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The equilibrium configuration of white dwarfs composed of a charged perfect fluid is investigated in the
context of the fðR; T Þ gravity, for which R and T stand for the Ricci scalar and the trace of the energy-
momentum tensor, respectively. By considering the functional form fðR; T Þ ¼ Rþ 2χT , where χ is the
matter-geometry coupling constant, and for a Gaussian ansatz for the electric distribution, some physical
properties of charged white dwarfs were derived, namely, mass, radius, charge, electric field, effective
pressure, and energy density; their dependence on the parameter χ was also derived. In particular, the χ

value important for the equilibrium configurations of charged white dwarfs has the same scale of 10−4 of
that for noncharged stars and the order of the charge was 1020 C, which scales with the value of one solar

mass, i.e.,
ffiffiffiffi
G

p
M⊙ ∼ 1020 C. We have also shown that charged white dwarf stars in the context of the

fðR; T Þ have surface electric fields below the Schwinger limit of 1.3 × 1018 V=m. In particular, a striking
feature of the coupling between the effects of charge and fðR; T Þ gravity theory is that the modifications in
the background gravity increase the stellar radius, which in turn diminishes the surface electric field, thus
enhancing stellar stability of charged stars in comparison with general relativity (GR) theory. Most
importantly, our study reveals that the present fðR; T Þ gravity model can suitably explain the super-
Chandrasekhar limiting mass white dwarfs, which are supposed to be the reason behind the overluminous
SNeIa and remain mostly unexplained in the background of GR.

DOI: 10.1103/PhysRevD.101.104008

I. INTRODUCTION

With the recent pioneering observations, such as super-
novae of type Ia [1,2], baryon acoustic oscillations [3],
Planck data [4], cosmic microwave background radiation
[5,6], and redshift supernovae [7], it is evident that
presently our Universe is going through the accelerated
expanding phase which hardly can be explained through
the most successful general relativity (GR) theory. The
most standard way out to explain the present observed
cosmological dynamics appeared as the inclusion of the
cosmological constant ðΛÞ into the Einstein gravitational
field equation which also provided fine agreement with the
observed data by considering the presence of a hypothetical
component known as the dark matter [8,9]. It is also largely
accepted that the sole reason behind the present accelerated
expansion phase of the Universe is actually another
mysterious component widely known as dark energy
[10–14] and appeared as the most successful avenue in
explaining the present cosmic dynamical phase until it

faced the major setback due to a huge mismatch of the
values of 120 orders of magnitude between the observa-
tionally achieved and theoretically predicted values of
Λ [15,16].
To overcome this situation, different researchers came up

with more sophisticated gravity theories by modifying the
Einstein-Hilbert action which gave rise to a new avenue
known as modified/extended gravity theories. Extended
theories of gravity have aroused as an opportunity to solve
problems which are still without convincing explanation
within the GR framework. The most famous modified
theory of gravity is the fðRÞ theory, which consists of
choosing a more general action to replace the Einstein-
Hilbert one, this is made by assuming that the gravitational
action is given by an arbitrary function of the Ricci scalar R
which can be found in literature Refs. [17–20]. Besides
fðRÞ gravity theory in recent times, the extended gravity
models that attracted attention of the researchers are
fðR;GÞ gravity [21,22], Brans-Dicke gravity [23,24],
fðTÞ gravity [25–27], etc., where G and fðTÞ are
Gauss-Bonnet and torsion scalar, respectively.*ddeb.rs2016@physics.iiests.ac.in
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Recently, Harko et al. [28] developed a further generali-
zation of the fðRÞ theory of gravity by choosing a
gravitational action as an arbitrary function of the Ricci
scalar and also the trace of the energy-momentum tensor T ,
which is called fðR; T Þ theory of gravity.Within this theory,
Solar System tests have been already performed [29,30].
Studies on compact astrophysical objects have also been
considered in the literature [31–34]. In particular, modified
theories of gravity have been shown to significantly elevate
the maximum mass of compact objects [34–38], which
means that fðR; T Þ is of particular interest for the hydro-
static equilibrium configuration of compact stars.
In what concerns to white dwarfs they are the final

evolution state of main sequence stars with initial masses
up to 8.5–10.6 M⊙. However, if the white dwarf (WD)
mass grows over 1.44 M⊙—known as Chandrasekhar mass
limit [39]—as in binary systems, where the main star is
receiving mass from a nearby star, a type Ia supernova
explosion may occur. However, with the recently observed
peculiar highly overluminous SNeIa, such as, SN 2003fg,
SN 2006gz, SN 2007if, SN 2009dc [40,41], it is possible to
confirm the existence of a huge Ni-mass which leads to the
possibility of massive super-Chandrasekhar white dwarfs
with mass 2.1–2.8 M⊙ as their most feasible progenitors.
To provide some physical mechanism where a super-

Chandrasekhar white dwarf could support the gravitational
collapse, a lot of works have bubbled in the literature with
different proposals. To cite some of them, we have general
relativistic [42,43], strong magnetic field [44–50], modified
theories of gravity [32,38,51–54], background gravity
corrections [55], rotation [56,57], noncommutativity
[58], and charge effects [59,60].
In addition, several authors have studied charged stars.

Within them, there are investigations about the influence of
the electrical charge distribution at the stellar structure of
polytropic stars [61–63], anisotropic stars [64], strange
stars [62,65] and white dwarfs [59,60]. In what concerns to
charged WDs, Liu and collaborators [59] found that the
charge contained in WDs can affect their structure; they
have larger masses and radii than the uncharged ones.
Moreover, Carvalho et al. have shown in their previous
work [60] that the increment of the total charge from 0 to
≈2 × 1020 C allows to increase the total mass in approx-
imately 55.58%, and for the large total charge, more
massive stellar objects are found.

Some works have also approached the coupling between
charge and fðR; T Þ gravity effects for stellar equilibrium
[33,66–68]. Those works showed in particular, that charged
objects have more stable configurations than noncharged
ones. They also showed that the energy conditions are
respected inside the compact objects.
Here in this work, we are particularly interested to study

the charge effects within the framework of the fðR; T Þ
gravity, for the hydrostatic equilibrium configurations of
white dwarfs. A few works [38,51,52,54,69,70] have
achieved stable stellar models to explain super-
Chandrasekhar white dwarfs in the background of the
different modified theories of gravity. Although few
researchers [53,71–73] have studied WD properties via
scalar-tensor or Horndeski theories, they have only derived
constraints on the parameters of the theories by comparing
their results with WD observational data and not discussed
the issue of super-Chandrasekhar white dwarfs that lie
in the range 2.1–2.8 M⊙. fðR; T Þ gravity has remarkably
explained both the late-time accelerated expanding phase of
the Universe in the large scale and also passed the solar
system test. Thus, it is also very important to study compact
stellar objects as the WDs in the framework of fðR; T Þ
gravity theory that has been done recently [32]. However,
the effects of fðR; T Þ gravity theory on the charged WDs
have never been done, and it is our primary motivation in
the present article. We shall find that our investigation
reveals that the present fðR; T Þ gravity model can suitably
explain the highly super-Chandrasekhar mass white dwarfs.
It will also be interesting to explore the effects of other
modified gravity theories, viz., scalar-tensor, Horndeski
theories, etc., on the WDs in future projects and compare
with the results of the present study.
The formalism of the fðR; T Þ gravity is revisited in

Sec. II, showing the basic equations and deriving the
hydrostatic equilibrium configurations for the charged case.
In Sec. III, we describe stellar properties that we assume,
namely, equation of state and electric charge distribution. In
Sec. IV, we outline our results and in Sec. V we present our
conclusions.

II. BASIC FORMALISM

A. f ðR;T Þ gravity
The modified form of the Einstein-Hilbert action in the

Einstein-Maxwell space-time is as follows [28]:

S ¼ 1

16π

Z
d4xfðR; T Þ ffiffiffiffiffiffi

−g
p þ

Z
d4xLm

ffiffiffiffiffiffi
−g

p þ
Z

d4xLe
ffiffiffiffiffiffi
−g

p
; ð1Þ

where Tμν is the energy-momentum tensor of the matter distribution, Lm represents the Lagrangian for the matter
distribution, and Le denotes the Lagrangian for the electromagnetic field.
Now, varying the action (1) with respect to the metric tensor component gμν, we obtain the field equations of the model in

fðR; T Þ gravity theory as follows [28]:
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Gμν ¼
1

fRðR; T Þ
�
8πTμν þ

1

2
fðR; T Þgμν −

1

2
RfRðR; T Þgμν − ðTμν þ ΘμνÞfTðR; T Þ þ 8πEμν

�
; ð2Þ

where we define fRðR; T Þ ¼ ∂fðR;T Þ
∂R , Θμν ¼ gαβδTαβ

δgμν , and fT ðR; T Þ ¼ ∂fðR;T Þ
∂T . Here □≡ ∂μð ffiffiffiffiffiffi−gp

gμν∂νÞ= ffiffiffiffiffiffi−gp
is the

D’Alambert operator, Rμν is the Ricci tensor, ∇μ represents the covariant derivative associated with the Levi-Civita
connection of gμν, Gμν is the Einstein tensor, and Eμν is the electromagnetic energy-momentum tensor.
We define Tμν and Eμν as follows:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð3Þ

Eμν ¼
1

4π

�
Fγ
μFνγ −

1

4
gμνFγβFγβ

�
; ð4Þ

where uμ is the four velocity which satisfies the conditions uμuμ ¼ 1 and uμ∇νuμ ¼ 0, respectively, ρ and p represent
matter density and pressure, respectively. In the present work, we consider Lm ¼ −p and we obtain Θμν ¼ −2Tμν − pgμν.
Now, the covariant divergence of Eq. (2) reads

∇μTμν ¼
fTðR; T Þ

8π − fTðR; T Þ
�
ðTμν þ ΘμνÞ∇μ ln fTðR; T Þ þ∇μΘμν −

1

2
gμν∇μT −

8π

fTðR; T Þ∇
μEμν

�
: ð5Þ

Now, if we consider the simplest linear form of the function fðR; T Þ as fðR; T Þ ¼ Rþ 2χT , where χ is the matter-
geometry coupling constant, and the field equation for fðR; T Þ gravity theory reads

Gμν ¼ ð8π þ 2χÞTμν þ 2χpgμν þ χT gμν þ 8πEμν ¼ 8πðTeff
μν þ EμνÞ ¼ 8πTab; ð6Þ

where Tab ¼ Teff
μν þ Eμν represents the energy-momentum tensor of the charged effective matter distribution and Teff

μν

represents energy-momentum tensor of the effective fluid, i.e., “normal” matter and the new kind of fluid which originates
due to the matter geometry coupling, given as

Teff
μν ¼ Tμν

�
1þ χ

4π

�
þ χ

8π
ðT þ 2pÞgμν: ð7Þ

Substituting fðR; T Þ ¼ Rþ 2χT in Eq. (5), we obtain

ð4π þ χÞ∇μTμν ¼ −
1

2
χ

�
gμν∇μT þ 2∇μðpgμνÞ þ

8π

χ
Eμν

�
: ð8Þ

B. Stellar equilibrium equations

Let consider the interior space-time is described by the metric as follows [74]:

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð9Þ

where the metric potentials ν and λ are the function of the radial coordinate r only.
Now substituting Eqs. (3) and (4) into Eq. (6), we find the explicit form of the Einstein field equation for the interior

metric (9) as follows [31,32]:

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ ð8π þ 3χÞρ − χpþ q2

r4
¼ 8πρeff þ q2

r4
; ð10Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ ð8π þ 3χÞp − χρ −

q2

r4
¼ 8πpeff −

q2

r4
; ð11Þ
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where “0” denotes differentiation with respect to the radial
coordinate r. Here ρeff and peff represent effective density
and pressure of the effective matter distribution, respec-
tively, and are given by

ρeff ¼ ρþ χ

8π
ð3ρ − pÞ; ð12Þ

peff ¼ p −
χ

8π
ðρ − 3pÞ: ð13Þ

The further essential stellar structure equations required
to describe static and charged spherically symmetric sphere
in fðR; T Þ gravity theory are given as [33,75,76]

dm
dr

¼ 4πρr2 þ q
r
dq
dr

þ χ

2
ð3ρ − pÞr2; ð14Þ

dq
dr

¼ 4πρer2eλ=2; ð15Þ

dp
dr

¼ 1

½1þ χ
8πþ2χ ð1 − dρ

dpÞ�

�
−ðρþ pÞ

��
4πρrþ m

r2

−
q2

r3
−
χ

2
ðρ − 3pÞr

�.�
1 −

2m
r

þ q2

r2

��

þ 8π

8π þ 2χ

q
4πr4

dq
dr

�
; ð16Þ

where the metric potential eλ have the usual Reisner-
Nordström form

e−λ ¼ 1 −
2m
r

þ q2

r2
: ð17Þ

We describe the exterior space-time by the exterior
Reissner-Nordström metric which is given as follows [74]:

ds2 ¼
�
1 −

2M
r

þQ2

r2

�
dt2 −

1

ð1 − 2M
r þ Q2

r2 Þ
dr2 − r2ðdθ2 þ sin2θdϕ2Þ: ð18Þ

In the present case, the modified Tolman-Oppenheimer-Volkof equation [33,75,76] reads

−
dp
dr

−
1

2
ν0ðρþ pÞ þ χ

8π þ 2χ
ðρ0 − p0Þ þ 8π

8π þ 2χ

q
4πr4

dq
dr

¼ 0: ð19Þ

III. STELLAR PROPERTIES

A. Equation of state

It is considered that the pressure and the energy
density of the fluid contained in the spherical object are
as follows [39,77]:

pðkFÞ ¼
1

3π2ℏ3

Z
kF

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p dk; ð20Þ

ρðkFÞ ¼
1

π2ℏ3

Z
kF

0s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

q
k2dkþ mNμe

3π2ℏ3
k3F; ð21Þ

where me represents the electron mass, mN the nucleon
mass, ℏ is the reduced Planck constant, μe is the ratio
between the nucleon number and atomic number for ions,
and kF represents the Fermi momentum of the electron.
Equation (20) establishes the electric degeneracy pressure
and (21) give the total energy density, as the sum of the
relativistic electron energy density (first term of the right-
hand side) and the energy density related to the rest mass of
nucleons (second term of the right-hand side).
For numerical purposes, we rewrite Eqs. (20) and (21)

as [60,78]

pðxÞ ¼ ϵ0fðxÞ; ð22Þ

ρðxÞ ¼ ϵ0gðxÞ; ð23Þ

where

fðxÞ ¼ 1

24

h
ð2x3 − 3xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
þ 3 asinh x

i
; ð24Þ

gðxÞ¼1

8

h
ð2x3þxÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p
−asinhx

i
þ1215.26x3; ð25Þ

with ϵ0 ¼ me=π2λ3e and x ¼ kF=me is the dimensionless
Fermi momentum, λe represents the electron Compton
wavelength. In the above equation, we take μe ¼ 2.

B. Electric charge profile

We assume as in previous works that the star is mainly
composed of degenerate material, so any charge present in
the white dwarf would be concentrated close to the star’s
surface. Thus, following [60,79], we model the electric
charge distribution in terms of a Gaussian distribution,
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ρe ¼ k exp

�
−
ðr − RÞ2

b2

�
; ð26Þ

where R is the radius of the star in the uncharged case, and
b is the width of the electric charge distribution. The
parameter is considered to be b ¼ 10 km since this is the
order of magnitude of a WD’s atmosphere and represents
less than 1% of the star’s radius. We are considering in the
WD a very small charge fluctuation from the neutral case
with a very tiny excess of electrons. Since electrons are
lighter than ions, they move near the star surface producing
the small charge layer. For comparable widths b of this
layer, the WD structure does not change significantly, as we
test it for values between 5 and 50 km and within this range
mass and radius results have changed only ∼0.01%. The
chosen charge profile mostly does not change the magni-
tude of the total charge of the stars, as we will see later in
Fig. 5, i.e., employing a different charge profile it yields the
same order of the total charge for the charged stellar system
(Q ∼ 1020, see Refs. [33,59,60,62,64,79]). As one can
check by comparing our previous work [60] with the work
of Liu et al. [59] that how the charge is distributed inside

the star has no significant effect on its macroscopic
features.
In our paper, we have defined a quantity given by σ as

follows:

σ ¼
Z

∞

0

4πr2ρedr; ð27Þ

where σ would be the total charge of the star if we were
working on a flat background space-time. So, in the
framework of GR within the finite limit of the stellar
radius, we can write dQ

dr ¼ e
λ
2
dσ
dr. Since curvature effects are

negligible in white dwarfs, σ is perfectly associated with the
total charge (Q) of the star. So, σ represents the total charge
and it is calculated from Eq. (27) we can certainly state that
the chosen charge distribution leads to finite values of total
charge and this choice of charge distribution has no infinite
charge. We can estimate the proportionality constant k.
Considering σ as a comparison parameter, we can estimate
k as

8πk ¼ σ

� ffiffiffi
π

p
bR2

2
þ

ffiffiffi
π

p
b3

4

�−1
: ð28Þ

(a) (b)

(c) (d)

FIG. 1. Profiles for several values of χ, σ ¼ 2 × 1020 C and central density of ρC ¼ 1010 g=cm3.
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IV. RESULTS

The variation of the total mass of the charged WDs as a
function of their total radii is shown in Fig. 2 for the
parametric values of χ and σ. It is worth to cite that χ ¼ 0
recovers GR results for charged and noncharged stars.
In order to observe the electric charge distribution in the

star, the effective pressure inside the WD as a function of
the radial coordinate is showed in Fig. 1(a), where few
values of χ and ρC ¼ 1010 g=cm3 are considered. In the
figure, we can note that the pressure decays monotonically
toward the baryonic surface, when it is attained, the
pressure grows abruptly due to the beginning of the
electrostatic layer. After this point, the pressure decreases
with the radial coordinate until it attains the surface of the
stars, which results in an electric charge distribution as a
spherical shell close to the surface of the WD. For Fig. 1,
we took into account ρC ¼ 1010 g=cm3 and different values
of χ. Figure 1(b) shows the effective energy density is as a
function of the radial coordinate.

In Fig. 1(d), the behavior of the electric field in the star is
presented. We can note in the figure that the electric field
exhibit a very abrupt increase from zero to 1016–17 V=m;
this indicates that the baryonic surface ends and starts the
electrostatic layer. The same behavior can be observed in
Fig. 1(c)—the interface between baryonic and electrostatic
layers—where we present the charge profile.
As we can see in Fig. 2 the mass of the stars grows as the

total radius decreases until it attains a maximum mass
point. It is important to remark that the maximum mass
grows with the decrement of χ. The total radius increases
when fixed star masses are considered, which implies that
the effects of the fðR; T Þ gravity are very important in the
determination of the stellar radius. In addition, curves in
Fig. 2 present a similar behavior in comparison with the
mass-radius relations of the white dwarfs as reported by
Carvalho and collaborators in Ref. [32]. Here in this work,
we consider values of σ¼2×1020 C and σ ¼ 0.5 × 1020 C.
The value of total charge 1020 C has shown to saturate the

(a)

(c) (d)

(b)

FIG. 2. Mass-radius relation of white dwarfs for the parametric chosen values of χ and σ.
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electric field limit at the surface of the star, i.e., the
Schwinger limit (∼1.3 × 1018 V=m) for a mass of
2.199 M⊙ [60]. We also can see in Fig. 2 that the mass-
radius curves tend to a plateau when χ is ≈ − 4 × 10−4.
This result is corroborated by the one obtained in Ref. [32].
In Fig. 3, we present the mass-central density relation of

static, charged, and noncharged WDs for five different
values of χ and σ ¼ 2 × 1020 C. As in previous works
[33,59,60,62,64,79], we can see that the charge produces a
force, repulsive in nature, which helps the one generated by
the radial pressure to support more mass against the
gravitational collapse, so the masses in the charged case
can be larger than in the noncharged one. We present also
the radius-central density relation in Fig. 4. To construct
Figs. 3 and 4, we used effective central energy density,
defined as in Eq. (12).
In Fig. 5, it is shown the total charge of the star as a

function of the central effective energy density for the
chosen parametric values of χ and σ ¼ 2 × 1020 C. One can
see that the total charge slightly varies with the increasing

effective central density. The values of total charge may
seem to be huge as it is 39–40 orders of magnitude larger
than the elementary one. However, if we calculate the total
number of electrons inside the neutral core of the WDs, we
obtain N ∼ 1056 electrons, and considering the total charge
of the stars to be 1020 C, the exceeding number of electrons
are of order N ∼ 1039, which means deviations from charge
neutrality are actually negligible and the apparent high total
charge is feasible. Instead of such high surface charge of the
order ∼1020 C, the charged stellar system should be more
stable due to the balance of the forces, viz., the inward and
attractive gravitational force would be counterbalanced by
the combined effect of the exterior and repulsive hydro-
dynamic force, electric force, and the force originates due
to coupling between the matter and geometric terms.
Hence, the present system is stable and capable of
sustaining the apparently large amount of charge.
Importantly, the study of similar kind of charged astro-
physical systems is also found in several recent articles,
such as [33,59,60,62,64,79]. On the other hand, to explain
the super-Chandrasekhar white dwarf in this work, we have
considered strongly charged WD model in the background
of fðR; T Þ gravity theory. Although, till this date, no
charged WD has been observed, still, the present study
is important in the theoretical aspect in explaining the
super-Chandrasekhar white dwarfs which are hardly
explained in the framework of GR.
In Table I, we present the maximum masses (Mmax) for

the charged WD in fðR; T Þ gravity with their total radii (R)
and effective central energy densities (ρeffC ) for each value of
χ used in this work. It is possible to note that more massive
and large charged WDs are found with the decrement of χ.
We also note an important effect caused by the fðR; T Þ
gravity theory that is the increase of the radii, which
contributes to the stability of the star, since it reduces
the surface electric field. From Table I, one can realize that
as the values of χ decrease the stellar system becomes more
massive and larger in size turning itself into a less dense

FIG. 5. Total charge versus central energy density of white
dwarfs for several values of χ and σ ¼ 2 × 1020 C.

FIG. 3. Mass-central density relation of white dwarfs for
several values of χ and σ ¼ 2 × 1020 C.

FIG. 4. Central energy density versus total radius of white
dwarfs for several values of χ and σ ¼ 2 × 1020 C.
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compact stellar object as predicted by Carvalho et al. in
their study [60]. We have also predicted in Table II different
physical parameters of the compact stellar system due to the
variation of σ for a chosen parametric value of
χ ¼ −4 × 10−4. Table II features that with the increasing
values of σ as usually the mass of the white dwarfs increase
along with their surface charge and electric field, whereas
the stellar system becomes gradually denser as its central
density increase gradually with the increasing values of σ.
Note that fðR; T Þ should affect all the stars from low mass
WDs to the super-Chandrasekhar limit of the mass for WDs
and our study can suitably explain all the WDs. In Table II,
we have predicted the maximum mass points for χ ¼
−4 × 10−4 and parametric chosen values of σ which also
can be seen from Fig. 2(c). Readers should carefully notice
that for χ ¼ −4 × 10−4 and σ ¼ 0 the M-R curve is not
predicting the WDs have far low mass compared to the
maximum mass point 1.47 M⊙. However, this happened
only because with the appropriate choice of χ and σ as we
wanted to show WDs in the super-Chandrasekhar mass
interval. We find for σ in the range 2 × 1020–3 × 1020 C the
present fðR; T Þ model is suitable to predict different
physical parameters of the highly super-Chandrasekhar
white dwarfs having mass 2.17–2.88 M⊙. It is worth
mentioning that the maximum electric field obtained in
this work does not surpass the Schwinger limit of 1.3 ×
1018 V=m for charge screening by pair production [60,80]
(see Tables I and II), which means that the fðR; T Þ gravity

enhances the stability of the charged stars. However, it is
possible to show WDs even in the low mass limit with
the appropriate choice of χ and σ as shown in Figs. 2(b)
and 2(d).

V. CONCLUSIONS

In this paper, we investigate the effects of a specific
modified theory of gravity, namely, the fðR; T Þ gravity, in
the structure of charged white dwarfs. The procedure
started from the derivation of the hydrostatic equilibrium
equation for such a theory, with the addition of the charged
effects. We suppose a Gaussian ansatz for the net charge
distribution.
The main goal was to check the imprints of the extra

material terms that come from the T dependence of the
theory on charged WD properties.
The equilibrium configurations of charged white dwarfs

were analyzed for fðR; T Þ ¼ Rþ 2χT with different
values of χ and central densities. We observed that the
charged white dwarfs can be affected by the extended
theory of gravity in the maximum mass and radius depend-
ing on the value of χ.
We found that for χ ¼ −4 × 10−4 and σ ¼ 3 × 1020 C,

the maximum mass of the charged WD is 2.88 M⊙, and the
radii have considerable increasing. This larger radius yields
a smaller surface electric field, thus enhancing the stellar
stability of charged stars.

TABLE I. The values for the constant χ and the maximum masses of the charged white dwarfs in fðR; T Þ gravity
with their respective radii, effective central densities, charges, and electric fields at the surface of the stars for the
value of σ ¼ 2 × 1020 C.

χ Mmax=M⊙ R (km) ρeffC ðg=cm3Þ QðCÞ EðV=mÞ
−0 × 10−4 2.11 2201 1.45 × 1010 1.94 × 1020 3.59 × 1017

−1 × 10−4 2.13 2565 1.34 × 1010 1.94 × 1020 2.65 × 1017

−2 × 10−4 2.14 2954 1.23 × 1010 1.95 × 1020 2.01 × 1017

−3 × 10−4 2.15 3227 1.14 × 1010 1.95 × 1020 1.69 × 1017

−4 × 10−4 2.17 3820 9.60 × 109 1.96 × 1020 1.21 × 1017

TABLE II. The values for the constant σ and the maximum masses of the charged white dwarfs in fðR; T Þ gravity
with their respective radii, effective central densities, charges, and electric fields at the surface of the stars for
χ ¼ −4 × 10−4.

σ (C) Mmax=M⊙ R (km) ρeffC ðg=cm3Þ QðCÞ EðV=mÞ
0.0 × 1020 1.47 2940 3.37 × 109 � � � � � �
0.5 × 1020 1.50 6647 2.60 × 109 4.94 × 1019 1.00 × 1016

1.0 × 1020 1.63 5330 4.29 × 109 9.86 × 1019 3.12 × 1016

2.0 × 1020 2.17 3820 9.60 × 109 1.96 × 1020 1.21 × 1017

3.0 × 1020 2.88 3770 9.94 × 109 2.94 × 1020 1.86 × 1017
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The possibility of explaining the highly super-
Chandrasekhar limiting mass white dwarfs as a progenitor
of the peculiar overluminous super-SNeIa in the framework
of fðR; T Þ gravity theory was first raised by Deb and
collaborators in their work [33]. In the present work, we
have successfully explained the highly super-
Chandrasekhar limiting mass white dwarfs having mass
2.17–2.88 M⊙ which remained hardly explained in the
framework of GR. However, when explaining super-
Chandrasekhar white dwarfs with modified theories of
gravity one may wonder superluminous supernovae would
be more common since modified gravity would affect all
the stars. However, our present study reveals that one can
easily explain WDs having the sub and super-
Chandrasekhar masses by employing suitable choices of
parametric values for σ and χ. Since gravitational fields are
smaller for WDs than for neutron stars (NS) or strange stars
(SS), the scale parameter χ used for WDs is small when
compared to the values used for NSs and WDs, and also the
values of χ used for NSs are smaller than the ones used for
SSs. Solar system constraints also indicate χ must be of
order ∼10−13 [81]. This indicates that more compact the
system more deviations from GR theory are needed and the
parameter χ may mimic a kind of chameleon mechanism,
where the parameter scale depends on the density (or
compactness/field regime) of the system [60,82,83]. As a
final comment, the present work not only pushes the

maximum mass limit for white dwarfs beyond the
standard value of the Chandrasekhar mass limit but also
plausibly explaining the requirement of the application
of fðR; T Þ gravity theory in studying astrophysical
observations.
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