þ

þ B
Γð1þ 2iω̄Þ

Γðlþ 1þ 2iω̄Þ
�

þ
�

r
rh − r0

�
−l−1 Γð−2l − 1Þ

Γð−lÞ
�
A

Γð1 − 2iω̄Þ
Γð−l − 2iω̄Þ

þ B
Γð1þ 2iω̄Þ
Γð−lþ 2iω̄Þ

�
: ð24Þ

Thus, we have both the asymptotic as well as near-horizon
solutions, along with their expansions in the intermediate
overlapping region as well as in the asymptotic and
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near-horizons regimes. We will now apply suitable boun-
dary conditions on the asymptotic and near-horizon form of
the solutions to fix the arbitrary constants appearing in
Eqs. (14) and (22), respectively, whose subsequent match-
ing in the intermediate region will lead to an estimation of
the frequencies of the QNMs.

C. Boundary conditions and QNMs

To obtain the QNMs, we need to impose specific
boundary conditions at the horizon and at asymptotic
infinity. Since these boundary conditions are imposed on
the ingoing and outgoing modes, it will be beneficial to
pause for a while and understand the ingoing and outgoing
modes. In this context, it would be helpful to introduce
the tortoise coordinate, which for the static and
spherically symmetric metric written down in Eq. (1)
can be calculated from the following differential relation
dr� ¼ f1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞhðrÞp gdr. Performing the integration, the
tortoise coordinate in this particular context of a brane
localized black hole with a negative tidal charge, yields

r� ¼
Z �

1 −
2M
r

−
Q
r2

�
−1
dr

¼
Z

r2dr
ðr − rhÞðr − r0Þ ≃

Z
r2hdx

xðxþ 1Þðrh − r0Þ ; ð25Þ

where in the last line we have used near-horizon approxi-
mation. The near-horizon approximation is also manifested
by the limit in which x is small, and hence the above
integral yields

x ∼ exp
	
r�

�
rh − r0

r2h

�

; ð26Þ

since at infinity, r� ∼ r, there is no point in doing this integral
in that regime separately. As far as the boundary conditions
are concerned, at infinity, we impose the condition that only
outgoing waves are present. Hence, we set the ingoing part,
i.e., coefficient of expð−iωrÞ appearing in Eq. (16), to zero
and get the following condition;

β ¼ −iαeiπl: ð27Þ
Similarly, near the apparent horizon, i.e., at r ¼ r0 ∼ rh þ ϵ,
it is legitimate to introduce a reflective boundary condition
with reflectivity R.4 This yields

B
A
x2iω̄0 ¼ −R; ð28Þ

where x0 ¼ xðr ¼ r0Þ, i.e., represents the value of the
function xðrÞ on the stretched horizon. Furthermore, note
that for perfectly reflective boundary condition we have
R ¼ 1, and it follows from Eq. (28) that the field identically
vanishes on the reflecting surface r ¼ r0.
Thus, using the boundary conditions at asymptotic

infinity and in the near-horizon regime, we have eliminated
two unknown constants, appearing in the solution.
However, there are still two more unknown constants
present in the solutions. To fix these, we match the near-
horizon solution presented in Eq. (24) with the far region
solution written down in Eq. (15); this yields

B
A
¼ −

Yl
n¼1

�
nþ 2iω̄
n − 2iω̄

�

×

�
1þ 2Lðrh − r0Þ2lþ1ω̄ω2lþ1

Q
l
n¼1ðn2 þ 4ω̄2Þ

1 − 2Lðrh − r0Þ2lþ1ω̄ω2lþ1
Q

l
n¼1ðn2 þ 4ω̄2Þ

�
;

ð29Þ

where the quantity L appearing in the above equation is
defined as

L≡ πfΓðlþ 1Þg2
22lþ2Γðlþ 3=2ÞΓð2lþ 2ÞΓð2lþ 1ÞΓðlþ 1=2Þ :

ð30Þ

As evident, from Eqs. (28) and (29), we can eliminate the
ratio (B=A) and obtain at x0, i.e., on the stretched horizon,
the following expression:

x2iω̄0

Yl
n¼1

�
nþ 2iω̄
n − 2iω̄

�

×

�
1þ 2Lðrh − r0Þ2lþ1ω̄ω2lþ1

Q
l
n¼1ðn2 þ 4ω̄2Þ

1 − 2Lðrh − r0Þ2lþ1ω̄ω2lþ1
Q

l
n¼1ðn2 þ 4ω̄2Þ

�
¼ R:

ð31Þ

Unfortunately, this equation cannot be solved in general
using analytical methods in order to get the QNM fre-
quency ω, and we must resort to numerical techniques,
which are discussed in the next section. However, under
certain reasonable assumptions, this equation reduces to a
much simpler form, and it is possible to determine the
frequencies of the QNMs analytically. First of all, we have
to work in the small-frequency approximation; i.e., we will
work in the limit of small ω. If we further assumeMω ≪ 1
and the real part of ω is much larger than the imaginary
part, then the above equation can be written down as
R ¼ x2iω̄0 . This can be reexpressed using Eq. (26) as

jRjeiðδþ2nπÞ ¼ exp ½2iω̄r0�ðrh − r0Þ=r2h�; ð32Þ

4As black holes on the brane have a natural quantum
interpretation [50], and hence following Ref. [11], we should
have used the Boltzmann reflectivity, but here for simplicity, we
are choosing a frequency independent reflectivity of the horizon
to demonstrate the effect of the tidal charge on the ringdown
spectrum.
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where δ is a phase factor depending on the details of the
reflective membrane and n is an integer. From this, we can
determine the real part of the quasinormal mode frequency
ω as

ReðωÞ ∼ ðnπ þ δ=2Þ
r0�

¼ 2ðnπ þ δ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
r2h ln ½ϵ=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
Þ�
; ð33Þ

where we have expressed the term r0� appearing in the
above equation in terms of the black hole parameters and
horizon radius as

r0� ¼
r2h

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p ln

�
ϵ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
�
: ð34Þ

To determine the imaginary part of QNM frequency ω, we
can add a small imaginary part to the real part, i.e.,
ω ∼ ReðωÞ þ iΩ, and treat Ω in a perturbative manner.
Thus, the redefined frequency ω̄ becomes ω̄∼Reðω̄Þþ iσΩ,
where σ ¼ r2h=ðrh − r0Þ. Performing the previous calculation
with the small imaginary frequency thrown in, we get from
Eq. (31) the following relation:

x2iReðω̄Þ0 x−2σΩ0

Yl
n¼1

�
nþ 2iReðω̄Þ
n − 2iReðω̄Þ

��
1þ 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1

Ql
n¼1fn2 þ 4Reðω̄Þ2g

1 − 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1
Q

l
n¼1fn2 þ 4Reðω̄Þ2g

�
¼ R: ð35Þ

This algebraic equation can also be solved analytically under the same set of assumptions as before, and hence using the
assumption for small Mω as well as ω̄, we get the following simplified form of the above equation:

x2σΩ0 ∼
1þ 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1

Q
l
n¼1fn2 þ 4Reðω̄Þ2g

1 − 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1
Q

l
n¼1fn2 þ 4Reðω̄Þ2g

1

R
: ð36Þ

The imaginary part of ω can be immediately determined by solving the above equation, yielding

ImðωÞ ¼ Ω ∼
1

2r0�
ln
�
1þ 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1

Ql
n¼1fn2 þ 4Reðω̄g2Þ

1 − 2Lðrh − r0Þ2lþ1Reðω̄Þω2lþ1
Q

l
n¼1fn2 þ 4Reðω̄g2Þ

1

R

�

¼ 2LReðωÞ½ReðωÞðrh − r0Þ�2lþ1

�
r2h

ðrh − r0Þr0�

�
−
lnðRÞ
2r0�

; ð37Þ

where we have expanded the Logarithmic term in a power
series and have kept the leading-order term in the ex-
pansion. We note that the real part of the QNM does not
explicitly depend on the reflectivity of the membrane near
the horizon but is sensitive to the position of the membrane,
while the imaginary part depends both on the reflectivity, as
well as on the location of the membrane, through the real
part of the QNM frequency. As mentioned earlier, these are
derived in the low-frequency regime and hence are not
applicable for any general frequency. To remedy this issue,
we will determine the QNMs numerically in the next
section.
To summarize, we have solved the perturbation equation

due to a scalar field in the spacetime described by Eq. (7) in
two limits. First is in the asymptotic region, where the
solutions are given by Bessel functions and in the near-
horizon regime, with hypergeometric functions. This brings
in four unknown constants. Two of them got fixed by
imposing the condition that at infinity the field modes are
outgoing, while near the horizon, there are ingoing and
outgoing modes with some reflectivity. The other two
constants are fixed by matching the large r and near-
horizon solution in an intermediate region, which in turn

yields an equation determining the quasinormal modes.
The most important and nontrivial step in the above
analysis is the matching of the asymptotic solution with
the near-horizon solution, which becomes possible as the
small r behavior of the asymptotic solution and the large r
behavior of the near-horizon solution is identical.

V. NUMERICAL ANALYSIS OF THE RINGDOWN
PHASE AND ECHOES

As we assume a reflective boundary condition while
computing the QNMs by solving Eq. (28), where the
ingoing wave is (partially) reflected by some membrane
close to the horizon, copies of the reflected wave reach
infinity after a time delay. This time delay can be calculated
as the time it takes for the wave to travel in between the
maxima of the potential (located at the photon circular orbit
rph) and the membrane close to the horizon (located at
r0 ∼ rh þ ϵ). As mentioned earlier, such a reflective boun-
dary condition originates from the quantum nature of brane
localized black hole, wince the primary ringdown signal is
coming through the potential and the secondary echoes
come after getting reflected from the potential and then
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from the stretched horizon at r0. This induces a time delay
Δt in arrival of the secondary echoes, given as

Δt ≃ 2

Z
rph

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞp : ð38Þ

For the metric given by Eq. (7), the integrand is the same as
the tortoise coordinate calculated in Eq. (25), except for the
specific limits used in this integral. Thus, taking a cue from
Eq. (25), we get

Δt ¼ 2

Z
rph

rhþϵ

r2dr
ðr − rhÞðr − r0Þ

¼ 2rph − 2rh − 2ϵþ 2
r2h

rh − r0
ln

�
rph − rh

ϵ

�

− 2
r02

rh − r0
ln

�
rph − r0

rh − r0 þ ϵ

�
: ð39Þ

It is interesting to note that the time delay is dependent on
the value of the tidal charge Q as rh, r0, and rph depends on
Q. Hence, the arrival of secondary echoes will depend on
the value of Q. This is better illustrated in Fig. 2, in which
we have explicitly depicted how the relative echo time
(time delay Δt, normalized by Δt for vanishing tidal
charge) changes with the change in the tidal charge Q.
This will be verified later on through numerical analysis of
the spectrum for quasinormal modes.
Pushing forward, we solve for the scalar perturbation

equation expressed in Eq. (5) numerically, assuming a
reflective boundary condition at the horizon and obtain
the QNMs. As the analytic approach is valid in the

low-frequency range only, we use numerical methods to
obtain the echo spectrum for different values of Q to
demonstrate what kind of effect the tidal charge Q has on
the ringdown spectrum. If we assume that a primary signal
is produced at the maxima of the potential, i.e., near the
photon sphere, due to perturbation of the black hole, the
echo waveform is given by the linear combination of
the QNMs. This can be written as

ΨðtÞ ¼
X∞
n¼−∞

cne−iωnt; ð40Þ

where the coefficients cn are the complex amplitude of the
QNMs. For determining the amplitude, one can use various
analytical templates [60,64] after taking the primary signal
to be the same as the black holes fundamental QNM. Using
the ωn as we obtained by solving Eq. (31) numerically and
choosing a suitable initial condition, one can obtain the
waveform from Eq. (40).
Having derived the waveform and hence the quasinormal

modes using numerical analysis, one can check the validity
of the analytical approximations presented in the previous
section, by direct comparison. In particular, the validity of
the matching of the asymptotic and near-horizon solution,
in the intermediate region, can also be tested by comparing
with the numerical estimation for the quasinormal modes.
To see this explicitly, we have presented both the analytical
and numerical estimations of the three lowest-lying qua-
sinormal modes in Table I, which explicitly demonstrates
the nice match between both the estimations. This suggests
that the analytical approximations are good enough so that
the analytical estimation of the quasinormal modes matches
with numerical results.
The result of such an analysis and the resulting wave-

form has been presented in Fig. 3 for three different choices
of the tidal charge parameter Q. We observe that the echo
waveforms depict a significant departure from general
relativistic prediction as the value of the tidal charge
parameter is increased. In particular, with the increase of
the tidal chargeQ, the echoes arrive at a later instant of time
than their general relativistic counterparts. For example, if
we consider the tidal charge parameterQ=M2 ∼ 1, the echo

TABLE I. Numerical and analytical estimations of the three
lowest-lying quasinormal modes for the braneworld black hole
have been presented for ðQ=M2Þ ¼ 0.1. As evident, the numeri-
cal and analytical estimates match quite well. This shows the
usefulness of the analytical approximations for computations of
the quasinormal modes.

n Numerical Analytic

0 0.023-i 3.758 × 10−4 0.022-i 3.663 × 10−4

1 0.069-i 3.755 × 10−4 0.067-i 3.66 × 10−4

2 0.115-i 3.750 × 10−4 0.119-i 3.654 × 10−4

FIG. 2. From the analytic expression of the time delay Δt,
leading to echo in the quasinormal mode spectrum, as presented
in Eq. (39), we can see that Δt depends on the tidal charge Q as
the position of the photon sphere as well as the horizon depends
on it. Following this, we have plotted the variation of the time
delay Δt with the tidal charge parameter Q, normalized to the
time delay for Q=M2 ¼ 0. This explicitly demonstrates that the
relative time delay increases with an increase in the tidal charge
parameter Q.
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arrival time would increase by approximately 3% (see
Fig. 2), which is roughly the level of precision for
measurement of echo time at current instrumental sensi-
tivities (e.g., Eq. (6) in Ref. [13]).
This provides a very distinct signature of the existence of

extra dimensions in the context of black hole echoes and
could help to break the potential degeneracies between

various parameters in the merger/ringdown signals. The
physics behind such a difference can be understood along
the following lines: as the negative tidal charge parameter
Q gets larger and larger, the effective potential experienced
by the outgoing waves decreases in height but is also farther
and farther away from the stretched horizon. Thus, the time
delay increases with increasing Q. This results in the out-
of-phase behavior of the echoes. The difference in the time
delay between two consecutive echo signals for different
values of Q can be also seen from the analytic expression
(39) for the time delay, which increases with the increase
of the tidal charge Q (also see Fig. 2). Thus, not only are
echoes more natural in the braneworld scenario, but they
also carry distinct signature of the existence of higher
dimensions, which can be probed by considering the time
delay of the echoes.
Another point must be emphasized here: apparently, the

theory presented above has two independent parameters ϵ
and Q. This shows that there can be a potential degeneracy
between these two parameters and hence it may not be
possible to see the effect of the tidal charge unless some
understanding of ϵ is present. This is not really the case
for two separate reasons. First of all, as the tidal charge
parameter gets modified; besides shifting of the maxima of
the potential, the height of the potential also changes (see
Fig. 1). Hence, an increase in the tidal charge will not only
change the echo time delay (which can also be changed by
changing ϵ) but will also change the amplitude of the
echoes. Such a change in amplitude cannot brought in by ϵ.
Second, in the present context, ϵ crucially depends on the
degrees of freedom of the boundary CFT, which in turn
depends on the length scale of the AdS bulk. The AdS
length scale is related to the horizon size into the bulk,
which has nontrivial dependence on the tidal charge. Thus,
in this sense, ϵ and Q are really not independent, though a
straightforward analytical relation does not exist.
Besides exploring the ringdown phase, a proper under-

standing of the inspiral phase is also important to provide a
numerical estimate for the tidal charge parameter. In
particular, it is important to develop the gravitational
waveform, properly tuned with the effective gravitational
field equations on the brane. However, calculating the
gravitational waveforms of merging black holes in higher
dimensions is currently beyond our scope. We do believe
that it will be of utmost importance to address this issue, as
future generations of gravitational wave detectors come
into the picture. In summary, our results provide the basic
landscape on which we would like to improve upon in the
future by further refining our analysis, e.g., including the
inspiral part of black hole merger with appropriate
wave forms.

VI. DISCUSSION

In the paradigm of AdS=CFT conjecture, the black holes
localized on the brane are necessarily quantum corrected

FIG. 3. The consecutive echoes along with the primary ring-
down waveform is shown for three different values of the tidal
charge, namely, ðQ=M2Þ ¼ 0, ðQ=M2Þ ¼ 1 and ðQ=M2Þ ¼ 10.
For this particular numerical analysis, we assumed ϵ ∼ 10−18 m,
which follows from the bulk AdS curvature scale ∼1 mm. As
evident from the figure, the echo time delay along with its
amplitude is sensitive to the choice of the tidal charge parameter
Q; in particular, the echo time delay increases with increase of
the tidal charge parameter. Thus, the echo spectrum is another
avenue to look for presence of extra dimensions and is intimately
related to the size of the extra dimension. See the text for more
discussion.
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due to the coupling of the gravity and the CFT on the brane
[50,51,65]. It is argued that there would be a difference
between the event horizon and the apparent horizon of the
black hole due to the backreaction of the CFT, which makes
the black hole dynamical (e.g., the black hole will undergo
Hawking radiation) [52]. Considering the dynamics of an
evaporating black hole, one can show that the difference
between these horizons would scale as l2p, and for evapo-
rating black holes on the brane, this would be much larger
and get multiplied by a factor of N2, the number of degrees
of freedom of the CFTon the brane (8). The quantum effects
on the horizon can have many nontrivial behaviors, in
contrast to those of a classical black hole, such as the
presence of the quantum ergosphere, and the backreaction
can make the horizon singular as well [49,51]. Without
going into the model-dependent details of these speculations,
it will be difficult to address the structure of the horizon in a
four-dimensional setting. However, it is clear that generically
the boundary condition at the outer apparent horizon need
not be purely ingoing. To quantify this, we assumed a
reflective membrane, a Planck proper length away from the
horizon. Thus, it naturally follows that the black holes
localized on the brane must inherit such quantum corrections
and as a consequence the natural boundary condition on the
horizon may not be strictly ingoing. Thus, an open-minded
reader may conclude that echoes may be natural biproducts
of braneworld black holes.
Following this argument, we have analyzed the structure

of the QNMs both analytically as well as numerically.
In the analytical estimation, we have solved the scalar
perturbation equation at the asymptotic region and the near-
horizon region. Subsequently, these solutions are matched
at the intermediate region along with purely outgoing
waves at infinity and partially reflecting wave at the
stretched horizon. This provides an approximation for
the real and imaginary parts of the QNM frequencies. It
turns out that analytical estimates are possible only in the
limit of small frequency. In a generic context, we have used
appropriate numerical techniques to determine the QNM
frequencies and have determined the waveform through
numerical integration. This results in the appearance of
echoes in the ringdown signal.
We have also explicitly demonstrated the dependence

of the echo spectrum on the tidal charge (see Fig. 3). In
particular, we have shown that the timescale of the echo,
Δt, is roughly given by

Δt ≃
2ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þQ
p ln

�
rh
Nlp

�
; ð41Þ

for nonspinning braneworld BH. Δt increases as the tidal
charge parameter, Q, is increased. This is easy to under-
stand from Fig. 1, since with the increasing tidal charge
the maxima of the potential goes to higher and higher radial
distance compared to the Q=M2 ¼ 0 case. Therefore, the
timescale for which the scalar modes are confined will

increase, leading to increased time delay. Thus, the pres-
ence of negative tidal charge will necessarily lead to an
echo spectrum, which becomes out of phase as time
progresses in comparison with the corresponding result
from general relativity. In particular, for a tidal charge
Q ∼M2, the arrival time of echoes can increase by
approximately 3% in comparison to general relativity,
which is at the current level of sensitivity of LIGO/
Virgo measurements [13]. In combination with the
merger/ringdown gravitational wave signal, this observa-
tion can provide a smoking gun for the existence of
negative tidal charge and hence of the extra spatial
dimension, if the detection of echoes is confirmed in
gravitational wave observations. Moreover, the location
of the reflective membrane, which is also intimately related
to the AdS radius, or, equivalently, to the extent of the extra
dimension, also has nontrivial implications for the echo
time delay. Hence, even the size of the extra dimension has
nontrivial implications for the echo spectrum from brane-
world black holes. Further, the case of braneworld black
hole also gives a compelling answer to the question of why
the horizon of a black hole should be reflective in nature.
For future directions, it will be interesting to provide an

observational constraint on the parameters for these higher-
dimensional black holes as that would require studying the
full gravitational perturbation and knowing the extension
of the brane localized black hole solution to the bulk,
following Refs. [27,40,66]. Extension for rotating brane
localized black holes is also an interesting extension of this
work and falls within the scope of a future application.
Understanding the case of rotating black holes is necessary
in order to make predictions about astrophysical black
holes, which will be important to connect with the present-
day observations. A recent work has shown the presence of
echoes for wormholes in the braneworld scenario [67],
which we wanted to explore as well. In addition, how the
quantum corrections due to the presence of CFT on the
brane will affect the black hole solution considered here
will be another interesting direction of exploration and will
be reported elsewhere.
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